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1. Introduction
Let us consider the following Hamiltonian:

(%) H: T xR SR, H(x,X)=h(X)+ F(x, X),

whereT”+1 = 25;:; is the(n + 1)-dimensional torug) is an analytic function and' is analytic

and of small norm(x, X) are standard symplectic variables. Usuatlyis referred to as a quasi-
integrable Hamiltonian since it is a small perturbatiork @) whose motions are very simple to
integrate. The aim of perturbation theory is to understand the orbit structuife pérticularly

with regard to stability; for example one would like to provide bound$Xo¢) — X (0)| for ¢ as

large as possible. In some problems of celestial mechanics, for instance, the virisiédated

to the length of the semiaxes of the ellipses on which the planets run and strong oscillations
of this variable could lead to collisions; in other modeXs,is related to the inclination of a
planet’s axis and determines which part of it receives the most light from the sun. Under certain
conditions oz, there are two well-known theorems dealing with the stabilittHofhamely the

KAM and Nekhorocheff theorems. Grossly, the KAM theorem asserts that, except for a set of
small measure (of orderF||1/2) of initial conditions,X (z) remains for all times in a || F||/2-
neighbourhood of (0). The Nekhorocheff theorem asserts that, for all initial conditidhg,
remains close t& (0) (to order| F||) for all times not exceeding exp/| F||”, wherea, b and

D are positive constants depending only/oand on the dimensionm.
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One would like to know whether these theorems are sharp; a simpler problem is to find
perturbationg of arbitrarily small norm admitting orbits which satisfy, for soffie- 0,

() |X(T) - X(0)| >,

wherec is a positive constant independent Bf There is a small class of analytic examples
where (xx) has been proven. The first example was given in [1]; since [10] (where a theory
showing the existence of diffusion in general “a-priori unstable systems” is presentaeral
generalizations have appeared; we quote, in particular, [13,14,5]. The aim of this paper is to
provide a variational method, based on Mather theory, apt to give bounds from above on the
“diffusion time”, i.e. the least time for whickkx) holds; in particular we consider the examples
given in the quoted references and prove upper bounds on the diffusion time for them.

We will consider the following five families of Hamiltonians:

1 1
%) H(Q.q.1,p)= 5|1|2 + Epz + (cosg) — 1) + ££(Q. q),

(0.H eT"xR", (q,p) e T xR,

1
) H(Q,q,1,p)=(w,I)+ Epz+ (cosq) — 1) +&f(Q, q),

(0, eT"xR", (q,p) e T xR,

12
(GGM) H(Q,q,1, p)=«/59111+n31+n*1/29212

1
+ Epz + (cogq) — 1) + ef(Q1, 02, 9).

(01,02, 11, ) e T>x R?, (¢, p) e T'xRY, >0,

1 ,
(B1) H(Q.q.1,p)=¢lw, 1) + 5 p* +&(cosq) — 1) +&* 1(Q, ),

(0, eT"xR", (q,p) e T xR, 1<d <2, d >3+d/2, >0,

1 1 ,
(B2) H(Q,q,Lp)=85|1|2+5p2+sd(cos(q>—1)+sdf(Q,q>,

(0. eT"xR", (¢, p)eT xRY, 1<d <2, d >3+d/2, >0,

where(-, -) and| - | denote respectively the standard inner product and noRf;irf is a suitable
trigonometric polynomial; the authors above usually choose

n

@) f(Q.)=) aicodQi+q), a#0,Vi, Y |a| <L

i=0 i=0

1Roughly speaking, “a-priori unstable systems” are nearly-integrable Hamiltonian systems, the integrable part of
which carries separatrices. We remind that some flaws have been detected in [10] Ese&ttimein [10]). Obviously we
are referring here to those parts of [10] known to be correct: in particular the general analysis for a-priori unstable systems,
i.e., 81 through 88 of [10] (in 88 there is a minor mistake concerning the quantitative treatment of the construction of
diffusing orbit: such mistake has been corrected, for example, in [11]).
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Since we want to use their perturbation resuftsyill satisfy (1) throughout the paper.

Some of the systems above represent simplified models of some Hamiltonians of celestial
mechanics; although none of them are in the f@gunthey are considered as a test ground for
perturbation theory; for a full account of their origin and properties we refer the reader to the
papers where these systems were introduced, [10,9,13,14] and [5]. W& @althe a priori
unstablesystem,(G) the isochronoussystem,(GGM) thethree time scalesystem,(81) the
linear degenerateystem, and32) thequadratic degeneratgystem. We observe that for certain
values of the parametedsandd’ (31) and(B2) coincide after rescaling wittCG) and(G). We
note that(CG) includes [1] as a particular case; see also [3] and [4] for related results.

We note that these systems consist in rotators coupled with a pendulum. The variables of
the pendulum are the canonically conjugated coordinat@sdq. The variables of the rotators
are the canonically conjugated coordinateand Q, and we call them “actions” and “angles”,
respectively.

If ¢ =0, the tori{/ = const g = p = 0} are preserved by the Hamiltonian flow; it is easy to
see that they hava + 1)-dimensional stable and unstable manifolds givedy: const times
the stable and unstable manifolds of the pendulum. Wher0 these manifolds are perturbed
and the stable manifold of one torus can intersect the unstable manifold of another torus. The
proof of this can be very hard and much literature has been spawned by this problem; we will
use the results of [10,9,5,13], and [14] which show that, for Argnde £ 0 small, each of the
systems above has a family of invariant KAM tori of codimensionil, .., ty; on eachr; the
flow is conjugated to a rotation of frequeney, with w; satisfying a diophantine condition of
the type:

C
|mmkﬂ>1;5 Vk € Z"\ {0}.

I
The explicit value of the constant and & is stated in Proposition 1. Eaah has an unstable
manifold (christened “whisker” in [1]) which, iff satisfies (1), intersects transversally the
stable manifold ofr; 11; 1 andty are at distance of order (at least) 1. Since the intersection
is transversal, an angle between the two manifolds can be defined; this is commonly known as
the “splitting” and its magnitude affects the tinfein (xx). An easy and general proof of the
existence of an orbit satisfying:) which covers the cases considered here is in [11]: the aim of
this paper is to obtain, using Mather theory, good bounds on the diffusiorftimé remark that
in all these examples the splitting between stable and unstable manifold is known and that our
estimates on the “diffusion timel" arepolynomialin the splitting. As a side remark this shows
that the version of Nekhorocheff theorem given in [5] is optimal. Our result is the following
theorem, the proof of which is presented at the end of Section 1. Before stating it we note that the
idea of using Mather theory in this context goes back at least to Bolotin, whose aim in [6] was to
find homoclinics to a single invariant torus. Some of our Hamiltonians have also been considered
by Cresson ([12]) who, by a different method, obtains a diffusion time polynomial in the splitting.
We do not enter into further discussions on the literature: first, because it is enormous; second,
because it is already available in the very good survey [17].

THEOREM 1. — (i) Let H be as in(CG) and let f be as in(1). Then for someé > 0 and for
all ¢ £ 0 small enough there are orbits é¢f whose energy is bounded independently @and
such that
D

1
Uameﬂ>5,0<T<E§ﬁﬁ.

Here, as in the followingZz, D and C; are positive constants, not dependingggnz and C;
will be defined more precisely in Propositidrbelow.
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(i) Let H be asin(G) and let f be as in(1); let w be such that

C
[(w, k)| = e Vk € Z" \ {0}.

