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Perturbation theory of the Fermi surface in a quantum liquid. A general quasi

particle formalism and one dimensional systems.

G. Benfatto1 G. Gallavotti2

Abstract: we develop a perturbation theory formalism for the theory of the Fermi surface in a Fermi
liquid of particles interacting via a bounded short range repulsive pair potential. The formalism is based
on the renormalization group and provides a formal expansion of the large distance Schwinger functions in
terms of a family of running couplings consisting of a one and two body quasi particle potentials. The flow of
the running couplings is described in terms of a beta function, which is studied to all orders of perturbation
theory and shown to obey, in the n–th order, n! bounds.

The flow equations are written in general dimension d≥1 for the spinless case (for simplicity).
The picture that emerges is that on a large scale the system looks like a system of fermions interacting

via a δ-like interaction potential (i.e. a potential approaching 0 everywhere except at the origin where it
diverges although keeping the integral bounded); the theory is not asymptotically free in the usual sense and
the freedom mechanism is thus more delicate than usual: the technical problem of dealing with unbounded
effective potentials is solved by introducing a mathematically precise notion of quasi particles, which turn
out to be natural objects with finite interaction even when the physical potential diverges as a delta-like
function. A remarkable kind of gauge symmetry is associated with the quasi particles.

To substanciate the analogy with the quasi particles theory we discuss the mean field theory using our
notion of quasi particles: the resulting selfconsistency relations remind closely those of the BCS model. The
formalism seems suited for a joint theory of normal states of Fermi liquids and of BCS states: the first are
associated with the trivial fixed point of our flow or with nearby non trivial fixed points (or invariant sets)
and the second may naturally correspond to really non trivial fixed points (which may nevertheless turn out
to be accessible to analysis because the BCS state is a quasi free state, hence quite simple unlike the non
trivial fixed points of field theory).

The d = 1 case is deeply different from the d > 1 case, for our spinless fermions: we can treat it
essentially (see introduction) completely for small coupling. The system is not asymptotically free and
presents anomalous renormalization group flow with a vanishing beta function and the discontinuity of the
occupation number at the Fermi surface is smoothed by the interaction (remaining singular with a coupling
dependent singularity of power type with exponent identified with the anomalous dimension).

Finally we present a heuristic discussion of the theory for the flow of the running coupling constants in
spinless d > 1 systems: their structure is simplified further and the relevant part of the running interaction
is precisely the interaction between pairs of quasi particles which we identify with the Cooper pairs of
superconductivity. The formal perturbation theory seems to have a chance to work only if the interaction
between the Cooper pairs is repulsive: and to second order we show that in the spin 0 case this happens if
the physical potential is repulsive. Our results indicate the possibility of the existence of a normal Fermi
surface only if the interaction is repulsive.
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§0 Introduction. Results.

We consider a system of fermions, with mass m > 0 and positive density, interacting via
a smooth short range rotation invariant pair potential (described in an appropriate grand
canonical ensemble): hence hard core interactions are not considered. The fermions will
be usually supposed spinless: the simplification introduced by the absence of spin is, in
the perturbation theory part of this paper, unessential. We also treat, as an example, a
spin case in a special one dimesional model.

We shall most of the time introduce a second simplification, namely we shall suppose
that there is a short range cut off eliminating scales shorter than some length scale p−1

0 : the
best way to do this would be to imagine that our fermions are on a lattice. However such a
regularization would not be spherically symmetric and the resulting complications would
hide the conceptual problems and our proposals for their solutions; hence our regularization
will be spherically symmetric in space time. We think that the above simplification,
although unphysical, is unessential and that the ultraviolet problem that is eliminated in
this way could in fact be solved and that it has nothing to do with the theory of the Fermi
surface, which is an infrared problem. For this reason, in developing the general theory,
we have not even attempted the analysis of the ultraviolet problem and we have fixed p−1

0

equal to the range of the interaction potential. We devote attention to the ultraviolet
problem only in the d = 1 spinless case with repulsive interaction.

The basic question is to prove that, under convenient assumptions on the pair potential,
the interacting system has a well defined normal Fermi surface. The first problem is to
provide a definition of a normal Fermi surface: the guide is the theory of the free case (0
interaction). A Fermi surface with radius pF (which in free systems is trivially related to
the chemical potential or to the particle density, see §1) manifests itself in several ways.
We consider the two point Schwinger function in euclidean space time [10]; if its argument
(~x, t) ≡ ξ is led to ∞, it behaves in d-space dimensions, as:

Spo(~x, t) =Z
−1

∫

dk0d~k

(2π)d+1

e−(ik0t+~k~x)

−ik0 + (~k2 − p2F )/2m
ϑ(k2/p20) =

∂−∂−∂−→|ξ|pF>>1

pd−1
F Ωd

(2π)dβZ

∫

dd−1~ω
t− iβ−1~ω~x

t2 + β−2~x2
ei~ω~xpF

(0.1)

where ϑ(x) is a cut-off function taking out the ultraviolet part of the Schwinger function
S, Ωd is the surface of the d dimensional unit sphere and dd−1~ω is the normalized surface
element on the sphere, β = pF /m is the velocity at the Fermi surface, Z = 1 and p−1

0 is a
unit of length fixed arbitrarily. The parameter Z is introduced for later reference and will
be called the Fermi surface discontinuity parameter. (See §3, and appendix A1).

The reason for the latter name is that, if p0 = ∞, the integral in (0.1) over k0 can be
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performed by residues and one finds:

S∞(~x, 0−) =
Z−1

(2π)d

∫

dd~k χ(~k2 − p2F < 0)ei
~k~x (0.2)

where χ(x < 0) = 1 if x < 0 and vanishes otherwise, while the constant Z is identically
1; one would like to show that the presence of interaction simply replaces in (0.2) χ with
Z−1χ+ χ̃ with χ̃ regular, so that Z measures the jump at the Fermi surface, see [9].

As one can certainly imagine this is by no means the only possible definition of a Fermi
surface: in fact in §4 we present another way of defining it and at the end of §5, after
(5.33), still more ways. All the definitions agree in the case of no interaction. In presence
of interaction they are formally equivalent. The proof of actual equivalence would require
a lot of work: it is reminiscent of the problem of the equivalence of the ensembles in
Statistical Mechanics. We shall eventually adopt the last of the possible definitions that
we consider (see the analysis following (5.33) in §5) because it is the simplest to reach
from scratch and, as we like to believe, it is also the most fundamental as it requires,
to be stated, the introduction of the notion of quasi particles which is a basic notion in
low temperature Physics (but which so far has hardly received a mathematically useful
definition, see however [4]).

The results of this paper can be loosely stated (and they acquire a precise meaning after
the notion of quasi particle is introduced) as:

1) general perturbation theory set up for the Fermi surface problem, with bounds on the
beta function to all orders. This part of the work (§6./.12 and the non heuristic part of
§14) does not use in an essential way the spinless nature of our fermions and it can be
trivially extended to spinning fermions.

2) lack of asymptotic freedom if d = 1. The beta function structure is inconsistent with
a normal Fermi surface. We therefore introduce and discuss, for spinless systems, the
notion of anomalous Fermi surface and build the new notion of effective potential and
of beta function.

3) We introduce a certain technical property which we conjecture (see §15, before (15.49))
to hold for the exactly soluble model of Luttinger. Unfortunately we have not been
able to show that it is a consequence of the exact solution of the model. Assuming the
conjecture and the analyticity of the beta function near the origin (see below) we deduce,
from the known properties of the exact solution by Mattis and Lieb of Luttinger’s model,
[25,26], that the anomalous beta function is identically zero in the spinless case. And
we show that in turn this implies that the general short range interaction leads to
an abnormal Fermi surface identical, qualitatively, to the one present in the Luttinger
model, (§15). In this case we outline a discussion of the ultraviolet problem mentioned
at the beginning of this section under the additional assumption that the potential is
repulsive in the strong sense of being positive definite.

4) The analyticity of the beta function in the d = 1, spinless (anomalous or not) or spinning
case, should be technically a consequence of the estimates in [19]: in fact it is clear from
our analysis that the analyticity properties of the beta function should be the same for
our models and for the 2–dimensional Gross-Neveu model. The work [19] discusses the
running couplings flow and the analyticity properties without defining exactly the beta
function in the same sense of [16,17,18], which we use here: we think that this was only
an expository choice and we plan to study formally this technical point in a separate
paper.
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5) for spinning fermions we have no results beyond the ones in item 1 above. We discuss
briefly the d = 1 spinning case, §15, pointing out some obvious problems but providing
no solutions. It is described by a map in finite dimension which contains resonances
and, therefore, its theory seems to lead quickly to well known unsolved problems (small
divisors, diffusion etc.). This has something to do, we believe, with the fact that in
the spinning d = 1 case a delta like interaction with non vanishing integral may be non
trivial and therefore boundedness of the running form factors is per se not sufficient to
solve the problem.

6) if d > 1 the results are not sufficient to show the consistency of the theory even to second
order (in the sense of §5) even though we control in some sense the beta functional to
all orders (§14). We hope that consistency to second order can be checked with extra
work. We write down the equation which should be discussed, describing some of its
elementary properties and its connection with the adopted Fermi surface definition.
We also present some heuristic analysis of it (in the spinless cases), based on the idea
that the flow generated by the beta function is governed by a function describing what
we call the interaction between Cooper pairs. The analysis leads to a flow with no
anomalous dimension, if the interaction is repulsive: thus such spinless systems with
repulsive interaction would have a normal Fermi surface.

We now sketch the logical structure behind the technical work.
In the interacting theory, keeping the range p−1

0 of the interaction fixed, one has three
independent parameters, namely the potential λ0 (which is in fact a function), the mass
m and the pF (or β ≡ pF /m) which is the radius of the Fermi surface. The discontinuity
has to be determined (when existing). Given the interaction potential λ0, and some bare
values m0 and p0F of the mass and of the chemical potential, by definition we shall say that
our system is normal and has particles of mass m, Fermi surface at pF , and discontinuity
Z if the pair Schwinger function Sp0 (cut-offed at p0) has the asymptotic behaviour (0.1)
or if some formally equivalent property holds.

Formula (0.1), in the approximation expressed by the r.h.s., has remarkable scaling
properties suggesting the use of renormalization group methods. In fact the r.h.s. of (0.1),
and even the first non approximated expression generating it, will be shown to determine
a representation of the Fermi field describing in euclidean space time the free ground state
with parameters pF , β of the type:

ψ±
ξ,pF ,β

=

0
∑

n=−∞
ψn,±ξ,pF ,β

(0.3)

where ψn is a field on scale 2−np−1
0 in the sense of renormalization group (called the

component on scale n or, in case of ambiguity, on scale 2−np−1
0 ), and in fact it has a scale

covariance property:

ψnξ,pF ,β ≈ 2dn/2ψ0
2nξ,2−npF ,β

n→ −∞ (0.4)

The decomposition (0.3) transforms the problem of computing the Schwinger functions
into that of the theory of functional integrals of the exponential of an action V (ψ±) with
respect to the euclidean fermi fields ψn (see §1,§2,§3,§4,§6).

The natural approach (renormalization group approach) would be to integrate succes-
sively the field components defining recursively the effective potentials V (h)(ψ(≤h)), where
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ψ(≤h) is defined by the sum in (0.3) stopped at h ≤ 0. One has to identify in V (h) a
relevant part depending on few parameters and an irrelevant part, the remainder. In our
case the naive candidates would be a quartic operator in the fields which has the same
form as the pair potential operator plus a quadratic part.

In this way the relevant part V
(h)
L of V (h) takes the form of:

∫

Λ

λh(~ξ − ~η) ψ(≤h)+
~ξ,t

ψ
(≤h)−
~ξ,t

ψ
(≤h)+
~η,t ψ

(≤h)−
~η,t d~ξd~ηdt+

+

∫

Λ

2hνh ψ
(≤h)+
ξ ψ

(≤h)−
ξ dξ +

∫

Λ

αh
2m

(−~∂2~ξ − p
2
F )ψ

(≤h)+
ξ ψ

(≤h)−
ξ dξ+

+

∫

Λ

ζhψ
(≤h)+
ξ ∂tψ

(≤h)−
ξ dξ

(0.5)

where the coefficient of the ψ+ψ− term has been defined as 2hνh rather than νh for later
convenience. It is however non trivial to identify the relevant part contribution inside
V (≤h). The coefficients of the relevant part are called running couplings or form factors
(note that one of them is a function).

The identification of the relevant part should be such that there is the possibility of
expressing both the relevant and irrelevant parts of the effective potential on scale h as
formal power series in the higher scales, h′ > h, running couplings: here the h’s are
negative, which is very convenient and not as confusing as it looks at first sight.

Furthermore one demands:
1) that, if the running couplings are supposed bounded uniformly in h, then the sum of

the absolute values of the n-th order coefficients of the above formal expansions should
be bounded by Cnn! where n! is an estimate of the number of Feynman diagrams
(with n vertices) in the classical perturbation theory, see references [1./.9] and the
brief introduction in §1./.4 : this is usually interpreted as saying that there are no
divergences in the theory, other than the ones associated with the running couplings
themselves, when one tries to expand the effective potential (or the Schwinger functions
which are trivially related to it) in powers of the 0-scale running couplings.

2) that if the expansions expressing the running couplings on scale h in terms of the ones
on higher scales are truncated to any prefixed order p, then they generate a sequence
of running couplings which is indeed uniformly bounded in h, at least for some suitably
chosen non trivial initial values.
The first property will be called exixtence of the beta function of the theory and the

second consistency to order p of perturbation theory.
If furthermore the Schwinger functions, computed to the same order in the running

couplings, are such that, to the considered order p, they obey the asymptotic relation
defined in (0.2), or one of the formally equivalent relations examined in §4 and §5, one
says that the Fermi surface exists to order p and is normal.

Usually this is obtained by showing that the effective potentials tend to zero in the
considered order (asymptotic freedom). But this is by no means necessary: in fact only
some of the running couplings enter into (0.2). The theory of the Fermi surface seems to
provide an example of the above non necessity.

With the above program in mind one starts computing the flow of the effective potential
coupling constants to second order: one is deceived in discovering that no matter how one
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proceeds (at least no matter how we did proceed) one finds that the effective potential has
the annoying feature of trying to diverge.

The latter property makes it impossible to proceed with the usual techniques [16,17,18]
which are based on uniform estimates. The difficulty is a major one: it is basically linked
to the fact that the problem has an intrinsic scale of length built in, p−1

F ; the latter
introduces oscillations in the integrands expressing the effective potentials, which produce
cancellations compensating some of the divergences caused by the size of the effective
potentials, the others being eliminated ultimately by using the Fermi statistics. This is
however very difficult to control. Our solution has been to think the effective potentials as
interactions between new objects which are fermions with more structure than the original
particles: we baptised them quasi particles. They have more degrees of freedom and are
related to the original particles so that the Schwinger functions for the original particles
can be computed from those of the quasi particles by integrating them over the extra
coordinates with suitable weights.

The redundance in degrees of freedom is reflected in a kind of gauge symmetry which
we shall repeatedly exploit: the knowledge that the physical observables are necessarily
expressible in terms of particle fields implies infinitely many identities and sum rules for
the expressions inolving the quasi particles, quite analogous to the Ward identities of QED,
(e.g. see §7,11,12).

The remarkable property of the quasi particles is that the effective potentials between
the new quasi particles seem to be bounded functions and furthermore the formalism allows
us to take advantage of the oscillations of the integrands on scale p−1

F to show that also
the integrations necessary to obtain the Schwinger functions of the quasi particles can
be performed and bounded uniformly. The divergence caused by the delta function–like
potentials, so troublesome in the formalism without the quasi particles, does not cause
problems because it is broken into a sum of many regular parts which can be controlled in
the expressions of interest.

The fact that in the end we get control of an effective potential which, in a formalism
without quasi particles, would look divergent (but very short ranged) is not very surpris-
ing since, intuitively, a residual delta function like potential (with bounded integral) is
essentially equivalent to a zero potential because the delta interaction is trivial (a property
valid if d > 1 and also, in the spinless case, if d = 1).

The d = 1 case is a borderline case: the integral of the delta-like function not only is
bounded but stays away from zero. This makes it harder to discuss the existence of the
Fermi surface, particularly in the spinning case, as the delta interaction in one dimension
may be non trivial.

We arrived at the quasi particle picture (see §5) by studying the cancellations due to the
oscillations of the propagators on the Fermi length p−1

F in two simple hierarchical models
that we introduced: we do not reproduce here the labor performed on them because it
would be a repetition of what we present. We nevertheless stress that even in this case, as
already in the cases of the scalar field theories [35], the analysis of a hierarchical model is
very helpful and enlightening, and it has provided the essential key to this work.

We think that the interest of the notion of quasi particle that we introduce goes beyond
the technical tool aspect: it seems to be a precise mathematical notion which translates the
phenomenological concept of quasi particle originally due to Landau. They have strange
properties which definitely distinguish them on a formal level from the Landau quasi par-
ticles: they carry an intrinsic linear momentum (equal in size to the Fermi momentum pF ,
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i.e. they live on the Fermi surface) much as a spinning particle carries an intrinsic angular
momentum. And they tend to join into pairs with opposite intrinsic linear momentum to
the point that all our intuition is based on the idea of calling relevant only the part of the
effective potential representing the interaction between what we have called Cooper pairs.
It is only a part of the pair potential.

As a final remark we wish to stress again that in the one dimensional case there is
no asymptotic freedom because the effective potential does not tend to vanish. While
in general dimension, as a potential between quasi particles, it may go to zero but not
very fast (see §14). But in the quasi particle language a potential which goes to a finite
limiting value or even to zero too slowly corresponds, if interpreted as a pair potential
between physical particles, to an approximate delta-like potential. Such a potential on
scale h is an approximate delta function (see appendix A3) with width 2hp−1

F , times a
constant proportional to the size of the quasi particle potential and to 2(d−1)h: hence
its integral goes to 0, if d > 1, as h → −∞, but this is not fast enough to prevent the
effective potential between the physical particles from diverging essentially as O(2−h) in
any dimension. This shows that in any dimension the quasi particle notion seems essential.
Furthermore in more than one dimension one can have an asymptotic freedom mechanism
only if one represents the interaction as an interaction between quasi particles.

The original preprint of this paper had a few lines missing where ref. [22] was introduced
and comments on it were made: this was noticed by one of our referees who asked in fact
for more light on this point. We seize the opportunity in the following lines, expanding
our original comments.

The theory of the one dimensional case should be compared to the vast existing litera-
ture, see [22]. The comparison is not easy as the levels of rigor demanded to renormalization
group approaches have kept increasing steadily. In [22] the theory of the Fermi gas is de-
veloped in great detail: one of the basic ideas appears to be the same guiding us in §15;
namely one tries to make use of exactly soluble models to understand the properties of
others, non exactly soluble (this, [22], seems to be possible also in some models beyond
the spinless case that we consider).

The problem of defining the beta function without approximations (like the band width
cut off with the assumption of constancy or smoothness of the couplings within the band)
and to all orders is not really considered and attacked in [22]; the calculations are confined
to the lowest orders with the major exception of Fowler’ s theorem (see p. 220 of [22])
and the related conjecture on the conservation under scaling of a suitable combination
of coupling constants (which, however, can be regarded as constants only if the above
mentioned approximations are considered). The analysis is made easier by neglecting
completely the irrelevant terms and their contributions to the beta function. By contrast
the quantities that we call running couplings are, without approximations, constants (the
identification of the non constant part of the couplings used in [22] with (some) of our
irrelevant terms seems fairly clear). We do not neglect irrelevant terms and we study the
beta function to all orders of perturbation theory putting estimates on the coefficients.

Our analysis can therefore be considered as an attempt to a more detailed understanding
of the corrections that arise when one does not start with the approximations mentioned
above and one does try to take into account the high orders and to put bound on the
beta function coefficients which are uniform in the cut offs. In so doing we have been led
to a precise, although apparently unconventional, notion of quasi particles and to a more
general theory (which is not restricted to one dimension) permitting the formulation of
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a renormalization group approach with a well defined beta function (which unfortunately
seems difficult to study even to second order, see §14, when d > 1). We have given an
anomalous scaling interpretation of our one dimensional results (going also through the
analysis necessary to give a precise definition and bounds on a anomalous beta function):
we plan to study the possible connection between Fowler conjecture and our conjecture
G = 0, in the quest of a algebraic proof for it: our conjecture also relies on the exactly
known properties of the Luttinger model and the argument used by Fowler to formulate
it seems to apply in our case as well. The explicit check (which is of some interest while
looking for a general proof) of the vanishing of G to third order is being studied and in
our context it does not seem as easy to do by explicit calculation because of the presence
of the irrelevant contributions (which of course are not small).

We learnt from G. Felder the formulation of the anomalous beta function in the scalar
field case. The connection between the effective potential and the truncated Schwinger
functions we learnt from L. Rosen, in the scalar field case.

Finally we want to express our deep gratitude to F. Nicolò: he not only contributed
ideas and discussions but also collaborated on the technical bounds in the first ten sections.
In particular the quasi particle concept, the correct power counting and the bounds in §10
were developed in close collaboration with him.
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§1 Symbols.

Fermions in a periodic box Ω ⊂ Rd, with side size L, will be described in terms of

creation and annihilation operators η+~k
, η−~k , where

~k = 2π
L
~n, ~n = (n1, · · · , nd) ∈ Zd.

We choose units so that Plank’s constant is /h = 1 and introduce the following operators:

ψ±
~x = L−d/2

∑

~k

e±i
~k·~xη±~k

T =
∑

~k

(
~k2

2m
− µ)η+~k η

−
~k
≡

∫

Ω

d~x (
1

2m
~∂ψ+

~x
~∂ψ−

~x − µψ+
~x ψ

−
~x )

N =
∑

~k

η+~k
η−~k ≡

∫

d~xψ+
~x ψ

−
~x

V =
1

2

∫

d~xd~y λo(~x− ~y) ψ+
~x ψ

+
~y ψ

−
~y ψ

−
~x

(1.1)

where µ,m will be fixed a priori and their combination pF = (2mµ)
1
2 will be called the

Fermi momentum, while:

e(~k) =
~k2

2m
− µ ≡

~k2 − p2F
2m

(1.2)

will be called the dispersion relation.

We shall call H the interaction hamiltonian:

H = T + V + νoN + αoT (1.3)

and we shall say that λo is the interaction potential, νo is the chemical potential, αo is the

mass normalization. Strictly speaking, according to the usual terminology of Statistical

Mechanics, the chemical potential of the hamiltonian (1.3) would be µ0 = µ(1 + α0)− ν0
and the particle mass would be m0 = m/(1 + α0): hence ν0 and α0 are in fact related to

the variations of the chemical potential and of the particle mass compared to the reference

values µ and m which are fixed a priori.

When λ0 = α0 = ν0 = 0 the ground state of H is easy to find and it is simply given by:

|F 〉 =
∏

e(~k)<0

η+~k
|O〉 (1.4)

where |O〉 is the vacuum for the η± operators.
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For Ω finite the ground state properties as well as those of H can be deduced (obviously)

from the Schwinger functions:

S(~x1, t1, σ1, . . . , ~xs, ts, σs) =
Tr e−(β−t1)Hψσ1

~x1
e−(t1−t2)Hψσ2

~x2
. . . ψσs

~xs
e−tsH

Tr e−βH
(1.5)

where β ≥ t1 ≥ . . . ≥ ts ≥ 0, σi = ±, and from the properties of such functions we can

deduce the properties of the system at temperature β−1 too.

In the limit β → ∞ the functions (1.5) can still be used to describe the properties of

the ground state.

In this paper we plan to consider (1.5) and its limit as β → ∞: if αo, νo are suitable

functions of λo and λo is small enough we show that (1.5) can be given a formal perturbation

theoretic meaning defining a formal expansion for the Schwinger functions of a state of

the (infinite volume) fermion system whose structure is described by the Landau picture

of quasi particles.

To impose hamiltonian stabiltity we shall suppose that λo ≥ 0, i.e. a repulsive potential;

we shall also suppose that the potential has short range, i.e. it decays fast at ∞, and that

it is rotationally invariant.
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§2 Classical perturbation theory.

The following time dependent fermion fields will be useful:

ψ±
~x,t = L−d/2

∑

~k

e±i
~k~x±e(~k)tη±~k ≡ e

tTψ±
~x e

−tT (2.1)

they define the imaginary time fields.

Then using the representation (where V0 ≡ V + ν0N + α0T , see (1.3)):

e−tH = lim
n→∞

(

e−tT/n(1− tV0
n

)
)n

(2.2)

we find that the numerator of (1.5) becomes:

∑

±
∫

Tr
{

e−βTV0(t
′
1) . . . V0(t

′
p1−1)ψ

σ1

~x1,t′p1
. . . ψσs

~xs,t′p1+...+ps

. . . V0(t
′
p1+...+ps+1

)
}

dt′ (2.3)

where V0(t) = etTV0e
−tT and the sum is over integers p1, p2, . . . while the integral is over

all the t′j variables with j 6= p1, p1+p2, . . . , p1+p2+. . .+ps and t
′
p1
, t′p1+p2 , . . . , t

′
p1+p2+...+ps

are fixed to be t1 > t2 > . . . > ts ≥ 0, respectively; finally the t′ variables are constrained

to decrease in their index j, and the sign ± is + if the number of V0 factors is even and −
otherwise.

Since the product of V0’s is an integral of a sum of products of ψ±
~x,t operators and

since the T is a quadratic hamiltonian in the ψ± operators, the Wick’s theorem holds for

evaluating Tr(exp−βT (·))/Tr(exp−βT ) and therefore it will be possible to express the

various terms in (2.3) as suitable integrals of sums of products of expressions like:

g+(~ξ, τ) =Tr e−βTψ−
~x,tψ

+
~x′,t′/Tr e

−βT

g−(~ξ, τ) =Tr e−βTψ+
~x,tψ

−
~x′,t′/Tr e

−βT
(2.4)

if ~ξ = ~x− ~x′, τ = t− t′ > 0, which we combine to form a single function:

g(~ξ, τ) =

{

g+(~ξ, τ) if τ > 0

−g−(−~ξ,−τ) if τ ≤ 0
(2.5)

Then it is easy to see, from Wick’s theorem, that the generic term in (2.3) can be expressed

graphically as follows.
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One lays down graph elements like:

•

•

• • • •

~x1,t

~x2,t

~x1,t ∂ ~x1,t ∂ ~x1,t ~x1,t (2.6)

symbolizing respectively:

− λ0(~x1 − ~x2)ψ+
~x1,t

ψ+
~x2,t

ψ−
~x2,t

ψ−
~x1,t

− ν0ψ+
~x,tψ

−
~x,t

(α0/2m)(i~∂ + ~pF )ψ
+
~x,t(i

~∂ + ~pF )ψ
−
~x,t

ψ+
~x,t and ψ−

~x,t

with ~pF being a vector of size pF (of any prefixed direction).

One should then draw n+ s such elements so that the first n have a shape of the form

1 or 2 with labels (~x, t) attached arbitrarily to the vertices (“free labels”) and the last s

have a shape of the form 3 or 4 (representing respectively ψ−
~x,t or ψ

+
~x,t) and carry “external

labels” (~x1, t1), . . . , (~xs, ts).

Then one considers all possible ways of joining togheter lines in pairs so that no line is

left over unpaired and only lines with consistent orientations are allowed to form a pair.

To each graph we assign a sign σ = ± obtained by considering the permutation necessary

to bring next to each other the pairs of operators which in the given graph are paired (one

says also contracted), with the ψ− to the left of the associated ψ+, and then setting

σ = (−1)π if π is the permutation parity.

To each graph we assign a value which is the integral over the free vertices of the product

of the sign factor times the product of factors g(~ξ, τ) (or of some of its derivatives) for

every line λ with an arrow pointing from (~x1, t1) to (~x2, t2) with ~ξ = (~x2−~x1), τ = t2− t1,
times a factor −λ0(~x1 − ~x2) for every wiggly line joining (~x1, t) to (~x2, t), times a factor

−ν0 or α0/2m for every vertex of the type with only two lines.

