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Abstract

This report contains the proofs of Lemmas 3-7.



C. Proof of Lemma 3: the tube X, ., around X, (-).

By periodicity, it is enough to consider the case h = 0 so that £ = k. Since the only switching
surface hit by the motion X;, () in the interval [t,;,?,+1) is C;,z,., denoting by dist(X;, (), C;;,,) the distance
between X;, (t) and Cy;,, it follows that ¢, := infi, ¢, ) dist(X;, (£),Cp,) is strictly positive. Defining

1#7x
ey = mingepn{e,}, it follows that for any 5 € (0,¢}) all points contained in the set X ., in (33) can
belong at most to the switching surface C;

Kk

D. Proof of Lemma 4: ensuring that reference and actual switching times are pairwise close.

Since €1 < €y, by Lemma 3 the switching event at time ?;,; can only happen when the switching
surface Cj,4, is hit. In the case tj4; = f411, there is nothing to prove. Hence, the following computations
consider the two cases t,1 > t41 and t,,1 < t,1. In both cases, the proof requires to compute the
solutions between t;,; and ;.1 = w, and to use the constants w and M, computed in the procedure
in Subsection VI-A to show that if a switching event does not occur in the considered interval then a
contradiction arise.

Consider the case t; | > tpyq first. Since try1 £ 41, it follows that J]kzkxzk(t) — b2, <0, Vt €
[tx, tr+1]. By contradiction, assume that there is no switching time t;1 € (¢4 1, tx1 +w]; this implies that
the scalar function J;,;, x5, (t) — b;7, remains strictly negative also for all ¢ € (f+1,tg41 + w]. Recalling
(20) (where uy .1 = 1(t,,)) and (17c), one has for ¢ > t;1:

— _ - _ t _
ijfzcxfk (t) b TRl — Jﬂk Alk(titﬂl) (izk <tlg+1> + X, (751;+1) + / eAlk (tT)B’kub’”Jrl) a bjk?k

tr41

= (ijik}_(fk (t) - bjkik) + leﬁkeATk (t_tkﬂ)ilk (tl;+1) (42)

The scalar, continuously differentiable function Jj;, Xz, (t) — by, is positive (since Jj,z, Xz, (tp41) —
= 0 and J;,;, X;, ( t,.1) > 0) and by (22) it is lower bounded by 2J]Mx%( L)t — tega], VE €
> 135.4.%5, (6, 1)w. On the other hand, in order
Hin€ A Rt g +(f141) must be negative, and by
A (1= tk+1)xl (tk-i—l)‘ < M, 512ijlkxlk (tk—i-l) < ijlkx% (tk-i-l)w Vt € [tk+17tk+1 +

w| contradicting J;,7, %z, (t) — bjz, < 0, Vt € (tk+1,tk+1 + w]. Since | T eAnteri =%, (£ )] =

|ijlkxlk (tk-l—l) Jklk| at tg41, then |tk+1| < M, Hxlk k+1 H
Finally, consider the case 5,1 < f;,1. By hypothesis,

leﬁkxlk (tl;-i—l) b]_ﬂk = (Jj_kfk)_(ik (tk‘-l—l) - bilﬁk) + Jj_kfkiik (tI:—H) = 0. (43)
Since (J;4, %z, (tht1) — bjz,) < 1J]Mx%( k+1)|tk+1| < 0, it 1follows that Jj;,; X, (t,,,) > 0 and
‘Iiﬂkxlk(tlz—i—l) < HijlkH ||Xlk tk+1)|f < M ijlkxlk(tk+1>€1 < zleklkXZk<tk+1)w hence (43) 1mp11es
295 X (tk+1)w > J]klkXZk (tk+1) = (ij%kxlk (tk-i-l) - b]k%) > J]klkxlk (tk+1)|tk+1| and then fxy1 €

2 Jklk
(txs1 — w, tg1). The bound |tyy1| < M, Hx,k ‘ follows as in the case tgpi1 > tgpi1.

b;

Jklk

[tk+1, tk1 + w]; in particular, J; 7 X;, (tk11 + w) — by,

for the right hand side of (42) to be negative the term J;
(23) it satisfies |J;,;, €

k+1 ’

E. Proof of Lemma 5

The proof requires to compute the motions between t}”, and ¢’ ,, in order to evaluate the errors at
the two instants. The two cases tpyq > 1 and 4 < tkﬂ must be considered separately due to the
different definition of u,(¢) and u(¢) in the two cases according to (17b) and (17c).

