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Abstract

This paper looks at ways of estimating the conditional distribution of a random variable Y given a
vector X of covariates. We focus on cases where the investigator would like to avoid strong parametric
assumptions but the set of covariates is large enough, relative to the available data, to make it prob-
lematic to apply standard nonparametric methods because of the well known “curse of dimensionality”
problem. In these cases, estimating the conditional quantile function has become increasingly popular.
An alternative is to estimate instead the conditional distribution function. Although the choice between
these two equivalent representations depends to a large extent on which is more easily interpretable
given the purposes of the analysis, considerations of statistical convenience should also be taken into
account. We argue that such considerations tend to favor estimating the conditional distribution function
directly. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper looks at ways of estimating the conditional distribution of a random
variable Y given a vector X of covariates. We focus on cases where the investiga-
tor would like to avoid strong parametric assumptions but the set of covariates is
large enough, relative to the available data, to make it problematic to apply stan-
dard nonparametric methods because of the well known “curse of dimensionality”
problem.

In these cases, estimating the conditional quantile function has become increasingly
popular (see Buchinsky, 1997 for a survey). An alternative is to estimate instead the
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conditional distribution function. Although the choice between these two equivalent
representations of the conditional distribution of Y given X depends to a large extent
on which is more easily interpretable given the purposes of the analysis, considera-
tions of statistical convenience should also be taken into account. We argue that such
considerations tend to favor estimating the conditional distribution function directly.

The paper is organized as follows. Section 2 reviews the de@nitions and the
relationships between conditional distribution functions and conditional quantile
functions, and discusses a number of problems associated with quantile regression.
Section 3 describes our approach to estimate conditional distribution functions. Sec-
tion 4 provides an illustration by analyzing the dependence of the distribution of
earnings on education, labor market experience and other observable personal charac-
teristics using micro-economic data from the European Community Household Panel.
Finally, Section 5 oCers some conclusions.

2. Quantile regression

The distribution function (d.f.) and the quantile function (q.f.) are equivalent ways
of characterizing the probability distribution P of a real-valued random variable Z .
To simplify the presentation, let Z have an absolutely continuous distribution with
strictly positive density. In this case, the distribution function is a bounded, continu-
ous and strictly increasing function de@ned on R by F(z) =P{Z6 z}; whereas the
quantile function is a continuous and strictly increasing function de@ned on (0; 1) by
Q(u) = {z ∈R: F(z) = u}. Clearly, Q(F(z)) = z and F(Q(u)) = u; that is, Q and F
are the inverse of each other. One can show that Q(u) may also be characterized as
the unique solution to the problem

min
z∈R

E‘u(Z − z);

where ‘u denotes the asymmetric absolute loss function

‘u(v) = [u− 1{v¡ 0}]v

and 1{A} denotes the indicator function of the event A. If u= 1
2 , then ‘u(v) = |v|=2 is

proportional to the familiar symmetric absolute loss function and Q(u) is the median
of Z .

The generalization to conditional distributions is straightforward. Consider a ran-
dom vector (X; Y ), where X takes values in Rk and Y is a real-valued continuous
random variable with strictly positive density. The conditional probability distribution
Px of Y given X = x may be characterized either through the conditional distribu-
tion function (c.d.f.), de@ned on R × Rk by F(y | x) =Px{Y 6y}, or through the
conditional quantile function (c.q.f.), de@ned on (0; 1) × Rk by Q(u | x) = {y∈R:
F(y | x) = u}. It is easily veri@ed that Q(u | x) =F−1(u | x) and F(y | x) =Q−1(y | x).

Notice that, for any @xed x, F(y | x) and Q(u | x) must satisfy all properties of
a d.f. and a q.f. respectively. In particular, must have: (i) 0¡F(y | x)¡ 1 for all
y; (ii) F(y′ | x)¿F(y | x) whenever y′ ¿y; and (iii) Q(u′ | x)¿Q(u | x) whenever
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u′ ¿u. The latter two properties imply that neither the functions F(y′ | ·) and F(y | ·)
can cross, nor the functions Q(u′ | ·) and Q(u | ·).