The propagator function g is given by (2.5) and can be represented as:

g(~ξ, τ) = L−d
∑

~k

e−i
~k~ξ
{ e−τe(

~k)

1 + e−βe(~k)
ϑ(τ > 0)− e−(β+τ)e(~k)

1 + e−βe(~k)
ϑ(τ ≤ 0)

}

∂− →
L→∞
β→∞

1

(2π)d

∫

dd~k e−τe(
~k)e−i

~k~ξ
(

ϑ(e(~k) > 0)ϑ(τ > 0)− ϑ(e(~k) < 0)ϑ(τ ≤ 0)
)

≡

≡ 1

(2π)d+1

∫

dk0 d
d~k

e−i(k0(τ+0−)+~k~ξ)

−ik0 + e(~k)
(2.7)

where ϑ(“condition′′) = 1 if “condition′′ is verified and ϑ = 0 otherwise. The reason why

τ = 0 requires the use of g− is simply that such case can only arise in the anomalous

graphs in which a pairing occurs between lines emerging from points with the same time

11



index. Disregarding sets of times of measure zero in the integral (2.3), such pairings can

only arise by pairing lines representing operators ψ+, ψ− in the same V0-factor of (2.3);

therefore ψ+ is always to the left of ψ− and the propagator is necessarily g−(~·, 0).
The sum of the graph values over all graphs yields the expansion for (2.3) up to a

multiplying factor Tr e−βT .
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æ

§3 Euclidean formalism.

The numerator and denominator of (1.5) admit a concise representation as a formal

functional integral.

For this purpose one introduces an algebra constructed from symbols ψ+
ξ , ψ

−
η , with

ξ, η ∈ Rd+1. The symbols are considered to form a basis out of which the algebra is

constructed by assuming that the ψ±
ξ verify the following anticommutation identities:

{ψ+
ξ , ψ

+
η } = 0, {ψ−

ξ , ψ
−
η } = 0, {ψ+

ξ , ψ
−
η } = 0 (3.1)

Following standard practice the symbols ψ± are now used to denote new objects, which

should not be confused with the fermion operators of the previous sections, [10].

The integration P (dψ) is simply defined by assigning the value of the integral of a

monomial:
∫

P (dψ)ψσ1

ξ1
. . . ψσn

ξn
(3.2)

By definition the value of such an integral is given by Wick’s rule. One considers all the

pairings, i.e. all possible ways of collecting in pairs the n symbols ψσξ in such a manner

that no symbols appear in more than one pair and the two symbols of each pair have a

different σ: calling π the parity of the permutation on ξ1. . . . , ξn necessary to put the ψ ’s

of each pair next to each other with the ψ− to the left, then one assigns to each pairing a

value which is (−1)π times the product of factors g(ξ− ξ′) for each pair formed by pairing

ψ−
ξ with ψ+

ξ′ ; the value of (3.2) is the sum over the values of all the pairings.

From the analysis of the previous section it should be clear that the numerator in (1.5),

divided by Tr e−βT , is given by:

∫

P (dψ)
n
∏

i=1

(ψσi

~xi,ti
) exp−{

∫

Ω×[0,β]

λ0(~ξ − ~η)ψ+
~ξ,t
ψ+
~η,tψ

−
~η,tψ

−
~ξ,t
d~ξd~ηdt+

+

∫

Ω×[0,β]

(ν0ψ
+
ξ ψ

−
ξ + α0(

1

2m
∂ψ+

ξ ∂ψ
−
ξ − µψ+

ξ ψ
−
ξ )) dξ}

(3.3)

and the (3.3) has to be interpreted in the sense of formal power series in λ0, ν0, α0.

The abstract objects ψσξ are called grassmanian variables or euclidean fermion fields,

and the linear form defined by (3.2) on such algebra is called an anticommutative gaussian

process. The theory of the integrals (3.3) is equivalent to the problem of giving a meaning

to the formal perturbation series of §2.
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The analysis of the Schwinger functions is not very convenient. More convenient is

to work with the truncated Schwinger functions. The latter are related to the Scwinger

functions by finite algebraic relations. The formal definition is in terms of auxiliary grass-

manian variables ε±x , anticommuting also with the ψ± fields. One sets:

ST (x1σ1, . . . , xsσs) =
δs

δεσ1
x1 . . . δε

σs
xs

log

∫

P (dψ)e−V0(ψ)+
∫

dx(ε+x ψ
−
x +ψ+

x ε
−
x )|ε=0 (3.4)

where δ denotes the formal functional derivative which, togheter with the logarithm

and exponential, is defined in the sense of formal power series. Note that, however,

ST (x+, y−) ≡ S(x−, y+), and we denote S(x−, y+) ≡ S(x − y) as it plays a special

role.

A very convenient object is the generating function of the truncated Schwinger functions:

S(ε) =
∞
∑

s=2

∫

dx1 . . . dxs
s!

ST (x1σ1, . . . , xsσs)ε
σ1
x1
. . . εσs

xs
(3.5)

which is related to the notion of effective potential defined by:

e−Veff (ε) =

∫

P (dψ)e−V0(ψ+ε) (3.6)

The relation is, if (gε)− = g ∗ ε− and (gε)+ = ε+ ∗ g′, where the ∗ denotes convolution,
g is the propagator in (2.7) and g′(x) = g(−x), the following:

−Veff (gε) + (ε+, gε−) = S(ε) (3.7)

(we learnt, in the scalar fields case, the above relation from L. Rosen).

The above relations are formally trivial if one treats
∫

P (dψ)· as an ordinary integral

with respect to a measure proportional to:

dψ+dψ−e−
∫

[ψ+
x (∂t+(−∆+p2F )/2m]ψ−

x dx (3.8)

and proceeding to the change of variables ψ + gε = ψ̃.

Of course the formal argument is meaningless as presented; however if one writes the

above calculations (i.e. the change of variables) as relations between formal power series

in the fermion fields one sees that they are indeed valid.

We can express Veff (ε) as a series like (3.5), thus defining kernels Veff (x1σ1, . . . , xsσs)

and among them the Veff (z−, z′+) ≡ Veff (z − z′) will play a special role.

In fact we see that the theory of the effective potential is equivalent to the theory of

the two point Schwinger function:

S(x− y) = g(x− y)−
∫

g(x− z)Veff (z − z′)g(z′ − y)dzdz′ (3.9)
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and the property (0.2) can be translated into properties of the Fourier transform V̂eff (k)

of the effective potential. The properties are:

1) the effective potential has short range: i.e. V̂eff is a smooth function in k.

2) the effective potential vanishes on the Fermi surface:

V̂ (k0, ~k) = 0 if k0 = 0, |~k| = pF (3.10)

3) the expansion of V̂ (k) around k0 = 0, |~k| = pF has the form:

V̂eff (k0, ~k) = ᾱ
~k2 − p2F

2m
− ζ̄ik0 + . . . (3.11)

4) the coefficients ᾱ and ζ̄ are equal: ᾱ = ζ̄ = ζ∞.

The above four conditions imply that:

S(k0, ~k) =
1

−ik0 + e(~k)
− ζ∞(−ik0 + e(~k))

(−ik0 + e(~k))(−ik0 + e(~k))
+ . . . (3.12)

i.e. the (0.2) holds with Z−1 = 1 − ζ∞ in a sense which depends on how good a control

one has on the regularity properties of the function V̂eff (k) near k0 = 0, |~k| = pF (i.e. on

the Fermi surface).

In perturbation theory one tries to find expansions for ᾱ, ζ̄ and for the value ν̄ =

Veff (0, pF ) in powers of λ0, α0, ν0. The idea is that, given pF ,m and given λ0 small

enough one can express the parameters ν̄, ᾱ, ζ̄ and impose the conditions:

ν̄(αo, ν0, λ0) = 0, ᾱ(α0, ν0, λ0) = ζ̄(α0, ν0, λ0) (3.13)

to fix the two free parameters α0, ν0 (i.e. the bare mass and the bare chemical potential).

It is non trivial and really remarkable that this can be achieved formally to all orders

of perturbation theory in a sense which is not literally the above (which is incorrect) but

in fact much better: the expansion is possible if ν̄(α0, ν0, λ0) is not really constructed as a

function of α0, ν0, λ0 for all their values near 0 (say). Rather one uses only the parameters

α0, λ0 and determines ν0 as a power series in α0, λ0 so that the coefficients of the formal

expansion of ν̄ in powers of α0, λ0 vanish. In pther words one only defines ν̄ for the values

of α0, ν0, λ0 for which its value is 0. One finds that this is possible formally to all orders

and determines uniquely formal series for ν0(α0, λ0), ᾱ(α0, λ0) and ζ̄(α0, λ0); one imposes

subsequently that ᾱ = ζ̄ (which can be solved in the sense of formal power series to all

orders).

This shows that the perturbation series is possible only if the chemical potential is fixed

at the right value. The similarity with the KAM theory of perturbations of hamiltonian

quasi periodic motions is here striking.
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The works on the above perturbation theory are classical, see [1,2,3,4,5,6,7] and in

particular [8,9]. The results follow again as a consequence of our work, which also provides

bounds for the size of the coefficients of the expansion.

However the mentioned perturbation theory is unsatisfactory, as pointed out in in

[11,12,13,5].

In fact one can easily identify special classes of contributions to the functions ᾱ(α0, λ0),

ζ̄(α0, λ0), ν̄0(α0, λ0), given by integrals of sums of geometric series: if summed formally

they become divergent although the term by term integrals are convergent. The mechanism

is the same as that of the integral:

∞
∑

n=0

∫ 1

0

βnλ0(λ0 log |x|−1)ndx =

∫ 1

0

λo
1 + βλ0 log |x|−1

dx (3.14)

i.e. we see that the integrals are finite order by order but their formal sum diverges at least

if βλ0 < 0. This shows that a correct perturbation theory, even if only formal, cannot be

confined to the proof that one has finiteness order by order, [5].

On the other hand the above situation is typical of the renormalization group ap-

proaches. We expect that there should be a notion of running form factors, which we

denote ~υh = (λh, νh, αh, ζh), and that all the interesting quantities should be expandible

in a formal power series in ~υh. The power series is possibly even convergent if |~υh| is small

enough for all h. Then the problem becomes that of controlling the dependence of ~υh in h

as functions of the parameters of the theory (α0, ν0, λ0): one would like to prove that they

stay uniformly bounded and small, at least if λ0 is chosen small enough and the others

conveniently.
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§4 Effective potentials.

The basic tool to produce estimates on the graphs of perturbation theory is the multi-

scale decomposition of the euclidean fermion fields. Fixing arbitrarily a momentum scale

p0, it is generated by the following identities, starting from (2.7):

g(x) =

∫

dk0d
d~k

(2π)d+1

ei(−k0t−
~k~x)

−ik0 + e(~k)
=

∫

dk0d
d~k

(2π)d+1

ei(−k0t−
~k~x)

k20 + e(~k)2
(ik0 + e(~k)) =

=
0

∑

−∞

∫ p−2
0 2−2n

p−2
0 2−2n−2

dα

∫

dk0d
d~k

(2π)d+1
ei(−k0t−

~k~x)−α(k20+e(~k)2)(ik0 + e(~k))+

+

∫ p−2
0 /4

0

dα

∫

dk0d
d~k

(2π)d+1
ei(−k0t−

~k~x)−α(k20+e(~k)2)(ik0 + e(~k)) ≡
1

∑

−∞
ḡn(x)

(4.1)

where x = (~x, t) and the funtions ḡn(x) have simple scaling properties, if n ≤ 0. In fact:

ḡn(~x, t) = 2ngsn(
~ξ, τ)

sin pF |~x|
pF |~x|

+ 22n
p0
pF
gcn(

~ξ, τ) cospF |~x| d = 3

ḡn(x, t) = 2ngsn(ξ, τ) cospFx− 2ngcn(ξ, τ) sinpFx d = 1

(4.2)

where ~ξ = 2np0~x, τ = 2np0t and, if n ≤ 0 :

|∂pτ∂~r~ξg
α
n(
~ξ, τ)| ≤ 2n(p+|~r|)Gβ(~ξ, τ)p

p+|~r|+1
0 pd−1

F α = s, c (4.3)

where β = pF /m and Gβ , which depends on p, ~r, q but not on n, is uniformly bounded

and decays at ∞ faster than any power of its arguments.

Furthermore gs, gc are holomorphic in ~ξ, τ and admit a bound with Gβ decaying ex-

ponentially fast at ∞ for ξi, τ in a complex plane strip of prefixed size, and with a decay

rate bounded by a quantity that can be also arbitrarily prefixed.

See appendix A1 for our choice of gs, gc and for a detailed check of the above statements.

We shall choose often units so that β = (velocity at the Fermi surfface) = 1 and /h = 1:

we call such units natural and in such units the dimension of λ is an inverse length.

A convenient and natural choice for p0 is to fix p−1
0 = range of the interaction potential:

the latter will be supposed to have the form λ(~x) = pd0λ̄(p0~x) with λ̄ having range 1.

We can use (4.2) to represent our euclidean fermion fields as sums of other independent

grassmanian variables:

ψσ~x,t =

1
∑

n=−∞

∫

ψ
(n)σ
~x,t,~ωe

ipF σ~ω·~xd~ω (4.4)
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where the propagator between the fields ψ
(n)−
~x,τ,~ω and ψ

(n)+
~x′,τ ′,~ω′ is given, if ~ξ = (~x − ~x′)p02n

and τ = (t− t′)2np0, by:

2nδ(~ω − ~ω′)gn(~ξ, τ, ~ω) ≡δ(~ω − ~ω′)
∑

α=c,s

2n((2n
p0
pF

)ε(α) − ε(α)i~ω~ξ)gαn(~ξ, τ) d = 3

(4.5)

2nδ(~ω − ~ω′)gn(~ξ, τ, ~ω) ≡δ(~ω − ~ω′)2n(gsn(ξ, τ)− iωgcn(ξ, τ)) d = 1

with ε(c) = 1, ε(s) = 0, and δ is the delta-function relative to the measure d~ω defined by:

d~ω =
δ(|~ω| − 1)

Ωd|~ω|d−1
dd~ω (4.6)

where Ωd is the surface of the d-dimensional sphere, i.e. δ is defined on a test function f

by:
∫

δ(~ω − ~ω′)d~ω′f(~ω′) ≡ f(~ω) (4.7)

If n = 1 the fields ψ(1) are given an indecomposed propagator: (4.2) still holds but (4.3)

holds only outside a neighborhood of the origin (because there is no ultraviolet cut off in

g1).

In checking (4.4),(4.5) one uses, for d = 3, the identities:

sin |~x|
|~x| ≡

∫

d~ωe−i~ω·~x, cos |~x| ≡
∫

(1− i~ω~x)d~ωe−i~ω·~x (4.8)

and the similar ones if d = 1.

Asymptotically as n→ −∞ one has, for d = 1, 3 (see A1.9):

gn(~ξ, τ, ~ω) = Cd (τ − iβ−1~ω~ξ) γ0(τ
2 + β−2ξ2) (4.9)

where, (see (A1.10)):

γ0(z) =

∫ 1

1
4

e−z/4α
dα

α2
, Cd =

πΩdp
d−1
F p0

2(2π)d+1β
(4.10)

It appears that the fields ψ
(n)
~x,t,~ω are naturally associated with the length scale 2−np−1

0 .

The following notation will be used:

ψ
(≤N)σ
ξ ≡

N
∑

n=−∞
ψ
(n)σ
ξ (4.11)
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and, if Λ = Ω × [−T, T ], we define the effective potential V (N) on scale p−1
0 2−N with

ultraviolet cut off U ≥ 0 as:

exp−V (N)(ψ(≤N)) =

∫

P (dψ(N+1)) · · ·P (dψ(U))·

exp−{
∫

Λ

λ0(~ξ − ~η) ψ(≤U)+
~ξ,t

ψ
(≤U)−
~ξ,t

ψ
(≤U)+
~η,t ψ

(≤U)−
~η,t d~ξd~ηdt+ (4.12)

+

∫

Λ

ν0 ψ
(≤U)+
ξ ψ

(≤U)−
ξ dξ +

∫

Λ

α0

2m
(−~∂2~ξ − p

2
F )ψ

(≤U)+
ξ ψ

(≤U)−
ξ dξ+

+

∫

Λ

ζ0ψ
(≤U)+
ξ ∂tψ

(≤U)−
ξ dξ}

where λ0 will be called the potential, ν0 the chemical potential, α0 the mass normalization,

ζ0 the discontinuity parameter.

Eventually one shall only be interested in the choices of ν0, α0 permitting to interpret

the state of the Fermi system as a state with a Fermi surface at pF (a priori prescribed)

on which Landau quasi particles move with a given mass m, and one wishes to take ζ0 = 0

(otherwise one would loose the physical interpretation of the theory).

The propagators of the various fields obtained from the fields ψn in (4.4) or (4.11) by

taking summations over n between various extremes will be denoted by appending to g or

ḡ subscripts like (≤ h) if the extremes are (−∞, h), or (≥ h) if the extremes are (h, 0), or

(h, h′) if the extremes are both finite.

As mentioned in the introduction we shall fix the ultraviolet cut off U = 0, i.e. we

fix it at scale p−1
0 . The effective potential on scale h generates the truncated Schwinger

functions S(≥h) of a theory with infrared cut off at scale p−1
0 2−h.

In the free case the evaluation of the function S(≥h)(x, y) at points 2
−hx0, 2−hy0 (i.e. on

scale p−1
0 2−h) leads to (fixing d = 3 as an example):

So(≥h(x0, y0) =2−2hS(≥h)(2
−h(x0 − y0)) = sin(pF 2

−h|~x0 − ~y0|)gs(≥h,scaling)(x0 − y0)+
+ cos(pF 2

−h|~x0 − ~y0|) gc(≥h,scaling)(x0 − y0)
(4.13)

where, if σ = s, c, we have defined:

gσ(≥h,scaling)(x) =
0

∑

n=h

22(n−h)gσn(2
n−hp0x)∂− →h→∞

+∞
∑

q=0

22qgσ∞(2qp0x) ≡ gσscaling(x) (4.14)

so that, see the asymptotic formulae in appendix A1 ((A1.6)./.(A1.10)):

gσscaling(x) =
Ω3πpF
2(2π)4β

γscaling(x)

{

t/|~x| σ = s
β−1 σ = c

γscaling(x) =

+∞
∑

q=0

22qp20γ0(2
qp0x) = 4

e−p
2
0x

2/4

x2
if x2 = t2 + ~x2β−2

(4.15)
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Hence we see that if x2 is fixed (= 1, say), we can read from the leading behaviour of

So(≥h)(x) as h→∞ the value of the Fermi radius pF and the particles mass m: the first is

directly given by the period of the oscillations in space (i.e. 2π2h/pF in our rescaled units)

see (4.13), and the second is deduced from β, (β = pF /m), see (4.15).

The above analysis shows the possibility of defining the Fermi surface and the particle

mass via the analysis of the effective potential on scale h: using (3.9) one could require

V
(h)
eff to have the properties necessary to imply that the ST(≥h)(x, y), defined by the r.h.s.

of (3.9), have indeed the asymptotic properties described by (4.13)./.(4.15).

This is not, however, our choice: in our opinion the Fermi surface and the mass are

more naturally associated with the new concept of quasi particles that we introduce in

the next §5 and that we identify with the well known phenomenological notion of quasi

particle introduced by Landau [15].
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§5 Quasi particles. Mean field theory and gap equation. Definition of Fermi surface.

We now come to the problem of defining what we shall adopt as primary definition of

Fermi surface and quasi particles mass.

The previous formalism suggests a radical change in point of view. The case d = 1

is clearest and we treat it first; we keep however the general notation for later reference

(hence if d = 1 the
∫

d~ω wil be the average over ~ω = ±1, etc.).
We imagine a system of fermions characterized by an intrinsic linear momentum pF ~ω

and external linear momentum ~k. The intrinsic linear momentum should be thought as

the linear momentum analogue of the spin. Such particles will be described by fermion

fields ψ±
~x,t,~ω with propagator δ(~ω − ~ω′)g(~x− ~x′, t− t′, ~ω) where:

g(~x, t, ~ω) =

∫

e−i(
~k~x+k0t)

ε(k, ~ω)

dd+1k

(2π)d+1
(5.1)

The new fermion variables may be used to represent the fermion variables of the previous

sections as:

ψ±
~x,t =

∫

d~ωe±ipF ~ω~xψ±
~x,t,~ω (5.2)

The function ε(k, ~ω) has to be such that:

g(~x, t) =

∫

dd+1k

(2π)d+1

e−i(k0t+
~k~x)

−ik0 + (~k2 − p2F )/2m
≡

∫

d~ωe−ipF ~ω~xg(~x, t, ~ω) (5.3)

Keeping the restriction d = 1, an elementary calculation shows that ε(k, ~ω) = −ik0+β~ω~k+
O(~k2) as a consequence of the (A1.6)÷(A1.10). It is easy to check that there are ∞-many

choices of ε(k, ~ω). Every choice of the function χ in appendix A1, for instance, provides

a different ε(k, ~ω), still verfying ε(k, ~ω) = −ik0 + β~ω~k + O(k2). All choices agree to first

order near the Fermi surface k = 0. We shall fix our choice by using the propagators of

appendix A1.

This means that the free fermion system in a ground state with Fermi momentum at pF
can be considered as a system of quasi particles in the vacuum carrying an intrinsic linear

momentum equal to a Fermi sphere momentum. The dispersion relation is almost linear

in the sense that the system on large scales, i.e. ~k small, will show a dispersion relation

essentially identical to η(~k) = ~ω~kβ: this property seems to remain valid even in presence

of interaction and this is the main result of the analysis of the coming sections which are

21



developed by letting the intuition be led by the idea that the quasi particles are to be

taken seriously.

The case d = 3 is discussed similarly, but for reasons that are clearer below we only

consider it when we have an ultraviolet cut off at p0. The propagator g(~x − ~x′, t − t′, ~ω)
will be therefore defined as (see (4.5),(4.6)):

g(~x, t, ~ω) =

0
∑

h=−∞
2hgh(~x, t, ~ω) (5.4)

Using the work of appendix A1, one easily checks that (5.4) can be put in the form (5.1)

by setting ε(k, ~ω) = −ik0a(k) + b(k) + β~ω · ~k(c(k) − ik0d(k)) with a, b, c, d functions of

k20 + β2~k2 growing very fast as k → ∞ (exponentially, because of the ultraviolet cut off).

The difference between the d = 1 case and the d > 1 cases is not so much in the introduction

of the ultraviolet cut off (which could be easily avoided by extending the sum over h up

to 1) but rather in the fact that the ε(k, ~ω), even in absence of a ultraviolet cut off, would

have to be be really different from −ik0 + β~ω · ~k + O(~k2). The main feature of ε(k, ~ω),

common to d = 1, 3, is that 1/|η|, with η = Re ε, is not integrable at 0 over k0, ~k; it is

however integrable at ∞ with respect to ~k (but, if d = 3, only because of the ultraviolet

cut off).

The leading singularity at k = 0 is easy to evaluate from appendix A1, (A1.7)÷(A1.9)

and it is ε(k, ~ω) = (−ik0 + β~ω · ~k)(k20 + β2(~ω · ~k)2)−1(k20 + β2~k2)2(2β)−2p−2
F .

We can think to generalize our previous problem into that of studying euclidean Fermi

fields with interaction:

V (0) =

∫

d~xdtd~ω1d~ω2e
ipF (~ω1−~ω2)~xψ+

~x,t,~ω1
(ν0 +

α0p
2
F

2m
(2ip−1

F ~ω2
~∂ − p−2

F ∆))ψ−
~x,t,~ω2

+

+

∫

d~xd~ydt

∫

∏

j

d~ωje
ipF [(~ω1−~ω4)~x+(~ω2−~ω3)~y]λ0(~x− ~y)ψ+

~x,t,~ω1
ψ+
~y,t,~ω2

ψ−
~y,t,~ω3

ψ−
~x,t,~ω4

(5.5)

We call (5.5) an interaction between the euclidean quasi particles with internal momentum

~ωpF and position ~x: it is obtained by considering the argument of the exponential in the

r.h.s. of (4.12) and by replacing the ψ±
x fields via the (5.1).

One cannot say that such objects are real particles as they only arise as an artificial

device similar to the device of decomposing a field into scales. But we can pretend that

they are real because we can infer from their properties those of the system, hence those

of the true particles: the name is chosen because they seem to enjoy properties analogous,

in some respects, to the ones of the quasi particles used in the Landau theory of Fermi

liquids.

Before giving the definition of Fermi surface in terms of the quasi particles (see defini-

tions 1),2) below) we try to substantiate our interpretation of the above remarks on quasi
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particles by showing that the mean field theory can be easily rephrased in our formalism,

and very naturally so, leading to self consistency equations of the BCS gap equation type.

We can think of the euclidean quasi particles as described by the formal fermion inte-

gration proportional to:

P (dψ) = {exp−
∫

ε(k, ~ω)ψ+
k,~ωψ

−
k,~ωd~ωdk}dψ+dψ− (5.6)

where an ultraviolet cut off p0 is introduced to avoid dealing with ultraviolet problems.

Using the formal expression (5.6) it is possible to build a mean field theory and to draw

some analogy with the BCS model.

Let λ(~ω; ~ω′) ≡ (λ̂(pF (~ω − ~ω′)) − λ̂(pF (~ω + ~ω′))/2 where λ̂ is the Fourier transform of

some rotational invariant effective potential λ (not to be considered as directly related to

the initial potential), and define:

VBCS = −
∫

d~xdt

∫

d~ωd~ω′λ(~ω; ~ω′)Λ−1ψ+
~x,t,~ωψ

+
~x,t,−~ωψ

−
~x,t,~ω′ψ

−
~x,t,−~ω′ (5.7)

and try to analyze
∫

(exp−VBCS)P (dψ). Here Λ are normalization constants formally

equal to δd−1(~0), if δd−1 = δ is defined in (4.7): they disappear from the calculations,

eventually, and one should think of them as defined in terms of some cut-off parameter.

The idea behind the model (5.7) is that it represents an effective potential describing the

system, after integrating out the ultraviolet modes and on some very large scale 2−hp−1
0 :

then δd−1(~0) is (2
−hp−1

0 )d−1 so that Λ−1 = 2h(d−1)pd−1
0 .

One tries to find the Schwinger functions for (5.7) by assuming that one can replace

ψ−
~x,t,~ω′ψ

−
~x,t,−~ω′ by its average in the distribution const (exp−VBCS)P (dψ), setting:

〈ψ−
~x,t,~ω′ψ

−
~x,t,~ω′′〉 = δ(~ω′ + ~ω′′)V (~ω′) (5.8)

where V (~ω) ≡ −V (−~ω) is considered as unknown and to be determined selfconsistently

by using:

δ(~ω + ~ω′)V (~ω) =

∫

e−V̄BCSP (dψ)ψ−
~x,t,~ωψ

−
~x,t,~ω′

∫

e−V̄BCSP (dψ)
(5.9)

with:

V̄BCS = −1

2

∫

d~xdt

∫

d~ω(w(~ω)ψ+
~x,t,~ωψ

+
~x,t,−~ω + w(~ω)ψ−

~x,t,−~ωψ
−
~x,t,~ω) (5.10)

where, regarding λ(~ω; ~ω′) before (5.7) as defining a convolution operator K, the function

w(~ω) ≡ −w(−~ω) is defined by:

w(~ω) =

∫

V (~ω′)λ(~ω; ~ω′)d~ω′ ≡ (KV )(~ω) (5.11)

23



The best way to evaluate (5.9) is to make use of the formal functional integration repre-

senting P (dψ), see (5.6), and thus considering, for (~k)1 > 0:

−(wψ+
k,~ωψ

+
−k,−~ω + wψ−

−k,−~ωψ
−
k,~ω) + (ε+ψ

+
k,~ωψ

−
k,~ω + ε−ψ

+
−k,−~ωψ

−
−k,−~ω) (5.12)

with ε+ ≡ ε(k, ~ω), ε− = ε(−k,−~ω).
The (5.12) can be rewritten, dropping at places the ~ω-dependence to shorten the nota-

tions, in terms of:

ψ−
k,~ω = c(k)ϕ−

0,k,~ω + s(k)ϕ+
1,k,~ω ψ+

k,~ω = c(k)ϕ+
0,k,~ω + s(k)ϕ−

1,k,~ω

ψ+
−k,−~ω =− s(k)ϕ−

0,k,~ω + c(k)ϕ+
1,k,~ω ψ−

−k,−~ω = −s(k)ϕ+
0,k,~ω + c(k)ϕ−

1,k,~ω

(5.13)

with (~k)1 > 0 and s, c are defined, if η ≡ (ε(k, ~ω) + ε(−k,−~ω))/2:

t(k) =
s(k)

c(k)
,

2t(k)

(1− t(k)2) =
w

η
, (c(k)2 − s(k)2)w − 2ηc(k)s(k) = 0 (5.14)

Note that ε+ = −ik0A(k, ~ω)+A′(k, ~ω) with A = a(k)+β~ω~kd(k) and A′ = b(k)+β~ω~kc(k).