Then for somé > 0 and for alle # small enough there are orbits &f whose energy is bounded
independently om and such that

1 D
|[(T) —1(0)| > o 0<T < PERSE
(i) Let H be asin(GGM) and letf be asin(1); let g, J, £21, £22 > 0; then, for someD > 0,
for all  # 0 small enough and fos # satisfying|e| < g0 = O(»®) it is possible to find an orbit
of H whose energy is bounded independently @md such that

De?

1
|[(T)—1(0)| > o 0<T< DEe DIVE

(iv) Let H be asin(B1) or (52) and letf be as in(1). Then for someé > 0and foralle #0
small enough there is an orbit @ whose energy is bounded independently @md satisfying

1 D
[1(T) = 100)| > o 9<TS creemarias

whereZ and C; are positive constants defined in Propositibhelow.

We spend a few words on the proof, which is an almost immediate application of Mather
theory. Our first step is to recall (Proposition 1) all the results of the above-mentioned papers
regarding the conservation of the KAM tori, their “whiskers” and the “splitting”; we translate
these perturbative results in the language of the calculus of variations obtaining that some
homoclinic orbits to an invariant torus are nondegenerate minima of the action functional. The
diffusion orbit is builtin Proposition 2 as a local minimum of the action: it is close to a homoclinic
to the first invariant torus on an intenvid, 71], to a homoclinic to the second torus gh, 7>],
etc. This approach is similar to the one of Hadamard for the geodesic flow on manifolds of
negative curvature; it depends strongly on the fact the the global minima are nondegenerate. The
right notion of nondeneracy has been defined in [19]; in our case it boils down to the fact that the
Melnikoff function has a nondegenerate minimum. The main advantage of this approach is that,
once the statements about stable and unstable manifolds are translated into variational language,
the proof is a simple application of [19].

2. The variational setting

We will prove Theorem 1 by a straightforward application of Mather theory ([18,19]); no other
work is needed than the translation of [10,9,5,13] and [14] into variational terms.

Mather theory is formulated for the Euler—Lagrange flow (from now on the E—L flow) of a
Lagrangian; of our systems, on{G) and(32) are Lagrangian. To solve this problem, we will
introduce in(G), (GGM) and(B1) a small kinetic energyz%/<|l|2 and then we will letc — 0.

All our estimates will be uniform ir and we will recover Theorem 1 by a limit argument.

We now introduce a family of Hamiltonians; its form is rather complicate because it is general

enough to include, together with its limiting casé3g), (G), (GGM), (B1) and(B2). We shall
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never need its precise expression; we will only need the facts about the invariant tori and their
stable and unstable manifolds proven in the papers mentioned above. Let us consider:

(Ham) H(Q.,q.,1,p)

1. 2 1. 5
= Ar{w1, 11>+/<1§|11| + A2(w2, 12)+K2§|12|

L2 2(cogq) — 1
5P°+8°(cosq) — 1) + 1/ (Q1, 02, 9),
(01, 11) e T" x R™, (Q2, 1) e T"2 x R"2, (¢, p) e T x RY,

A1, A2 €0, +00), n=n1+np, g, k1,k2, € (0,1].

Sincek1, k2 > 0 the Lagrangian correspondingbis:

|01 — hw1]? n |02 — Aowo|?
2K 2K2

1
+54°+g%(1 - codg)) — 1f (01, 02,9).

(Lag) L£(Q,q,0,9) =

We recall that in the classical Legendre transform the correspondence between Hamiltonian and
Lagrangian variables is given by:

(2) L:(Q1,02, 11, I2,q, p) > (Q1, 02, hMw1 + k111, howz + k212, q, p).

In the following, N, (A) will denote ar-neighborhood of a set ¢ T**1 x R"*+1; D; will always

denote a constant greater than 1 and independent on the parameters appearing in (Ham). We will
consider the cover of”*1 given by T" x R, where we do not quotient in thevariable. The next
Proposition collects the perturbative KAM results and translates them into variational terms. Its
essential point is that the local stable and unstable manifolds are graphs of exact 1-tbrms, d

and dp; ,; @; ; and®; , represent the action functional of orbits lying on the stable and unstable
manifold respectively. The statement is slightly involved because we consider two copies of each
invariant torus, the one near= 0 with superscript“" and the one neay = 2 with superscript

“+4". For the convenience of the reader, we make a comparison between our notations and those
of [10] in the Appendix 1.

PrROPOSITION 1. —Let H be as in(Ham), let f be as in(1) and let one of the following hoid
(CG) n=n1,n2=0, A2 andk, are absentp; =0, g =1, u =¢ > 0is small andk; = 1.
(G) n=n1,n2=0, A2 and k2 are absenti; =1, g=1, u =¢ > 0 small andx; > 0
sufficiently small.
(GGM) ni=nz=1k1=n, k=217, k2= 2m 2, g=1,0<u=e<eo=00°); we
suppose that # 0 is small and fixed and that > 0 is sufficiently small.
(Bl) n=n1,n2=0, A» andk; are absenti1 =¢ > 0, g2 =¢?, = ¢, withe andx1 > 0
sufficiently small.
(B2) n=n1, np =0, A2 and k> are absenti; = 0, g2 = ¢4, w= sd/, k1 =¢,withe >0
sufficiently small.
Then the following holds
(*1) There is a family of:-dimensional tori,r, ..., 7y € T x R**1, each of which is
invariant for the Hamiltonian flow off. Each of them has stable and unstable manifold, which
we denote by’ and W/ respectively. All ther; are contained in the same energy surface
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{H = €}. Eacht; projects diffeomorphically of; ¢ T**1. On the covering o1 given by
T" x R eachf; is the graph of a functiog; : 7" — R; the C1 norm ofg; tends tod ase — 0. In
particular, 7; dividesT” x R in two connected components.

(*2) There arer > 0, w; € R" and n; > g/2 such that the flow off on the local stable
manifold inN, (z;) is given by

¢! (Yo + wit, yoe '),
where
T X [=rr] = T" X [—r,r] X R+

is a Lipschitz function whose Lipschitz constant is boundebBpfor all ;.
Analogously, the flow on the local unstable manifold;ds given by

¢! (Yo + wit, yoe™'),

T X [=r,r] > T" x [—r,r] x R+l

with ¢/ of Lipschitz constant at mog; .
(*3) 3C, & > Osuch that

C
|(a),~,k)|>W VkeZ"\ {0}, Vie(l,...,N).

(*4) Let us consider the covering "1 x R"*1 given byT” x R x R**1 (i.e., we do not
quotient in theg variable); let us denote by, the pre-image of; close toT” x {0} x R*t1 and
by tf the pre-image close t6” x {27} x R"*1. We are going to state that the local stable and
unstable manifolds (:n‘l.i are graphs of functions fro” x R to R**1 (this is also, for instance,
the situation of [1). Since a Lagrangian submanifold which is a graph is the graph of a closed
1-form, we assert the following

There area > 0, ¢; € R**1 and two smooth real-valued functions,"u and cb;fu, defined
respectively od” x [—7 —a, m +a]andT” x [7 —a, 37 +a] such that the graph af, + axcbfu
is contained in the unstable manifoldp"f and contains:l.i. The choice of; is not unique, since
we can add to it0, ..., 0, x) € (R")* and changep, so thatc; + d,®;;, remains the same.
The precise value af will be chosen in(*6.)