The quantile regression problem is how to use the information contained in a
sample in order to estimate the c.q.f. Q(u | x). In what follows, we focus on the case
when X is a continuous random k-vector and the sample (X1; Y1); : : : ; (Xn; Yn) consists
of n independent copies of (X; Y ). A number of approaches may be followed. One
possibility is to notice that Q(u | x); viewed as a function of x for a given u; may
also be characterized as the unique solution to the problem

min
g∈�

E‘u(Yi − g(Xi)); 0¡u¡ 1; (1)

where � is the class of real-valued functions de@ned on Rk . This suggests estimating
Q(u | x) (for a given u) by choosing a function of x; out of a suitable family G ⊆ �;
so as to solve the sample analogue of (1)

min
g∈G

n−1
n∑

i−1

‘u(Yi − g(Xi)); 0¡u¡ 1:

To recover Q(u | x); now viewed as a function of both u and x; it is customary
to select J distinct probability values 0¡u1 ¡ · · ·¡uJ ¡ 1; and then estimate J
distinct functions Q1; : : : ; QJ ; each de@ned on Rk ; with Qj(x) =Q(uj | x); j = 1; : : : ; J .
There may be as many such values as one wishes. By suitably choosing their number
and position, one may hope to get a reasonably accurate description of the c.q.f.
Given an estimate Q̂(u | x) of the c.q.f., the c.d.f. may then be estimated by inversion

F̂(y | x) = sup{u∈ (0; 1): Q̂(u | x)6y}:
This is a proper c.d.f. if and only if Q̂ is a proper c.q.f.

The various approaches diCer in the choice of the family of functions G. In the
original parametric approach of Koenker and Bassett (1978), G is the class of lin-
ear functions of x; that is, Q(u | x) = x��(u). In this case, problem (1) reduces to
estimating the k-dimensional parameter �(u) by any solution �̂(u) to the problem

min
b∈Rk

n−1
n∑

i=1

‘u(Yi − X�
i b); 0¡u¡ 1: (2)

The resulting estimate of Q(u | x) is Q̂(u | x) = x��̂(u). The solution to this problem
has the nice feature that, just like the univariate case, a fraction u of the data points
lies on or below the estimated quantile regression hyperplane Q̂(u | x).

Problem (2) has a nice representation as a linear program for which simple and
fast computational algorithms are available. This enables one to eLciently compute
the whole set of conditional quantiles for u∈ (0; 1) (see for example, Portnoy and
Koenker, 1997). The linear programming formulation also makes it particularly easy
to impose linear restrictions on the model parameters.

By suitably rede@ning the elements of the covariate vector Xi; one may easily
generalize problem (2) to cases in which G is a class of functions that depend
linearly on a @nite dimensional parameter vector, such as the class of polynomial
functions of X of a given degree.
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Linear quantile regression estimators can be shown to be
√
n-consistent and asymp-

totically normal under general conditions (see e.g. Ruppert and Carroll, 1980). This
result may be used to construct asymptotic tests of hypotheses about the eCects of
covariates on the spread, the symmetry, the tail behavior and other characteristics of
the conditional distribution of Y (see e.g. Koenker and Bassett, 1982).

Although increasingly used in empirical work to describe the conditional distribu-
tion of a variable of interest, linear quantile regression models have several draw-
backs. Two crucial issues are: (i) the validity of the linearity assumption, and (ii)
the form of the asymptotic variance of linear quantile regression estimators when
this assumption does not hold and linear models are simply viewed as convenient
approximations.

To illustrate the @rst issue, let X be a scalar random variable and let the c.d.f. of
Y given X = x be of the form F(y | x) =F(y−�(x)); that is, the c.d.f. of Y depends
on x only through the location parameter �(x). By de@nition, Q(u | x) must satisfy

u=F(Q(u | x) − �(x)):

Inverting this relationship gives

Q(u | x) =Q(u) + �(x);

where Q(u) =F−1(u) is the uth quantile of F . In this case, Q(u′ | x) − Q(u | x) =
Q(u′)−Q(u) for any x; that is, the distance between any pair of conditional quantiles
is independent of x. In particular, if �(x) = � + x�; then Q(u | x) = [� + Q(u)] + x�;
that is, the set of conditional quantiles of Y is a family of parallel lines with slope
equal to �.