We find that (5.12) becomes, for (~k)1 > 0:

(ε0(k, ~ω)ϕ
+
0 ϕ

−
0 + ε1(k, ~ω)ϕ

+
1 ϕ

−
1 )

{

ε0 = c2ε(k, ~ω)− s2ε(−k,−~ω) + 2wcs
ε1 = c2ε(−k,−~ω)− s2ε(k, ~ω) + 2wcs

(5.15)

i.e. ε0 = −ik0A(k, ~ω)+B(k, ~ω), ε1 = ik0A(k, ~ω)+B(k, ~ω), withB(k, ~ω) = (c2−s2)η+2wcs,

and we can easily compute:

ΛV (~ω) = 〈ψ−
~x,t,~ωψ

−
~x,t,−~ω〉 =

=

∫

dk

(2π)d+1
(s(k, ~ω)c(k, ~ω){〈ϕ+

0,k,~ωϕ
−
0,k,~ω〉+ 〈ϕ+

1,k,~ωϕ
−
1,k,~ω〉}) ≡

≡− Λ

∫

dk

(2π)d+1
s(k, ~ω)c(k, ~ω)(

1

ε0(k, ~ω)
+

1

ε1(k, ~ω)
)

(5.16)

One can see from (5.14),(5.15) that the sign of Bsc is the same as that of w so that the

(5.16) becomes:

V (~ω) = −
∫

d4k

(2π)4
w(~ω)

√

η2 + w(~ω)2
|B(k)|

k20A(k)
2 +B(k)2

(5.17)

In (5.17) the large values of k do not matter too much because the functions A,B, η

diverge fast enough for summability. Therefore for d = 1, using A(0) = 1 + O(k2),

η(k) = β~ω~k+O(k2) and assuming for the purpose of an example, λ(ω, ω′) = ωω′V0 and if

V (ω) = ωV, w(ω) = V0V ω, the selfconsistency relation (5.17) for V becomes:

1

V0
≃ −

∫

dk

4π

1
√

η2 + V 2V 2
0

≃ −
∫

dk

4π

1
√

(k2 − p2F )2/2m+ V 2
0 V

2
(5.18)
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and the r.h.s has been obtained by changing variables from ~k to ~k + pF ~ω. The (5.18)

is formally the well known BCS gap equation [14], (usually written calling V 2V 2
0 ≡ ∆),

The (5.18) is a selfconsistency equation which can be solved under hypothesis that the

potential is attractive (i.e. λ(~x − ~y) ≤ 0 implying that V0 < 0) and not soluble if it is

repulsive (i.e. λ(~x− ~y) ≥ 0).

For d > 1 the situation is very similar and one expects that the selfconsistency equation

will be soluble if the potential is attractive: rather than performing a general analysis of

(5.17) we show the truth of the above statements in some special cases. The basic remark

is that
∫

(dk/|η|)(|B|/k20A2 +B2) diverges near k = 0.

Consider first the δ-model:

λ(~ω; ~ω′) = V0
1

2
(δ(~ω − ~ω′)− δ(~ω + ~ω′)) (5.19)

corresponding to a potential with Fourier transform such that λ̂(pF (~ω−~ω′)) ≡ V0δ(~ω−~ω′).

This is a singular but interesting case; the selfconsistent V is easy to calculate explicitly

and, if ~ωz denotes the z-component of ~ω with respect to a prefixed z-axis, it is V (~ω) =

(sign(~ωz))V with V being a constant defined by the equation:

1

V0
= −

∫

d4~k

(2π)4
1

√

η2 + (V V0)2
|B(k)|

k20A(k)
2 +B(k)2

(5.20)

again very similar to the BCS gap equation, and which has non trivial solutions in the

case V0 < 0, i.e. if the interaction is attractive.

A second interesting case is the P -wave model in which the Fourier transform of the

potential is λ̂(pF (~ω − ~ω′)) = −3(~ω − ~ω′)2V1/2, so that λ(~ω; ~ω′) = 3~ω~ω′V1; in this case we

find that w(~ω) is a P -wave function w(~ω) = 3~ωzV V1, where V is the (unknown) coefficient

of the P1 Legendre polynomial in the Legendre expansion of V (~ω):

1

V1
= −

∫

sinϑdϑ

2

∫

d4k

(2π)4
3 cos2 ϑ

√

η2 + V 2V 2
1 cos2 ϑ

|B(k)|
k20A(k)

2 +B(k)2
(5.21)

which again admits a solution only if V1 < 0, i.e. only if the potential is attractive. It is

the extension to P -wave, in our spinless mode, of the gap equation. Once V1 is determined

the other coefficients of the Legendre expansion of V are trivially determined by (5.17),

whose r.h.s. becomes a wholly known quadrature.

More generally one should remark that the function λ(~ω; ~ω′) can be expanded in Leg-

endre series:

λ(~ω; ~ω′) =
∑

l=odd

(2l + 1)λlPl(~ω · ~ω′) (5.22)

and one easily checks that the condition λ(~x − ~y) ≥ 0 implies that λl ≥ 0. In fact one

regards the λ(~ω; ~ω′) as a convolution kernel K on the odd functions on the sphere and

checks that its quadratic form can be written as:

(f,Kf) =

∫

λ(~x)|Ff (~x)|2d3~x ≥ 0 if Ff (~x) =

∫

eipF ~ω~xf(~ω)d~ω (5.23)
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on the other hand λl are just the eigenvalues of K as a convolution kernel (which has the

spherical harmonics as eigenfunctions).

The gap equation (5.17) for a model with finitely many waves

λ(~ω, ~ω′) =
2N+1
∑

l=odd

(2l + 1)λlPl(~ω · ~ω′) (5.24)

becomes, as it is easily checked, a system of N equations and N unknowns which determine

the first N Legendre series coefficients of V (~ω); the other coefficients (infinitely many)

are trivially determined in terms of the first N . The reason for this simplification is that

w = KV and K in this case has N -dimensional range spanned by the first N odd Legendre

polynomials: hence the r.h.s. of (5.17) is wholly known once the first N components of V

are known(because KV = w depends only on them).

We should therefore expect that perturbation theory can be consistent only if the in-

teraction is repulsive and this will be an important guideline in the coming analysis. Fur-

thermore in some sense only the components of the quasiparticle potential corresponding

to waves that appear in the initial interaction should be relevant: they are the ones that

determine the selfconsistent solution.

The above analysis shows, in our opinion, the interest of the new notion of quasi particle.

Hence we are motivated to provide a definition of Fermi surface in terms of quasi particles.

We simply look at the truncated Schwinger functions S(≥h), considered at the end of

§4, with ultraviolet cut off at p0 and infrared cut off at 2hp0, for the ordinary fields and

defined with the obvious changes, for quasi particle fields.

In the free case they can be easily computed from (5.1) and from the analysis of appendix

A1.

We investigate the Schwinger function S(≥h)(x− y) in presence of interaction in terms

of the free and interacting quasi particles Schwinger functions g(≥h)(x − y, ~ω)δ(~ω − ~ω′)

and S(≥h)(x, ~ω, y, ~ω
′). In this case the function S(≥h) is defined in terms of the effective

potential via the obvious generalization of formula (3.9):

S(≥h)(x, ~ω, y, ~ω
′) =g(≥h)(x− y, ~ω)δ(~ω − ~ω′)−

∫

dzdz′eipF (~ω~z−~ω′~z′)

g(≥h)(x− z, ~ω)V (h)
eff (z, ~ω, z

′, ~ω′)g(≥h)(z
′ − y, ~ω′)

(5.25)

where the coefficient exp ipF (~ω~z − ~ω′~z′) is extracted for convenience, as suggested by (5.3),

from the kernels defining the effective potential, which we introduce via the relations:

e−V
(h)

eff
(ψ) =

∫

P (dψ(h+1)dψ(h+2) . . .)e−V
(0)(ψ+ψ(h+1)+ψ(h+2)...) (5.26)

We now suppose that:

V
(h)
eff (z, ~ω, z

′, ~ω′) =2hνhδ(z − z′) + αhδ(z − z′)(iβ~ω′~∂′ −∆′/2m) · +
+ ζhδ(z − z′)∂′t · +w′

h(z, z
′)

(5.27)
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where ∂′t, ~∂
′,∆′ are differential operators acting to their right on the z′ variables; and we

see that the reconstruction of the Schwinger function:

S(≥h)(x, y) =

∫

e−ipF (~ω~x−~ω′~y)S(≥h)(x, ~ω, y, ~ω
′)d~ωd~ω′ (5.28)

leads to:

S(≥h)(x− y) = g(≥h)(x− y)−
∫

d~ω′dz′g(≥h)(x− z′)e−ipF ~ω
′(~z′−~y)

(2hνh + αh(iβ~ω
′~∂ −∆/2m) + ζh∂t)g(≥h)(z

′ − y, ~ω′) + . . . = g(≥h)(x− y)+(5.29)

−
∫

g(≥h)(x− z′)(2hνh + ζh∂t + αh(−∆− p2F )/2m)g(≥h)(z
′ − y)dz′

and in Fourier transform:

Ŝ(≥h)(k) = ĝ(≥h)(k)− ĝ(≥h)(k)ĝ(≥h)(k)(2hνh + ζh(−ik0) + αh(~k
2 − p2F /2m) + . . .) (5.30)

But by our construction g(≥h)(k) has a singularity, at the Fermi surface, i.e. for k0 = 0,

|~k| = pF :

1− e−2−2h(k20+(~k2−p2F /2m)2)

−ik0 + (~k2 − p2F /2m)
(5.31)

hence we see that the singularity at the Fermi surface, i.e. at k0 = 0, |~k| = pF is not

changed if:

ν−∞ = 0, ζ−∞ = α−∞ (5.32)

provided νh → 0 at least as fast as 2εh, ε > 0.

This can be interpreted as saying that the S(≥h) function has the same behaviour at

∞ as the corresponding function in the free case, provided the remainder gives a less

singular contribution; this happens if the contribution of the remainder wh(z − z′) to the

effective potential is supposed to have a Fourier transform ŵ′
h(k) uniformly well behaved

near k0 = 0, |~k| = pF and vanishing there to second order:

∫

dzeik(z−z
′)w′

h(z − z′)dz′ = ŵ′
h(k) ≡ ŵ′

h(k0,
~k)

ŵ′
h(p0, pF ~ω) = 0,

∂

∂p
ŵ′
h(p0, p~ω)| p=pF

p0=0
= 0,

∂

∂p0
ŵ′
h(p0, p~ω)| p=pF

p0=0
= 0

(5.33)

Our definition of existence of a normal Fermi surface and of mass of the quasi particles

is based on the above heuristic arguments:

Definition 1): we say that there is a normal Fermi surface of radius pF and there are

quasi particles of mass m if the part of the effective potential on scale h and degree 2 in

the fields (i.e. the part connected with the interaction propagator) verifies:
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1) νh → 0, αh, ζh → ζ∞
2) w′

h(z−z′) is a distribution with Fourier transform uniformly regular within a momentum

layer of size O(2(1−ε)hp0), for some ε > 0, near the k = (0, ~k) with |~k| = pF , and

verifying (5.33).

in fact we think of the property 1) as the weakest definition of normal Fermi surface and

quasi particle mass, and we think of the pair 1),2) as a stronger version: we refer at the

two possible meanings by saying, respectively, in the sense of definition 1, 1), or 1, 2).

Note that it would be, perhaps, more satisfactory to require 2) for a layer, around the

Fermi surface, of width O(p0) rather than O(2(1−ε)hp0): however we are unable to study

this stronger property, and the reason is quite fundamental (§11). The physical meaning

is that the pair Schwinger function behaves as the free one (with the corresponding Fermi

surface behaviour) only if we look at distances which grow very large with the infrared

cut off. We must therefore couple the thermodynamic limit with the computation of the

correlation function: fixed ε > 0 (a priori), the correlation has to be computed at distances

between L1−ε and L, if the system is confined in a box of size L and if we want to see the

Fermi surface singularity with no corrections.

Setting ∆2 = k20 + (~k2 − p2F ) we develop, in §12, an expansion for the Schwinger func-

tions implying that the corresponding expansion for the function w′
h(k)/∆

1+ε is bounded

uniformly if p02
h < ∆ < p02

h(1−ε), for ε < 1/4.

We also show that all the effective potentials (connected with the many body Schwinger

functions) admit an expansion in powers of αh, ζh, νh and of a fourth running form factor

λh, which is a function on (SF )
4, SF being the Fermi sphere. The expansion has coefficients

bounded, to order n, by n!, using a suitable norm to measure the size (see §9) of λh.
Furthermore the ~υh = (νh, αh, ζh, λh) are given by a formal power series in ~υh+1,

~υh+2, . . . with coefficients bounded by n!:

~υh−1 = Λ~υh +B(~υh, ~υh+1, . . .) (5.34)

with Λ a diagonal matrix with diagonal (2, 1, 1, 1) and B, called beta functional, given by

a formal power series in its arguments ~υ.

Hence we have a way to define what we mean by a perturbatively well defined normal

Fermi surface and quasi particles.

Definition 2): Consider the relation obtained from (5.34) by truncating B to a given

order p in its expansion in the ~υ’s. If the new truncated relation generates, for suitably

chosen α0, ν0 and for given ζ0 = 0 and λ0 small enough, a sequence ~υh bounded uniformly

and such that νh → 0 and αh − ζh → 0 then we say that perturbation theory is consistent

up to order p and that, to this order, the normal Fermi surface exists together with quasi

particles of mass m, (in the sense of definition 1, 1)).

In the coming sections §6÷13 we develop a general perturbation theory aimed at study-

ing normal Fermi surfaces.
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But there is also a natural notion of anomalous Fermi surface: we shall see in §15 that

one dimensional spinless systems show anomalous Fermi surfaces and that our formalism

can be easily adapted to the theory of such anomalous Fermi surfaces.

Without entering into a heuristic analysis for the purpose of motivation, one can say

that a system has anomalous Fermi surface when the numbers αh, ζh approach a singular

value (i.e. ∞) in the limit h → −∞. Setting Zh = 1 + ζh we say that the anomalous

dimension of the Fermi surface is η if Zh ≍ 2−ηh: see §15 fore a more precise discussion.

Our analysis does not extend to the theory of anomalous Fermi surfaces in d > 1

systems. However it seems likely that systems with short range repulsive forces show

normal Fermi surfaces if d > 1, see §14; at the same time, when d > 1, new interesting

phenomena become possible like the concentration of the interaction in the Cooper pairs

of quasi particles and the relevance of the interaction sign.
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§6 Relevant versus irrelevant.

The flow of the effective potential will be analyzed by using the methods of the renor-

malization group, [16,17,18]. We begin with:

V (0) = V (ψ(≤0)) + ν0N(ψ(≤0)) + α0T (ψ
(≤0)) + constant (6.1)

and as a first step, to adhere as much as possible to the formalism of [16,17], we rewrite

(6.1) in terms of Wick ordered expressions in the quasi particle fields, and of the covariant

derivative operator D± = (∂t, ~∂~x ∓ i(~ω/2pF )∆) = (Dt, ~D±
~ω ):

V (0) =

∫

d~xdt
2
∏

i=1

d~ωi(ν0 + ν̃0)e
ipF (~ω1−~ω2)~x : ψ+

~x,t,~ω1
ψ−
~x,t,~ω2

: +

+

∫

d~xd~ydt

2
∏

i=1

d~ωiν̃1(~x− ~y)eipF (~ω1~x−~ω2~y) : ψ+
~x,t,~ω1

ψ−
~y,t,~ω2

: +

+

∫

d~xdtα0β

2
∏

i=1

d~ωie
ipF (~ω1−~ω2)~x : ψ+

~x,t,~ω1
i~ω2

~D~ω2
ψ−
~x,t,~ω2

: (6.2)

+

∫

d~xd~ydt
4
∏

i=1

d~ωie
ipF [(~ω1−~ω4)~x−(~ω3−~ω2)~y]λ0(~x− ~y) : ψ+

~x,t,~ω1
ψ+
~y,t,~ω2

ψ−
~y,t,~ω3

ψ−
~x,t,~ω4

:

where we write D for D−, and g(~x, t, ~ω) =
∑0

−∞ gn(~x, t, ~ω) is defined by (4.5); rotational

invariance is used, and we set:

ν̃0 = −2λ̂0(~0)
∫

g(~0, 0, ~ω)d~ω λ̂0(~k) =

∫

d~xλ0(~x)e
−i~k~x

ν̃1(~z) = 2

∫

g(~z, 0, ~ω)λ0(~z)e
−ipF ~ω~zd~ω

(6.3)

Here, as well as in the following sections, ~ω2 will often be regarded as a four vector with

vanishing t-component.

The use of Wick ordering could in fact be easily avoided, see concluding remarks of §10.
The (6.2) look quite complicated, but they can be split into two parts which will be

called, respectively, relevant and irrelevant.
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The relevant part of V (0) consists in the local part V
(0)
L of V (0) defined by:

V
(0)
L =

∫ 2
∏

i=1

d~ωid~xdt (ν0 + ν̃0) e
ipF (~ω1−~ω2)~x : ψ+

~x,t,~ω1
ψ−
~x,t,~ω2

: +

+

∫ 2
∏

i=1

d~ωid~xd~ydt ν̃1(~x− ~y)eipF (~ω1~x−~ω2~y) : ψ+
~x,t,~ω1

(ψ−
~x,t,~ω2

+ (~y − ~x) ~D~ω2
ψ−
~x,t,~ω2

) : (6.4)

+α0β

∫ 2
∏

i=1

d~ωid~xdt e
ipF (~ω1−~ω2)~x : ψ+

~x,t,~ω1
i~ω2

~D~ω2
ψ−
~x,t,~ω2

: +

−
∫

d~xdt
4
∏

i=1

d~ωie
ipF (~ω1+~ω2−~ω3−~ω4)~xλ0(~ω1, ~ω2, ~ω3, ~ω4) : ψ

+
~x,t,~ω1

ψ+
~x,t,~ω2

ψ−
~x,t,~ω3

ψ−
~x,t,~ω4

:

where we have set, or we set for later use, λ̂0(~ω − ~ω′) ≡ λ̂0(pF (~ω − ~ω′)) and:

ν̄0 = ν0 + ν̃0 +

∫

ν̃1(~z)e
ipF ~ω~zd~z ᾱ0 = α0 + iβ−1~ω

∫

eipF ~ω~z ν̃1(~z)~zd~z (6.5)

λ0(ω1, ω2, ω3, ω4) = −
1

4

(

λ̂0(~ω2 − ~ω3)− λ̂0(~ω1 − ~ω3)− λ̂0(~ω2 − ~ω4) + λ̂0(~ω1 − ~ω4)
)

Hence the relevant part of the interaction can be written as:

V
(0)
L =ν̄0

∫ 2
∏

i=1

d~ωid~xdt e
ipF (~ω1−~ω2)~x : ψ+

~x,t,~ω1
ψ−
~x,t,~ω2

:

+ ᾱ0

∫ 2
∏

i=1

d~ωid~xdt e
ipF (~ω1−~ω2)~x(: ψ+

~x,t,~ω1
(iβ~ω2

~D~ω2
ψ−
~x,t,~ω2

) : + (6.6)

−
∫

d~xdt

4
∏

i=1

d~ωi e
ipF (~ω1+~ω2−~ω3−~ω4)~xλ0(~ω1, ~ω2, ~ω3, ~ω4)

: ψ+
~x,t,~ω1

ψ+
~x,t,~ω2

ψ−
~x,t,~ω3

ψ−
~x,t,~ω4

:

So the initial potential V (0) is split as:

V (0) = V
(0)
L + V

(0)
R (6.7)

and the reason why we call the first relevant and the second irrelevant will become clear

later and is at least twofold:

1) we shall see that if we set V
(0)
R ≡ 0 we find no more and no less difficulties in

developing the theory of the flow of V (n), n = −1,−2, . . ..
2) the V

(0)
L will turn out to be composed of three marginal terms (the λ0-term, the

ᾱ0-term and the ζ0-term, see (4.12), which is initially zero) and one relevant term (the

ν̄0-term) while the V
(0)
R will only contain irrelevant terms, the above words being used in

the sense of the renormalization group theory, [16,17,18].
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§7 Localization operators.

We follow the methods developed in [16,17,18] to analyze the flow of V (h) as h →
−∞. Therefore we must introduce localization operators which, acting on a potential V (h)

expressed as a sum of Wick monomials, turn it into an expression like (6.6).

We shall operate on V ’s which are written as sums of integrals of Wick monomials P

in the fields, multiplied by regular (i.e. non distributions) kernels W generated by well

defined rules (Feynman diagrams). The kernels depend on the field labels and the first

space time label x of the first field in P will be called the localization point of the monomial

P . We adopt systematically the convention that x ≡ (~x, t).

Each of such integrals is an expression OP which will be called an operator contributing

to V (h). If the Wick monomial depends only on fields computed at the same point then

we say that the operator is local. The kernel W is called a form factor for OP .

The most convenient way to define a localization operator Lh acting on such V ’s is to

describe how it acts on the elementary monomials P and extend it by linearity.

The action of Lh on the operators will be analogous to the operation described in the

previous section in going from V (0) to V
(0)
L which is a localization in a strict sense, i.e. it

turns some non local operators into local operators.

The Wick monomials that we shall consider will be monomials in the local fields ψ
(≤h)±
x~ω ,

Dψ(≤h)−
x~ω ≡ (∂t, ~∂~x + i(~ω/2pF )∆)ψ

(≤h)−
x~ω ≡ (Dt, ~D~ω)ψ(≤h)−

x~ω and in the non local fields:

D
(≤h)±
x′x~ω =(ψ

(≤h)±
x′~ω − ψ(≤h)±

x~ω )

S
1(≤h)
x′x~ω =(ψ

(≤h)−
x′~ω − ψ(≤h)−

x~ω − (x′ − x)Dψ(≤h)−
x~ω )

S
2(≤h)
x′x~ω =Dψ(≤h)−

x′~ω −Dψ(≤h)−
x~ω

S
3(≤h)
x1x2x3x4~ω

=(x3 − x4)S2
x1x2~ω

(7.1)

where we call sites of the non local fields the set of space time indices appearing in them.

We can similarly define the non local field components D
(h)
xy~ω, S

1(h)
xy~ω , etc, using ψ

(h),Dψ(h)

instead of ψ(≤h),Dψ(≤h).

The operator D ≡ D− is the covariant derivative operator introduced in the previous

section, see (6.2). The fields D,Si are thought as emerging from the point appearing as

their first space time label.

If A(h), B(h) are two of the above fields and dA denotes the vector joining the first two

sites of A or the tensor formed by the two vectors connecting the first site to the second
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site and the third to the fourth (if there is only one site dA ≡ 1), we see from (4.5),(7.1)

that the free Schwinger functions 〈A(h)B(h)〉 have the form:

〈A(h)B(h)〉 = 2(τA+1/2)h2(τB+1/2)h(2hdA)
γA(2hdB)

γBgABh (7.2)

where τA = 0 if A is ψ,D, S1, S3, τA = 1 if A is Dψ, S2, and γA is the formal order of zero

of A, i.e. the homogeneity degree of dA; g
AB
h is a function (with some little dependence on

h) of the set of sites of A and B scaled by 2h. Given any Wick monomial P in the above

fields A we define:

zP =
∑

A∈P
γA = {dimensional gain of P} dP =

∏

A∈P
dγAA

δ0P =− 2 +
∑

A∈P
(
1

2
+ τA) = {scaling dimension of OP }

δP =− 2 +
∑

A∈P
(
1

2
+ τA + γA) = {dimension of OP }

(7.3)

with dP a tensor with zP indices.

Thus we see that the operators in the relevant part (6.6) of the interaction give rise to

operators O with non positive dimension while the (non local) terms of the irrelevant part

of the effective potential are operators with positive dimension.

In fact we can write the irrelevant part (defined as the difference V
(0)
R between V (0) in

(6.2) and V
(0)
L in (6.6)) by comparing (6.6) to (6.2), via (6.5),(6.3), and getting:

V
(0)
R =

∫

d~xd~ydtd~ω1d~ω2e
ipF (~ω1−~ω2)~xν̃1(~x− ~y) : ψ+

x~ω1
S1−
yx~ω2

: +

+

∫

d~xd~ydtd~ω1d~ω2d~ω3d~ω4e
ipF ((~ω1−~ω4)~x+(~ω2−~ω3))~yλ(~y − ~x) (7.4)

2−1
(

: ψ+
~xt~ω1

D+
~yt~xt~ω2

ψ−
~yt~ω3

ψ−
~xt~ω4

: + : ψ+
~xt~ω1

ψ+
~xt~ω2

D−
~yt~xt~ω3

ψ−
~xt~ω4

: +

: D+
~xt~yt~ω1

ψ+
~yt~ω2

ψ−
~yt~ω3

ψ−
~xt~ω4

: + : ψ+
~yt~ω1

ψ+
~yt~ω2

ψ−
~yt~ω3

D−
~xt~yt~ω4

:
)

To describe the action of the operator Lh we consider first the case when it operates on

Wick monomials in the fields (7.1) of degree four.