Analogously, there ar@ffs such that the graph of; + o, d)i:,ts enjoys the same properties as
before but with respect to the stable manifold.

(*5) 3x; € T" x {7} such that

Cir1+ 0Py (Ki) = ci 4 0D, (Ki)
and there are3 > 0, § € (0, a) such that

[, () =@}y () + (ei —civr, x)] = [, (%) — Dy ((F) + (ci — cia, %) =0
Vx eT" x {m}, ||lx —x;|| <6,

inf{ (27,00 — D () + (6 —cipr, ¥)] = [@,(0) = D1 ((X) + (ci — ciy1, x)]:

- _ 8
Iy —=xill =36, lx — Xi|l < 5

> x,yeT"x{n}}}ﬂ.
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(*6) Let us call P the projection ofT"” x R x R"*1 onto T"*1 x R"*1; since P(z;") =
P(r;") = 1;, also the projections of their stable and unstable manifolds coincide; thus we can
choose the additive constantsdr, and in®;", so that

@, (x—(0,....0,21)) = ‘bﬁ (x), @ (x—(0,....0,21)) = qsl.fg (x).

Clearly, cbffu and dﬁ depend on the choice af. For instance, ifc; is changed toc; +
(0.....0, x) thend;", is changed tad;, — xq = 7.
We assert that it is possible to choagean such a way that

I

{0, 00=2],m)}

is a hypersurface contained " x (w, 7 +a] and

I

{d)ijs ()C) = d)tirs ()C)}

is a hypersurface contained if* x [7 — a, 7). Moreover, bothf,»,s and f,;u are graphs of
functions fromT” to R. We denote by’ the bounded component®f x R\ (I35 U7,), by

Ffs the bounded component®f x R\ (fl-,s U ff). Analogously, we denote lﬂ[u the bounded
component of” x R\ (I3, U%,"), by I'; the bounded component®f x R\ (7, UZ").
From now on,c; will be fixed in the above way; all the;} are bounded by a constant
independent on the parameters.
(*7) The functionsqﬁfu and qblf—: are Lipschitz with Lipschitz constants bounded by.

Moreover,

sup oo |I+  sup  op®;, [+ sup  [d@
T'x[—m—a,7+a] T x[—m—a,m+a] T"x[7—a,37+a)
+ sup  [3p®;,
T"x[7—a,37+a) ’
tends to0 ase tends ta0.
(*8) By points(*5) and (*4), there is an orbit(Q;(¢), ¢; (t)) = x;(¢t) such thatx; (0) = x;,

L~ Y(xi (1), %i(t)) tends tor; for t - —oo and to ;41 for + — +o00. We assert that this
convergence is uniform in

3b > 0: L™ (xi(=b), %i(=b)) € Nr(ri), L™ (xi(b), %i(b)) € Ny (i41)-

Moreover, in(CG), (G), (GGM), (BL), (B2), we have thaE, r ands are independent on the
parameters andcy — c1| > 1/D for someD > 0 independent on the parameters. In particular,
it is possible to fix anyg > n — 1.

The constantg, 8, b, C, N depend on the parameters in the following way

(CG) g =1, b is independent ore, C = Coe?, with Co and C; positive and
independent om, and 8 > Boe for somepy independent om; moreover,N <
Do/B.
(G) g=1,bandC are independent onand g > Boe for somefy independent og;
moreoverN < Dg/B.
(GGM) g =1, b is independent oa and n; for somes2 > 0, we haveC = Qe 2,
B > e2n~Pe P/ and N < Dan~Y2exp(Dan~1?).
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(B1)—(B2) g2 =g, C = Coe1, with Co and C; positive and independent anb < e~ 4/2,
N < Do/B, B> Do? ~1-4/2,

Proof. —Properties (*1), (*2) and (*3) are a consequence of KAM Theorem for hyperbolic
tori: see, for instance [10,16,20]. In particular, in the casé&®fthey are stated in paragraphs 2
and 3 of [13]; in the case aiG.M) they are part of formula 1.3 and Theorem 1.4 of [15]; in
the case of B1) and(552) they follow from [9] and [5]. We remark that we are not exactly in the
hypotheses of the above mentioned papers: for instance, [13] considers the Hamilf@miéh (
k1 = 0. Butin [16] it has been proven that,df > 0 is sufficiently small, then the thesis of [13]
continues to hold.

As we have already said, (*4) simply asserts that a certain portidi’oand W/* projects
diffeomorphically onT”; the theorems mentioned above imply that this is true in our cases.

In the light of (*4), the first formula of (*5) simply asserts that there is a heteroclinic
intersection between the unstable manifoldrpfand the stable manifold of; 1. The second
group of formulas of (*5) asserts that the intersection is transversal. The bulk of the papers
guoted above consists in proving that that these formulas hold if the Melnikoff function has a
nondegenerate minimum. We remark that in the above paper®; , — z+1 s)(xl) is explicitly
calculated; from the explicit expression it follows that in the points of minimum we have
Oex (P, — l+1 ) (%) = Bl1d; point (*5) follows from this and the Taylor formula. In the case
of (GG M) see also [15], which gives the estimate®and the number of totv.

Before proving (*6), we recall what aré@:F in the case of the separatrices of the simple
pendulum,L(q, ¢) = %Ic’]l2 + ¢[1 — codg)]. The reader should look at Fig. 1: for=0, &,
is a kind of parabola with vertex ip = 0, @, a kind of parabola with vertex ip = 27 ; the two
curves intersect ig = r; these two functions depend eras explained in (*6) and changing
¢ moves the point of intersection left or right. The sammoves the point of intersection of
@, and®;" in the opposite direction; it is easy to see that, if we want the intersection of the
graphs of®; and @;" to lay on[r — a, ), then we must choosein |c| < Dg; indeed, if
lc| > Dg the intersection disappears. The reason for choasinghis way is that the point of
intersection will be a point of discontinuity for the functional we will minimize; thus we are
interested in keeping it off =, the Poincaré section on which we will work. When we couple
the pendulum to the rotators, these points of discontinuity become surfaces of discontinuity,
Iy and I}, as shown in Fig. 2. We now prove (*6) in one caggg.M), since the others
are similar. Let us considé€GGM) with & = 0. In this caseW/ is the product ofT 2 with the
unstable manifold of the pendulum and (*6) follows by the considerations above. Indeed, we
considercbfu when the third component af is zero; if we choose suitably in|x| < Dg,
then @lfu(Ql, 02,q9) — ®; ,(01,02,9) = 0 is the two-dimensional torug; = = + %a}; in
other words, if we choose with the third component equal tp, I}, = {g =7 + %a}. Since
g [cbl.f“u (Q1, 02,9)— P, (01, 02,9)1 #0, the implicit function Theorem yields (*6) also when
le| < g0 = O(n®). We also remark that it is easy to see that the first two componentsaré
bounded; from the argument above, it follows that¢hare bounded.