Consider the case ty,; > t;,; first, so that tk+1 € [0,w). According to (20) and (17c¢),

- _ _ bty
X7k (tk-l—l) = F]‘kfk eAiktkH ()_(]_k (tl;+1> + X7k (tl;+1)) +/0 eAlk(tkH_T)Bikubﬁﬁ-ldT + Virtn

N B tet+1 N B
)_cjk (tk—i-l) - eAjktkH (I‘J_kfk}_cfk (tlz—i—l) + ’YJ_ka) + / 6Ajk (tk+1_T)BJ_kﬁ(tk+1 + T)dT,
0



with (tp41+7) = U(f, ;) = Wpk1 due to (20), whereas by (17a) and (17b), X4 (t511) = eAJktkH( a(trr1)+
Avi1(h—=1)), Ro(tpgr) = €241 7, (£,11). Recalling (21), it follows that X5, (tj41) = Tz, eA%tk“X] (tesr)+
f16(Tes1)s Ra(tesr) = eAula1A, (b — 1). By the definitions in Subsection VI-A,

M, || %5 (87 ||+ Mil 1] < (MMM ||%5 (675) | < My [|ZE ()]s 1R (B < MQHJXHH(h— 1)” <
My || Awsr(h — 1)H Finally, since A, (h) = e~ Aalni=tilx () = e~ A=) (%, (£, ) + Xa(t),,)) =

R (tran) + e Aaleni=tdg (177 it follows that A, (h) = e~ Aelberi=tg, (#7)) and hence

)] <

R < Mtz < M, 1, -

On the other hand, when #., < t;,;, one has #;,1 € (—w,0). According to (17c),
3 0
X7 (tk-i-l) = e_AjktkH [ijik ()_(71@ (tl;—i-l) + iik (tIZ—H)) + 751@%] +ﬁ e_AjkTBijC,k+ld7—>
tet+1
— rd O —
)_(jk (tk+1) Iﬁi}cik G_Aiktk"'l)_(fk (t’;+1) + / e_AikTBikl_l(tk_t,_l + T)dT + /ijik'
tet1
By (21), it follows that X;, (f541) = e An%nTy 2 %5 (fr,)) + For(fer1)s Kaltisr) = Aera(h — 1); by

the definitions in Subsection VI-A, it follows that ||X,(tx41)|| = ’ AKH(h —1) ‘ < M, HAHH(h - 1)l
Hijk k+1 H < M, HXJk k1 H + M |tk+1| < (MM, + M,) Hijk k1 H < M, ”X k+1)H . Since

An(h) _ e—Aa(tk+1—tk)Xa<t;+1) _ e—Aa(tk-H—tk)eAa(fk+1—tk+1) ()_(a(tl;rl) + ia(t’;q))
= Ra(fip) e bt eng, (1)

it follows that A,,(h) = ¢~ An(fis e, (t10) and then | Au(h)|| < My Rt < My [R5, (570

FE. Proof of Lemma 6

From Lemma 1, the choice of the gains K¢ guarantees that the solution is inside X, ., C &), ., (so that

Lemma 3 and Lemma 4 can be applied) and that ||x¢ (t7'5)|| < ~||x¢ (t2")]|- Applying Lemma 5 and
Lemma 4 yields (34a) and (34b). Finally, (34c) can be obtained noting that y(t) =y(t) —y(t) = C. x5,

Vit € [tM t};’ﬂrl) Using (32c¢), the bound (34c) follows by choosing M; = bMy = ~ye"° M, where b = ~e*°
and M, = maneN{HCzk ||}

G. Proof of Lemma 7.

Proceeding by induction on &, it will now be shown that Héhu < 8o, |tipnn| < o imply

L1y

[ Xrsnn|l < , KEN, (44a)
e P = (44b)
Enit &n
In order to show (44a), it is enough to show that
- tipnn tipnn - tienn
ernn| < || 5 ‘AN—H -1 H ‘ —é;h 1% con (Erinn) | Jé’h 2,0V,




since Xy, (11 ,n)s A.(h—1), K € N, are subvectors of £, and by hypothesis |f,,,y| < do. Similarly,
in order to show (44b), it is enough to show that

£1+(h+l)N £1+hN X H 7g1+hN
- <al| N, AR <al F|, keWN.
X714hN (tﬁ(thl)N) &n (h) &n
Case x = 1. Since x; M), ]&1 h—1), [Xg h —1), are subvectors of éh, it holds that || x1nn|| <
B 1+hN \"14+hN ~
t ~ ~ t
%hN ; moreover HAl(h)H = HANH(h — 1)H < a||x1an] < %hN by (34b).
h h
t ~ t
Case k = 2,..., N. Assume that ||xminn| < %hN and HAm(h)H <« %hN have been proven
h h

form =1,...,k — 1, and recall that H]Xi(h — 1)H < Héh

,1=1,...,N+1, (fort=1,..., N because

Ai(h — 1) is a subvector of &, and for i = N + 1 because it was proven in the case x = 1). The

application of (34a) leads to || . t”‘?;ﬁ ) < %hN , which implies the required inequality for
ZHJrhN k+hN h

|X«+nn]||- Then, the application of (34b) implies that HA“(h)H < a||x14nn]|s which yields the required

t~1+(h+1)N
5 M

inequality for H_&K(h)H Finally, for k = N the bound % (t )
U+AN \"14+(h+1)N

< al|xx+nn]|| follows by

(34a), thus proving (44).
Now, note that T

‘&)H < & < & by hypothesis and |t;| = 0 by the definition in Problem 1. By induction
NN

| én &o

then by (44a) it also follows that ||x. nn|| < a8, Vh € ZT, Vk € N.

on h, using (44b) it is then immediate to show that <al

= ah HéOH <o, VYh € ZF, and