In this case we define, if Rh ≡ 1−Lh:

Lh : ψ+
x1~ω1

ψ+
x2~ω2

ψ−
x3~ω3

ψ−
x4~ω4

:= 2−1
∑

j=1,2

: ψ+
xj~ω1

ψ+
xj~ω2

ψ−
xj~ω3

ψ−
xj~ω4

:

Rh : ψ+
x1~ω1

ψ+
x2~ω2

ψ−
x3~ω3

ψ−
x4~ω4

:= {: ψ+
x1~ω1

D+
x2x1~ω2

ψ−
x3~ω3

ψ−
x4~ω4

+ (7.5)

+ : ψ+
x1~ω1

ψ+
x1~ω2

D−
x3x1~ω3

ψ−
x4~ω4

: + : ψ+
x1~ω1

ψ+
x1~ω2

ψ−
x1~ω3

D−
x4x1~ω4

:}AS

where AS means antisymmetrization with respect to (x1, ~ω1)←→(x2, ~ω2). The operator

L is extended by linearity to the other monomials of fourth order. It turns out that L
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annihilates all the fourth order monomials with more than one non local field or with one

non local −field. Otherwise:

R : ψ+
x1~ω1

D+
x2x2′~ω2

ψ−
x3~ω3

ψ−
x4~ω4

:=: ψ+
x1~ω1

D+
x2x2′~ω2

ψ−
x3~ω3

ψ−
x4~ω4

: −
− [: D+

x2x2′~ω1
ψ+
x2~ω2

ψ−
x2~ω3

ψ−
x2~ω4

: + : ψ+
x′
2~ω1

D+
x2x2′~ω2

ψ−
x2~ω3

ψ−
x2~ω4

: +

+ : ψ+
x2′~ω1

ψ+
x2′~ω2

D−
x2x2′~ω3

ψ−
x2~ω4

: + : ψ+
x2′~ω1

ψ+
x2′~ω2

ψ−
x2′~ω3

D−
x2x2′~ω4

:]

L : ψ+
x1~ω1

D+
x2x2′~ω2

ψ−
x3~ω3

ψ−
x4~ω4

:=

=: ψ+
x2~ω1

ψ+
x2~ω2

ψ−
x2~ω3

ψ−
x2~ω4

: − : ψ+
x2′~ω1

ψ+
x2′~ω2

ψ−
x2′~ω3

ψ−
x2′~ω4

:

(7.6)

The action of Lh on the monomials of degree two is generated by:

Lh : ψ+
x1~ω1

ψ−
x2~ω2

:=: ψ+
x1~ω1

(ψ−
x1~ω2

+ (x2 − x1)Dψ−
x1~ω2

) : (7.7)

We now consider the second degree monomials generated by multiplying ψ+
x1~ω1

or D+
x1x2~ω1

by a local field ψ−
x3~ω2

or Dψ−
x3~ω2

or by any of the non local fields of −type in (7.1). The

operator Lh transforms each of the above (twelve) monomials into a combination of the

others. We write 1 for x1, 2 for x2 etc., and we shall not write explicitly the quasi momenta

~ω1 of the +type fields and ~ω2 of the −type fields. Then one easily finds that the action of

R on the monomials on which it is not the identity and of L on the same monomials is:

L : ψ+
1 Dψ−

2 := : ψ+
1 Dψ−

1 :

L : ψ+
1 D

−
23 :=(x2 − x3) : ψ+

1 Dψ−
1 :

L : D+
12ψ

−
3 := : ψ+

1 ψ
−
1 : − : ψ+

2 ψ
−
2 : +(x3 − x1) : ψ+

1 Dψ−
1 : −(x3 − x2) : ψ+

2 Dψ−
2 :

L : D+
12Dψ−

3 := : ψ+
1 Dψ−

1 : − : ψ+
2 Dψ−

2 :

L : D+
12D

−
34 =(x3 − x4)(: ψ+

1 Dψ−
1 : − : ψ+

2 Dψ−
2 :)

R : ψ+
1 ψ

−
2 := : ψ+

1 S
1
21 :

R : ψ+
1 Dψ−

2 := : ψ+
1 S

2
21 :

R : ψ+
1 D

−
23 := : ψ+

1 S
1
23 : + : ψ+

1 S
3
3123 :

R : D+
12ψ

−
3 := : D+

12S
1
31 : + : ψ+

2 S
1
21 : + : ψ+

2 S
3
2132 :

R : D+
12Dψ−

3 := : D+
12S

2
32 : − : ψ+

1 S
2
12 : (7.8)

R : D+
12D

−
34 := : D+

12S
1
34 : + : D+

12S
3
4134 : + : ψ+

2 S
3
2134 :

The above definition of the action of Lh on any V which is a sum of integrals of Wick

monomials in the fields (7.1) produces term by term a result of the form:

∫

dxd~ω1d~ω2e
ipF (~ω1−~ω2)~x[ν(~ω1, ~ω2) : ψ

+
x~ω1

ψ−
x~ω2

:

+ α(~ω1, ~ω2) : ψ
+
x~ω1

~Dψ−
x~ω2

: +ζ(~ω1, ~ω2) : ψ
+
x~ω1
Dtψ−

x~ω2
:] (7.9)

+

∫

eipF (~ω1+~ω2−~ω3−~ω4)~xdx
4
∏

i=1

d~ωi λ(~ω1, ~ω2, ~ω3, ~ω4) : ψ
+
x~ω1

ψ+
x~ω2

ψ−
x~ω3

ψ−
x~ω4

:
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where, of course, each term produces only one of the above addends.

The collection of all the contributions of the form (7.9) obtained by acting with L on

V (h) will be written:

V
(h)
L =

∫

eipF (~ω1−~ω2)~xdxd~ω1d~ω2(2
hνh : ψ

(≤h)+
x~ω1

ψ
(≤h)−
x~ω2

: +

+ αh : ψ
(≤h)+
x~ω1

iβ~ω2
~D~ω2

ψ
(≤h)−
x~ω2

: +ζh : ψ
(≤h)+
x~ω1

Dtψ(≤h)−
x~ω2

:)+ (7.10)

−
∫

eipF (~ω1+~ω2−~ω′
1−~ω′

2)~xdx

2
∏

i=1

d~ωid~ω
′
i

λh(~ω1, ~ω2, ~ω
′
1, ~ω

′
2) : ψ

(≤h)+
x~ω1

ψ
(≤h)+
x~ω2

ψ
(≤h)−
x~ω′

1
ψ
(≤h)−
x~ω′

2
:

It is important to notice that in (7.10) νh, αh, ζh are independent of ~ω1, ~ω2. This follows

by observing that the effective potential could be calculated by doing the integration over

the fields ψ(n), n > h, in a single step (see (4.12)), without introducing the fields ψ±
x~ω. Of

course also the dependence of λh on the ~ω’s has to be somewhat special to reflect this

gauge invariance property, see also §14.
Then the part of V (h) of degree two in the fields must have the form:

∫

dxdy wh(x− y) : ψ+
x ψ

−
y :=

∫

dxdyd~ω1d~ω2e
ipF (~ω1~x−~ω2~y)

wh(x− y) : ψ(≤h)+
x~ω1

[ψ
(≤h)−
x~ω2

+ (y − x)Dψ(≤h)−
x~ω2

+ S1−
yx~ω2

] :

(7.11)

with wh being a suitable rotation invariant distribution.

Acting with Lh on (7.11) one immediately finds the validity of the claim about αh, νh, ζh.

The constants νh, αh, ζh togheter with the function λh will be called running form

factors on scale h. The νh will be said to have scaling dimension 1: and to remind us

this attribute its definition contains the factor 2h. The others will be said to have scaling

dimension 0.

The result of the application of Rh on V (h) gives rise to an irrelevant part of V (h)

defined by V
(h)
R ≡ V (h) − V (h)

L .

We shall denote for each h ≤ 0 the running form factors as:

~υh = (νh, αh, ζh, λh) (7.12)

and we do not call them running couplings, except if d = 1, because λh is a function,

hence they correspond to infinitely many parameters per scale: the name running coupling

usually denotes finitely many constants per scale.

To understand the meaning of the operations L,R and their relation with the heuristic

considerations of §3,5, we write the result of the action of Lh on the l.h.s. of (7.11) as:

∫

(

ahψ
(≤h)+
x ψ(≤h)−

x + bhψ
(≤h)+
x (−∆− p2F )ψ(≤h)−

x

)

dx (7.13)
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while the 1−Lh operation yields, for a suitable choice of the distribution w′
h(x− y):

∫

w′
h(x− y)ψ(≤h)+

x ψ(≤h)−
y dxdy (7.14)

The distribution w′
h can be easily computed from (5.2),(7.5)÷(7.8),(7.11) and is trivially

related to wh, see (7.16) below.

Hence we see that the second degree part of the effective potential on scale h can be

written as:
∫

(

ahψ
(≤h)+
x ψ(≤h)−

x + bhψ
(≤h)+
x (−∆+ p2F )ψ

(≤h)−
x

)

dx+

+

∫

w′
h(x− y)ψ(≤h)+

x ψ(≤h−)
y dxdy (7.15)

The distribution w′
h(x − y) has a Fourier transform at momentum (k0, ~k), which we

write ŵ′
h(k0, p

2), with p2 = ~k2, to take into account the rotational symmetry. It can be

easily verified that:

ŵ′
h(k0,

~k2) = ŵh(k0, ~k
2)− ŵh(0, p2F )− (~k2 − p2F )

∂ŵh
∂p2

(0, p2F )− k0
∂ŵh
∂k0

(0, p2F ) (7.16)

We see, recalling (3.11),(5.27), that, in order to check the existence of the Fermi surface,

we have to verify the existence of wh(x−y) and a fast enough decay at∞: what is needed

is that ŵh(k0, ~k
2) is so smooth that, near the Fermi surface k0 = 0, |~k| = pF , the r.h.s.

of (7.16) goes to zero faster than |k0| + |~k2 − p2F |. See §11 for a further discussion of this

point.

It will be clear that (7.5)÷(7.8) are overdoing some subtractions. In fact the basic

bounds of §10 would work if instead of insisting that L,R be linear operators we just

defined them as operations whose action on a linear combination of Wick monomials is

defined by acting in a prescribed way on each of the monomials and taking then the same

linear combination.The latter procedure would be possible provided the effective potential

expression in terms of Wick monomials is produced according to well defined rules (as it

will be our case). The results would, of course, depend on the particular path followed

in the construction in case the latter contains arbitrary choices. The price we would pay

would be that we could no longer be a priori sure that the gauge invariance property

introduced after (7.10) holds.

The advantage would be a simplification in the structure of L and R: for instance we

could simply define L by (7.5) on a product of four fields ψ± and set the L in (7.6) simply

equal to 0, i.e. set L to zero when acting on fourth degree monomials with dimension

δP ≥ 1; similarly we could set L equal to zero on the terms of (7.8) with dimension δP ≥ 1

and we could set L(: D+
12ψ

−
3 :) = (x1 − x2) : Dψ+

3 ψ
−
3 : rather than using the more

complicate expression in (7.8). The bounds in §10 would work without change.
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In§11 we adopt partially this viewpoint, i.e. we modify the definition of L giving up

the linearity by setting it equal to zero in the cases (7.6); but we shalll stick to the basic

definition (7.7) because giving up the gauge invariance in the terms of second degree

would, the long run, produce disadvantages which would become overwhelming. It might

be interesting to know whether the ideas of [34] could be useful in this context.
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§8 Graphical interpretation.

We start by representing graphically the various terms of the relevant interaction V 0
L in

(6.6):

~ω1 ~ω2 ~ω1 ~ω2 ~ω1 ~ω3

~ω2

~ω4

• • •
x x x

~D
(8.1)

representing respectively also the three integrands in the r.h.s. of (7.10), (we say that they

are three and not four because ζ0 = 0). The superscripts remind us of the meaning of the

lines as fields. We call the three graph elements in (8.1) the local graph elements.

The irrelevant part of the interaction V 0
R, see (7.4), will be represented similarly:

+ + + ...• • • • •

x x y x y

~ω1 ~ω2S1− ~ω1

~ω2

D+ ~ω2

~ω3 ~ω1

~ω4 ~ω4

D− ~ω3 (8.2)

with a selfexplanatory notation, allowing us to identify unambiguously each term in (7.4);

the . . . refer to the two graphs representing the last two terms in (7.4). The circle denotes

the fact that the non local field D or S1 has as indices the two points which it joins in the

graph. The non local fields D,S1 are regarded as emerging from the point corresponding to

their first label, i.e. the point in the picture from which the line labeled D or S1 emerges.

We can find also a natural representation for the action of the (1 − Lh) operators; in

fact (7.5) yields the following picture:
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• •

•

•

•

•

•

• • •

•

•

•

Rh

+ +...(AS)

= + +

D+

D−

D−

~ω2

~ω3

~ω4

~ω3

~ω2

~ω4

~ω1~ω3

~ω2

~ω4

~ω1

~ω1

~ω3

~ω4

~ω2

~ω1

(8.3)

where the dots refer to the three similar graphs representing the other terms in (7.5), due

to the AS operation. Moreover the relations (7.8) can be represented as:

• • • •

• •

•

• •

• • • • • •

Rh =

+

=

=Rh

Rh

~ω1

~ω1D−~ω1

~ω2
~ω1 S1

~ω2

~ω1 D ~ω2
~ω1 S2

~ω2

~ω2
S1

~ω2
~ω1 S3

~ω2

(8.4)

In similar way we can represent the action of Rh on the more complicate second degree

monomials involving D+ in (7.8) or the action of Rh on the fourth degree monomials (7.6).

We do not report the corresponding drawings that the reader can easily imagine.

Finally we can represent the relevant part of V (h), given in (7.10), by (8.1), if D over

a line means either Dt or i~ω · ~D~ω. This unification in the notation is very useful as it

simplifies considerably the graphical representations.
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§9 The beta functional.

The beta functional is defined to be a function Bh such that:

~υh−1 = Λ~υn +Bh(~υh, ~υh+1, . . . , ~υ0) (9.1)

where Λ is a suitable linear transformation trivially operating as a multiplication by a

suitable constant (1 or 2) on the four running form factors of the relevant part of V (h),

see (7.9): ~υh = (νh, αh, ζh, λh).

We apply the methods developed in [16,17,18] to study the functional B. We assume

that the reader has familiarity with the structure of the tree expansion [17]. Therefore we

refer the reader to the literature for the motivation behind the definitions below, [18,16].

The tree expansion provides the recursive expression (9.1), i.e. essentially an expansion

for the relevant part LhV (h) of the effective potential on scale h togheter with an expansion

of the remaining irrelevant part RhV (h) in terms of the form factors ~υh+1 . . . , ~υ0.

It is obvious, from the definitions of L,R of the previous §7, that this is possible: in fact

this is a purely formal statement and it holds wheter we consider the definition (7.6)÷(7.8)
of L or the modification suggested at the end of §7 or the other modification introduced

later in §11, see (11.7). Below we only describe the result for the first definition of L in

§7: its proof is inductive. We skip all motivation steps as the formalism is identical to

the one introduced in [16,17] and in [18] in the case of the bosons, and we wish to avoid a

very long repetition. Nevertheless we stress that in principle what is described here is self

contained. If one has enough faith to read the definition of the r.h.s. of (9.1) (to which

this section is completely devoted), then it is very easy to check by induction that (9.1) is

in fact correct with our expression for the r.h.s.. The adaptation of what follows to other

definitions of L is immediate.

Let ϑ be a tree with m endlines, and let v be a vertex of ϑ bearing a frequency or scale

label hv.

The beta function is associated with trees like:

L

hh−1

R

hv

R
R

R

R
. (9.2)

40



in which the first non trivial vertex has frequency index h and bears a L-label (meaning

that the operation Lh−1 has been applied to the function of ψ(h−1) symbolized by the

tree without the label L). All the other tree vertices v carry a label R meaning that the

operations Rhv−1 = 1−Lhv−1 have been applied (see below).

The trees form a partially ordered set of vertices where the root is the vertex to which the

index h−1 is attached: the frequency indices strictly increase as one moves monotonically

from the root towards the endlines. In practice we write trees as in fig 9.1 and orient them

from left to right.

If ϑ has m endlines we label them 1, 2, . . . , m from top to bottom: we identify trees

which, before the labeling, are topologically identical and we imagine to select with some

rule one representative tree per equivalence class, never drawing the others. The labeling

is, also, not arbitrarily put down but we label the points from top to bottom (say): hence

one can estimate that there are only ≤ 24m trees, in the above sense, with m endlines.

Each vertex v ∈ ϑ can be thought of as the first non trivial vertex of the subtree ϑv ⊂ ϑ
with root at the vertex v′ preceding v in the ordering of ϑ. The mv endlines of the tree

ϑ define a subset of the set of endline indices which we call the cluster associated with v,

or the cluster v. So the clusters with higher freqency have smaller size, anf if v′ precedes

v in the tree partial ordering then v′ is actually larger in size; i.e. the tree ordering is, in

terms of clusters, according to decreasing size or scale and to increasing frequency.

Our purpose is to introduce the notion of scaling decomposition of a Feynman graph: it

will be described in terms of ordinary Feynman graphs carrying a rather large number of

extra labels which are meant as reminders that the calculations of their values are suitably

modified with respect to the usual way of computing undecomposed graphs. We shall call

the new objects simply Feynman graphs to avoid proliferation of names.

To each tree ϑ one can associate a set of ϑ-compatible graphs. This is done, as already

suggested by the graphical repesentations of §8, as follows.
1) associate with each endline 1, 2, . . . , m of ϑ one of the graph elements introduced in

fig. (8.1)./.(8.2), appending an extra label 1, 2, . . . , m to all the space time labels already

appearing in them: this is done in order to identify to which one of the m endlines they

have been actually associated. We call the vertices in (8.1) relevant vertices, because they

correspond to relevant operators in the sense of §7. A cluster of endlines is thus also a

cluster of vertices and hence of space time points. In this way we can think of the clusters

associated with the tree vertices also as clusters of space time points ordered hierarchically

by inclusion.

2) connect some (up to all but two) of the lines in pairs, allowing a pair of lines to form

a single line only if the directions of their arrows do not come into conflict. We thus form

a graph G.

3) for each vertex v ∈ ϑ we can consider, as mentioned in 1) above, the set of space time

indices of the points in the graph elements associated with the mv endlines of the cluster

v: thus we can think of the cluster of points in v as a cluster of space-time points which

we call the v − cluster.
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We enclose into an ideal box the v-cluster togheter with all the lines of the graph G

which join pairs of points in v: in this way we isolate naturally a subgraph Gv of G whose

internal lines are all inside the box of the v cluster. It is the graph obtained from G by

cutting in half every line in G which joins a point of the v-cluster to points outside the

v-cluster and then deleting the part of G disconnected from the points lying inside the

cluster v; i.e. we delete all the graph elements not belonging to the cluster v.

4) We append to each inner line an index s or h classing it as a soft or a hard line. If a

line λ is inner to a cluster v but not to any smaller one then we say that hv is the scale or

frequency index of λ. If the line λ has one endpoint inside a cluster v1 and the other in v2
but not in v1, with v2 larger than v1, then we say that λ crosses v1: hence a line crosses

all clusters which contain one endpoint and not the other.

5) We discard G unless for all vertices v ∈ ϑ the subgraph Gv is connected and the

connection can be realized by considering only the hard lines inner to Gv.

We say that G is compatible with ϑ if it survives the above step 5): note that the entire

graphical discussion just presented translates some rather simple and natural geometrical

observations and conditions, [16,17,18].

In words a graph G is compatible with ϑ if it is the union of a collection of connected

subgraphs, hierarchically ordered by inclusion, so that the inclusion relation provides a

realization of the partial order structure of the tree ϑ, and furthermore the connection

properties of G do not change if only the hard lines are taken into account. The reader

should try to make a few drawings and examples for a better understanding of the above

notions.

The above definitions introduce graphs G with internal and external lines. Each internal

line arises by joining togheter two lines of the basic graph elements.

Hence we shall think of the external lines as half lines and of the internal lines as full

lines composed of two half lines uniquely identified by the graph elements from which they

come.

Then we look at all subgraphs Gv of G, supposed ϑ-compatible, which have two or four

external lines. If v is a tree vertex carrying an R superscript we shall add, according to a

rule that we are about to describe, superscripts D or S to some of the half lines emerging

from Gv.

This is supposed to reflect the application of the operator Rhv−1 to the function of

ψ(≤hv−1) arising from the computation of the truncated expectation symbolized by the

tree vertex v.

This is done as follows, and is based on the graphical representation of the operation

Rhv
described in §8.

a) when Gv has four external lines of ψ± type the Rhv
operation can be simply thought as

replacing Gv with a new graph (chosen out of up to six as shown in fig(8.3)) identical

to Gv except for one of the external half lines which is replaced by a D-line and some

other external half lines are thought as emerging from different space time points of the

same cluster v. The actual number of choices of modified graphs could be smaller than
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6 when some of the space time points coincide (in which case some D field may vanish).

We distinguish the choices of the various graphs by adding a label to the cluster v (say

a number from 1 to 6).

b) when Gv has two external lines the action of Rh also simply amounts to replacing Gv by

a new graph (chosen out of up to three possibilities) as fig.(8.4) shows. We distinguish

the various graphs by adding a label to the cluster v (say a number from 1 to 3).

This completes the description of the meaning of the R-labels on the tree vertices. It

remains to explain the L-label on the first non trivial vertex.

The presence of such a label simply means that we discard all graphs G with more than

four external lines. For the others we replace Gv0 by a few new graphs obtained from Gv0
by changing the meaning of the external lines according to a prescription similar to the one

used for R but using, if one wants a graphical representation, an appropriate graphical

representation of the L operator, similar to the ones of §8. Each Gv0 is thus replaced

by up to four terms; all of them are local, i.e. they represent monomials P of the form

: ψ+
x~ω1

ψ+
x~ω2

ψ−
x~ω3

ψ−
x~ω4

: or : ψ+
x~ω1

ψ−
x~ω2

: or : ψ+
x~ω1
Dψ−

x~ω2
:.

The collection of the tree ϑ, the graph G and of all the labels added to it in the above

construction will be called a relevant Feynman graph.

A similar construction can be performed also for trees like the one in fig(9.1) which

however carry a R label on the first non trivial vertex and a scale index hv0 not necessarily

equal to h (but ≥ h). One just treats the cluster v0 as already done for the inner ones.

The collection of the tree ϑ, the graph G and of all the labels added to it in the above

construction will be called in this case an irrelevant Feynman graph.

Each of the above graphs (there are O((2m)!) of them associated with each of the trees

with m endlines) will be given a value which is a number depending on all the indices

appended to the graph.

Postponing, for the time being, the description of the rules to construct the value wh,G,

we associate with each graph

I) an operator OP which is a contribution to the effective potential on scale h− 1, and

II) a size which is a positive number.

The operator OP is simply obtained by multiplying the graph value with the Wick

monomial P formed by the product (in a suitable order) of the fields symbolized by the

external lines of the graph and, subsequently, integrating the resulting expression over the

space time points and over the quasi particles momenta associated to the fields forming

P , and summing over the frequency indices. In other words OG is the operator with form

factor equal to the graph value, and it is an element of the grassmanian algebra generated

by the quasi particle fields (hence it is somewhat improper to call it an operator: we follow

here the traditional terminology).
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The size is obtained by considering the graph value wh,G and the integrals:

CN = sup
k2,...k2n
~ω1,...~ω2n
i1,...,izP

∣

∣

∫

(
∑

i,j

22h(xi − xj)2)Nwh,G(x1, . . . , x2n, ~ω1, . . . , ~ω2n)

e
i
∑n

j=1
[kj(xj−x1)−kj+n(xj+n−x1)]2δPh(dP )i1,...,izP

2n
∏

j=2

dxj|

(9.3)

where x1 is the localization point, x1, . . . , xn are the points out of which emerge the

external lines of +–type, xn+1, . . . , x2n are the points from which emerge the -–type lines;

if some of the external lines are non local fields one has to integrate also over their space

time labels which however have not been explicitly introduced in (9.3), for simplicity. The

quantity δP is the dimension of the operator associated with the graph and dP the tensor

describing the order of zero of the non local fields, see (7.3). N is a prefixed parameter:

when we discuss the N dependence we shall refer to (9.3) as defining the CN -size of the

graph. In most cases we need only N = 0.

If the graph represents a local operator (i.e. an operator with only one vertex attached

to external lines) the above size involves no integral: this is the case for the graphs con-

tributing to the beta functional, see below, and motivates the introduction of the concept.

The value of each of the above graphs is defined as the integral of a product of various

factors over the internal lines quasi momenta and the inner space time points (i.e. the

points not appearing in the external fields): each pair of half lines forming a full line will

contribute to the result a factor equal to the covariance of the two fields symbolized by

the two lines. The covariance will be soft or hard depending on the label on the line. If h

is the frequency index of the line we use g(≤h) for soft lines and g(h) for hard lines.

One attributes a phase factor to the above expression: one counts the parity of a

permutation that it is necessary to perform on a set of anticommuting grassmanian fields

each of which symbolizes a half line of the graph elements of §8 corresponding to the

endpoints of the tree. We imagine them written next to each other on a row according

to the ordering inherited from the labels 1, 2, . . . , m. The grassmanian fields representing

lines corresponding to the same graph element will be written down in the same order

in which they appear in (6.6),(7.4), i.e. , looking at fig.(8.1),(8.2), couterclockwise (say)

starting from the left. Then we permute the grassmanian fields by carrying next to each

other every pair of grassmanian fields symbolizing two half lines forming a full line in

the graph, with the object corresponding to the field with index − to the left. The non

contracted or external lines correspond to grassmanian fields which are not paired in the

given graph: we, nevertheless, bring them too next to each other with the +-fields to the

left of the −-fields and the sign in question will be ±1 depending on the eveness or oddness

of the total permutation just described. The Wick product of the fields associated with

the external lines, taken in the order reached after the above permutations, defines the
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Wick monomial P of the graph. It is the grassmanian variable to be used to construct the

operator associated with the graph.

A combinatorial factor 1/sv! is associated with every vertex v if sv is the number of tree

branches following v.

The construction of the value continues by looking at the ~ω-indices of the graph lines and

adding to the list of the factors so far associated with the graph a factor exp i(
∑±pF ~ωj~xj)

if xj is the space time point from which field lines (up to four) with quasi momenta ~ωj
emerge. The sign choice is + for the lines oriented out of xj and − for the ones oriented

towards xj .

We also multiply by a factor equal to the product of the form factors ~υhj
corresponding

to the graph elements described by the tree endpoints: each form factor is computed at

the frequency hj to which the endpoint is linked to the tree ϑ by the respective endlines

of ϑ. A factor 2hj is put in front of every νhj
.

Once all the above operations have been performed, we have to distinguish if we are

computing the value of a relevant graph or that of an irrelevant graph. In the latter case

we just multiply all the factors and we obtain in this way a function of the graph labels,

which we call the value of the graph, after integration over the inner points and the inner

quasi particle momenta.

If the first vertex bears a L label as in fig (9.1), which is the case if one wants to

study the beta function, then we integrate over all the space-time coordinates of the graph

vertices other than the localization point of the graph and over the quasi momenta of the

inner lines. We are left, in this case, with an expression which, once multiplied by the fields

representing the external lines (in the order found when computing the over all sign) and

integrated over the localization point and over the quasi-momenta of the external lines,

looks like one of the terms in (7.9) which is the contribution to the V
(h)
L of the given tree

and graph.

Therefore the tree in fig(9.1) defines a set of contributions to V (h−1) which add up to

an expression like (7.10) with h − 1 replacing h and defining what will be called V
(h−1)
L

and the corresponding form factors ~υh−1 which are in this way expressed (by construction)

as functions of ~υh, ~υh−1, . . . , ~υ0. This also completes the description of the beta functional

Λ+Bh in (9.1); and in fact the linear part Λ is simply:

Λ~υh = Λ(νh, αh, ζh, λh) = (2νh, αh, ζh, λh) (9.4)

Following the standard terminology we say that the coupling νh is relevant while the others

are marginal; also we say that νh has dimension 1 and αh, ζh, λh have dimension 0.

It is the main result of the formalism introduced in [16,17,18] that the effective potential

on scale h− 1 is simply:

V (h−1) = V
(h−1)
L + V

(h−1)
R (9.5)

where V
(h−1)
L is the sum of the operators associated with the relevant graphs and V

(h−1)
R

is the sum of the operators associated with the irrelevant ones. The identity (9.5) is not
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deep, and it is easily proved by induction: of course it is hard to work out the description

of the result given above if one has no familiarity with the tree expansion: however to

present here the above material in a deductive style would be a word by word repetition

of the work in [16,17,18] and the reader is referred there (e.g. [17], §16./.20).
We shall introduce a special symbol Eϑ, for the purpose of shortening the notation, to

denote the combinatorial factor always present in the graph value:

Eϑ =
∏

v

1

sv!
(9.6)

The reader may think that the above decomposition of V (h−1) into relevant and irrele-

vant part is arbitrary. The non triviality of the above formulation is that if one supposes

|~υh| ≤ ε for all n and looks at the m-th order terms in the variables ~υh+1, . . . , ~υ0 then

one finds, for suitably chosen D,C, that their sum can be bounded by the h-independent

quantity m!Cm−1Dεm. And if the size of the operators contributing to the effective po-

tentials is defined as above also the sum of the sizes of the m-th order contributions from

the various diagrams is bounded by the same quantity (independent on h).

By the definition (9.3) the size C0 of the relevant contributions to the effective potential,

i.e. the contributions to the beta functional, from graphs of given order m evaluated on

a given tree ϑ is a bound on the absolute value of a the corresponding contribution to

the m-th order coefficients of the formal power series defining the beta functional (9.1):

hence a perturbation theory of the beta functional will be a statement about a bound like

DCm−1 from such coefficients.