As for (*7), we note that by (*4y; + 8xq§i andc; + 8xq§i are bounded by the sup @, p)|
on the local stable and unstable manifolds, which are unlformly bounded in the c@be @1)
and(B2). Since by (*6) the:; are bounded, we have thaf'E anch>jE are Lipschitz uniformly in
i. The second formula of (*6) is a consequence of the explicit formﬂfandcbi forinstance,
in the case otGG.M), these can be found at the beginning of Section 3 of [14] there it is stated
that they satisfy (*7).

We note that (*8) simply asserts that it takes a tibnfor the homoclinic to go fromr to a
neighborhood of the invariant torus; this follows considering the motion along the pendutom.



U. BESSI ET AL. / J. Math. Pures Appl. 80 (2001) 105-129 113

c=0 O<c<]3g
\ /
\ / N s
N/ N 4
\/ o N y 7
@ ot i NS
iu iu NS
0| =L L+|2n
1 iu i,u i ~ +
1—i‘,u E,u l—1‘,-1']- q>i,u
4@ cHP
Lu —
~ N N
\ N
0 \ . Tl2=ri’u 2n \ . E,u
4o T cedot
Lu i,u
Upstairs: graph o®; ", andcb:“u Upstairs: graph o®;, andqﬁlfu
for ¢ = 0. The solid lines are the graph for 0 < ¢ < Dg. The solid lines are the graph
of 715°(0, ¢). o of 12°(0, ¢).
Downstairs: The solid lines represent Downstairs: The solid lines represent
the initial conditions the initial conditions
of the orbits realizingig” (0, ). of the orbits realizingh2°(0, ¢).
Fig. 1.

Fig. 2.
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The proof of the following Proposition 2 is based on the variational argument of [18] and [19].

PROPOSITION 2. —Let the system satisfy1)—(*8) of Proposition1 above, letc; € R"*1 be
as in Propositiori and letc; denote the firsk components af;. Then there is an orbit satisfying

|H(q(1). Q(1), p(), I(1))| <M Vit €(0,T),

(3)
‘I(T)—cM—i—‘I(O)—cé’—)O ase — 0,
Ds-NZ Ds N
4 0<T <2N b+max( — o —))
*) < CPE g U

whereDs and M > 0 are constants not depending enn, x1 andxo.
This proposition will be proven in the next section.

Proof of Theorem 1. Essentially, it suffices to insert the constants of Proposition 1 into the
thesis of Proposition 2. This does not yield immediately Theorem 1: for instance, in Proposition 1
we ask that the Hamiltonia(@) hasky > 0, while in case (i) of Theorem 1 we consider the same
Hamiltonian, but withe¢; = 0. Since (3) and (4) are uniform in, we can pass to the limit in the
following way. Forky > O let us consider the orbitQ,,, q«,, I« P«;) 9iven by Proposition 2;
by formula (3) its initial conditions are bounded uniformly«mn; sinceT is bounded uniformly
in k1 this implies that( Oy, , g«,. ;. P;) IS €quicontinuous ofi0, 7]. Thus we can pass to the
limit for 1 — 0 and get the thesis. The other cases are treated similaxly.

3. Proof of Proposition 2

The proof consists in the variational argument of [19]; as explained in the introduction, the
diffusion orbits will be local minima of the action functional.
Let ¢; and £ be as in Proposition 1; le§ be a smooth function defined of**1, let
A.C.([0, T, T**1) denote the curves absolutely continuous[@n’’] with image inT"**! and
let VS(x) = 8, S(x).
Forx, y e T"*1 we define:
thi+VS(x’ y)
T
- min:/[ag,q, 0,4) —(ci + VS, (0.9)) +£]dr: (Q.q) € A.C([0, T1, T"),
0

(0(0),9(0) =x,(Q(T),q(T)) =y .

The minimum above exists by a Theorem of Tonelli’s (see for instance [18]); it is a standard fact
that the set of the orbits realizirh;T[WS(x, y) does not depend on the choicefmoreover

(5) hl s y) =hl (. y) + SGx) = S).
We also define:

h?f+vs(xv y)= ”][Tl)igj h£+vs(xv y)
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q

The orbits realizingzg(x, y) forincreasingl’ are shown as dotted lines.

The orbit realizingig”(x, y) has 0 in itsw-limit.

Fig. 3.

which can be considered as the least action of all orbits going fréovy in infinite time; in [19]
it has been proven that it is finite; in our particular case, this is part of the proof of Lemma 1. In
the above formula, let us consider the orlitsr, g7) € A.C.([0, T1, T*t1) realizing the liminf:
it has been proven in [18] that, up to a subsequence, they converge to afarp)t defined on
[0, c0) and with(Q(0), ¢ (0)) = x. Such an orbit need not necessarily hawer x in its w limit;
we will say however that it realizdsgfws(x, v) (see Fig. 3 for the case of the pendulum). On the
other side by a translation in time we can choe@e (—7), g7 (—T)) = x, (Q71(0), g7 (0)) = y;
the orbits(Qr, ¢;) will converge, up to a subsequence,(19, ¢) with (Q(0),¢(0)) =y and
defined on(—oo, 0].

Heuristically, the term-(c;, (0, ¢)) keeps track of the path of the orbit (on its projection on
ci, actually); we will see in Lemma 1 below that it forces the the orbits realizifigto have
asymptotic rotation numbes; . The role of the energg is to keeph.? finite.

Let z; belong to7;, the projection ofr; on T"*1. The next Lemma shows that the orbits
realizinghg’ (zi, x) andhg? (x, z;) lie on the unstable and on the stable manifolds respectively.
The reader can now see how the orbits realizlmjg(zi,x) depend on the choice af: for
instance, in the case of the pendulum, the initial conditions of the orbits realiZfi@, x) are
the solid lines in Fig. 1. In the following, denotes the Legendre transform ()js the torus
defined in point (*1) of Proposition 1 anqﬁ is defined in (*6).

LEMMA 1.-Letz; € ;. Then:ifx € Flf there is only one orbit realizingff(x, z;) anditis

the one with initial conditiornL (x, 8xcbfs (x)+c)if x e Fﬂ; there is only one orbit realizing
he?(zi, x) and it is the one with initial conditior. (x, dx qﬁfu x)+ci).
Also, the following holds

0P, (x) ifxel

i,s?

[ —0,h2° i) = .
() xite; (x,z) {3x‘p;rs(x) if x e Flt

0P, (x) ifxerl,

iu’

. 00 _
(”) 3xhc,- (zi, x) = { axCD:ru(x) if x c 1_,14;
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(iii) h(xivzi) <hy (xiyzi) and b (i, xi) < kg (zi, %) forall M > 0.

(iv) hf[o(x,y)—f-h;’f(y,z):h;’f(x,z) Vx,y,z € 1.
Consequently;°(z, z) = 0.

Proof. —We begin to prove that, if € Ffi then there is a unique orkiQ, ¢) which realizes
he(x, zi); at time O this orbit has initial conditions (x, 0P (x) + ci) if x e I and

L(x 0,7 (x) +¢;) if x € I';",. Since this orbit depends smoothly erin Fi itis then easy to
d|fferent|ateh°°(x z;) and get (i); (i) is derived analogously.

Let us define:
P, (x) ifxerl

i,s?

P = @:rs(x) Ifxel":g.

We consider the following Lagrangian, discontinuous aldfhg

L£(Q,q,0,4)=L(Q,q,0.9) — (3:¢(Q. ), (0, ).