Now consider the case when the conditional distribution of Y depends on x through
both a linear location parameter �(x) = � + x� and a scale parameter �(x)¿ 0. In
this case

Q(u | x) = � + �(x)Q(u) + x�; (3)

which implies that the conditional quantiles of Y are no longer linear in x. In addition,
the distance between any pair of them varies with x. Partial exceptions to this general
rule are the case when F is symmetric about zero, implying that the conditional
median (but not the other quantiles) is linear in x; and the case when �(x) is linear
in x; implying that regression quantiles are linear in x; although no longer with a
common slope.

Result (3) is troubling, for it means that linear quantile regression models may be
a poor approximation when data are conditionally heteroskedastic and the square root
of the conditional variance function is far from being linear in x. More seriously, in
the general case when �(x) is an arbitrary function, the conditional quantiles of Y
are of the form Q(u | x) = �(x) +�(x)Q(u). In the absence of prior information, it is
now impossible to determine whether nonlinearity of Q(u | x) is due to nonlinearity
of �(x); heteroskedasticity, or both. From the practical point of view, the presence
of heteroskedasticity implies that estimated linear models for conditional quantiles
may cross each other, thus violating one of the fundamental properties of quantiles
and complicating the interpretation of the results of a statistical analysis.
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Turning now to the second issue, if conditional quantiles are nonlinear in x; then
the asymptotic variance matrix of �̂ becomes rather complicated (see e.g. Powell,
1984). Inference in this case is typically carried out by bootstrap methods but this
trends to be computationally burdensome.

To overcome the problems arising with the linearity assumption, several nonpara-
metric estimators of conditional quantiles have recently been proposed which leave G
essentially unrestricted, except for smoothness. Among them are various estimators
based on kernel or nearest neighbor methods (Antoch and Janssen, 1989; Samanta,
1989; Truong, 1989; Bhattacharya and Gangopadhayay, 1990; Chaudhuri, 1991),
regression splines with a @xed number of knots (Hendricks and Koenker, 1992),
smoothing splines (Koenker et al., 1994) and penalized likelihood.

There are some problems with all these approaches. First, it is not clear how
to impose the “no-crossing” condition on estimated regression quantiles. Second,
because these estimators are all nonlinear, it is hard to represent them in ways that
facilitate comparisons. For example, it is not clear how to generalize the concepts of
equivalent kernel and equivalent degrees of freedom that prove so useful for linear
smoothers. Third, it is not clear how to generalize these estimators to cases in which
the number of covariates is more than one or two.

3. Estimation of the conditional distribution function

Much attention has been devoted in the literature to estimation of a set of c.q.f.
and to estimates of the c.d.f. obtained by inverting the c.q.f. However, when the
interest is not merely in a few quantiles but in the whole conditional distribution,
why not estimating the c.d.f. F(y | x) directly?

Given a random sample (X1; Y1); : : : ; (Xn; Yn) from the joint distribution of (X; Y ),
Stone (1977) was among the @rst to suggest nearest neighbor-type estimates of
F(y | x) of the form

F̂(y | x) = n−1
n∑

i=1

Wi(x)1{Yi6y}; −∞¡y¡∞;

where Wi(x) =Wi(x;X1; : : : ; Xn) weights more heavily Y -values for which Xi is closer
to x. Stute (1986) establishes the asymptotic properties of two estimators of this type.
The @rst one is based on kernel weights of the form

Wi(x) =
1
an

K

(
Ĥ (x) − Ĥ (Xi)

an

)
;

where K is a smooth kernel with bounded support, an is a bandwidth converging to
zero as n → ∞ at an appropriate rate, and Ĥ (x) is the empirical d.f. of X1; : : : ; Xn.
The resulting estimator of F(y | x) is nonnegative and nondecreasing but, because
the kernel weights do not add to one, it is not a proper d.f. The second estimator
overcomes the problem by choosing normalized weights W ∗

i (x) =Wi(x)=
∑n

j=1 Wj(x).
Unfortunately, estimators of this type tend to do rather poorly when data are sparse,

which is typically the case with more than two or three covariates. The rest of this
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section describes an approach that appears to perform well even when the dimension
of X is large relative to the available data.