The latter statement is interesting because it shows that we have not really overdecom-

posed a big number as sum of many small ones: essentially it shows that for the purpose

of the bounds on the beta function and the form factors we have bounded each graph of

order m by Cm with C graph independent: this is the best one can hope. It is also the

main result which is proved in the coming section §10.
If one modifies the L,R operations in a way which still can be algebraically represented

by formulas like (7.5)÷(7.8) (eg in one of the ways discussed in the last remark of §7), it
is clear that the above description would be modified only in the labeling procedure. We

shall make use of this remark in §11 and, again, in §14.
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§10 Estimates for the beta functional.

We consider a general graph G compatible with a given tree ϑ, with root frequency

h− 1.

Let m1, m2, m3 be the numbers of graph elements of the three types in fig(8.1). We

consider first the case in which there are, in G, only relevant vertices, i.e. no ones of the

types in fig(8.2): the latter will not be considered explicitly and never would pose extra

problems. In fact the renormalization transformation produces them any way already in

V (−1), togheter with many other irrelevant terms. Hence it is not really restrictive to

assume that they are initially absent, but it simplifies a little the formal aspects of the

analysis. Thus the graph G will contain m = m1 +m2 +m3 vertices and:

2m1 +m2 + 4m3 half lines of type ψ±

m2 half lines of type ∂ψ± (10.1)

where the type of a half line considered here is its type in the original elements of the

graph; we remind that after all the labels have been appended to the graph some of the

lines may change type, (see §9, comment a), b)).

If G has 2n external lines of frequency h and of type ψ, its contribution on the tree ϑ

to the effective potential V (h) has, before the action of the localization operators L and

R, the form:

∫

e
ipF (

∑n

j=1
(~ωj~xj−~ωn+j~xn+j)Wh(x1, . . . , xn+1, . . . , x2n, ~ω1, . . . , ~ω2n)

: ψ+
x1~ω1

. . . ψ−
x2n~ω2n

:

2n
∏

j=1

dxjd~ωj

(10.2)

andWh may contain some δ-functions: we allow this singularity to compactify the notation.

Hence for 2n = 4, for instance, the contribution of this graph to the beta functional will

be, see the first of (7.5) and (7.9):

∫

eipF
(

~ω2(~x2−~x1)−~ω3(~x3−~x1)−~ω4(~x4−~x1)
)

Wh(x1, x2, x3, x4, ~ω1, ~ω2, ~ω3, ~ω4)

4
∏

j=2

dxj (10.3)

Similar expressions with less variables and integrals arise when considering the other

graphs, relevant for the beta function, with two external lines like (10.2) of the types

ψ+ψ− or ψ+Dψ−.
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It is useful to remark here, to avoid repetitions, that even the other (irrelevant) graphs

lead to contributions like (10.2) to the effective potential: one just has to consider that

some of the fields ψ are replaced by the non local fields S1−, S2−, S3−, D±; in the latter

cases the corresponding space time indices have to be thought as pairs or triples of space

time indices.

In this section we shall often use the locution integrating over some of the graph labels:

by this we mean integrating with respect to the space time labels x = (~x, t), to the quasi

momenta labels ~ω and summing over the discrete indices like the frequency indices or the

other indices appended to the graphs in the construction of §9.
We want to bound the size of a graph G, see §9, II); for simplicity we shall consider first

the case of a graph relevant for the beta function for the running form factor λh. We have

to estimate an expression like (10.3), which we write more explicitly as:

Eϑ

∫

eipF
(

~ω2(~x2−~x1)−~ω3(~x3−~x1)−~ω4(~x4−~x1)
)

∏

i

(

λhi
(~Ωi)2

εihi
)

dx2 . . . dxm

(

∏

l inner
line

d~ωle
ipF ~ωl·~ξl2ηlhlgl(2

hlξ
(1)
l , ~ω1,l; . . . ; 2

hlξ
(jl)
l , ~ωjl,l)

)

(10.4)

where Eϑ is the combinatorial factor (9.6), the ~Ωi are the ~ω’s involved in the i-th endline

graph element and εi = 0, 1 depending on the dimension, (see §9), of the coupling constant

of the i-th graph element (εi = 1 only for the m1 graph elements of the first two of the

types in fig(8.1)); the hi is the frequency index of the vertex to which the i-th endline

is attached. Moreover 2ηlhlgl is the propagator of the two fields represented by the two

half lines forming the line l and ξl = xj − xi if l is a oriented line joining xi to xj ; gl

depends on jl ≤ 4 differences of vertices coordinates ξ
(1)
l , . . . , ξ

(jl)
l , which are determined

from the types of the two fields and from the choice of the localization monomials in the

r.h.s. of the appropriate relation in (7.5)÷(7.8): note however that the ξ
(i)
l are always

differences between space time coordinates of points in the same cluster associated with

the R operation which last changed the meaning of l before its contraction. Finally ηl
is the sum of two contributions each coming from one of the two half lines forming l: a

half line of type 0 (i.e. a line ψ,D, S1) contributes 1/2 while a half line of type 1 (i.e. a

line Dψ, S2, S3) contributes 3/2. In this way the gl functions are O(1) as h → −∞, see

(4.3),(4.5).

Let, in general:

ni0v =(number of half lines of type ψ±, D, S1 inner to the cluster v but not

to smaller clusters)

ni1v =(number of half lines of type D, S2, S3 inner to the cluster v but not to

smaller clusters)

ne0v =(number of half lines of type ψ±, D, S1 going out of the cluster v)
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ne1v =(number of half lines of type Dψ±, S2, S3 going out of the cluster v)

sv =(number of tree branches emerging from the vertex v)

v1, . . ., vsv = (tree vertices immediately following v) (10.5)

hi =(frequency index of the vertex to which the i−th endline is attached)

~Ωv =(set of the quasi particles momenta corresponding to the lines emerging

from the cluster v)

where the label v will be sometimes omitted when v = v0.

We remark that the integration over the ~ω’s corresponding to the internal lines could be

explicitly performed, (using the (4.8)). However it is convenient to perform first the inte-

gration over the x variables and estimate the result before performing the ~ω−integrations.
We split the coming discussion in two parts. We first suppose that the R operation has

no effect on the lines of G: in this case only half lines of type ψ,Dψ are present, (recall

that we are assuming that the graph G is built only with the relevant graph elements

(8.1)).

The second case will be when we consider graphs in which the R operation has produced

non trivial effects so that the graph may also contain some lines of the types D,Si, i.e. lines

reflecting a space time localization.

In the first of the above cases, given ϑ,G, let us draw a spanning tree µ inside G

consisting of internal hard lines and such that its part inside the clusters Gv of G, associated

with the vertices of ϑ, is also a tree µv of hard lines; we take µ to be spanning, i.e. we

suppose that µ connects all vertices. We define the root of µ to be the localization point

of the graph G. Then, for every v, the subtree µv will also be a subgraph of Gv.

We compute the integrals of expressions like the one in (10.4) via a Fourier transform

in which we express every propagator by means of its Fourier integral. If we think, for

the purpose of unifying the notations, that ωl defines a (d + 1)−vector ωl = (0, ~ωl) with

a vanishing time component, then we see that every inner line λ will carry a momentum

pFωl + 2hlkl and a propagator 2ηlhl ĝl(kl, ωl), and the x−integrations are replaced by

kl−integrations. To shorten the notations we write ĝl(k), gl(x) instead of ĝl(k, ω), gl(x, ω),

unless the more precise notation is required.

Then the x-integrations are replaced by kl-integrations and each vertex of the graph will

provide a (d + 1)−dimensional momentum conservation δ−function (which are ordinary

d + 1 dimensional Dirac distributions) with the exception of the localization vertex with

label x1:

∏

all vertices x
but x1

δ
(

∑

lines l
converging in x

±(2hlkl + ~ωl)
)

∏

l∈ hard

2ηlhl ĝh(kl) (10.6)

∏

l∈ soft

2ηlhl ĝs(kl)
∏

endlines

λhi
(~Ωi)2

εihi
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where kl = 0 if l is an external line and the ± sign depends on whether the line l is incoming

or outcoming and ĝh(k) essentially decays at∞ as e−κ|k|, and is bounded everywhere, while

ĝs(k) is bounded by:

|ĝs(k, ω)| ≤ Ĉe−κ|k|/kd (10.7)

where the singularity at the origin comes from the fact that, see (4.5),(4.11),(A.1.6):

gs(x, ~ω) =
−1
∑

p=−∞
2pgp+hλ

(2px, ~ω) (10.8)

and the decay rate κ is hλ-independent, see §4, appendix A1.

We proceed to evaluate the δ−function integrals by using them to compute the momenta

of the hard lines: we need one δ−function per hard line and we get a volume factor 2−(d+1)hl

per vertex, if hl is the scale of the line l of lowest frequency among those connecting the

vertex to the rest of the spanning tree µ. After this has been done the argument of the

propagator corresponding to a hard line in the tree µ will have the form: 2−hlpF ~ωl + p

where p is a suitable linear combination of the other graph momenta.

Supposing that the λh-functions together with νh, αh, ζh are bounded uniformly in h

we shall bound them, when convenient, by a constant M . We can then estimate the

integrals over the ~ωλ starting from the ones corresponding to the most external lines of the

spanning tree µ and proceeding towards the ones corresponding to the other lines. Each

integration can be bounded by C 2(d−1)hλ because the gh(2
−hλpFωλ + p) multiplied by

2−(d−1)hλ produces an approximate δ−function on the sphere, if C is a suitably chosen

constant (and in fact if |p| 6= 2−hlpF the integrals are much smaller: a basic fact that

will have to be used later). This is correct even in the limiting case d = 1 when the ~ω

integration is just a sum over ~ω = ±1.
It remains to perform the (d+ 1)-dimensional integrals over the soft lines momenta or

over the hard lines momenta corresponding to lines which are not in the selected spanning

tree µ. To estimate the integral one has to remark that the momenta, which are left

out after the above integrations, are free integration variables (they are basically the loop

momenta) because the tree µ was a spanning tree, and the propagators are bounded by a

constant times either e−κ|k| or e−κ|k|/kd which are summable functions (since the integrals

over k are (d+ 1)−dimensional integrals).

Hence the whole integration process gives a result which can be bounded by a constant

per line times a factor 2(−(d+1)+(d−1))hλ per line of the spanning tree µ. Collecting the

above arguments we see that we can bound a graph with no lines generated by the R
action by:

EϑM
mCm

∏

v≥v0
2(n

i
0v/2+3ni

1v/2−2(sv−1))hv

∏

i

2hiεi ≤

≤EϑMmCm2h[(2m1+m2+4m3−ne
0)/2+3(m2−ne

1)/2−2(m3+m2+m1−1)+m1]
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(10.9)
∏

v≥v0
2(hv−h′

v)[(2m1v+m2v+4m3v−ne
0v)/2+3(m2v−ne

1v)/2−2(m1v+m2v+m3v)+2+m1v ]

≡EϑMmCm2−h(n
e
0/2+3ne

1/2−2)
∏

v≥v0
2−(hv−h′

v)((n
e
ov+3ne

0v)/2−2)

The formula (10.9) holds for a general graph in which the R operation is trivial: note that

the factor in front of the product in the last line of (10.9) is 2−hδP if δP is the dimension

of P introduced in (7.3). Similarly the coefficients of (hv − hv′) in the last product are

the dimensions of the operators Pv that would be described by the graphs Gv. For the

graph under analysis, with four external lines of type ψ, the factor 2−hδP in front of the

last product has value 1 and the r.h.s. of (10.9) provides an estimate of the size of the

graph, according to its definition in §9, II).
Remembering that we are still considering graphs contributing to the beta function for

the running form factors λh, we consider now the second case: the R-actions give rise to

graphs in which some of the half lines coming out of some of the clusters v ∈ ϑ, have

changed their original meaning giving rise, in the given graph G, to lines of type D or S.

We put, however, the restriction that the external lines, before the application of the L
operation associated with the first vertex v0 of the tree ϑ, are local lines of ψ± type.

We proceed as in the previous case, when no lines were affected by the R operation. Let

µ0 be a spanning tree of hard lines, as introduced before (10.6). This time, after completing

the relabelings of the graph expressing the results of the action of the R operations on

the clusters of the tree ϑ, we see that some of the half lines may change meaning. As a

consequence we associate with µ0 a new spanning tree µ obtained from µ0 by considering

each line of µ0 and imagining that it connects the two points out of which emerge the two

half lines composing it after the relabeling. The tree µ is again a spanning tree, as it can

be checked by taking into account the relabeling procedure described in §9.
Let λ be a inner half line with frequency index h̃. We suppose that the half line λ is

one of the half lines affected by the R operations so that it represents a non local field

Φ among those in (7.1). For the sake of definiteness we take Φ to be a two space time

indices field (i.e. Φ 6= S3): let x, y be the two space time labels of Φ. If the other half line

merging with λ to form a inner line l is supposed, again for definiteness, not affected by

the R operation and emerges from the space time point w, the propagator of the full inner

line l will be:

2ηλh̃
[

g(2h̃w − 2h̃y)− g(2h̃w − 2h̃x)
]∗zλ (10.10)

where the ∗z symbol means that the difference in (10.10) has to be taken to order zλ if

zλ is the order of the zero in the field D or S that we are considering; here by difference

to order z, denoted [f(y)− f(x)]∗z of a function f(x) between the point y and x we mean

that the expression is the remainder to order z of the Taylor expansion of f(y) around the

point x, see (10.15) below. To avoid heavier notations the g in (10.10) is not given all the

indices and labels that one may think it deserves.
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If the half line affected byR was contracted with another non local half line the argument

would not change, except that one would have to take a difference of an appropriate order

also in the variables of the other half line.

Let x̃1 = y, x̃2, . . . , x̃p+1 = x be the spanning tree path in µ connecting x to y, so that

we can write y− x as a chain sum: (y− x) = ∑

(x̃i − x̃i+1). Then we can write concisely:

[

g(2h̃(w − y))− g(2h̃(w − x))
]∗zλ = g(2h̃(w − x), 2h̃(w − y))(2h̃(y − x))zλ (10.11)

defining the tensor g with two arguments by the r.h.s.. In the r.h.s. of (10.11) the terms

written symbolically as powers of zλ represent tensors with zλ indices which we regard as

contracted with g.

Suppose that (10.11) is substituted in (10.4) and each y − x is substituted by its chain

sum and each (y−x)zλ is expanded in a product of single increments corresponding to the

lines of the path in µ connecting x to y. This procedure generates various terms like (10.4)

in each of which a propagator of a hard line l of frequency hv is multiplied by a factor of

the form:
∏

h<hv

∗
(2hxl)

zh (10.12)

where xl is the vector joining the extremes of the line and with the ∗ recalling that the

product extends over a (possibly sparse or empty) subset of the set of the scales h less

than hv. The precise subset of values is determined by the graph.

The integer zh is bounded by the sum of the orders of zero of the lines generating a

single contribution in (10.12): this is bounded by 3.

In fact, if a term 2hxl is present in (10.12) it must come from the propagator of a line

containing a non local half line emerging from a cluster v′ of frequency h′ > h, with its

space time indices inside some inner cluster v̄ of frequency h̄ ≥ h′. With this remark in

mind, an inspection of (7.5), (7.6), (7.8) shows that zh ≤ 3.

Given a hard line l of frequency hv for which the product (10.12) is not trivial, let h be

the frequency of a half line whose change of meaning due to the R action on the larger

cluster vf ≤ v causes the presence of the factor 2hxl in (10.12), and let λf be the half

line which has changed meaning; we call ṽ the cluster to which it belongs (h ≡ hṽ). Here

we recommend drawing a schematic picture of the clusters and of the lines involved (see

(10.14)). We call p = hv − hvf and write:

2hxl = 2h−hv(2hvxl) = 2(h−hvf
)2−p(2hvxl) (10.13)

so we see that we can extract a factor 2zλf
(h−hvf

) from each line contributing to the

products in (10.12).

Let w1 = vf > w2 > . . . > wq be the set of clusters which the line λf successively

crosses, then: hvf − h ≡ (hw1
− hw2

) + . . .+ (hwq
− hṽ).
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• •

••

•
z

wqw2
l

v

vf

y xλf ṽ
(10.14)

Suppose that there are several lines which have changed meaning because of the R
action and which cross the cluster w and have frequency lower or equal to that of the

immediately larger cluster w′. Let zw be the total dimensional gain, (see §7), of the Wick

monomial that is represented by the sugraph Gw corresponding to w; then one can collect

out of the powers 2(h−hvf
) a factor 2−zw(hw−hw′ ), hence the product of the factors (10.12)

over all v’s can be rewritten:

(
∏

v

2−(hv−hv′)zv )
∏

v

[
∏

l∈v

∏

(z,p)∈S0(v,l)

(2−p(2hvxl))
z] (10.15)

where S0(v, l) denotes a set of pairs of integers (z, p), such that p ≥ 0, z = 1, 2 or 3

and there is at most one pair for each p; S0(v, l) depends on special graph and, given the

graph (as it is in our case), on the special terms singled out in the expansion giving rise

to (10.12).

We take out of the graph value the first factor in (10.15) and consider what remains.

We want to show that all the factors of the other products in (10.15) containing the same

xl can be put togheter with the propagator of the line l leading to an evaluation of the

same graph with more complicated propagators which, however, are easy to bound.

We first deal with a better representation of the two arguments propagators g in the

r.h.s of (10.11). The treatment of four arguments propagators is clearly similar, but for

simplicity of exposition of an already intricate discussion, we are supposing (as stressed

several times above) that there are no four arguments propagators, i.e. no line results of a

contraction of R-affected half lines, or, still in other words, no contraction DD or DS or

SS is present in the considered graph.

Rather than carrying around propagators with more than two space time indices we

write (10.11) via the interpolation formula:

[f(y)− f(x)]∗z =
∫ 1

0

(1− t)z−1

(z − 1)!

∂zf

∂xz
(x+ t(y − x)) (y − x)zdt (10.16)

so that the two arguments g in (10.11) above can be replaced, by using (10.15), by a one

argument g considered at an interpolated point.

Let l be a (hard) line in the spanning tree µ of scale hv and let xl be the vector joining

the two extreme points of l. Collecting all terms containing the same xl we see that (10.15)

will allow us to think that the propagator of l will have the form:

g(2hv(xl + tlrl))
∏

(z,p)∈S0(v,l)

(2−p(2hvxl))
z (10.17)
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where tl is an interpolation parameter in [0, 1], and rl is the vector joining the endpoint

of l, from which the non local half of l emerges, and the other space time point of the non

local half line; of course l may be composed of two local lines: in this case we have no tlrl

term in (10.16) and we take rl equal to zero.

More precisely our value of the graph G on the tree ϑ can be computed by pretending

that each line has a propagator given by (10.16) and then:

1) integrating over the interpolation parameters with respect to a suitable measure on

the t’s, giving measure ≤ 1 to the whole space of the interpolating parameters (and such

measure has a density which, by (10.15), is a product of powers of t−variables).
2) summing over all the possible choices of the sets S0.

3) multiplying the result by the first factor in (10.15).

If rl 6= 0 we introduce ξl = 2hv(xl + tlrl) and rewrite (10.16) as:

gλ(ξl)
∏

(z,p)∈S0(v,l)

(2−p(ξl − 2hv tlrl))
z (10.18)

The monomials 2−p(ξl − 2hv tlrl)
z can be developed and one gets many terms for each of

which one can pretend that the propagator is:

gl(ξl)(
∏

(z0,p0)∈S0

(2−p0ξl)
z0)(

∏

(z′,p′)∈S′

(2−p
′

2hvrl)
z′) (10.19)

provided that, after the evaluation of the graph is completed, one integrates over the

interpolation variables and sums over the possible choices of the sets S0 and S′.

We now remark that rl2
hv can be again rewritten as 2−(hv̄−hv)

∑

x 2
hv̄x where x are the

vectors in the spanning tree µ in the path leading from one to the other of the two space

time indices associated with the non local half of l; v̄ is the cluster out of which l emerges

at the scale hv̄ on which the action of R changes its meaning. We see that hv̄ − hv ≥ 1,

and that hv̄ ≤ hv′ , if hv′ is the frequency of the line associated to x..

Hence developing the monomials (2−p
′

2hvrl)
z′ ≡ (2−p

′ ∑

x 2
hv′x 2(hv−hv′))z

′

we find

that the computation of G can be made by integrating over the interpolating variables t

and summing over suitable S0, S1 the value of the graph in which l has a propagator:

g(ξl)(
∏

(z0,p0)∈S0

(2−p0ξl)
z0)(

∏

(z1,p1)∈S1

(2−p1−12hvxl)
z1) (10.20)

with S0, S1 defined as above; this means that the product over l of the (10.18) equals the

product over l of (10.19) if S0, S1 are conveniently chosen (for each l).

We can now repeat the argument until we can reach a situation in which the the xl are

replaced by the corresponding ξl, which happens soon or later because the innermost lines

of our graph are necessarily built with pairs of local lines.
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At the end of the process we shall be able to compute the graph value by pretending

that the hard lines l have propagators:

g(hv)(2hv(xl + tlrl))
∏

j∈J
{

∏

(z,p)∈Sj,l

(2−p−j(2hv(xl + tlrl))
z} (10.21)

where the above products run over a finite set of indices depending however on the partic-

ular case considered (i.e. graph, tree, selected terms etc).

The soft lines propagators have the form g(<hv)(2hv(xl + tlrl)) with no extra factors.

Of course l may again be composed of two local lines: in this case we take rl equal to zero

as above. And after the evaluation of the graph with the above propagators one has to

integrate over the interpolation variables (with respect to a measure with total variation

bounded by 1) and then one sums over a convenient set of choices of the sets Sj,l: since

clearly very little control can be hoped for the choices of such sets, we shall bound the

result by considering them completely arbitrary.

The main property of (10.20) is that, if summed over an arbitrary set of choices of

S0, S1, . . ., it still is a function of x ≡ 2hv (xl + tlrl) which is C∞ and decays fast at ∞,

with all its derivatives, uniformly in hv and uniformly in the choices of the sets of Sj to

be used in the sum.

The reason is quite simple and we just check here the bounds for the function itself (for

its derivatives one just differentiates and repeats the argument). By taking the absolute

values in (10.20) and summing over all sets S0, S1, . . . we find a bound:

|gε,(hv)(x)|
∞
∏

p=0

∞
∏

j=1

(1 +

3
∑

z=1

|(2−p−jx)g̃ε(2−p−jx)|z) (10.22)

where we only use that it is possible to write:

g(h)(x, ~ω) = g(h),ε(x, ~ω)

∞
∏

j=0

∞
∏

p=0

g̃ε(2−j−px) (10.23)

with g(h),ε(x), g̃ε still analytic in a strip around the real x-axis and uniformly bounded and

decaying exponentially fast at infinity togheter with any prefixed number of derivatives,

(see (A.1.5) and the holomorphy argument following it). To see what is going on let us

suppose to be interested just in the model in which the gh are supposed to coincide with

their asymptotic form (A.1.7): we see, in this case, that the product of the g̃ε(x) in (10.22)

could be taken: exp (−ε∑∞
j,p=0(2

−j−px)2).

We can evaluate the graph value using again the Fourier transform and we see that, if we

call k the momentum variable associated with the line x, then we have extra momentum tk

entering or leaving the vertices at the extremes of the line defining r, if t is an appropriate

interpolation variable.
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But we can write r as the sum of the vectors associated with the hard lines in the

spanning tree µ connecting its two extremes so that we can think that the momentum tk

is in fact added to all the hard lines in µ connecting the two extremes of r. It is therefore

clear that it only affects the construction discussed in the simple case (with no non local

lines in it) by changing the values of some of the momentum variables k apperaring in the

hard lines: however such k’s disappear from the scene when one performs the integration

over the ω’s and one is left with the same integral over the loop variables; the conditions

under which this is correct are that the propagators in (10.21) have the same properties

used in the easy case, and that the sum over the subsets of the sets S0, S1, . . . can be

performed. The two conditions are met because of the bound (10.22) and the analogue

bounds on the derivatives.

This shows that we get, in this case, the same bound found in the absence of the R
generated lines with different constants and an extra factor

∏

v 2
zv(hv′−hv) where zv is the

total dimensional gain of the vertex v and v′ is the vertex preceding v in the tree ϑ.

Hence the size of the relevant graph leading to (10.4), i.e. the integral in (10.4), is

bounded by the r.h.s. of the following expression:

EϑM
mCm(

∏

v≥v0
2hv(n

i
0v/2+3ni

1v/2−2(sv−1)))(
∏

v≥v0
2−(hv−hv′ )zv )(

∏

2hiεi)

≤EϑMmCm2−hδP
∏

v≥v0
2−(hv−hv′)ρv

(10.24)

by the same argument given in (10.9); here ρv = (ne0v + 3ne1v)/2− 2 + zv, where zv is the

dimensional gain in the half lines emerging from the subgraph Gv, δP is the dimension

(which is in fact 0 in our case, see comment following (10.9)) and M is introduced after

(10.8).

The bounds on the size C0 of the graphs can be extended to the estimate of the bounds

of the sizes CN , N > 0: the result is a simple consequence of the above analysis. The

CN -bounds have the same form as the C0-bounds with new constants C,D. The obvious

modifications of the above analysis imply that the numbers z, bounded by 3 for C0, are

now bounded by 3 + 2N and the final constants D,C depend on N . The fact that the

external momenta are k1, . . . , kn rather than zero makes no diffference as the value of the

external momenta was never used in the C0 bounds. This can be interpreted as saying

that the effective potential kernels have a short range, uniformly in h.

The above analysis can be immediately extended to cover the bounds on the CN size of

irrelevant graphs with any number of external lines (local or not): the final bound looks

exactly the same as (10.24) because of the extra factors present in this case in the definition

of the size, see §9, II)): in fact the definition in (9.3) has just been set up, in the general

case, to make the latter statement true as a consequence of the above analysis, thereby

providing a convenient way of summarizing the results of this section.

The bounds for the relevant graphs with two external lines which, before the action of

the L operation relative to the first non trivial vertex v0 of the tree ϑ represent graphs
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with two external lines of type ψ+ψ− are performed in a identical fashion, again leading

to a bound like (10.24). The constants in all the above bounds can be taken to be the

same, and h indpendent.

Therefore the cases that have not yet been treated are those corresponding to graphs

contributing to the relevant part which, before the localization L relative to the first tree

vertex have:

a) four external lines one of which is a D+ line while the three others are ψ± lines.

b) two external lines one of which is a D+ line.

Looking at (7.6),(7.8) we see that the above two cases are precisely the ones for which

the application of the L operator produces differences of local terms evaluated at different

points, say x1 and x2.

We can proceed to bound their contribution to the beta functional in the way followed

above, simply estimating eact term in the difference of local terms without trying to exploit

possible cancellations between them: i.e. we give up using the fact that when x1 = x2 such

terms vanish.

Then a bound like (10.24) still holds: however the numbers zv associated with the chain

of clusters v containing the two points x1, x2 on which the L operator generates the local

terms are smaller by one unit compared to those that would be a priori necessary to make

the coefficient ρv = ((ne0v+3n2
1v)/2−2+ zv) of hv−hv′ greater or equal to 1. Hence some

of the ρv corresponding to vertices v containing x1, x2 may be zero and, therefore, they

would ultimately produce logarithmic divergences ih h when the summation over the hv’s

is performed to compute the final expression for the contributions to the beta functional.

This mild lack of uniformity in h of the beta functional is the best we can do without

taking into account special new features. Since the uniformization of the bounds will be

done by using different mechanisms in the d = 3 and in the d = 1 cases we discuss it in

the next section §11.
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æ

§11 Uniformization of the bounds on the beta functional. Loop improvements.

To complete the perturbative theory of the beta functional we have to improve the

bounds of §10 in the two remaining cases a), b) described at the end of §10. Also in this

section we shall consider explicitely only the case in which there are,in G, only relevant

vertices.

We start by considering the case of graphs with two external lines, i.e. contribution

to the beta functional for ν, α, ζ. In this case it suffices to remark that the constants

νh, αh, ζh are independent of the values ~ω, ~ω′ of the quasi momenta of the fields in the

Wick monomials. Therefore we can evaluate the contribution to the variation of ν, α, ζ by

choosing to compute them when ~ω = ~ω′.