We now sketch a standard computation (see for instance [8] or [18]): if w&fiy) and look for
the minimum ofL — (c;, (Q, ¢)) + £ in the variables{Q, ¢) we obtain the following necessary
condition, which is also sufficient sinagis convexin(Q, ¢):

ad .
. o L:(Qﬂqv Qﬂq.):8X¢(Qﬂq)+Cl
(2, 9)
Thus the minimum off — (ci, (0, §)) + € for (0, ¢) fixed lies on the image oL.(Q,q,
Oxis(Q,q) + ci) where L is the Legendre transform defined in (2); we recall that+
9:9, (0, q)) — L restricted to this set is simply the Hamiltonian in different coordinates; thus
if we want the minimum above to be constantly equal to 0, we need

H(Q’ q, 8x¢(Q’ Q) +ci) =

The last formula is true, since the energy is constantign vice versa, we see that —
(ci, (0, §)) + & is constantly equal to 0 on the graphiofQ, g, d:¢(Q, ¢) +¢;) and itis stnctly
larger than 0 elsewhere. Thus(i(r), (1)) is ac;-minimal orbit of £ with Q(0) =x € F
which accumulates og, it must satisfy(x, Q(O), G(0)) = L(x, 9y i s(x) + ¢i): otherwise, the
integral of £ would be positive. If we prove that, for these boundary values, this orbit minimize
also the integral ofZ, we have done.
Let (Q, q) be any curve crossinlj‘,»,s atthetimesi < <--- < andletO<rp andr, < T.

Let us suppose that, forsmall enough(Q(t; — y), q(t; —y)) € I and(Q(t; +y),q(ti+vy)) €

ls, ; to fix ideas, let us also suppose tligx(0), ¢ (0)) € I ,and(Q(T),q(T)) F+ Then we
have that:

T
/E—th@Hﬂw
0

T
=/[£—<ci, (Q.9)) — (0:6(Q.9). (0, 9)) + E]
0
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r k
= [1£~{ar Qo)+ €16k = Y[~ (0(7). (7))
0 i=1
+@,,(0(;).9(57)]+ (00, 9(0) = & (Q(T), 4(T)
T

= [1£~ e (0. ) + €161 + 07, (000).4(0) - & (Q(T). 4(T).
0
where the last equality is a consequence of the factd:h@ =P, |r by the definition of

I ;. By a standard approximation argument, the above formula holds alen if) crossed;
infinitely many times. The last formula implies that for &ll> 0 hT and hT+V are realized

by the same orbits, since the corresponding action functlonals onIy differ by a function of the
boundary values; itQ, ¢) accumulates og;, letting 7 — oo we have the thesis.

We remark that from the same arguments it follows that, & T*+1, then among all orbits
connecting; to x in any timeT € (0, +oc], the minimal action one lays on the stable manifold;
this proves (iii).

We note that this also implies thaf” (x, z;) is finite: for instance, let € I and let(Q, q)
be the orbit which at time 0 has initial conditiohgx, o, D t+ci). Then we have:

T
/[E —(ci. (0. ¢))+ Eldt
0

T
= /[i —(ci, (0. 9))+ E1dr + @, (Q(0),(0) — @, (Q(T), q(T))
0
=, (0(0),q(0)) — D, (Q(T).q(T))

which is bounded; passing to the limit&s— +oo we getthah .’ (x, z;) is finite. Sincethi (x,y)
is Lipschitz inx andy uniformly for 7 > 1, alsoi;? is Lipschitz and being finite at one point by
the previous formula, it is finite everywhere.

To prove (iv), it suffices to note that, if, y, z € 7;, then

h°_°(x y)+h°.°(y 2)
=h Vo, (X, y) + R’ vor .2+ @ () =2 () + 2 () — 2] (2)
=a>i,t(x>—a>;(z)=hsf(x,z),

where the first equality is a consequence of (5), the second of the fadt ta@bnstantly equal
to zero onL ~1(;) and the third of (i). O

We consider the covering of*t1 given by T" x R; for eachx; of (*5) we single out a
point on its fiberx; € T" x {w + 2ix}. Fori € (1,..., N — 1) we consider a smooth function
S; : "1 x R — R which vanishes outsidg: |x — %;| < 28} and such that;

(6) VSi(x)=ciz1—c  Vxi|x — x| <86.

We set
ci(x)=ci + VS (x).
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In T" x R we choose the representativemtlose toT” x 2isw; from this lift of 7; we choose a
pointz;. We fix T > 0 and define:

X=(T"x{Br}xR) x (T"x {5x} xR) x -+ x (T" x {w +2(N — Y7} x R),

Y:{{(xi,ti)}fvzzleXi 1n1=0, iy-1=T, tiz1>Vied,....,N—-2)}

G((x1,11), -+, (Xy-1,Iv-1)) = hZ (z1, x1) + h?z_tl(xl, x2) + h?’;z (x2,x3) + -+
+ hé’lvvillftN*Z(xN_z, xN-1) +h3y (XN-1,ZN).

We set
B= (B()El, 8) x R) X (B()Ez,S) X R) X oee X (B()EN,l, 8) x R) ny,

B’ = B(X1,8) x B(¥2,8) x --- x B(¥n-1,9),

whereB(X;, §) is the closed ball iT” x {7 + 2i7} centered int; and of radius.
The next Lemma 2 explains the meaning of the functio@Galits proof is relegated to
Appendix 2.

LEMMA 2.—-Let ((y1,11), ..., (yn—1,tn-1)) be a local minimum o€ in the interior of B
and let (Q, g) be the function defined in the following way: proo, 1] (Q, g) is the orbit
realizing 222 (z1, y1) With (Q(11). ¢ (11)) = y1; on [11, 72] Q is the orbit realizingh2 " (y1, y2)
with (Q(t1), ¢(11)) = y1, (Q(t2), q(12)) = y2, etc.

Then(Q, g) solves the E-L equation din, ty—1) = (0, T') and satisfies the second formula
of (3) in Proposition2.

From the above lemma we gather that to prove Proposition 2 it suffices to prove tes a
minimum in the interior ofB for someT satisfying (4). This is what we show in the next lemma.

LEMMA 3.-Thereis

Ds-N% Ds. N
13 T <2N b+max< —, — o —))
(13) ( cp= g gﬂ

such thatG has a local minimum in the interior @3.

Proof. —First of all we note thatG has a minimum inB because its sublevels are compact:

indeed, it is easy to see th&t(((x1,11),..., (xy—1,tny-1))) = o0 if t;y1 — t;, t2 — 0 oOr
tn_2—T.

Thus it suffices to prove that the minimum is in the interiorfto do this we will compare
G with a functionalF which has a strict minimum in the poiatxy, 71), ..., (Xn—1, tnv—1)). We
define:

F.Y—>R,
F((x1, 1), .., (en—1, Iv—1)) = h3 (21, X1) + h (x1, 22) + h; (22, x2) + heS (x2,23) + - - -

+he,  (an-1,xn-1) + hg, (Xn-1,2N),
where thez; are the same as in Lemma 1. Cleafiydoes not depend on theand, roughly, it
represents the action of a heteroclinic chain conneatirig 7> to 3, all the way tory. We now
note that, by Lemma 1, (5) and the definitioncpf
h2(zi, xi) + hES | (X1, zi41) = CONSH B () — D (i) = S;(xi) + Sia(x).

