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The GLS approach to CMB map making
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Abstract. The field of Cosmic Microwave Background (CMB) data analysis is a smash-
ing source of computational problems. Here we discuss the ROMA map making code.
Originally designed to generate a map of the CMB anisotropy and polarization fields us-
ing optimal statistical methods, ROMA can be applied also to other microwave oriented
surveys. The computational details of the subject will be set forth.

1. Introduction

The Cosmic  Microwave  Background
anisotropy is a unique window on the
early Universe. It is widely regarded as one of
the most important sources of cosmological
information. Several experiments, either
ground based, balloon or space borne have
sought after this weak signal (the CMB is
anisotropic only for about one part out of 10°).
Such an experimental effort will be crowned
by Pranck!, an ESA satellite due to launched
in late 2008 that will measure the CMB
anisotropy to a level only limited by residual
astrophysical foreground emission. Together
with experimental know how, CMB datasets
also have grown in size: modern experiment
can host up to several thousand detectors,
that are typically read out in the range 10 to
1000 Hz. As a consequence, the sheer size
of the dataset is an issue. At the same time,
the weakness of the target signal calls for
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the implementation of optimal data reduction
techniques.

Map Making is a key part of the data analy-
sis pipeline of an experiment aiming at extract-
ing scientific information from the CMB. It al-
lows for a radical compression of the dataset,
reducing its size by several orders of mag-
nitudes while preserving (when properly car-
ried out) all of the relevant cosmological in-
formation. In addition, the frequencies probed
by CMB experiments are broadly relevant for
Galactical and extra Galactical studies. For
these, it is often critical to rely on accurate
spatial characterization of the target source.
Last, but by no means least, map making is of-
ten beneficial to the dataset, since many time-
line specific systematic effects are reduced in
magnitude when projected from time to pixel
space. When this is not possible, careful anal-
ysis of a CMB map might flag instrumental ef-
fects in the data that are not evident at the time-
line level.

Several map making algorithms have been
proposed for CMB experiments. The most ef-
ficient from the computational point of view
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take advantage from peculiarities of the scan-
ning strategy of the experiment to deliver ap-
proximate but quick solutions. This is the
case of so called “destriping” algorithms
widely used in Planck (see (Maino 1999) and
(Revenu et al. 2000)). While some of these al-
gorithms achieve excellent performances and
accuracy their use is usually restricted to par-
ticular scanning strategies and noise charac-
teristics. Hereafter we describe a particular
implementation of a map making algorithm
(the so called GLS algorithm) that can be ap-
plied to virtually every CMB experiment. A
Finnish group (Keihanen ef al. 2005) has re-
cently proposed an hybrid algorithm (dubbed
madam) that can perform as a destriper when
this is desirable or appropriate, but capable to
reach the accuracy of a GLS when a higher
computational cost can be afforded. We do
not discuss this algorithm here, the interested
reader is refereed to the reference above and
to (Ashdown et al. 2007, 2008) for a thorough
comparison of several mapmaking algorithms
of interest for Planck.

1.1. The data model

State of the art CMB detectors do not pos-
sess the sensitivity to image directly the tar-
get field. Instead, the beams are scanned across
by means of a dedicated movement of the tele-
scope. The observations hence form a time se-
ries (or timeline) and signal to noise ratio is
gained by observing repeatedly the target re-
gion. The classical model of a data set in time
space is:

d[ = S,+n, (l)

where d,, the data vector as a function of time,
is modelled as a linear combination of the sky
signal s, and detectors noise n,. The two can
be assumed to be statistically independent, i.e.
(syn;y = 0, where (-) denotes the ensemble ex-
pectation value. On the other hand, noise from
a state-of-the art CMB detector almost always
exhibits a time correlation:

(nyng) = &(t = '), (@)

where ¢ is some correlation function, whose
explicit dependence on the time arguments

holds in the case of stationary noise. As the
telescope perform its scan, the sky signal is
projected onto the timeline. We can think of
this operation as if carried out by means of a
linear operator A:

= Apmy+n, 3)
p

where m,, is the (unknown) underlying sky
map, labeled by its pixel element p. Note that
so doing we are implicitly subdiving the sky
into finite resolution elements: the pointing
matrix A then couples the time and pixel do-
main. The sky signal is convolved with an
optical transfer function: in general, the in-
formation about beam smearing could be in-
cluded in A. We prefer however, to assume
here that A is pointwise (i.e. having a single
nonzero entry per row, occurring when a pixel
falls into the line of sight) and hide the beam
map (i.e. solve for a pixelized, beam smeared
image of the sky). This is only possible if
the beam can be considered axially symmet-
ric with respect to boresight because in the
case the ordering of the “pointing” and “beam
smearing” operations is irrelevant: convolving
with a symmetric beam produces the same re-
sult regardless of the scan direction (see how-
ever (Armitage & Wandelt 2004) for an algo-
rithm that deals with the effects of an asymmet-
ric beam).

The CMB is known to be linearly polar-
ized due to the dependence of the Thomson
cross section on photon polarization and
the anisotropic character of the radiation
field (Kaiser, 1983). It has long been realized
that measurements of this polarization pattern
can provide useful cosmological information.
Hence, there is a neeed to provide polarization
maps as well. In the formalism of the Stokes
parameters (Chandrasekhar 1960) one needs
also to estimate Q and U maps (the V parame-
ter is not relevant here since the CMB does not
exhibit circular polarization). Thus, the above
data model can be modified as:

1
Dy =Ay (Ip +Q,c0s 26, + U, sin 2¢,)+n,(4)

where I, Q and U are the Stokes parameters for
total intensity and linear polarisation, and the
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angle ¢, identifies the polarimeter orientation
with respect to the chosen celestial frame. Note
that we do not include the contribution of cir-
cular polarisation, associated to the Stokes pa-
rameter V. As a consequence, a V signal is seen
by our polarimeter as a contribution to /. This
fact is not a problem in CMB science because
circular polarisation is not present. All three
relevant Stokes parameters can be extracted by
either combining the output of many detectors
with different mutual orientation, or by allow-
ing enough focal plane rotation.

We can now safely insert the sines and
cosines in the A matrix, and then consider a set
of k polarimeters, recasting Eq. (4) into a more
compact formalism:

Di=A,S, +n (5)
where we assume that the timelines of each de-
tector are combined:

D,
D, = N

DF
and introduced a generalised pointing matrix
that takes the form:
A}, cos2¢,A;, sin2¢,A]
Ay = . . .

N =

A}, cos2¢,Ay, sin2¢,Af

tp

We can also express the sky signal as:
Iy

Sp = QP ’
Up

and the noise timeline as:

t

The job of map making is to estimate the
three (I, Q, U) maps. Since eq. (5) describes
a linear problem, whose unknown parameters
(the map pixel values) can be constrained using
a the generalized least squared (GLS) solution
(e.g. Lupton, (1993)):

S, = (AN"A) " AN'D, 6)
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Fig. 1. Scaling of ROMA with the number of pro-
cessor elements on an IBM Power 5 machines. The
code scales "optimally” until N,, ~ 80. The dataset
was composed of about 100 million samples.
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Fig.2. As in figure 1 but for a 2.4 GHz Opteron
cluster. The two different series of points refer to
different dataset lengths.

where:
(ninp) - (nint)
N=mmn,) = : : . @)
(i) - (it

The noise matrix N reduces to block diagonal if
the noise in different detectors is uncorrelated
(that is, if there are no cross talks):

(ninl) = (nlni) =0 (i#)). (8)

1.2. Implementation

Eq. (6) is deceivingly simple. Its straightfor-
ward implementation for a modern CMB ex-
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periment would require the inversion of a ma-
trix of order the number of pixels in the map, a
number that can easily run in the million range.
Such a task lies beyond the reach of present day
supercomputers. Luckily, the problem can be
recast in such a way that only matrix to vector
products are required. Such a scheme was pro-
posed by Natoli ez al. (2001), has been demon-
strated to work for intensity map-making even
for a high resolution full sky survey such as
Pranck. The approach has been extended to
polarization map making in (de Gasperis et al.
2000).