Consider first the contibution coming from the application of L to a graph which,

before applying L, produced a Wick monomial D+
x1x2~ω

ψ−
x3~ω′ . Using (7.8) one sees that the

L aqction produces an operator, for ~ω = ~ω′:

∫

v(x1 − x2, x1 − x3, ~ω)eipF (~x1−~x3)~ω dx1dx2dx3[: ψ
+
x1~ω

ψ−
x1~ω

: − : ψ−
x2~ω

ψ−
x2~ω

: +

+ (x3 − x1) : ψ+
x1~ω
Dψ−

x1~ω
: −(x3 − x2) : ψ−

x2~ω
Dψ−

x2~ω
:]

(11.1)

where v is a suitable kernel. The (11.1) contibutes both to ν and to ζ, α. The first

contribution arises from the terms ψ+ψ− and it is:

∫

dx2dx3v(x1 − x2, x1 − x3, ~ω)eipF ~ω(~x1−~x3)−

−
∫

dx1dx3v(x1 − x2, x1 − x3, ~ω)eipF ~ω(x1−x3) = 0

(11.2)

The contribution to α, ζ is not zero because of the (x3−x1), (x3−x2) factors which break

the symmetry between 1 and 2 in the fields: by adding and subtracting suitable terms we

see that the contribution reduces to:

∫

dx1dx3v(x2 − x1, x2 − x3, ~ω)eipF ~ω(~x2−~x3)(x2 − x1)ψ+
x2~ω
Dψ−

x2~ω
: (11.3)

In this case we do not get zero; however we see that we can explicitly exhibit the factor

(x2−x1). Repeating the estimates of §10 we see that we can bound the contribution using

(10.24) in which we take ne0 = 1, ne1 = 1 with ρv ≥ 1, getting a uniform bound as h→ −∞.
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For the same reason all the other contributions to α, ζ, ν that one might expect from

(7.8) and not taken into account in §10 vanish (as the 1, 2 indices appear symmetrically

in the fields).

Consider now the case of graphs with four external lines, i.e. consider the contributions

to the beta functional for λh. We see that the above cancellations occur only if the ~ωi are

in a Cooper pair configuration: ~ω1 = −~ω2; ~ω3 = −~ω4. However we cannot infer from the

gauge symmetry that it is enough to consider λh on such configurations to know it on all

the others: the symmetry allows us to put only one of the two restrictions, say ~ω1 = −~ω2.

There is one remarkable exception to this situation: namely if d = 1 and the spin is

zero it turns out that the Cooper pairs configurations of quasi momenta do determine the

λh: simply because they are the only configurations for which ψ+
x~ω1

ψ+
x~ω2

ψ−
x~ω3

ψ−
x~ω4

does not

vanish identically (by the exclusion principle). Hence if d = 1 the contributions to the

beta function due to the cases a) and b) considered above can be taken to vanish and we

have uniform bounds even in the contributions to λh.

The above remark suggests introducing the notion of Cooper pairs of quasi particles

with quasi momenta ±~ω. We shall say that a local fourth degree term like:

I =

∫

λ(~ω1, ~ω2, ~ω3, ~ω4)e
ipF (~ω1+~ω2−~ω3−~ω4)~x : ψ+

x~ω1
ψ+
x~ω2

ψ−
x~ω3

ψ−
x~ω4

:
∏

d~ωj (11.4)

contains a component PCI of interaction between Cooper pairs defined by setting:

λ(~ω1; ~ω3) =λ(~ω1,−~ω1, ~ω3,−~ω3)

PCλ(~ω1, ~ω2, ~ω3, ~ω4) =4−1[λ(~ω1; ~ω3)− λ(~ω1; ~ω4)− λ(~ω2; ~ω3) + λ(~ω2; ~ω4)]
(11.5)

and:

PCI =

∫

PCλ(~ω1, ~ω2, ~ω3, ~ω4)e
ipF (~ω1+~ω2−~ω3−~ω4)~x : ψ+

x~ω1
ψ+
x~ω2

ψ−
x~ω3

ψ−
x~ω4

:
∏

d~ωj (11.6)

Calling LC = PCL and RC = 1+LC = R+ (1−PC)L, we can try to repeat the analysis

of §6÷§10 using RC ,LC rather than R,L.
The LC operation is quite complicated (in the fouth degree part) if expressed as an

operator on the fields:

LC : ψ+
x1~ω1

ψ+
x2~ω2

ψ−
x~ω3

ψ−
x~ω4

:= δ(~ω1 + ~ω2)δ(~ω3 + ~ω4)[

∫

d~ω′
2d~ω

′
4

: (ψ+
x,~ω1
− ψ+

x,−~ω1
)ψ+
x,~ω′

2
(ψ−
x,~ω3
− ψ−

x,−~ω3
)ψ−
x~ω′

4
: eipF (~ω1+~ω

′
2−~ω3−~ω′

4)~x]AS

LC : ψ+
x1~ω1

ψ−
x2~ω2

:=: ψ+
x1~ω1

S1
x2x1~ω2

:

(11.7)

It is easy to check that this time LC vanishes on any fourth degree monomial containing

at least one non local field or a Dψ field: this means that the problem mentioned above,
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due to the fact that the latter property does not hold for the L operation (by (7.6)), will

not arise.

But, having changed the rules of the game, we must reexamine §10 to check if it still

would work with the new definition: it is not difficult to realize that it does not, unless

we modify the assumptions on |λh| strenghtening it. We shall come back to this approach

in §14 where we discuss our conjectures about the flow generated by the beta functional.

Here we adopt a different viewpoint.

We can remark that we consider the action of R, L on Wick monomials which appear

in the graphical representation of the effective potential. The linearity of L has been so

far used only on the second degree terms; for all other purposes we could as well use a

different definition of L. We could define it as a non necessarily linear operation acting on

each of the operators that are produced via the graphical rules of §9. See the concluding

remarks to §7.
In this way we loose gauge invariance: so far the use of gauge invariance has been just

that of getting rid of unwanted terms in the second degree part of the effective potential.

Later we shall use it again to analyze the pair Schwinger functions: but we shall need

it only in the second degree terms of the effective potential. Hence we can modify the

definition of L when it acts on the fourth degree terms of the effective potential, keeping

it as before when it acts on the second degree part. The point is that the L can be easily

modified so that the above problems on the beta functional disappear.

The choice will be simply to take L to be zero in the cases (7.6) and to be the same as

before in all other cases: consequently L will vanish on all fourth degree monomials which

involve non local field or Dψ fields.

It is clear that this slight modification does not introduce any new problem in §10 and

all the estimates there remain unchanged. The reason is that the terms containing a D+

field, like the ones in (7.6), have already the correct power counting and the subtraction

(7.6) is only necessary if one wishes to keep the linearity of L on the fourth degree terms.

We do not loose the linearity (hence the gauge invariance) on the second degree terms.

With the above modification of L, R on the fourth degree operators we have com-

pleted the proof of the uniformity of the beta functional bounds in terms of the frequency

parameter h.

We now proceed to try to identify classes of graphs whose contribution to the beta

functional can be shown to be bounded by:

2εhCm−1
ε Dε

∏

v

2−ερv(hv−h′
v)

sv!
(11.8)

for some ε > 0; i.e. we want to see if we can make use of the fact that ρv ≥ 1 and of the

fact that in the theory of the beta functional one only needs, as is well known [18], that

ρv ≥ ε.
A large number of graphs can be shown to obey the improved bound (11.8). This is due

to some basic inequalities or remarkable cancellations which we call loop improvements
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as they manifest in a non trivial way in graphs with loops. They play a role not only

in the theory of the beta functional (which is greatly simplified) but in the theory of the

Schwinger functions as well (see §12).
Consider first the case d = 3. In this case one makes essential use of the following

three quasi momenta inequality which follows by simple phase space considerations (see

appendix A2 for the general technique, and (A2.14) for a check) by:

∫

δh′(~ω1 + ~ω2 − ~ω3 + ~κ)d~ω1d~ω2d~ω3 ≤ C12
h′ ∀~κ (11.9)

which we stress that holds only if d > 1; here δh(k) = 2−2hg(2−hk), k ∈ Rd+1, with g a

short range function.

Recall that a basic estimate in §10 was the bound of:

∫

δh′(~ω + ~κ′)d~ω ≤ C1 ∀κ′ (11.10)

where ~ω was the quasi momentum of a hard line of frequency h′ associated with the

approximate delta functions δh′ and ~κ′ a suitable linear combination of momenta and

quasi momenta, see, for instance, the comments after (10.8).

Then we see that we can gain a factor 2h
′

by using (11.9) if we can show that ~κ′ in

(11.10) has the form ~ω1 + ~ω2 + ~κ with ~ω1, ~ω2 being quasi momenta of internal lines which

are not in the spanning tree. We might even be able to gain similar factors several times

by applying the remark to different hard lines of the spanning tree: provided, however,

that we are able to identify distinct quasi momenta ~ω2, ~ω3 for each different hard line of

the spannig tree for which we want to obtain a gain.

The use that we shall make of the above inequality is to show that in bounding some

graphs we can improve the bound of §10 (i.e. (10.24) in dimensionless form, without the

factor 2−hδP ):

MmCm−1D
∏

v

2−ρv(hv−h′
v)

sv!
(11.11)

by a factor 2εh0 where h0 = hv for some v. Clearly this immediately implies the validity,

for the given graph, of the bound (11.8).

We begin by examining the case of the contributions to the effective potential from

graphs (relevant or not) with two external lines. We fix a tree ϑ and a graph G with

two external lines. Let v0 be the first non trivial vertex and let v1, . . . , vs be the tree

vertices immediately following v0. The frequency of v0 is h+ 1. We do not consider local

contibutions arising from the terms which we have shown to cancel when the external quasi

momenta are equal.

There are two possibilities to examine. The first is that one of the internal lines of

frequency h connecting the cluster v1 to the others is essential for the connectedness of
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the graph, i.e. cutting it the graph becomes disconnected: this case is the easiest when it

cannot be reduced to the coming second and we postpone, therefore, its treatment.

The second possibility is that none of the inner lines of frequency h connecting v1 to

the other clusters is essential for the connectedness of the graph. This means that if one

shrinks to a point all the subgraphs inside each of the clusters vi the graph G̃ that one

obtains contains at least one loop.

Suppose that in G̃ there are at least two lines l, l′, with quasi momenta ~ω, ~ω′, which

are not in the spanning tree. Then it is clear that one of the approximate delta functions

associated with the hard lines of the spanning tree must have the form δh(±~ω±~ω′±~ω1+~κ)

with ~ω1 being the line quasi momentum, for a suitable arrangement of the signs. Hence

we can apply (11.9) at least once and we improve the final bound by a factor 2h. Hence

we are left with the case of G̃ with just one loop. It is easy to see that we can repeat the

argument even in this case as long as the graph G has at least two loops, even if one of

them is inside one of the vj . The conservation of total momentum at each vertex implies,

in fact, that two at least of the quasi momenta of the lines inner to the vj but not on the

spanning tree must appear also in the momenta of a hard line on some scale h0, hence

one can easily check that (11.9) can be applied at least for one of such lines and improves

(11.11).

Therefore the only case (if the second possibility forseen at the beginning is verified)

in which we have not proved the presence of an extra power of 2h in the bound (11.11) is

when the graph G has only one loop: clearly this can happen when it contains only one

vertex with four lines and all the others are two lines vertices. This means that only the

contributions, to the effective potential of degree two in the fields, or to the beta functional

for α, ζ, ν, which are linear in λ and at least linear in α, ζ, ν, may not have an extra factor

2h0 in front of their bound (11.11). The possibility of treating this case is based on a

remarkable cancellation which is a generalization of the one exhibited in a very special

case in the calculation in appendix A2.

We first replace all propagators with their leading expressions; we also replace the

operators ~D~ω by their leading expression β~ω~∂. All the correction terms contain at least

one 2h
′

for some h′ and hence by the remark following (11.11) we see that we get the

bound (11.8) on this part of the estimate.

The second operation is to undo some of theR concerning the internal clusters according

to the rule explained below. Then if the first cluster bears a R label we replace the non

local external field in the expression of the operator associated with the graph by the

appropriate tensor describing the structure at contact of the zero of the non local fields,

see (7.3); then we multiply by the appropriate 2−h and by the factors necessary to take

the Fourier transforms in (9.3). The resulting expression, integrated over the space time

indices distinct from the localization point, provides the estimate for the C0 size of the

operator. If the first cluster bears a L label we simply write the corresponding expression

for the C0 size.

62



For simplicity we examine the case of a contribution to the beta functional ν-term (i.e. a

graph with a L operation selecting a ψ+ψ− term).

Since our graph is topologically very simple we can represent the various terms arising

in undoing the R operations, (≤ 6n, by (7.5)÷(7.8)) if n is the number of two lines graph

elements, rather naturally in terms of new graphs constructed as follows.

We draw a one loop graph with s < n+1 vertices each of which represents one of the s

maximal clusters of the tree. If v is one of the clusters with two external lines we make a

choice and: either we leave the graph as it is, deleting the R label, or we draw a hanging

chain emerging from v with sv vertices representing the sv clusters inside v, the first being

v itself and the others labeled from 2 to sv. Inside each of the hanging chain vertices we

imagine drawn the corresponding subgraph.

Similarly if the cluster v has four external lines, we see from a simple analysis that one

of the four has to be a Dxy line which, once undone in its two ψ fields can be represented

naturally by two graphs the first of which is the starting one without the R label on v. The

other is obtained from it by imagining the external line corresponding to the first point x

of the Dxy field as emerging from the second point y of the D field, while the chain of the

external lines maximal clusters, linking x to the maximal cluster inside v with 4 external

lines, will again be replaced by a hanging chain of vertices. Inside each of them we imagine

drawn the corresponding chain graphs.

We undo the R operations involving the maximal clusters; then we undo the R opera-

tions concerning the (only) cluster of the next generation with four external lines and so

on until there is no more any cluster with four external lines which is not a point.

The value of the factor contributed by each hanging chain is easily estimated using the

results of §10 and depends on the term that is selected when undoing the R operation

which generates the hanging chain. If the R operation concerned a two external lines

cluster the local term that appears when undoing it (which generates, in the graphical

interpretation, the hanging chains in the graph) corresponds to an operator n : ψ+
x~ωψ

−
x~ω :

(which has dimension δ = −1) or to an operator b : ψ+
x~ωDψ−

x~ω : (which has dimension

δ = 0). If R concerns a four external lines cluster the local term corresponds to an

operator l : ψ+
x~ω1

ψ+
x~ω2

ψ−
x~ω3

ψ−
x~ω4

: (which has dimension δ = 0).

It is clear that the analysis leading to (10.24) implies that the coefficients n, l, b can be

bounded by:

MmvCmv2−δh[
∏

w⊂v

2−(hw−hw′ )ρw

sw!
]2zv(hv−h) (11.12)

using the notation of §10, (10.24), with the above values for δ. The (11.12) simply takes

into account the missing factor represented by the last term.

Hence we see that iterating the above arguments, to undo the inner R operations (when

prescribed), we are reduced to the main problem of estimating a one loop graph, computed

on a tree with no R operators acting on the inner vertices, with the proviso that we have to

multiply the result by a product of 2zv(hv−hv′) over an unspecified set of frequency jumps.
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To estimate a one loop graph with no R operations acting on the inner clusters and two

lines vertices we essentially compute the integral explicitly. We want to show that the C0

(and C1) sizes of such graph can be bounded by:

MnCnε 2
εhn!4

∏

v

2zv(hv−hv′ )

sv!
(11.13)

This, togheter with (11.12), would show that we have an extra 2εh in the bounds of the

one loop graphs with two external lines, at least if are willing to pay the price of the n!4

and of the frequency jumps damping factors which, in fact, are with the wrong sign and

provide no damping at all.

We are however interested in resummimg all the above terms as we want the estimate

of the full expression with the R operations not undone. For such sum we have, from

the previous work, an alternative estimate (11.11), with no factorials and with the correct

damping factors. Hence we simply interpolate the two bounds (the number of terms

obtained by undoing the R operation is not very large (≤ 6n)), using an interpolation

parameter ε < 1/4 for the part bounded by (11.13) and (1 − ε) for the part bounded by

(11.11). And we find almost (11.8): we still have the factor n! which should not be there.

But there are very few, at most O(
∏

v sv!), graphs with only one loop and we can still

say that (11.8) holds if, to avoid heavier notational problems, we decide that the one

loop graphs have a value which is the previously defined one but divided by n! and, to

compensate, each graph is repeated n! times. Of course this is only a notational trick and

if one wished one could continue distinguishing the one loop graphs from the others.

To prove the above claim (11.13) consider a one loop graph with n+ 1 vertices divided

into a hierachy of subgraphs according to a given tree ϑ. We suppose that no L or R
operation is performed on the operators representing the subgraphs. Suppose also, again

to simplify the analysis by avoiding trivial cases, that the graph contains no 2–insertions

on the external lines (a case that is very easily discussed after the main problem on the

loop integral is solved).

We note that the C0 size of such a graph is obtained as the product of the combinatotial

factor Eϑ =
∏

v 1/sv! times::

2−h
∫

[

n+1
∏

j=1

2hjΩj~ωj
ghj

(xj − xj−1, ~ωj)e
−ipF (~xj−~xj−1)~ωjd~ωj ]

λ0[
n
∏

j=1

µj
h̃j
] dx1 . . . dxn

(11.14)

where Ωj~ωj
is either the identity or the Dt operator on the coordinate xj or the ~ωj · ~∂~ωj

operator and, correspondingly, µj
h̃j

is 2h̃jνh̃j
or ζh̃j

or αh̃j
where h̃j is the scale of the j-th
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vertex. In general h̃j > hj which is the scale of the propagator associated with the line

from xj−1 to xj . The vertices are labeled from 0 to n+ 1 ≡ 0 following the arrows of the

loop lines.

The (11.14) can be rewritten more explicitly by using the Fourier transform expressions

for the propagators (we fix the parameter β = pF /m = 1):

∫

dk(
∏

d~ωjαjdαj) τM
n+12h−hn+1

∏

j∈Jν
2h̃j−hj

(ik0 + ~ω~k)e−αj0
k2

∏

j 6=j0
2−2hj (ik0j + ~ωj~kj)e

−αjk
2
j (~ωj~kj)

aj (ik0j)
bj

(11.15)

where aj , bj = 0, 1,M is a bound on ν, α, z, λ, τ ∈ [−1, 1] depends only on the ~ω–variables,

Jν is the set of loop lines entering a vertex with running constant of ν type; the j0 is

the label of the line l0 from xj0−1 ti xj0 which is not in the spanning tree of the graph,

the interpolation parameters αj (see A1.9)) are in [1/4, 1] for all j 6= j0 and for j = j0

αj0 ∈ [1/4, 1] or αj0 ∈ [1,∞]. The actual values of aj , bj depend on the type of the j–th

vertex (aj = 1 if the vertex is of type α, and bj = 1 if it is of type ζ; the a, b vanish

otherwise). The momenta kj can be expressed in terms of the quasi momenta ~ωj of the

j–th line (from xj−1 to xj), via:

2hjkj = 2hk + ~ω − ~ωj (11.16)

where k, ~ω are the momentum and quasi momentum of the j0–th line.

The αj with j 6= j0 play no role and will be set equal to 1 to simplify the analysis. Some

care has to be devoted to αj0 which we denote by α.

We set N =
∑

j 2
2(h−hj) ≥ 1 (since there is at least one more line of frequency h, besides

l0). We then express the inner momenta kj in terms of k using (11.16) and we collect all

the k2 in the exponentials after developing the squares. We also collect in the exponentials

all the terms linear in ~k and we perform the linear change of coordinates necessary to

eliminate from the exponentials the terms linear in ~k. Using the notation:

~Ωj =2−hj (~ω − ~ωj) εj = 2h−hj

N =
∑

p6=j0
ε2p ~w =

∑

p

εp~Ωp
(11.17)

we find, after some algebra, that the integral expressing the C0 size of the considered graph
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can be written as the combinatotial factor Eϑ =
∏

v 1/sv! times:

Mn+12h−hn+1

∏

j∈Jν
2h̃j−hj

∫

dkαdαd~ωτ
(

∏

j 6=jo
2−2hjd~ωj)

e−(N+α)k2e
[+~w2/(α+N)−

∑

p
~Ω2

p]

∏

j

[

εj(ik0 + ~ωj~k − ~ωj ~w/(α+N)) + ~ωj~Ωj
]

∏

Jα

[

εj(~ωj~k − ~ωj ~w/(α+N)) + ~ωj~Ωj
]

∏

Jζ

(

iεjk0
)

(11.18)

where we denote Jν , Jα, Jζ respectively the set of lines ending in a vertex with running

coupling of type ν, α, ζ.

We rewrite ~ωj as (~ωj − ~ω)+ ~ω and the ik0 in the last product as (ik0 + ~ω~k)− ~ω~k. Then
we develop the sums inside the products to isolate the contributions of the forms

(ik0 + ~ω~k), (~ω − ~ωj)~k, ~ω ~w

(~ω − ~ωj)~w 2hj ~Ω2
j = −2~ωj~Ωj = 2~ω~Ωj

(11.19)

After further algebra we find that (11.18) is a sum of terms equal, up to a sign, to:

Mn+12h−hn+1(
∏

j∈Jν
2h̃j−hj )

∫

αdαdkd~ωτ
(

∏

j 6=jo
2−2hjd~ωj

)

e−(N+α)k2e
[+~w2/(a+N)−

∑

p
~Ω2

p]

[
∏

j∈X1

εj(ik0 + ~ω~k)][
∏

j∈X2

εj~k(~ω − ~ωj)][
∏

j∈X3

εj(~ω − ~ωj)~w/(α+N)]

∏

j∈X4

εj~ω ~w/(α+N)]
∏

j∈X5

[2hj~Ω2
j ][

∏

j∈X6

εj~ω~k]

(11.20)

where Xq are subsets of the set of the n + 1 indices j, and each index in Xq can have a

multiplicity: in the latter case this simply means that the term with index j has to be

raised to a power equal to the multiplicity.

The expansion of the products in (11.18) allows us to find the rules to construct the sets

Xq. In fact, by inspection of (11.18), we see that we can define 5 suitable disjoint subsets

of the set of the n+1 indices denoted Js1 , s = 1, . . .5, and similarly Jα can be broken into

5 set Js2 and Jζ into 2 sets Js3 , so that:

X1 =J1
1 ∪ J1

3

X2 =J2
1 ∪ J1

2

X3 =J3
1 ∪ J2

2

X4 =J4
1 ∪ J3

2

X5 =J5
1 ∪ J4

2

X6 =J5
2 ∪ J2

3

(11.21)
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and each point in Xq has multiplicity equal to the number of times it appears in distinct

sets in the r.h.s.

The discussion of the (11.19) is simpler than one may fear. The quadratic form in the
~Ω’s in the exponential is bounded below by α/(α+N). This means that after performing

the k integrals we shall bound ~Ωj by ((α+N)/α)1/2.

The evaluation of the k0 integral is done by the well known formula for the Hermite

polynomials Hp(k1) (with weight e−k
2
1 ):

: kp1 :≡ Hp(k1) =

∫

e−k
2
0 (ik0 + k1)

p dk0
π1/2

(11.22)

where the polynomial normalization is that the integral of H2
p with weight e−k

2
1 is 2−pp!

(Wick rule).

Hence changing variable (α+N)1/2k → k, setting η = (α+N)/α and using ~ω(~ω−~ω′) =

(~ω − ~ω′)2/2 we can rewrite (11.20) as:

Mn+1
[

2h−hn+1

∏

j∈Jν
(2h̃j−hj )

]

∫

ταdαd~k

(α+N)2
d~ωe−k

2

[
∏

j 6=jo
2−2hjd~ωj ]e

[+~w2/(a+N)−
∑

p
~Ω2

p]

[:
∏

j∈X1

εj~ω~k

(αη)1/2
:][

∏

j∈X2

εj~k(~ω − ~ωj)
(αη)1/2

][
∏

j∈X3

εj2
hj

(~Ωj)

(αη)1/2
~w

(αη)1/2
]

[
∏

j∈X4

εj
∑

p 2
h~Ω2

p

(2αη)
]
∏

j∈X5

2hjη
~Ω2
j

(2η)
][
∏

j∈X6

εj~ω~k

(αη)1/2
]

(11.23)

It is easy to check that, after performing the integral over ~k, using a suitable fraction

of the quadratic from in the exponent and denoting by c0 a suitable constant:

1) if X3 is not empty we can bound the product over X3 by (
∏

j∈X3
c02

hjα−1)|X3|!.
2) if X4 is not empty we can bound the product over X4 by (2hc0α

−1)|X4|)|X4|!.
3) if X5 is not empty we can bound the product over X5 by (

∏

j∈X5
2hj (α+N)/α).

Moreover it is important to remark that:

4) at least one between X1 and X4 is not empty. See (11.18) and use that the j0 factor

contribute only to the products over X1 and X4.

5) in performing the ~k integral the Wick contractions (that we use to evaluate the gaussian

integrals) involving X1 and X2 or X2 and X6 or X2 and X2 itself can be bounded

(again using a fraction of the quadratic form in the exponential and the fact that such

contractions are proportional to (~ω − ~ωj)~ω = (~ω − ~ωj)2/2 or to (~ω − ~ωj)2) by a factor

22hj/α per contraction. But if we consider the contractions between X1 and X6 we only

get 1/α per contraction.
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Then we see that we always find a factor 2h
′

/α at least for each of the ≤ (|X1| + |X2| +
|X3|)!1/2 Wick contributions to the gaussian integral, provided we discard the only possi-

bility which, by the analysis of the above items, does not provide a factor 2h
′

/α, namely

when all the contractions involve X1 and X6 and X2, X3, X4, X5 = ∅: but it is easy to see

that in this case |X1| > |X6| and the integral is identically zero by the orthogonality of

the Hermite polynomials.

We are left with bounding the ~ωj integral: for it we still have the quadratic form to use.

By splitting it in 6 equal parts, five will be used for the bounds in the above items. Then

the remaining sixth part will be used to perform the integral over the ~ωj and to bound

it by ((α + N)/α)n ≤ (N + 1)n. From the bound of the X5 factors we also get at most

((α+N)/α)n ≤ (N + 1)n. Hence the total expression (11.14) is bounded by:

Mn+1Cn
[

2h−hn+1

∏

j∈Jν
(2h̃j−hj )

]

n!42h
′

(11.24)

At this point we go back to §10 and check that the term in square bracket is:

∏

v

2−(hv−hv′ )(ρv−zv) (11.25)

This is so simply because, having undone all the subtractions, we miss the terms expressing

the dimensional gains zv ≤ 2. Hence we can write (11.24) as (11.13) (recalling that the

combinatorial factor
∏

v 1/sv! was taken out in (11.18)).

It is interesting to remark that, if d = 1, the above analysis also applies and in some

sense works even better. In fact it is easy to see that a one loop graph, in which the quasi

momentum is not conserved along the loop is necessarily of order O(2h
′

). Hence one can

consider the case in which the quasi momentum is conserved along the loop; in this case,

however, the terms with ~ω − ~ωj are missing and we see that the above integral (11.23)

simply vanishes identically. Hence if d = 1 we do not even have the n! to worry about and

we have, in all one loop graphs, a simple extra factor 2h
′

, so that (11.8) holds with ε = 1.

Having treated the graphs with more than one loop and those with just one loop we

are left with the simple case of the chain graphs. Of course such graphs are very trivial

compared to the above.

Such graphs must contain one line of scale h with momentum equal to its quasi momen-

tum. It is easy to check, if the two half lines composing the line represent ψ± fields, that

the propagator of this line generates, by the mechanism discussed in §10, an approximate

delta function δh(~ω− ~ω′). Here ~ω′ is the line quasi momentum and ~ω is the external quasi

momentum of the field of −–type. Then δh(~ω − ~ω′) verify:

δh(~ω1 − ~ω) =const 2−3h(~ω − ~ω1) · ~ω1

∫ 1

1/4

dα

α2
e−α2

−2h(~ω−~ω1)
2β2

≤const2−2h(~ω1 − ~ω)2e−2−2h(~ω1−~ω)2β2/4 = const2hδ̄h(~ω1 − ~ω)
(11.26)
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where δ̄h is a normalized approximate delta function of width proportional to 2h. We see

that in this case we can improve the bound (11.11) by a factor 2h every time that we have

to integrate the above propagator or expressions with the same properties.