Ci+l
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SincesS; 11 vanishes orB(%;, 8), by (6) we get:

h2(zi, xi) + hES | (X1, 2i41) = CONSH B () — Dy (6i) + (¢ — cit1, xi).
By the last formula and (*5) we have that the poitigs, 11), ..., (Xny—1, ty—1)) are minima of
F in B for all choice ofry <12 < --- < ty; moreover

inf{ F((y1, 1), ..., On-1,tv-1)): (1. 71), ..., (yn—1,tn-1)) € B,
(14)
V1. yN-D) €0B i <Dp<---<iy-1} = F((F1.71)..... Gn-1.In-1))B.

We now show that, for somg satisfying (13),G is so close taF that it has a minimum inside
B. Givenx; € B(X;, 8), xi+1 € B(¥;y1,6) andM;, M > 0 we choos€ Q*, ¢*) and(Q", ¢"),
orbits of £ with initial conditions:

(Q'(=M7).q" (—M7). 0°(—M}).¢° (= M) = L(xi. 9: @1y  (x1) +ciya),
(0" (M}'), q"(M}'), 0" (M}'), 4" (M}")) = L(xit1, 92", (xit1) + civn),

where L denotes the Legendre transform, as in (2); in other words, these orbits lay one on
the stable, one on the unstable manifoldrldg‘l. By Lemma 1,(Q°, ¢*) and (Q“, ¢") realize
hng (xi, Zi4+1) andhg_"+1 (zit1, xi+1) respectively. We note that, sineg e T" x (m +2j7) Vj,
both®; ., and®;, are defined because of (*4). We choag¢ and M} in the following

i+1s i+lu -
way: they are the smallest times such that

15) [(€*©.4°©) —zisa] < p

“(0). 4" . B
v s (Q10.4"0)-znl<g

3-N-128
where D3 was introduced in (*7) and the distances are those induceti’ooy its coverR".
We now recall the estimate on the time of ergodization of the torus (see Theorem D of [7]):
if » satisfies (*3) the smallest for which {wr}”_ is ac-net can be estimated from above by
Ds/(Ce?), whereDs is a constant, depending only on the dimensicaand on the Diophantine
exponentz. In symbols we have:

D
Vi, Ve > 0, YQp € T" EIO<M<C—5' loiM — Qo <.

&

Using this fact, (*2) and (*8) we see that therellg > 0 such that

Dg-NZ D N
(16) 1<Mis,Mi”<b+max< 6 —, 609 )
cp= g B

In the last formulap accounts for the time it takes to reach the neighborhoag,afwhere the
normal form (*2) holds; the second term in the max is due to the motion on the local stable or
unstable manifold.

We now specialize the; in the following inductive way: we take; = x1; if x; is defined,
we takex; 1 € B(X; 11, %@8) such thatQ*(0) = Q°(0); this is possible since we have by (*1)
and (*7) that the map which sends the finrstoordinates ofc; into Q°(0) is bilipschitz with
Lipschitz constanD;; independent on/;. First of all, we note that it suffices to prove that the
map: Q“(—M;") — Q"(—M;' + b) is Lipschitz, since after that time the dynamics is given by
(*1) and is surely Lipschitz. Let us consider the time-one map for the dynamics on the unstable
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manifold; from (*7) and the Hamilton equations, it follows that the m&¥:(0) — Q“(—1)
is bilipschitz with Lipschitz constant 4 £0(2). By Proposition 1 = o(;—f) and thus the map:
Q"(—M}") — Q“( M} + b) is bilipschitz with Lipschitz constanD; .

By (*1), r RS the graph of a Lipschitz function from” to R; thus we can findjo near
27 (i + 1) such that Q* (0), o) = (Q*(0), go) belongs toz;" 1 onT"*1 and, moreover, by (15),

_ B
D3-N-64°

B

’(Q (O)"]O) —Zi+1’ < m

(17) |4°(0) — qo| <

Let us now define:

0, 'Z Dy N .64
We get
ML[
i (00, g0). xi41) / £(0".3. 0" ) dr
e
u u AHu su ,3
(18) </£(Q,6]7Qa6])dl+7D3 N 33
— i (00 4" (0) xisr) + —F
Gitl H T Dy N 32

where the first inequality is a consequence of the deflnltld!’k()f and the second follows from
a standard calculation; the equality is a consequence of Lemma 1. Since in Lemma 1 it is proven
thath2® @i, ziv1) =0, we have:

1 (zit1, €4(0), ¢"(0)] = [h2°, (zi+1, 0"(0), 4"(0) — h | (zit1. zi+1)]
19)
’®t+1u(Qu(O)’qu(o)) - l+1 u(ZlJrl)’ = {364’
where the second equality is a consequence of Lemma 1, the inequality of (*7) and of (15). We
now recall that, if(Q, ¢) is c-minimal, then for all1, 7> > 0O,

hE2((0,9)(0), (Q, 9) (11 + 12)) = ht((2, 9)(0), (2, ¢) (1) + h2((Q, ¢)(11), (0, ¢)(12)).
Therefore, sincéQ", ¢*) is ¢;-minimal on(—o0, 0] we have:
B, Gt xia) = B, (21, (200, 4" (@) + A2 ((Q"(0). " (0)) . xi1)
> 2 ((0"©0.4" ). xia1) - oo

M u '3
> g1, (00, 40). xi41) = 3 4
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where the first inequality is a consequence of (19), the second of (18). Analogously, we get

s B
CH,]_(xls Zl+1) > h (.xi, (Q (O), qO)) - N—l6

Since(Q*(0), go) = (0" (0), g0) we have:

B (i) <het (30 (Q°(0), o)) + At ((Q“(0). o). xia)

which from the last formula implies

MA_"_MH ,3
hc -l¢—1 "X, Xit1) < h (xz 2 Zi+1) + h (Zl+17 Xi+1) + N.g

The last formula implies that, setting
i1=0, livi=1i+ (M + M), 1<i<N-2

then

o™

(20) G((x1.71), ..., (xny—1.Iv-1)) < F((x1.71), ..., (xy—1.IN-1)) +

Let us now consider
(i yi+1) € (T" x 7w +2im) x (T" x 7w 4+ 2(i + D7)

and let us suppose that the orbb®, ¢) realizing h”+1 ‘(y,,y,+1) crosseSr b, attimer e
(i, ti+1). Then

tH—l t

ST i yisn) = b (31, (@, ) 0) + BT (0, 9)(), vi)
>h (3, (Q.)®) +hE ((Q,q)1), yit1)
= hi’oﬂ(yi, (Q.9)(1) + hfoﬂ((Q, q)(1),zi11) + e, (zi+1. (Q. @) (1))
+hE L ((Q, )0, yit1)
(21) =h3 i, ziv1) +hE (@ig1s Viv),
where the inequality follows from (iii) of Lemma 1 and the second equality from the fact, shown
in Lemma 1, that:

0=1Z ((Q,)(®), (Q,)() =h ((Q,q)(1), zi41) +hZ, (zi+1, (Q, @) (D).
We have, by (20), that
inf{G((v1.10),.... On-1.t8v-1)): (V1. 12), ... (YN-1.1N-1)) € B, (1, ..., yv—1) € 0B’}
> inf{F((y1. 1), ... On-1.tn=1)): (V1. 11). ..., (yN—1,IN—1)) € B,