The idea (Wright (1996)) is to decom-
pose the product A'N'A (“unroll, convolve
and rebin”), so that no large matrix needs to be
stored, and make use of a preconditioned con-
jugate gradient (PCG) solver. The key assump-
tions are: (1) assume that the beam is axisym-
metric, so to keep the structure of the pointing
matrix A as simple as possible and (2) assume
that the noise is (piecewise, at least) station-
ary and that its correlation function decays af-
ter a time lag much shorter than the length of
the timeline piece being processed. Under the
last assumption, the N matrix is approximately
circulant, and as such it is diagonalized by a
Fourier transform. This approach achieves lin-
ear scaling (with the number of time samples)
per PCG iteration; if the system is precondi-
tioned by the pixel hits counter (the number
of times each pixel is seen), an accurate solu-
tion can be obtained in a few tens of iterations;
see Natoli ef al. (2001) for a discussion of al-
gorithmic details.

To run, ROMA requires knowledge of the
detector’s noise properties, encoded in the
noise covariance matrix N. They must be mea-
sured directly from flight data which, however,
are a combination of both signal and noise.
This is accomplished by means of an itera-
tive approach: a raw estimate of the signal is
provided by performing a naive mapmaking,
which is used to provide an estimate of the
noise. The properties of the latter are then es-
timated by standard spectral techniques. The
process is then repeated a few (typically 5)
times to reach convergence.

The map making algorithm described
above has been implemented into a code called

ROMA. In the next section we will describe its
performances.

1.3. Performances

ROMA is written in standard compliant for-
tran 95 and relies on the MPI libraries for
inter processor communications. Since 2005,
the original prototypical code has been com-
pletely rebuilt with the aid of personnel from
the Caspur supercomputing center, with a sig-
nificant boost in performance. It turns out
that the lion share of CPU time is claimed
by the discrete Fourier transform algorithm:
ROMA uses the publicly available FFTW
library (Frigo & Johnson 1998) to perform
transforms. One of the nice characteristics of
this library is that it can autonomously tailor
itself to a given architecture. This greatly en-
hances cross platform efficiency. On an IBM
power 5 machine, we have compared the per-
formances of ROMA based on FFTW and on
the vendor’s optimized FFT library. The re-
sult was that very little (if anything) is to be
gained by using the latter, while using FFTW
enhances portability. Other than on IBM power
5 machines, ROMA has been tested on infini-
band based Linux clusters. The scaling of the
code with the number of processor elements is
described in figure 1 and 2 for the two different
architectures under consideration. Note how
the scaling of ROMA is nearly optimal up to
~ 80 processors. Above this number, inter pro-
cessor communications start to call their toll.
This behaviour is due to the way ROMA is par-
allelized: each processor element only holds a
portion of the timeline A and performs only
its part of the product A‘N~'A, building a lo-
cal submap. Only when the conjugate gradient
solver is called, all the local maps are merged
(MPI_all_reduce) to produce the full map.
This means that most of the computation is
performed without the necessity for inter pro-
cessor communication and, when communica-
tions finally happen, the entire submap is trans-
ferred. ROMA runs very efficiently on a large
number of processors, the highest number be-
ing tested being 1024. ROMA is expected to
scale linearly with the number of samples in
the timeline. This is confirmed by explicit tests
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Fig.3. Time per ROMA conjugate gradient iter-
ation versus length of the timeline. Note linearity
(reprinted from (Natoli et al. 2001)).
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Fig.4. Time per ROMA conjugate gradient itera-
tion versus number of pixels in the map. Note how
the time only doubles for a difference of two or-
ders of magnitude in the number of pixels (reprinted
from (Natoli et al. 2001)).

(figure 3). On the other hand, the scaling of the
code with the number of pixels of the map is
expected to be weak, though not totally insen-
sitive because handling larger maps does have
an impact on performances. In figure 4 we plot
the measured pixel scaling. Note how it only
doubles for a change of two orders of magni-
tude in pixel count.

1.4. Conclusions

We have descried the ROMA code for intensity
of polarization map making. ROMA has been
developed for data analysis of CMB experi-
ment, but the approach is totally general and

can be used for map making of any timeline ex-
hibiting correlated noise. The code scales quasi
optimally with the number of processor ele-
ments and can hence be employed for reducing
a large dataset, such as the ones expected by
forthcoming microwave oriented surveys.
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