3.1. A semi-nonparametric approach

Following Foresi and Peracchi (1995), select J distinct values −∞¡y1 ¡ · · ·
¡yJ ¡∞ in the range of Y , and consider estimating the J functions F1(x); : : : ; FJ (x),
with Fj(x) =F(yj | x); j = 1; : : : ; J . There may be as many such values as one wishes.
By suitably choosing their number and position, one may hope to get a reasonably
accurate description of F(y | x).

If the conditional distribution of Y is continuous with support on the whole real
line then, at any x in the support of X , the sequence of functions {Fj(x)} must
satisfy the following two conditions:

0¡Fj(x)¡ 1; j = 1; : : : ; J; (4)

0¡F1(x)¡ · · ·¡FJ (x)¡ 1: (5)

One way of automatically imposing condition (4) is to model not Fj(x) directly,
but rather the log-odds $j(x) = ln [Fj(x)=(1 − Fj(x))]. Given an estimate $̂j(x) of
$j(x), one may then estimate Fj(x) by

F̂ j(x) =
exp $̂j(x)

1 + exp $̂j(x)
:

Let H be the class of functions of x that are possible candidates for the log-odds.
Because the random variable 1{Y 6yj} has a Bernoulli distribution with parameter
Fj(x), one may de@ne the best Kullback–Leibler approximation $∗j (x) to $j(x) in the
class H as the minimizer of K($; $j) = ‘($j) − ‘($), with

‘($) = E[1{Y 6yj}$(X ) − ln (1 + exp $(X ))]
= E[Fj(X )$(X ) − ln (1 + exp $(X ))];

where the @rst expectation is taken with respect to the joint distribution of (X; Y )
and the second with respect to the marginal distribution of X . Equivalently, the
function $∗j maximizes ‘($) over H. If $j ∈H, then $∗j = $j. For example, if X is a
scalar random variable and H is the class of functions that are linear in x, then the
best Kullback–Leibler approximation to $j(x) is of the form $∗j (x) = %j + x&j, where
(%j; &j) are such that the approximation error

Fj(X ) − exp $∗j (X )

1 + exp $∗j (X )

has mean zero and is uncorrelated with X .
By the analogy principle, $∗j may be estimated by maximizing the sample log-

likelihood

L($) = n−1
n∑

i−1

[1{Yi6yj}$(Xi) − ln (1 + exp $(Xi))]
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over H. This entails @tting J separate logistic regressions, one for each 0–1 random
variable 1{Yi6yj}; j = 1; : : : ; J . Boundedness of 1{Yi6yj} ensures good robust-
ness properties with respect to outliers in the Y -space.

Alternative speci@cations of H correspond to alternative estimation methods. As
for quantile regression, one may distinguish between parametric methods, nonpara-
metric methods with H unrestricted, and nonparametric methods with H restricted.
The latter class includes projection pursuit, neural networks, additive modelling and
semi-additive modelling.

The simplest case is when $j(x) = x�(j, that is, the log odds-ratio is indeed linear
in x. For j = 1; : : : ; J , let (̂jn be the logit estimator of (j corresponding to a sample of
size n and let $̂jn(x) = x�(̂jn be the implied estimator of $j(x). Under mild regularity

conditions,
√
n((̂jn − (j)

d→N(0;I−1
j ) as n → ∞, where

Ij =E[Vjj(X )XX�]

and Vjj(x) =Fj(x)[1 − Fj(x)]. Now let

F(x) =




F1(x)
...

FJ (x)


 ; $(x) =




$1(x)
...

$J (x)


= (IJ ⊗ x�)(; (=




(1
...
(J


 ;

where IJ is the unit matrix of order J . Let F̂n(x); $̂n(x) and (̂n be the estimators

of F(x); $(x) and ( respectively. Then
√
n((̂n − () d→N(0;I−1) for n → ∞, where

I=E[V (X ) ⊗ XX�]

and V (x) is the kJ × kJ matrix with generic element

Vjk(x) = min(Fj(x); Fk(x)) − Fj(x)Fk(x):

Hence
√
n[$̂n(x) − $(x)] d→N(0; A(x)) as n → ∞, where

A(x) = (IJ ⊗ x�)I−1(IJ ⊗ x);

and therefore
√
n[F̂n(x)− F(x)] d→N(0; V (x)A(x)V (x)�) as n → ∞. If the log-odds

ratio is not linear in x, then the asymptotic distribution of (̂n is still Gaussian but
its asymptotic variance matrix has the slightly more complicated “sandwich” form.