A simple analysis shows that this is always the case, with one single exception: namely

when the graph is a relevant one and one considers its contribution to the α, ζ running

constants. This case can be explicitly computed and shown to give a contribution to the

beta function ±β′′ν2h +O(2h).

The above considerations can be summarized by writing explicitly the beta functional in

the following form, using the notation λ, α, ζ, ν to mean the string of functions describing

the running form factors on the scales i shorter than h, (λi, αi, ζi, νi)i=h,h+1...,0:

λh−1 =λh +B
(≥0;[1,2])
1 (α, ζ, ν;λ) + 2εhB

(≥1;≥1)
2 (α, ζ, ν;λ)

νh−1 =2νh + 2εhB
(≥2)
3 (α, ζ, ν, λ)

αh−1 =αh + β′′ν2h + 2εhB
(≥2)
4 (α, ζ, ν, λ)

ζh−1 =ζh − β′′ν2h + 2εhB
(≥2)
5 (α, ζ, νλ)

(11.27)

where B
(≥p;≥q)
j (x; y) denotes a formal power series in x, y in which the x variables appear

to order p or higher, and the y appear to order q or higher; B
(≥p;[a,b])
j (x; y) denotes a

formal power series in which the x variables appear to order ≥ p and the y appear only

to the orders between a and b; B
(≥p;q)
j (x; y) denotes again a formal power series in which

the x variables appear to order ≥ p and the y appear exactly to order q; similarly B
(p)
j (x)

denotes a polynomial homogeneous of degree p in x. Here ε > 0 can be taken any number

< 1/4.

Furthermore the effective couplings, ~υh = (νh, αh, ζh, λh), verify:

|αh|, |ζh| ≤M, |νh| ≤M, |λh| ≤M, h = 0,−1, . . . (11.28)

then the m − th order terms of the formal power series Bj can be so arranged that the

m–th order is described by trees with m endpoints and graphs with m graph elements of

the form (8.1),(8.2) in such a way that the contribution to ~υh−1 due to a tree of type (9.1)

and a graph G is bounded by:

EϑM
mDCm−1

∏

v≥v0
2−(hv−h′

v)ερv (11.29)

and the relationship between ~υh−1 and ~υh, · · · , ~υ0 is:

~υh−1 = Λ~υh +
∑

G,ϑ

η{h}(G, ϑ)

∫

2µ(G)h d
~Ω

m!

∏

v≥v0

2−(hv−hv′)ερv

sv!

∏

i∈endlines
λhi

(Ωi) (11.30)
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where Λ is the diagonal matrix (1, 1, 1, 2) and η(G, ϑ) is an interpolation parameter in

[−1, 1]; the number ρv is ≥ ε and ~Ωi are the ~ω–variables relative to the i–th graph element

of the graph G; the µ(G) is 0, (1− ε) as described in the above discussion.

The case d = 1 will be discussed only in the spinless model. In this case the (11.8)

no longer holds. Besides the remarkable simplification on the absence of the O(2−εh)

contributions in the λ part of the beta functional we find that the beta functional takes

the form:

λh−1 =λh +B
(≥2)
1 (λ) +B

((≥1;≥1)
2 (α, ζ, ν;λ)

νh−1 =2νh +B
(≥1;≥2)
3 (α, ζ, ν;λ) + 2hB

(≥2)
4 (α, ζ, ν, λ)

αh−1 =αh +B
(≥2)
5 (λ) +B

(≥1;≥2)
6 (α, ζ, ν;λ) + 2hB

(≥2)
7 (α, ζ, ν, λ)

ζh−1 =ζh +B
(≥2)
5 (λ) +B

(≥1;≥2)
8 (α, ζ, ν;λ) + 2hB

(≥2)
9 (α, ζ, ν, λ)

(11.31)

with the notations of (11.27). The remarkable features are the absence of terms depending

only on λ in the relation for ν and the equality of the leading (i.e. not proportional to

2h) terms dependent only on λ (denoted B5) in the relations for α and for ζ. The first

remark follows from the observation that only graphs in which there is quasi momentum

conservation at every vertex can give contributions which cannot be bounded by O(2h) at

least.

In fact the conservation is automatic in the relevant terms with four lines and non

conservation in two lines subgraphs leads to a very small extra factor in the bounds (because

if the momentum is not conserved then it is necessarily opposite and the Fourier transforms

of the propagators decay very fast at large momenta). Considering only graphs with

quasi momentum conservation we see that the oscillating factors due to the exponentials

involving the quasi momenta are completely absent from the graph value. Then one can

remark that a contribution from a graph with only λ vertices must contain an odd number

of inner lines: but the propagators are, up to corrections of O(2h), odd functions so that

their leading terms do not contribute. The second remark is an easy consequence of the

fact that the leading term in the propagator has a symmetry betweeen the space and the

time variables.

This concludes our theory of the improved bounds on the beta functional.

It is important, for later applications, to remark that the use of the Wick ordering in

the above formalism, although elegant, is by no means essential: and it may become a

nuisance when one gets involved with the problem of the convergence.

It is possible, and easy, to extend the above theory to the case in which the effective

potential is written as a sum of a part Vp,w of degree ≤ p in the fields which is written in

a Wick oredered form and a part Vp,nw composed of ordinary monomials of degree > p.

Taking p ≥ 4 the above formalism remains unchanged with a few minor variations:
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a) the trees have one vertex per each frequency, which may be trivial, i.e. such that no

bifurcation occurs: such vertices can be thought as existing but not explicitly marked

in the previous formalism. However this time the associated truncated expectations on

the vertex scale are no longer trivial because the absence of the Wick ordering permits

contractions between lines emerging from the same cluster v, selfcontractions, at least

if the subgraph Gv has more than p external lines.

b) the possibility of selfcontractions causes that the frequency of a line is no longer deter-

mined by the clusters containing its extreme endpoints and one finds it by looking at

the smallest cluster containing the line.

c) all internal lines are hard lines, in the sense of §9 with the possible exceptions of lines

which are internal to clusters with ≤ p external lines.

The separation order p is taken ≥ 4 so that the L,R operations are still defined as in

§7. All that is happening is that one has to deal with rougly the same number of graphs

bearing a different set of indices and labels: it is a reorganization of a multiple sum. The

estimates are clearly identical to the previous ones. The beta function is different, and as

remarked in [17,16], it may be much better from the point of view of the estimates.

The two beta functionals manifestly agree up to an order p∗ and p∗ →∞ if p→∞.

A deeper remark is that we can even avoid entirely the use of Wick ordering, i.e. take

p = 0. At first sight one might think that this really changes the beta function. However a

closer look shows that it only affects the beta function with terms od O(2h) as h→ −∞:

the reason being that the propagators g(h)(x) vanish when x = 0 up to terms of O(2h).

We shall avoid choosing between the various beta functionals and what we say holds

for any choice (only the actual numerical values of some bounds may differ). However in

the analysis of the convergence, that we are able to do only if d = 1 and the fermions are

spinless, we use the results of [19] and therefore we use the p = 4 beta functional.
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æ

§12 Consequences of the bounds. The perturbation theory beta functional. Bounds on

the Schwinger functions near the Fermi surface.

The conclusion of the work of section §10,§11 is thus that, if ~υh = (νh, αh, ζh, λh), the

effective couplings ~υh verify:

|αh|, |ζh| ≤M, |νh| ≤ 2hM, |λh| ≤M, h = 0,−1, . . . (12.1)

then ~υh−1 can be expanded in a formal power series of ~υh, ~υh+1, . . . and the power expansion

can be so arranged to have the form (11.30).

Since the eigenvalues of Λ, see comment after (11.10), are all ≥ 1 the analysis of

[16,17,18] applies and we infer from (11.30) following results:

1) it is possible to expand ~υh+1 in powers of ~υh:

~υh+1 = Λ−1~υh + ~Bh+(~υh) + 2hRh(~υh, ~υ0) (12.2)

where Bh+(~υ), (upward beta function), is a formal power series:

Bh+(~υ)(
~Ω) =

∑

p=1

∑

a

∫

d~Ω′η
a
h(
~Ω, ~Ω′)C β|a|a!~υa(~Ω′) (12.3)

where a = (aλ, aν , aα, aζ) is a multiindex and λh(~Ω) is regarded as defined and bounded

on the unit sphere Sd−1, uniformly in the h. The kernel ηa(~Ω, ~Ω
′) is bounded also by 1

when ~Ω is regarded as composed of vectors varying on the unit sphere Sd−1. The Rh

function has the same properties and vanishes with ~υ0. It is a new term compared with

the results of [16,18]: it is present because the initial interaction contains non vanishing

irrelevant terms expressible via the initial pair potential. The shape of the pair potential

has to be supposed fixed here once and for all: otherwise the coefficients of the power

series defining Rh also depend on the shape of the potential in a way in which we are

nor interested here.

2) A similar expansion holds for the general effective potentials on scale h. The effective

potential on scale h admits an expansion in ~υh and ~υ0 with coefficients growing with

m! to order m and with kernels of size C0, (in the sense of §9), uniformly bounded by:

DCm−1m! (12.4)

for suitably chosen D,C.
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3) The iteration of the expansion (12.4) leads to an expansion of the effective couplings

and potentials on all scales h′ ≥ h. The coefficients are bounded like in (12.5) but now

β|a| is replaced by (β(h′− h))|a|. This means that even if it were true that that ~υh → 0

we would only have control over the large scale behaviour of the theory. The short range

behaviour is hidden, in perturbation theory (as it is not surprising).

4) The B terms appearing in the beta function have a detailed structure identical to that

in (11.25) with new B-functions which depend only on ~υh.

In appendix A3 we show that the interpretation of the constancy of the effective cou-

plings as h→ −∞ can be that the potential is a delta like potential in the sense of §0 with

integral ∝ 2(d−1)h. It is unlikely that the running constants go to 0 as h → −∞ faster

than logarithmically (i.e. as 1/h). Hence working in physical space we expect to find a

potential whose size is at least 2−h/h, i.e. unboundedly large! This shows the relevance

and the interest of the quasi particles formalism: in this formalism we never meet large

functions and we can apply the strategy of using supremum bounds. In the usual repre-

sentation in Fock space, or in the euclidean versions of it, one would be forced to use L1

bounds which are far harder to master.

In one dimension the Fermi sphere consists of two points. All the functions of the

quasi momenta become trivially defined on a space of two points and the bounds can be

revisited and trivially improved. It turns out that, not surprisingly, the theory of the beta

function becomes the same as the theory of the Gross Neveu model, [19,23]. One rigorously

finds that the series in (12.3) converge if M , see (12.1) is small enough. Hence the beta

function exists as a holomorphic function of the running couplings with a positive radius

of convergence.

All the results found so far have been derived for spinless fermions, but the introduction

of spin would just add a few more indices to our expressions; this is no longer true for the

results of §14,15.
In the next section we study the beta functional to second order in the general spinless

case; in §15 we study in detail, for d = 1, the beta function, introduce a new beta functional

apt to describe anomalous Fermi surfaces, and show that one dimensional spinless systems

have an anomalous Fermi surface.

We conclude this section by analyzing the connection between the definitions of §5 and

the bounds of §10,§11 in the case d = 3. We use here the notations of §10,§11.
In studying the Schwinger functions one can still make use of the notion of C0-size:

however we have to consider more general graphs in which vertices y1, y2, . . . with only

one emerging line of type ψ+ or ψ− are allowed, with a form factor e±iyjkj (the kj are

arbitrary momenta); furthermore such vertices must be on scales h1, h2, . . . between 0 and

h and the lines corresponding to them have to be ignored in the localization procedures.

Then one is interested in the graphs generated by such vertices, arbitrary trees and

no external lines. It is clear that (by the relation determined in §3 between Schwinger

functions and effective potential) the C0 size of such graphs evaluated on a given tree is
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a bound on the Fourier transform of the contribution to the Schwinger function from the

considered graph and tree.

We shall consider in particular the graphs with m graph elements of the types in the

figures (8.1), (8.2) and 2 one line vertices of type ψ+, ψ−. This is the set of graphs relevant

for the pair Schwinger function, i.e. relevant to calculate the function w′
h(k) introduced in

(5.33) and (7.14).

If we now suppose that the frequency labels of the lines coming out of the one line

vertices are h1, h2 ≥ h, the estimates in §10 provide obvious bounds. However the bounds

that one finds are useless if performed naively. This is in fact a major problem: its solution

is deeply connected with the underlying symmetry, pointed out several times, generated

by the fact that the quasi particle fields are a redundant description of the particle fields.

Let G be the set of contributions to the effective potential of degree two in the fields:

the irrelevant ones can be divided into those contributing to terms like ψ+Sj−, D+D−,

D+S−, see (7.8). Given G ∈ G, its contribution to the pair Schwinger function at external

momentum k can be written as:
∫

ĝ(k − ω′, ~ω′)WG(k, ω
′, ω)ĝ(k − ω, ~ω)d~ωd~ω′ (12.5)

where ĝ(k, ~ω) is the Fourier transform of the free propagator g(≥h)(x, ~ω), which is uniformly

bounded from below by 1/(|k0|+ pF |∆|), if k = (k0, ~k) and ~k ≡ ~ω0pF (1 + ∆).

For instance a graph contributing to the terms ψ+
z~ω′S

1−
yx~ω of the effective potential will

give a contribution to the pair Schwinger function of the form:

∫

eik(z
′−y′)g(z′ − z, ~ω′)eipF ~ω

′(~z−~z′)VG(z − y, y − x, ~ω, ~ω′)(x− y)2

g′′(y − y′ + t(x− y), ~ω)eipF ~ω(~y′−~y)tdtd~ωd~ω′dxdydzdy′
(12.6)

where t is an interpolation parameter, VG is a suitable kernel and (x− y)2 is a two indices

tensor contracted with the tensor of the second derivatives g′′; the (12.8) can be rewritten

as an integral, over the ~ω, ~ω′ variables and over the interpolation parameter t, of the

expression:

ĝ(k − ω′, ~ω′)V̂G(k, t(k − ~ω), ~ω, ~ω′)ĝ′′(k − ω, ~ω) ≡
≡ ĝ(k − ω′, ~ω′)[V̂G(k, t(k − ~ω), ~ω, ~ω′)ij(k − ω)i(k − ω)j]ĝ(k − ω, ~ω)

(12.7)

where V̂G denotes the Fourier transform of (x− y)2VG, so that WG, see (12.7), is defined

by the term in square brackets.

The sum over the full set of contributions is:

∑

G∈G
WG(k, ~ω, ~ω

′) ≡ wh(k) (12.8)
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and is ~ω, ~ω′-independent by the symmetry property pointed out in §5,§7.
Therefore we can choose, in evaluating w′

h which is our main concern here, ~ω, ~ω′ ar-

bitrarily. We take them as ~ω = ~ω′ = ~ω0 if k = (k0, ~k) and ~k = pF (1 + ∆)~ω0, so that

|∆|pF = ||~k| − pF |. We deduce that a bound on the contribution ĝ(k)2w′
h(k) to the

Foruier transform of the Schwinger function from the graphs G associated with the terms

ψ+S1− in the effective potential can be computed, bounding (k−ω0)
2 by (p2F |∆|2+k20)and

|ĝ(k − ω, ~ω)|2 by 1/(p2F |∆|2 + k20), by:

∫

dtd~ω′d~ω |ĝ(k + ω′, ~ω′)||V̂G(k, t(k − ~ω0), ~ω0, ~ω0)||ĝ(k + ω, ω)|(p2F∆2 + k20) ≤

≤ 2−h
∑

hv≥h

∏

v≥v0
2−(hv−hv′)ρv ≤ (const)2−h

(12.9)

This simply follows by remarking that 2h|V̂G(. . .)| is bounded by the C0 size, in the sense

of §9,10, of the graph with two external lines obtained from G by regarding the two lines

ending in the two one line vertices as external lines.

Of course once we fix the gauge ~ω = ~ω′ = ~ω0 we are not allowed to change it when

estimating the contributions of the other graphs: but the same choice simply works for all

the others too. Hence the part of orderm in the running form factors of w′
h(k)/(k

2
0+p

2
F∆

2)

can be thought as generated by the appropriate graphs, receiving a contribution bounded

by Cm2−h from each of them.

The above conclusion can be improved using the results of §11 where it is shown that

there is, in the estimate of the size of a graph with two external lines, there is a gain of

a factor 2h0ε, where ε is a small enough (≤ 1/4) positive prefixed number (see (11.8)).

Hence we get the bound:

2−(1−ε)hEϑ
∑

hv≥h

∏

v≥v0
2−(hv−hv′)ερv < (const)2−(1−ε)h (12.10)

The result of this analysis is that w′
h(k)/(p

2
F∆

2 + k20) can be bounded, to order m in the

running form factors, by:

m!Cm(const)2−(1−ε)h (12.11)

for any (prefixed) ε < 1/4.

In other words the contribution of the irrelevant terms in the effective potential to

the Fourier transform of the two point Schwinger function with infrared cut off at length

scale (2hp0)
−1 are much smaller than (|k0| + ||~k| − pF |)−1 for all momenta in the range

2(1−ε)hp0 > |k0| + ||~k| − pF | > 2hp0. The latter are the momentum sizes corresponding

to the scales between 2−(1−ε)hp−1
0 and 2−hp−1

0 . Hence such contributions provide, in this

range, singular corrections small compared to the linear singularity, i.e. of type 1/(|k0| +
||~k| − pF |) = (2hp0)

−1, of the free propagator.
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§13 The beta function to second order.Basic calculations for d = 1, 3.

In this section we describe the computations necessary to write the beta function trun-

cated to second order in the running form factors λh, using the localization operator L
introduced in §7 and modified in §11. Note that we have shown in §11 that, if d = 3, these

are the only contributions of O(1) to the beta function involving only the form factor λ, if

(12.1) are assumed. This is not the case if d = 1: the latter case will be reexamined in §15.
It is also easy to check that the computed terms are identical if one uses the definitions

(7.5) of L or the later adopted one (see §11, remark following (11.7)).

We shall also compute the second order contribution to the beta function using the

alternative localization operator LC , also introduced in §11; we shall use it in the heuristic

discussion of §14.
We compute, therefore, the contributions to the λ–equation of the two graphs:

• • • •

~ω3

~ω4

x y x y

~ω1 ~ω2

~ω4

~ω1

~ω3

~ω

~ω′

~ω′

~ω~ω2

(13.1)

which we call the direct graph and the exchange graph.

We choose x as the localization point and suppose that the two vertices represent:

−
∫

dx
4
∏

i=1

d~ωi λ̃(~ω1, ~ω2, ~ω3, ~ω4)e
ipF (~ω1+~ω2−~ω3−~ω4)~x : ψ+

x~ω1
ψ+
x~ω2

ψ−
x~ω3

ψ−
x~ω4

: (13.2)

and, in the case in which we study the beta function corresponding to the localization LC
introduced in §11, we shall suppose that λ has the form of a function in the range of the

operator PC , see (11.5):

λ̃(~ω1, ~ω2, ~ω3, ~ω4) =
1

4
(λ(~ω1; ~ω3)− λ(~ω1; ~ω4)− λ(~ω2; ~ω3) + λ(~ω2; ~ω4))

λ(~ω1; ~ω3) ≡λ̃(~ω1,−~ω1, ~ω3,−~ω3)

(13.3)

The latter form for λ̃(~ω1, . . .) is not general: we see easily, however, that if d = 1 the

antisymmetry properties of λ̃ in (1, 2)←→(2, 1) and (3, 4)←→(4, 3) and the symmetry in

(1, 2)←→(3, 4) imply that λ̃ must have the form (13.3) with λ(~ω1, ~ω3) odd in ~ω1 as well as

in ~ω3.

In the general case a function with the symmetry properties of λ̃ can be written in

the form (13.3) plus a remainder consisting of terms vanishing at the points ~ω2 = −~ω1
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or ~ω3 = −~ω4. Following the notation of §11 we call the two terms respectively PC λ̃ and

(1−PC)λ̃, see (11.5). We call the function λ(~ω1; ~ω3) the coupling between the two Cooper

pairs ±~ω1 and ±~ω3.

The function λ(~ω1; ~ω3) is a complete description of the local part of the quasi particles

interaction if d = 1 because, as remarked above, (1−PC)λ̃ = 0 in this case. In the heuristic

discussion of §14, we shall give arguments based on the idea that if d > 1 the local part

of the interaction is not entirely relevant and the part (1− PC)λ̃ can in fact be put in the

irrelevant effective potential thereby reducing the problem to a simpler one described by

a reduced beta function.

The evaluations of the beta function to second order using L or LC are trivially related.

Assume that the second order beta function for the L localization has been computed

expressing the variation λ′−λ of λ(~ω1, ~ω2, ~ω3, ~ω4) as a sum of two terms δi(~ω1, ~ω2, ~ω3, ~ω4).

Then we can get the beta function for the localization LC simply by using a four arguments

λ̃ function of the form (13.3) and evaluating the result at (~ω1, ~ω2, ~ω3, ~ω4) in the Cooper

pairs configuration (~ω1,−~ω1, ~ω3,−~ω3); hence the variation of the running form factors

associated with LC will be:

λ′(~ω; ~ω′) = λ(~ω; ~ω′) + δ1(~ω; ~ω
′) + δ2(~ω; ~ω

′) (13.4)

where δi(~ω; ~ω
′) denotes δi(~ω,−~ω, ~ω′,−~ω′).

If we shorten : ψ+
x~ω1

ψ+
x~ω2

ψ−
x~ω3

ψ−
x~ω4

: into : ψ1234 :, the values of δ1 and δ2 are extracted

from the values of the two above graphs which we write in the direct graph case as:

4

2!

∫

dx
4
∏

i=1

d~ωie
ipF (~ω1+~ω2−~ω3−~ω4)~x : ψ1234 :

∫

d~ωd~ω′dzλ̃(~ω1, ~ω2, ~ω, ~ω
′)λ̃(~ω′, ~ω, ~ω3, ~ω4)e

−ipF (~ω+~ω′−~ω1−~ω2)~z (13.5)

22h[g(h)(2hp0z, ~ω)g
(h)(2hp0z, ~ω

′) + 2g(h)(2hp0z, ~ω)g
(<h)(2hp0z, ~ω

′)]

and in the exchange graph case:

−42

2!

∫

dx

4
∏

i=1

d~ωie
−ipF (~ω1+~ω2−~ω3−~ω4)~x : ψ1234 : {

∫

d~ωd~ω′dzλ̃(~ω1, ~ω, ~ω3, ~ω
′)

λ̃(~ω2, ~ω
′, ~ω4, ~ω)2

2hGh(2
hp0z, ~ω, ~ω

′)e−ipF (~ω′−~ω−~ω1+~ω3)~z}AS

(13.6)

where the AS label means that the expression inside the brackets has to be antisymmetrized

in ~ω1, ~ω2 and ~ω3, ~ω4 separately. No such antisymmetrization is necessary on the first term.

The Gh–function in (13.6) turns out to be identical to the term in square brackets in (13.5),

to leading order as h→ −∞, using the fact that g(h)(z, ~ω) is odd in z at the leading order
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and in fact can be computed from the formulae:

g(h)(ξ, ~ω) =c0(τ − β−1i~ω~ξ)γ0(ξ
2)

g(<h)(ξ, ~ω) =c0(τ − β−1i~ω~ξ)

−1
∑

n=−∞
22nγ0(2

2nξ2)
(13.7)

where c0 is a constant, see (A1.9), ξ = (τ, ~ξ) and ξ2 = τ2 + ~ξ2/β2. This is not essential

in what follows but it greatly simplifies the calculations. The main problem is that, if

the subleading terms are included the Gh function appearing in (13.6) is not equal to the

square bracket terms in (13.5), and this leads to minor corrections in the analysis below.

We see from (13.7) that, if (A1.9),(A1.10) are taken into account and if we set:

σ(α) =
c20
α2

∫ 1

1/4

dα1dα2

α2
1α

2
2

[

δ(
1

α
− 1

α1
− 1

α2
) + 2

−1
∑

n=−∞
22nδ(

1

α
− 1

α1
− 22n

α2
)
]

(13.8)

then:

Gh(ξ, ~ω, ~ω
′) = (τ − iβ−1~ω~ξ)(τ − iβ−1~ω′~ξ)γ(ξ2)

γ(z) =

∫ 2

1/2

dασ(α)e−z/4α
(13.9)

and the Fourier transform of Gh at zero time momentum appearing in (13.5),(13.6) has

the form, evaluated at the space momentum ~Ω:

Ĝh(~Ω, ~ω, ~ω
′) ≡

∫

dξei
~Ω~ξGh(ξ, ~ω, ~ω

′)

= 4(4π)2β3

∫

α3σ(α)dα
((~ω − ~ω′)2

4
+ αβ2~ω · ~Ω~ω′ · ~Ω

)

e−αβ
2~Ω2

(13.10)

so that we can rewrite the coefficient of the Wick monomial in the ψ in the direct graph

(13.5) more explicitly as:

2p
−(d+1)
0

∫

2−(d−1)hĜh(2
−h(pF /p0)~Ω, ~ω, ~ω

′)λ̃(~ω1, ~ω2, ~ω, ~ω
′)λ̃(~ω′, ~ω, ~ω3, ~ω4)d~ωd~ω

′ (13.11)

with ~Ω = ~ω1 + ~ω2 − ~ω − ~ω′; and in the exchange graph case:

−4

2

∫

2−(d−1)hd~ωd~ω′ p−(d+1)
0

[

Ĝh(2
−h(pF /p0)(~ω − ~ω′ + ~ω1 − ~ω3), ~ω, ~ω

′)λ̃(~ω1, ~ω, ~ω3, ~ω
′)λ̃(~ω2, ~ω

′, ~ω4, ~ω)

−Ĝh(2−h(pF /p0)(~ω − ~ω′ + ~ω2 − ~ω3), ~ω, ~ω
′)λ̃(~ω2, ~ω, ~ω3, ~ω

′)λ̃(~ω1, ~ω
′, ~ω4, ~ω)

−Ĝh(2−h(pF /p0)(~ω − ~ω′ + ~ω1 − ~ω4), ~ω, ~ω
′)λ̃(~ω1, ~ω, ~ω4, ~ω

′)λ̃(~ω2, ~ω
′, ~ω3, ~ω)

+Ĝh(2
−h(pF /p0)(~ω − ~ω′ + ~ω2 − ~ω4), ~ω, ~ω

′)λ̃(~ω2, ~ω, ~ω4, ~ω
′)λ̃(~ω1, ~ω

′, ~ω3, ~ω)
]

(13.12)
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The contribution to the beta functional of the above graphs is:

λ̃h−1(~ω1~ω2~ω3~ω4) = λ̃h(~ω1~ω2~ω3~ω4)+

+ 2

∫

2−(d−1)hp
−(d+1)
0 d~ωd~ω′Ĝh(2

−h(pF /p0)(~ω1 + ~ω2 − ~ω − ~ω′), ω, ω′)

λ̃h(~ω1, ~ω2, ~ω, ~ω
′)λ̃h(~ω

′, ~ω, ~ω3, ~ω4)+ (13.13)

− 2

∫

2−(d−1)h p
−(d+1)
0 d~ωd~ω′

[

Ĝh(2
−h(pF /p0)(~ω − ~ω′ + ~ω1 − ~ω3), ~ω, ~ω

′)λ̃h(~ω1, ~ω, ~ω3, ~ω
′)λ̃h(~ω2, ~ω

′, ~ω4, ~ω)

−Ĝh(2−h(pF /p0)(~ω − ~ω′ + ~ω2 − ~ω3), ~ω, ~ω
′)λ̃h(~ω2, ~ω, ~ω3, ~ω

′)λ̃h(~ω1, ~ω
′, ~ω4, ~ω)

−Ĝh(2−h(pF /p0)(~ω − ~ω′ + ~ω1 − ~ω4), ~ω, ~ω
′)λ̃h(~ω1, ~ω, ~ω4, ~ω

′)λ̃h(~ω2, ~ω
′, ~ω3, ~ω)

+Ĝh(2
−h(pF /p0)(~ω − ~ω′ + ~ω2 − ~ω4), ~ω, ~ω

′)λ̃h(~ω2, ~ω, ~ω4, ~ω
′)λ̃h(~ω1, ~ω

′, ~ω3, ~ω)
]

To evaluate the contribution (13.4) to the variations δ1, δ2 of the running form factors

λ(~ω; ~ω′) associated with the LC localization, as remarked above, we simply must evaluate

(13.11) and (13.12) at the Cooper pairs, i.e. for ~ω2 = −~ω1, ~ω4 = −~ω3. The results are:

δ1(~ω1, ~ω3) = −
∫

d~ωd~ω′ p−(d+1)
0 2−(d−1)h

Ĝh(2
−h(pF /p0)(~ω + ~ω′), ~ω, ~ω′)[λ(~ω1, ~ω)λ(~ω, ~ω3)− λ(~ω1, ~ω)λ(~ω3, ~ω

′)]

δ2(~ω1, ~ω3) = −4
∫

d~ωd~ω′ p−(d+1)
0 2−(d−1)h (13.14)

[

Ĝh(2
−h(pF /p0)(~ω − ~ω′ + ~ω1 − ~ω3), ~ω, ~ω

′)λ̃(~ω1, ~ω, ~ω3, ~ω
′)λ̃(−~ω1, ~ω

′,−~ω3, ~ω)

− Ĝh(2−h(pF /p0)(~ω − ~ω′ − ~ω1 − ~ω3), ~ω, ~ω
′)λ̃(−~ω1, ~ω, ~ω3, ~ω

′)λ̃(~ω1, ~ω
′,−~ω3, ~ω)

]

where the symmetry properties of (13.3),(13.10) have been used for the purpose of simpli-

fying the expressions.