(Y1, ..., yN-1) € 0B’}
and by (13) that

inf{ F((y1.11), .., Gn-1,tv-1)): (1, 7), -, (YN-1,IN-1)) € B, (¥1, .-, YN-1) € IB'}
F(G1,1), ..., @n-1,I8-1) + B
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Sincex; € B(%;, 21#2) and the Melnikoff function has a quadratic minimum(®, ;), we have:
- - - - - D115\?
F((xl, tl)v LN (XN—lv tN—l)) + ﬁ 2 F((-xlv tl)ﬂ toey (-xN—lﬂ tN—l)) + ﬂ - N T
and by (19)
3 3 D118\ 2
F((f1.11), ..., GN-1,tN-1)) + B — N<%>
- - 7 D118\?
> G((F, 1), ..., (Bv—1,tn-1)) + éﬂ N ) -

If we put together all these inequalities and recall tNat- 1/8 we get:

inf{G((v1,10), .., On—1,t8-1)): (1. 1), -+, (-1, IN-1)) € B, (¥1, ..., yn-1) € B’}
> F((xl, 1), ..., (xy—_1, fol))

which implies thaiG has a local minimum in the interior d.

SinceT = fy_1, formula (4) now derives from the definition of_1 and (16).

The estimate orf” follows from its definition and formula (15); we now prove the estimate
on the energy. We note that_1 — 1o > N — 1 by (16) and the definition afy_1 — 70 =T. By
the mean value theorem there is<Qop < T such thatj (fop) = p(top) < 27; Lemma 2 of [2]
yields that| I (top)| < M and thus|H (¢ (1), Q(t), p(1), I(i))] < M with M independent on the
parameters; this yields the first formula of point (3) of Proposition 2.

Appendix 1. Comparison with the notations of [10]

In Lemma 1 and “1of 85 of [10] the variables in the phase space, called berd, g, p), are
named(c, A, @, I). The perturbative parameter, that we denatée@re in(CG), was calledu in
[10].

The toriz; in (*1) of our Proposition 1 correspond I, (s) of [10], wheres varies in the KAM
Cantor set, called, in [10].

The quantitieso; andn; of (*2) correspond tql+ y)as andg,(1+ y’), respectively, where
s € ¥, as above.

In the notations of formula (5.5) of [10], oyf (v, y) corresponds to

A=A+ EW,y,0,5,0), a=v+AW,y0s 1) +8(4,y,0u),

I=R(A,y,0,0)+ AW, y,0.5,)  ¢=S(A"y.0,11) +OW,y,0,5, 1),

with A’ = K;(O, w) corresponding to the first components of; (the last component is
determined in (*6) of our Proposition 1).

Beware of the very different use of the symbohs mentioned above, in [18]belongs to the
KAM Cantor setX,,, while here it just means “stable”.

Also, the KAM canonical transformation sending the varialifesa, ¢, 1) into the “normal”
coordinatesa’, A’, ¢/, p’) has naturally associated a generating function

(A @)+ po+ok(@ A e p).
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Such a®?, is not explicitly introduced in [10] and it is not the same asdhe introduced in §5 of

[10] after formula (5.66), since the last does not take into account the transformation of Lemma 0
of [10]. However, such @&, essentially agree with th@ffu introduced here in Proposition one,

in the sense that

®;,(0.9)=%(Q. A}.9.0) + xiq.

WhereK; is the action corresponding g, i.e. r; corresponds t@,, (s;) in the notations of [10],
andA; = A} (0, u), andy; above is chosen in order to fulfill (*6).

Appendix 2. Proof of Lemma 2

Clearly, (Q, g) satisfies the E-L equation on each, t;+1) since on these intervals it
minimizes the action functional. It is somewhat more delicate to show(ibay) solves the
E—L equation also in;, 2<i < N — 2: the problem is that a small variation ratcould bring
(Q, g) into an orbit on which we have no information (see Fig. 4). We begin to note that it suffices
to prove thatj(r;—) > 0 andg(z;+) > 0 for 2<i < N — 2. Indeed, lein > 0 be such that:

(). q(1) —%i| <8 Vtelti—m,t; +m]

and let(Q, ) be a test function supported|in — m, t; +m]. Let us conside(Q, ¢) + y (0, §);
by the implicit function theorem, i’ is small enough, we can find a continuag) such that
q(t(y)) +yq(y)) =q() and thus

QM) +y0(r().q(t() +va(t(»))) € B(%;. ).
Since((y1, 1), ..., (yn—1, ty—1)) is alocal minimum we have that, for small enough,

G((y1, 1)y isti), ..o, (YN=1, IN=1))
<G(o1.1) - ((Q+70.g+yD (). t (). .., (IN-1.tN-1))

which implies that the action functional 00, ¢) + y(Q, §) is greater or equal than the action
functional of(Q, ¢); the usual argument now tells us that the E-L equation holds also in

This argument does not applyzat= 0 and aty_1 = T since at these two points we are fixing
boththe times and the Poincaré sectiogpss 37 andg = 7 + 2(N — 1)z respectively. In other
words, there are not enough variationsfoand thus; can be discontinuous at these two times.
But we can still varyQ by an arbitrary test function and thgswill satisfy %aQﬁ =dpL;in par-
ticular, O will be continuous at = 0 and at = T'. Since on(—o0, 0] (Q, q) realizeshgf(zl, X1),
by Lemma 1(Q(0), ¢(0), 1(0), p(0—)) = L~1(0(0), ¢(0), 0(0), §(0—)) stays on the unstable
manifold ofty and(Q(T), ¢(T), I(T), p(T+)) = L=X(Q(T), ¢(T), O(T), §(T+)) stays on the
stable manifold oty . Thus, by (*7),/7(0) —¢;| and|I(T) — ¢}, | are small fors small, where;
denotes the firsi coordinates oé;; this yields the second formula of point (3) of Proposition 2.

Let us now prove thag(t;—) > 0 fori € (2,..., N — 1); the proof forg(s;+) is analogous.
The only information we can use is the fact tli@, g) minimizes the action; we will show by
contradiction that ifj (r; —) < 0 then(Q, ¢) cannot minimize. We begin to prove the cages),
(G, (GGM); to prove(B1) and(B2) it suffices to change the constants.

Let us suppose by contradiction thgt; —) < 0. We fix a constart > 0; in the following we
will require that it is sufficiently small; its choice does not depend @mdz; — ¢; 1.
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T Ti_

q=n
A small variation ofg is represented as a dotted line.

We do not have any information on its action, since it does not pass th@ghy).

Fig. 4.

From the E-L equation we see that fosmall enough this implies that:
. 1 .
it e [ri 14— E} suchthat ¢g(7) > q() — o

which implies by direct computation that, fersmall enough,

(7 /Blézler(l—cosq))}dr%,

i

ti

/ [%Ic)lz +(1- COS(q))} d

L1

]
_ 1
(8) xmln{ /[Elc}Ier(l—cosm))} dr: é(ti_l)zq(ti_l),c'/(n)=q(n)} >0

ti-1

for some# > 0 independent om — t,_1. Let o be half the action of the homoclinic of the
pendulum:

0
a:min: / %|c’1|2+(1—cos(q))dt: q(—oo):O,q(O):rr}.