3.2. Imposing monotonicity

While the approach outlined in the previous section automatically imposes con-
dition (4), it does not guarantee that the monotonicity condition (5) holds. Since
$j(x) is strictly increasing in Fj(x), monotonicity is equivalent to the condition that
−∞¡$1(x)¡ · · ·¡$J (x)¡∞ for all x in the support of X . Writing $j(x) = %j +
�j(x), it is apparent that monotonicity holds if %j ¿%j−1 and �j(x)¿ �j−1(x). One
case where these two conditions are satis@ed is the ordered logit model, where %j =yj

and �j(x) = �(x) for all j. This model is restrictive, for it implies that changes in the
covariate vector X aCect the conditional distribution of Y only through a location
shift.
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One alternative is to model F1(x) and the conditional probabilities (or discrete
hazards)

+j(x) =P{Y 6yj |Y ¿yj−1; X = x}=
Sj−1 − Sj(x)

Sj−1(x)
; j = 2; : : : ; J;

where Sj(x) = 1−Fj(x) is the survivor function evaluated at yj. Using the recursion

Sj(x) = [1 − +j(x)]Sj−1; j = 2; : : : ; J;

it is easily seen that

Fj(x) = 1 − S1(x)
j∏

m=2

[1 − +m(x)]:

If we now model the log-odds $1(x) = ln[1 − S1(x)]=S1(x) and  j(x) = ln[+j(x)=(1 −
+j(x))], then both monotonicity and the constraint (4) are automatically satis@ed.

Turning to estimation,  j(x); j = 2; : : : ; J; may be estimated by maximizing the
sample log-likelihood

L( ) = n−1
n∑

i=1

1{Yi ¿yj−1}[1{Yi6yj} (Xi) − ln (1 + exp  (Xi))]

over some class of functions /. This entails @tting J−1 separate logistic regressions,
one for each 0–1 random variable 1{Yi6yj}; j = 2; : : : ; J , using only the data points
for which Yi ¿yj−1.

3.3. Generalizations

While it is not even clear how to de@ne quantiles when Y is vector-valued, the
approach in Section 3.1 generalizes very easily. Consider, for simplicity, the bivariate
case Y = (Y1; Y2) and let F(y | x) now denote the bivariate d.f. of Y conditional on
X = x. Given J1 distinct points in the range of Y1 and J2 distinct points in the range
of Y2, we propose to estimate J1 × J2 functions Fjk(x), where

Fjk(x) =F((yj; yk) | x) =P{Y16yj; Y26yk |X = x};
j = 1; : : : ; J1; k = 1; : : : ; J2:

Given a model for the log-odds $jk(x) = ln[Fjk(x)=(1 − Fjk(x))], this approach
entails @tting J1 × J2 separate logistic regressions, one for each binary random vari-
able 1(Y16yj; Y26yk). Once an estimate $̂jk(x) has been obtained, Fjk(x) may be
estimated by

F̂ jk(x) =
exp $̂jk(x)

1 + exp $̂jk(x)
:
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Our approach may also provide an alternative to standard autoregressive models
for stationary time series, which are essentially models of the conditional mean
of the process. Consider, for example, the discrete-time univariate AR(1) process
Yt = 1Yt−1 + �Ut , where |1 | ¡ 1; �¿ 0 and {Ut} is an innovation process with
zero mean and marginal d.f. equal to G. The c.d.f. of Yt given Yt−1 = x is

F(y | x) =P{Yt6y |Yt−1 = x}=G
(
y − 1x

�

)
: (6)

By the stationarity assumption, this is also the conditional distribution of Yt+h given
Yt+h−1 = x for any | h |= 0; 1; 2; : : : : The assumptions implicit in (6) are strong. As
an alternative, one may retain the assumption that F(y | x) is time-invariant and apply
the results of the previous section letting Xt =Yt−1.