—00
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A simple computation with the pendulum functional shows that we can cheose(0,
min(&e. &)) andM > 4 such that

VT > M, Vqo = o,

T

9) min{/%li]IZﬂL(l—COS((J))dﬂ Q(O)Zqo,q(T)ZJT} <a+ 20,
0

T

(10) VT >0 min{/%lélz—i-(l—cos(cﬁ)dt: q(O):qo,q(T)zrr} > a — 20,
0

T

vT >0 min: / %mlz—l— (l— cos(q)) dt: q(0)=0,q(T) 271 —0,0
(12) ’

D
gq(t)gzn—owe[o,ﬂ}>a—60+DgT+$.

In the sequely is fixed in the above way; we will feel free to increae We note thatD1g is
independent on the choice @f so we can assumefo < D10/64.

We begin to consider the cage— ;1 < 2M. We denote byj(7) the orbit of the pendulum
satisfyingg (t;—1) = q(t;i—1), ¢(t;) = q(#;). Then we have:

1 1
/E(Q’qv qu)dt— /E(Q$év Q’Q)dt
i1 ti—1

I

1
=/[Eléller(l—COS(q))+8f(Q,q)} dr

ti-1
1

1.
- /[§I61|2+(1—005(1?))+8f(Q,67)} dr

ti-1

ti 1 t 1
> /[émlz_,_(l—cos(q))}dt—/[§|§|2+(1—c05(5))} dr —4eM,
i1 ti—1

where the inequality is a consequence of condition (1) in the introduction. By (8) we get that, for
¢ small enough,

t t
/c(Q,q,Q',q)dz—/c(Q,q,Q',éy)dz>e—4eM>o

i1 i1

contradicting the minimality ofQ, ¢) on (t;—1, ;).



126 U. BESSI ET AL. / J. Math. Pures Appl. 80 (2001) 105-129

Let us now suppose thgt— r;_1 > 2M; let ¢’ be the maximum time irz;_1, ;) such that
q (") =2wi + 0. We divide again into two cases: if

Vieltt]: 2ni+o<qgt)<2n(i+1) —o0o
(the first inequality is automatic from the definitionf then we define:

_ o Ja@®, relna 1],
q(t)_{ci(t), telt ),

whereg is the orbit of the pendulum with boundary conditigi®) = 27i + o, §(t;) = q(t;). A
little computation yields

1 ti
/E(Q’qv qu)dt— /E(Q$év Q’Q)dt
ti—1 fi—1

(12)

t; ti
1 1.
2/[5|é1|2+(1—cos(q))} dt—/[§|é|2+(1—cos(c7))} dr —4e(t; — 1).
t/

[/

We consider two subcaseszyif—t' > M we evaluate both functionals and we get:

ti 1
/aQ,q,Q‘,q)dr—/E(Q,ci,Q',éi)dr
i1 ti-1

D1o
f—t

>0+a—20+ Do(f —1t') + — (0 +20) —4de(t; — 1),

whered is the contribution ofy on[7, #;] due to formula (7), the next four terms come from (11),
the sixth term from (9) and the last is the contribution of the perturbations Bomall enough,
the last formula contradicts the minimality 60, ¢).

In the other subcase,— ' < M, we get from (8):

t ti
/B|q‘|2+(1—cos<q>)] dt—/[%lélzﬂl—coe@))}dt >0

t t

which fore small by (12) implies
t ti
ti—1 ti-1

a contradiction.
The other case is when

el q)=2ni+1) —o.
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We denote by the maximuny with the above property and Gythe minimum one. We divide
again into two subcases:fif- 7 > 4, we define

. r—t
1//:m|n<1, 7 )

and

q(), telti-g, '],
2ﬂi—0(t—t’—w)%, telt',t +vl,
2mi, telt' +y,1 -yl

qt) = 2m'—0(t—f+1//)%, teli—y,1l,
q(t) — 2m, telt,r—yl,
(g =) —2y) (1— #) + (27i +0)HT+W, telt—y,tl,
q(), telt, 1],

whereg is the orbit of the pendulum with boundary conditign®) = 27i — o, §(t;) = q(%;). It
follows easily with an argument like the one at the end of Proposition Ijtimbounded by 1
on[7, f] and consequently thatis bounded by 1 of¢ — v, 7]. With a small computation we see
that

ti 1
/agmgww—/agagaw
i1 ti-1

1
= / [Elq'l2 + (1—cogq)) +&f(Q, q)} dr
[¢/,f1UIF, 1]
1.
- / [Eléler(1—005(67))+8f(Q,67)] dr.
[t F =y 1l =, 1]

If ; — 1> M, we get:

1 ti

/E(Q’qv qu)dt— / E(Q5év Q’Q)dt

ti—1 fi—1
> 3(a —60) + Do(t —1' +1; — 1)

Dio | Dio 1 -, -
= — = 20) —4o— —2e(t —1t +t; — 1),
gt @20 o s 2~ D)

+

where the first four terms, due to (11), are the contributiap @fhich goes from 2i to 27 (i +1)
and back to Zi + ; the next term is the pendulum actiongbn [z, ;] estimated by (9) since
t; —t > M and the last term accounts for the perturbation.d&small enough the last formula
contradicts the minimality of Q, q).
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If ; — 1 < M we see that, for the sangedefined above:

1 ti
/[%|q|2+(1—cos(q))} dr—/[%nﬂ%(1—cos<c7>)}dr>o

t r

since the boundary conditions are the same up to a reflection arauhth the above formula
we change correspondingly the estimate on the pendulum actipamndg on |z, ;], we get:

1 ti
/E(Q’qv qu)dt— /E(Q$év Q’Q)dt
ti—1 fi—1

D1o
-t
which for e small enough contradicts the minimality @, ¢).

If 1 — 7 < 4, we define

- 1 -
>2(a—20)+ Do(f —t') + —40’E—28(Z—l/)—28M

_ o Ja@®, telnar],
q(t)_{ci(t), telt 1,

where g is the orbit of the pendulum with boundary conditiofi&¢’) = ¢(t") = 27i + o,
qti)=q(t;)) =2mi+m.

We divide again in two subcaseszif— r > M a small computation shows that:

ti 1
/aQ,q,Q‘,q)dr—/E(Q,ci,Q',éi)dr
i1 ti-1

t; ti
1 1.
2/[§Ic}|2+(1_cos(q))] dt—/[§|q|2+(1—cos(c7))} dr — 2e(t; — ')

t t
>3(a —20) + Do(ti — ' — 4) — (a + 20) — 2e(t; — 1),

where the first two terms are the contributions of the pendulum actignaie to (11), the third
is the pendulum action @f and the last accounts for the perturbation. Their sum is positive if

is small enough, contradicting minimality. Let new- < M; since onz, ;] ¢ covers the same
distance ag on[¢, 1], and since; — 1 <1; — t/, it is easy to see that:

1 ti
/[%|q|2+(1—cos(q))} dr—/[%nﬂ%(1—cos<c7>)}dr>o
r

[/

which implies by (11)

ti 1
/E(Q,q, Q,c})dt—/ﬁ(Q,cj, 0,9)dr >2(a —20)+ Do(i —t') —2e(f —t' + M) > 0,
t t

contradicting minimality.
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