Extensions to more general @nite-order Markov processes are straightforward. For
example, in the univariate stationary mth autoregression, what is time-invariant is

F(y | x) =P{Yt6y |Xt = x};
where Xt = (Yt−1; : : : ; Yt−m) and x = (x1; : : : ; xm), while in the bivariate stationary mth
autoregression, what is time-invariant is

F((yj; yk) | x) =P{Y1t6yj; Y2t6yk |Xt = x};
where Xt = (Y1; t−1; : : : ; Y1; t−m; Y2; t−1; : : : ; Y2; t−m; ) and x = (x11; : : : ; x1m; x21; : : : ; x2m).

4. Empirical example

As an illustration, we now present the results obtained by using the two approaches
modelling the c.q.f. and modelling the c.d.f. — to analyze the dependence of the
distribution of earnings on education, labor market experience (de@ned as the dif-
ference between a worker’s age and the age when he started working) and other
observable personal characteristics in a cross section of individuals.

4.1. The data

Our data are from the public-use @les of the European Community Household
Panel (ECHP). This data set is a standardized multi-purpose annual longitudinal
survey carried out at the level of the European Union (EU). It is centrally designed
and coordinated by the Statistical OLce of the European Communities (Eurostat), and
covers demographics, labor force behavior, income, health, education and training,
housing, migration, etc. The @rst wave of the ECHP, conducted in 1994, included
all current members of the EU except Austria, Finland and Sweden. Austria was
added in the second wave, conducted in 1995, Finland in the third wave, conducted
in 1996, and Sweden in the fourth wave, conducted in 1997. We refer to Peracchi
(2001) for a detailed description of the survey.

In this paper, we pool the data from the second and the third wave. To reduce the
amount of heterogeneity, we focus on male workers who are full-time private-sector
nonagricultural employees, full-time being de@ned as working at least 30 h per week.
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Table 1
Sample statistics

Sample Quantiles of log earnings Median Fraction of

size 25th 50th 75th experience High ed. Low ed. Married 1996

Austria 2442 6.826 7.049 7.316 19 0.045 0.138 0.599 0.487
Belgium 1545 6.928 7.099 7.341 18 0.345 0.283 0.742 0.475
Denmark 1853 6.934 7.116 7.318 21 0.316 0.215 0.571 0.480
Finland 1044 6.775 6.931 7.149 20 0.298 0.211 0.645 1.00
France 2941 6.781 7.019 7.345 20 0.188 0.337 0.657 0.495
Germany 3171 6.932 7.180 7.459 22 0.272 0.209 0.709 0.488
Greece 1835 6.270 6.517 6.773 15 0.187 0.461 0.655 0.470
Ireland 1860 6.829 7.088 7.372 15 0.189 0.390 0.544 0.460
Italy 3794 6.751 6.910 7.073 17 0.056 0.538 0.650 0.487
Luxembourg 715 7.235 7.476 7.804 20 0.171 0.575 0.731 0.483
Netherlands 2931 6.954 7.144 7.350 19 0.158 0.212 0.691 0.508
Portugal 3298 6.042 6.264 6.522 18 0.028 0.879 0.623 0.503
Spain 4008 6.662 6.892 7.203 20 0.183 0.622 0.690 0.482
Uk 2271 6.891 7.199 7.484 21 0.264 0.367 0.715 0.413

Total 33708 6.710 6.988 7.284 19 0.174 0.413 0.658 0.498

We drop observations with missing values on earnings or any of the covariates con-
sidered. After our sample selection criteria, the available country subsamples range
from a minimum of 715 observations in Luxembourg to a maximum of 4408 ob-
servations in Spain, for a total of 33,708 observations. Basic sample statistics are
presented in Table 1.

4.2. Model speci5cation

The response variable is the natural logarithm of monthly wage and salary earnings
in the current job, net of income and payroll taxes. The original data are in national
currencies and have been converted to a common scale by using purchasing power
parities. Very similar results are obtained by converting national currencies to ECUs.

Fig. 1 shows the estimated density of the response variable for three experience
groups: low (0–15 y), medium (15–30 y) and high (more than 30 y). The densities
have been estimated separately by country using the kernel method with a Gaussian
kernel and bandwidth equal to 1:059n�̂, where n is the sample size and �̂ is the
estimated standard error of log earnings for each country=experience combination.
This bandwidth is an estimate of the optimal one for a Gaussian kernel with Gaussian
data. Unlike the density of earnings, which is highly skewed, the one of log earnings
resembles a bell-shaped curve, although it is still somewhat skewed. As we move
from low to high levels of labor market experience, the density of log earnings shifts
to the right and tends to become more dispersed.

Fitting of models for the c.d.f. and the c.q.f. is done separately by country. The
probability values for quantile regression range from 0.15 to 0.85, with a constant
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Fig. 1. Estimated densities of log monthly earnings by labor market experience.

increment of 0.05, whereas the thresholds for logistic regression correspond to the
unconditional percentiles of log earnings for the pooled data, from the 15th to the
95th with a constant increment of @ve percentage points. This gives a total of 15
evaluation points for both functions.

The @tted models are all parametric and include as covariates a quadratic function
of labor market experience, fully interacted with a set of indicators for the highest
level of education completed (one indicator for those with less than the second stage
of secondary level education and one for those with a college degree). They also
include an indicator for not being married and one for the second (1995) wave. For
all models, the intercept corresponds to a baseline worker who is married, has 20 y
of labor market experience, and only completed the second stage of secondary level
education.

Standard errors for quantile regression estimates were obtained by 30 replications
of the non-parametric bootstrap, while standard errors for logistic regression estimates
were obtained using the in@nitesimal jackknife or “sandwich” estimator.
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Fig. 2. Estimated conditional quantiles of log monthly earnings.

4.3. Empirical results

For brevity, we only present a few graphical displays. Estimated coeLcients and
standard errors are not reported but are available for the interested reader. In general,
the two approaches produce similar results. In particular, other things being equal,
earnings increase with education, are higher for married workers, and are substantially
lower in Greece and Portugal relative to the other countries.

Fig. 2 shows, for each of the 14 countries considered, the estimated pro@le of
the conditional quantiles of earnings of a baseline worker as a function of labor
market experience. The relationship between estimated quantiles and labor market
experience is concave with a peak between 20 and 30 y of experience. There is
a moderate amount of heteroskedasticity in the data, signalled by some statistically
signi@cant diCerences in estimated coeLcients across quantiles. This creates problems
with quantiles crossing each other in a few countries. The problem is most serious
for Finland and Luxembourg.

Figs. 3 and 4 show the estimated pro@le of the conditional distribution function
of earnings of a baseline worker as a function of labor market experience. Each
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Fig. 3. Estimated conditional distribution functions of log monthly earnings.

of the lines in a quadrant traces the estimated conditional probability of earnings
falling below a @xed threshold. Going from bottom to top corresponds to higher and
higher thresholds. A negative slope in one of the lines implies a shift to the right
in the conditional distribution, a positive slope a shift to the left. Fig. 3 presents the
result of the approach outlined in Section 3.1, while, Fig. 4 presents the results of
the approach outlined in Section 3.2 in order to impose monotonicity. Qualitatively,
the results agree with the ones from Fig. 2. While Fig. 3 shows some evidence of
nonmonotonicity, the estimates in Fig. 4 corresponds to a proper c.d.f.

5. Conclusions

The approach proposed in this paper oCers several advantages over modelling
regression quantiles. First, imposing monotonicity is relatively easy, at least in prin-
ciple, while it is not at all clear how to proceed in the case of regression quantiles.
Second, if the log-odds are assumed to belong to a parametric family, evaluating
the asymptotic variance of the resulting estimators is straightforward and does not
require estimation of the density of the observations. Third, incorporating Uexible
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Fig. 4. Estimated conditional distribution functions of log monthly earnings. Discrete hazard modelling.

estimation methods is not a problem because the log-likelihood to maximize belongs
to the exponential family of distributions. Fourth, computation may be carried out
very quickly by gradient methods, such as the method of scoring. Finally, general-
izations to the case in which the response is vector-valued are also straightforward.
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