At this point we must distinguish the d = 3 case from the d = 1 case. In the rest of this

section we continue with d = 3. The d = 1 case can be treated in a much more satisfactory

way and is deferred to §15.
Not surprisingly it is useful to represent, if d = 3, the functions in (13.14),(13.10) via

the spherical harmonics in the polar coordinates ϑ, ϕ of ~ω, which we denote with the usual

notation, namely Yl,m(~ω) = Pl,|m|(cosϑ)e
imϕ · Cl,|m|, where:

Pl,|m|(x) =(−1)|m|(1− x2)|m|/2 d
|m|

dx|m|Pl(x) Pl,|m|(x) = (−1)l+|m|Pl,|m|(−x)

Pl(x) =
(−1)l
2ll!

dl

dxl
(1− x2)l C2

l,|m| = (2l + 1)
(n− |m|)!
(n+ |m|)!

δ(~ω − ~ω′) =
∞
∑

l=0

l
∑

m=−l
Yl,m(~ω)Yl,m(~ω′) (13.15)
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(2l + 1)Pl(~ω · ~ω′) =
l

∑

m=−l
Yl,m(~ω)Yl,m(~ω′)

where (ϑ, ϕ) are the latitude and azimuth coordinates of ~ω in an arbitrarily prefixed frame

of reference on the Fermi sphere.

Thus we define g(l, h) by the expansion:

p
−(d+1)
0 2−(d−1)hĜh(2

−h(pF /p0)(~ω + ~ω′), ~ω, ~ω′) =
∑

l,m

g(l, h)Yl,m(~ω)Yl,m(~ω′) (13.16)

where we used the fact that the l.h.s. is a function of ~ω · ~ω′. Moreover g(l, h)∂−∂−→
h→−∞ b(−1)l

with b > 0, because 2−(d−1)hĜh is an approximate delta function with width 2h in the

variable ~ω + ~ω′. The positivity of b comes out of an explicit calculation, see below.

We can also write:

λ(~ω1, ~ω3) =
∑

l=odd,m

λlYl,m(~ω1)Yl,m(~ω3) ≡
∑

l odd

(2l + 1)λlPl(~ω1 · ~ω3)

δi(~ω1, ~ω3) =
∑

l=odd,m

δi,lYl,m(~ω1)Yl,m(~ω3) ≡
∑

l odd

(2l + 1)δi,lPl(~ω1 · ~ω3)
(13.17)

where only the odd l’s enter into λ, δ since they are separately odd in ~ω1, ~ω3 and furthermore

they are symmetric and rotation invariant in ~ω1, ~ω3 (the latter property also is needed to

explain the l–dependence of the coefficients).

Then, for all odd l, the g(l, h) are eventually negative for all negative h large enough in

modulus and simultaneously for all l:

δ1l = −(g(0, h)− g(l, h))λ2l ≤ 0 (13.18)

In fact g(0, h) ≥ |g(l, h)| since it is |Pl| ≤ 1 and:

g(l, h) = 4(4π)2β3

∫

α3σ(α)dα

∫

2−(d−1)h
( (~ω − ~ω′)2

4
+

2−2h(pF /p0)
2αβ2(1 + ~ω · ~ω′)2

)

e−(~ω+~ω′)2αβ22−2h(pF /po)
2

Pl(~ω · ~ω′) p−(d+1)
0 d~ω′

(13.19)

Furthermore, if l is odd, one realizes, by changing ~ω′ into −~ω′, that g(l, h) is ≤ 0 up to

a correction of order O(2h) coming from the second term in the integral in (13.19). The

limit as h → −∞ of the coefficient in the r.h.s. of (13.18) is −2b where b > 0 is the limit

of g(0, h). One can easily estimate an l-independent value of h such that for all smaller

values it is |g(l, h)| > b/2.

The theory of δ2 is more elaborate. We begin by remarking that, see (13.14):

δ2(~ω1, ~ω3) = δ̄2(~ω1 − ~ω3)− δ̄2(~ω1 + ~ω3) (13.20)

80



where, if ~Ω = ~ω − ~ω′ + ~ω1 − ~ω3 and N =
√
αβ2−h(pF /p0), and if the function σ̂ is

σ̂(α) = 42(4π)2β3α3σ(α)/[(
√
αβ(pF /p0)

(d−1)pd+1
0 ], we have:

δ̄2(~ω1 − ~ω3) = −
∫

σ̂(α)dα

∫

d~ωd~ω′

{N (d−1)[
~ω − ~ω′)2

4
+N2~ω · ~Ω ~ω′ · ~Ω]e−N2~Ω2}λ̃(~ω1, ~ω, ~ω3, ~ω

′)λ̃(−~ω1, ~ω
′,−~ω3, ~ω)

(13.21)

and we realize that δ2,l ≡ 2δ̄2,l for all odd l.

Therefore we study the distribution:

∫

{N2[
(~ω − ~ω′)2

4
+N2~ω · ~Ω ~ω′ · ~Ω]e−N2~Ω2}F (~ω1~ω3~ω~ω

′)d~ωd~ω′ (13.22)

where F is a test function, N →∞ and d = 3.

In appendix A2 we analyze (13.22) choosing:

F (~ω1~ω3~ω~ω
′) =

1

42
(λ(~ω1, ~ω3)− λ(~ω1, ~ω

′)− λ(~ω, ~ω3) + λ(~ω, ~ω′))·

(λ(~ω1, ~ω3) + λ(~ω1, ~ω) + λ(~ω′, ~ω3) + λ(~ω′, ~ω))

(13.23)

We show that the leading term as N →∞ is given by:

〈F 〉I(N∆) ≡ 〈F 〉1
8

∫

|y|<∆N

dy

∆N
[
1

2
+ (y2 − 1

2
)~ω1 · ~ω3]e

−y2 (13.24)

where, if Rϕ denotes the rotation by ϕ around the axis parallel to ~∆:

〈F 〉 ≡
∫

dϕ

2π
F (~ω1, ~ω3, Rϕ~ω3, Rϕ~ω1) ≡

≡
∫

dϕ

2π

1

42
(2λ(~ω1, ~ω3)− λ(~ω3, Rϕ~ω3)− λ(~ω1, Rϕ~ω1))·

· (2λ(~ω1, ~ω3) + λ(~ω1, Rϕ~ω3) + λ(~ω3, Rϕ~ω1))

(13.25)

It also follows that δ1 and δ2 verify the bounds:

|δ1| ≤ C(max λ2) (13.26)

|δ2| ≤ C(max λ2)[J0(N∆) +
1

N
] (13.27)

where

J0(x) =
1

x

∫ x

0

dyy2e−y
2 ≤ C x2

(1 + x3)
(13.28)
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The above bounds are not sufficient for the theory of the flow generated by the full

beta function, nor that of the reduced one in (13.4). One can find some better bounds by

making more use of the form of δ2; however we cannot really solve the problem even in

the case that all the higher orders are neglected. We reserve a heuristic discussion on this

point in §14.
In §15 we analyze the d = 1 case, which is very easy if treated with the above techniques,

the reason being that the Fermi surface contains only two points and therefore there are

no longer infinitely many marginal directions in the renormalization group flow.
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§14 Analysis of the recursion relation. Heuristic considerations on the case d = 3.

As repeatedly stressed (see observation after (7.10)) the recursion (11.30) for α, ζ, ν

involves scalars rather functions on the Fermi surface. A first interesting application of

this remark is that the condition of boundedness of the running couplings can be combined

with the immediate consequence of (11.30):

~υh−1 = Λ−h+1~υ0 +

0
∑

k=h

Λk−hBk(~υk, . . . , ~υ0) ≡ Λ−h(Λ~υ0 +
0

∑

k=h

ΛkBk(~υk, . . . , ~υ0)) (14.1)

If we look at the ν component of ~υh−1 we see that (14.1) becomes:

νh−1 = 2−h(2ν0 +
0

∑

k=h

2kB
(ν)
k (~υk, . . . , ~υ0))⇒ 2ν0 +

0
∑

−∞
2kB

(ν)
k (~υk, . . . , ~υ0) ≡ 0 (14.2)

where the first relation implies the second if one imposes the boundedness of the form

factors:

|~υh| ≤M (14.3)

Similarly imposing α−∞ = ζ−∞ we get a scalar equation. Hence the just mentioned

equations are two scalar equations formally fixing the values of ν0, α0. If the (~ω, ~ω′)-

independence of νh, αh, ζh had not been taken into account it would have appeared that

α0, ν0 should have been determined by imposing that ν−∞(~ω, ~ω′) = 0 and ζ−∞(~ω, ~ω′) =

α−∞(~ω, ~ω′) and the problem would have looked overdetermined.

Before studying the consequences of the form of the initial interaction on the ~ω de-

pendence of the more complicate form factors λh we recall the outcome of the analysis

of §11,§12. Setting λh = λ and λh−1 = λ′ and using a similar notation for the running

constants, (11.27) can be written:

λ′ =λ+B
(≥0;[1,2])
h,1 (α, ζ, ν;λ) + 2εhB

(≥1;≥1)
h,2 (α, ζ, ν;λ)

ν′ =2ν + 2εhB
(≥2)
h,3 (α, ζ, ν, λ)

α′ =α+ β′′ν2 + 2εhB
(≥2)
h,4 (α, ζ, ν, λ)

ζ ′ =ζ − β′′ν2 + 2εhB
(≥2)
h,5 (α, ζ, νλ)

(14.4)
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where we use a notation similar to (11.27) but this time the B functions depend only

on the variables on a single scale; they are formal power series with coefficients obeying

factorial bounds like (12.4). Thus we see that all the non linear terms referring to α, ζ, ν

have in front of them an extra 2εh with the exception of β′′ν2; hence they are, order by

order, small if the running constants are uniformly bounded.

This can be used to infer that one expects that, fixing conveniently the two free param-

eters α0, ν0, the flow generated by (14.4) has a solution verifying the two conditions that

αh − ζh → 0, νh → 0; and the convergence to 0 as h → −∞ of νh, αh − α−∞, ζh − ζ−∞
can be at a rate of O(2h):

|νh| ≤ const 2εh, |αh − α−∞| ≤ const 2εh, |ζh − ζ−∞| ≤ const 2εh (14.5)

Of course one would like to check the consistency of the assumption (14.3) at least

when the beta function recursion is truncated to second order: this is difficult because the

recursion relation for λh is still too complicated.

The idea to simplify it is to go back to §11 where we mentioned a possibility to use a more

complicated L operation, named LC , keeping the linearity of the operator LC , thus never
breaking the gauge invariance. Then use that the original dependence of the interaction on

the fields ψx implies, togheter with the gauge invariance, that the function λ(~ω1, ~ω2, ~ω3, ~ω4)

has to be rather special, just as it has been remarked for the αh(~ω, ~ω
′), ζh(~ω, ~ω′), νh(~ω, ~ω′).

A simple calculation shows that the functions λh must have the form:

λh(~ω1, ~ω2, ~ω3, ~ω4) =Λh(~ω1, ~ω3, ~ω4)− Λh(~ω2, ~ω3, ~ω4)

Λh(~ω1, ~ω3, ~ω4) =λh(~ω1,−~ω1, ~ω3, ~ω4)
(14.6)

where the functions Λh are rotation invariant and have the symmetry:

Λ(~ω1, ~ω2, ~ω3) = −Λ(~ω1, ~ω3, ~ω2) (14.7)

Hence we can think that the (14.4) is a recursion relation expressing the three scalars

αh, ζh, νh and the functions Λh(~ω1, ~ω2, ~ω3) in terms of the same quantities with higher

scale indices. Unfortunately there seems to be no projection operator, which projects a

function λ(~ω1, ~ω2, ~ω3, ~ω4) onto the functions of the form (14.6), defined by means of purely

algebraic operations. Hence we cannot make efficiently use of the above simplification.

The guide to our attempts to understand the flow of (14.4) has been the conjecture that

the λh, even in the form (14.6), still contain irrelevant terms which have to be taken out.

This is the interpretation of the choice of the new localization operator LC .
The operator PC , introduced in §11, see (11.5)÷(11.7), acts algebraically on λh and

therefore one can envisage performing the estimates of §10 anew with the localization

operator L replaced by a new localization operator which acts as before on the monomials

of degree two. On the monomials of degree four it acts first as in §7,§10 and, successively,

it changes the localized terms by altering their form factor from λh to PCλh.
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Then we easily check that all the contributions to the new B functional in the formula

analogous to (9.1), from graphs with more than two λ–vertices, are bounded as demanded

by (14.3) and the problem is reduced to the graphs of first and second order in λ (such

graphs are the only ones for which one cannot be helped by the extra powers of 2εh

discussed in §11. The exchange graph also gives no problem in the estimates, as shown by

the bound of δ2 in (13.27); in fact
∑

h J0(2
−h∆) ≤ const. But the direct graph definitely

gives a contribution contradicting (14.3) if λh(~ω1, ~ω3) is just supposed to verify (14.3),

since the bound (13.26) on δ1 cannot be improved.

The situation changes if, in addition to (14.3), one supposes that λh(~ω1, ~ω3)∂−∂−→h→−∞ is

of the form:

λh(~ω1; ~ω3) = fh(|2−h(~ω1 − ~ω3)|)− fh(|2−h(~ω1 + ~ω3)|) (14.8)

where fh(x) is a family of functions tending to 0 as x → ∞. Then the integrals in

(13.21),(13.14) can be estimated asymptotically and one gets an explicit form for the

leading term of (13.4). Nevertheless we have not been able to study the recursion equation,

not even to second order (i.e. (13.4)), under the hypothesis (14.8).

On a heuristic basis we present a remark which we think is of interest (stressing that

from now on the discussion is purely heuristic). The fact that the graphs with more than

two four lines vertices do not give problems in deriving bounds like (14.3) should mean that

they could actually be completely forgotten in the subtraction procedures. Hence the really

important part in the description of the flow of the form factors should be determined by

the two basic second order graphs. One can thus be led to consider seriously the recursion

to second order described by the two second order graphs built with two vertices with four

lines.

Consequently we shall try to study the reduced flow generated by the PC operation

(described by (13.14)). We look for a solution of the flow which asymptotically approaches

as h→ −∞ a function λh(~ω1, ~ω3) of the form (14.8).

We first want to discard the possibility that λh takes the form (14.8) with fh → f ,

where f is a regular function not identically zero. It is easy to check, using the estimates

on the second order graphs in §13, that the contribution of the direct graph to the flow

tends to vanish as h→ −∞ while the exchange graph gives a contribution which keeps f

fixed, (asymptotically in h), provided f verifies the fixed point equation:

f(x) =f(x/2)− I(x/2)f(x/2)2 f(∞) = 0

I(x) =C

∫

dα
α2σ(α)

c20

1

xβ(pF /p0)
√
α

∫ xβ(pF /p0)
√
α

0

y2e−y
2

dy

C ≡(2π)−2pd−1
F β−1

(14.9)

where σ(α), c0 have been defined in (13.7),(13.8); the relations (13.21), (13.24) and (13.25)

have also been used.
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The (14.9) can be rewritten in dimensionless form by introducing:

Ī(x) =

∫

α2σ(α)dα

c20

1

x
√
α

∫ x
√
α

0

y2e−y
2

dy

f(x) =gC−1f̄(β(pF /p0)x)

g ≡Cf(0)

(14.10)

We thus find that (14.9) becomes:

f̄(x) =f̄(x/2)− gĪ(x/2)f̄(x/2)2

f̄(0) =1
(14.11)

with the further condition f̄(∞) = 0. It is interesting to remark that the above equation

for f̄ admits a family of entire solutions. If one imposes the condition f̄(∞) = 0 one finds

that the only regular solution is f̄ = 0.

Hence we see that the exchange graph contribution to the beta function seem unable to

keep λh away from zero and at the same time a (regular) function of 2−h(~ω1−~ω3). On the

other hand one expects that if λh does not go to zero it has to become a function of 2−h(~ω1−
~ω3), see below. It is therefore very natural to think that the flow will asymptoticaly go to

a limit regime in which:

λh(~ω1; ~ω3) ∂−∂−→h→−∞ 0

νh → 0 αh → ζ−∞ ζh → ζ−∞
(14.12)

and the Fermi surface would exist and be normal.

The mechanism whereby λh(~ω1, ~ω3) cannot stay smooth in ~ω1, ~ω3 for too many values

of h could be that the exchange graph would be very small, as long as ~ω1, ~ω3 are fixed

(asymptotically it vanishes exponentially, as seen in §13) and the flow is determined by

the direct graph. The latter, however, acts trivially on the spherical harmonics expansion

of λh: see (13.18). And if the interaction is repulsive we see that the λl(h) component of

λh evolves, at fixed l and large h, essentially as:

λl(h− 1) =λl(h)− βλl(h)2 i.e.

λl(h) ≈
λl(0)

1− βλl(0)h
(14.13)

where β > 0 is g(0,−∞) with the notations of (13.18), and (by (5.22), (5.23)) λh(0) ≥ 0.

Hence the low angular momenta components are depressed as h grows, provided one

understands why they stay non negative, and their relative importance diminishes and λh

looks more and more irregular as a function of ~ω1, ~ω3 so that the (14.12) seems at least an

interesting possibility.
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From the above argument we also see that the sign of the potential is relevant and the

whole mechanism can only work if the interaction is repulsive.

We refrain from elaborating on the theme as the discussion would be based on a too

strongly conjectural basis.

However we formulate in a precise fashion our basic conjecture: the map (13.4) acting on

functions λh(~ω1, ~ω3) with a Legendre expansion, like the first of (13.17), with non negative

coefficients, is such that the iterates of the map behave as the first of (14.12) with λh

verfying (14.12).
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§15 One dimensional models. Anomalous scaling.

In the d = 1 case the calculations are simple: the (13.14) still hold but this time the

integrals are in fact sums over two possibilities and they can be immediately computed.

In this section we write x = (t, ~x), k = (k0, ~k) and the quasi particle momenta will

be denoted ω = ±1 or, when we want to stress that ω can be thought of as the space

component of the vector (0, o), we shall also use the notation ~ω.

The factors 2−2h become in the d-dimensional cases 2(d−1)h, hence they are absent if d =

1. Furthermore the symmetry properties of λ imply that in the expression for δ1 we must

have ω = −ω′ while in δ2 the antisymmetry forces ω = −ω1, ω
′ = −ω3, ω1 = −ω3 in the

first term and ω = ω1, ω
′ = −ω3, ω1 = ω3 in the second; the integrals over ω’s are averages,

i.e.
∫

dω = 2−1
∑

ω=±1, and we see that if β0 = Gh(~0, ω,−ω) = 4(4π)2β3
∫

α3σ(α)dα it

is:

δ1 = −β0λ2 +O(22h) δ2 = β0λ
2 +O(22h) (15.1)

where we set, in this section, λ ≡ λ(ω, ω), δi ≡ δi(ω, ω); a convenient notation as there is

only one coupling constant λ in terms of which the λ(ω1, ω3) can be expressed. It is in

fact:

λ(ω1, ω3) ≡ ω1ω3λ (15.2)

A complete calculation, including the non leading corrections, is also easy and the result

is:

δ1 + δ2 = (β12
2h + o(22h))λ2 β1 < 0 (15.3)

The above cancellation of the leading terms in (15.1) is, however, accidental: to remove it

one should investigate the higher order terms in the beta function. The calculations of the

third order, although straightforward, are quite delicate and with many cancellations: we

only give the results. We find that the beta functional is, to third order in λ:

λh−1 = λh(1 + β3λ
2
k + . . .) + 22h(β1λ

2
h + . . .) (15.4)

where 0 < β3 <∞.

The third and higher order terms contain also the other running couplings but (15.4) is

already sufficient to infer that the theory is not asymptotically free. This is unfortunate as

in the one dimensional case it is clear that the model is a kind of Gross-Neveu model and

one should be able to apply the work [19] to deduce that if |λh|, |αh|, |νh|, |ζh| < M and M

is small enough then the formal power series describing the beta functional is convergent

and one could have hoped to study it completely via the technique of [19,24].
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Unfortunately the work [19] treats the running couplings flow and obtains analyticity

properties without explicitly referring to our beta functional (introduced in [16,17,18]):

and we have not really gone through the work [19] to check that their results imply the

analyticity of our beta functions. Hence strictly speaking we do not have yet a formal

proof of the analyticity of the beta function. We shall come back on this technical problem

in a later publication.

One can hope to use the convergence of the beta functional to look for a different type

of asymptotic behaviour of the running form factors.

In situations of lack of asymptotic freedom it is by now well known that one ought to

look for anomalous scaling behaviour: this could manifest itself as anomalous dimension

when the relevant Schwinger functions decay at infinity with a power |x|2η faster than the

corresponding free case; or they decay at infinity faster by c(log |x|)c′. In the first case

one says that the system has an anomalous dimension η (and η can have any sign); in the

second case η = 0 and the anomaly is just in the c, c′-logarithmic corrections.

Our formalism, so far, has not been developed so that it could allow for anomalous

scalings. It is, however, straightforward to do so, and we only describe the variations of

the technical details to adapt the work of §6÷10 to the anomalous cases.

We follow a procedure learnt from G. Felder in scalar field theories. The fact that

ω = ±1 is heavily used, however, hence what follows is typically one dimensional.

Conceptually one introduces a sequence Z0, Z−1, . . . of constants. The constants have

to be dynamically determined: it emerges from the coming analysis that the possibility of

anomalous scaling may work only if the already analyzed method to exhibit normal scaling

fails, and viceversa.

One thinks of defining a sequence of fields ψ̄(≤h) which are defined in terms of the Zh
and of the fields ψ(≤h) with propagators defined by (4.5) as:

ψ̄(≤h) = Z−1/2ψ(≤h) Z = Zh (15.5)

and we shall denote the integration over ψ̄(≤h) by PZ(dψ̄(≤h)) for Z > 0.

The recursive definition of the sequence Zh proceeds as follows. One starts from Z0 = 1

and considers the relevant functional integral:

∫

PZ0
(dψ̄(≤0)) exp−V (0)(Z

1/2
0 ψ̄(≤0)) (15.6)

As already done in §14 we can use the remarkable symmetry of V (h) implying that V (h)

depends only on the particle fields:

ψ̄
(≤h)±
~x,t ≡

∫

e±ipF ~ω~xψ̄(≤h)±
~x,t,~ω d~ω (15.7)

and we can think PZh
(dψ̄(≤h)) as a distribution on the fields ψ̄

(≤h)
x or as a distribution

on the quasi particle fields (as we please!), as long as we integrate functions of the fields

depending on ψ̄
(≤h)
~x,t,~ω via the particle fields fields (15.7).
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We use (15.5) and, hence, the possibility of representing ψ̄(≤h) as:

Z
−1/2
h ψ(h) + (Zh/Zh−1)

−1/2ψ̄(≤h−1) (15.8)

where ψ̄(≤h), ψ(h) are either particle or quasi particle fields. Integrating (15.6) over ψ(0)

we reduce the integration over ψ̄(≤0) to an integral over ψ̄(≤−1):

∫

PZ−1
(dψ̄(≤−1)) exp−V̄ (−1)(Z

1/2
−1 ψ̄

(≤−1)) (15.9)

where the V̄ (−1) is not the same as the effective potential introduced in §4. If Z−1 is known

then V̄ (−1) has to be determined so that the (15.9) holds. We shall see that this is possible

in many ways (e.g. Z−1 = 1 has already been discussed): we choose here to determine Z−1

by imposing that V̄ (−1) does not contain one of the relevant terms; precisely we impose

that Lψ+∂tψ
− has a vanishing coefficient.

Introduce the kernel operators Ch with Fourier transform:

Ch(k) = e+(k20+(~k2−k2F )2)2−2hp−2
0 /4 (15.10)

operating on the particle fields ψ̄x or:

Ch(k, ~ω) = e+(k20+(β~ω~k+~k2/2m)2)2−2hp−2
0 /4 (15.11)

operating on the quasi particle fields ψ̄x,ω. We shall see that the above definition of Z−1

is possible only if one allows new fields to appear; the new fields are:

(∂t + iβ~ω ~D~ω))(1− Ch)ψ̄(≤h)
x,~ω or

(∂t + (−~∂2 − p2F )/2m)(1− Ch)ψ̄(≤h)
x

(15.12)

The actual construction is explained in detail below.

The (15.10), (15.11) look horribly diverging at ∞, so that one shall have to be very

careful in studying the action of Ch: one shall be able to apply it only to fields which

have an ultraviolet cut off strong enough to compensate for the divergence of Ch(k) (as,

however, will always be the case).

The new fields (∂t + iβω · D~ω)(1 − Ch)ψ̄
(≤h)
x,~ω will be added to the list (7.1) and the

recursive construction of the fields ψ̄(≤h) and of the Zh proceeds in the same way as in the

normal case.

At the end of the first step we have built Z−1 and we can proceed to the construction

of the V̄ (−2). The calculations can be performed perturbatively by using the cumulant

expansion.

Before proceeding we shall give some interpretation of the new integration procedure.
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We can think of denoting PZh
(dψ̄(≤h)), PZh

(dψ̄(h)) the integrations with respective

propagators:

Z−1
h

h
∑

k=−∞
2kgk, Z−1

h 2hgh (15.13)

To simplify the notations we do not include in the quasi particle propagators the δ(~ω−~ω′)

functions (which in this case are Kronecker deltas), see (4.5), which in some sense are part

of them: but of course in computing the graphs we always impose equality of the ~ω’s of

two half lines composing an inner line.

we then define the sequence Zh, V̄
(h) so that the integral (15.6) is given by:

∫

PZh−1
(dψ̄(h−1))

∫

PZh
(dψ̄(h))eV̄

(h)(Z
1/2

h
ψ̄(≤h)) (15.14)

for all h and with V̄ (h) not containing the terms Lψ+∂tψ
−.

If the effective potentials are defined and the form factors are bounded we can interpret

this as saying that the Schwinger functions with infrared cut off at p02
h behave as in the

free case with a Zh correction:

S(≥h)(2
−h(x− y), ω) ≃ Sfree(≥h)(2

−h(x− y), ω)/Zh as h→ −∞, (x− y) = fixed (15.15)

where ≃ means that the logarithms of both sides, divided by h, have the same limit.

In other words assuming that, to leading order as h → ∞, it is Zh = 2−2ηh we see

that this means that the system has an anomalous dimension η and if, to leading order,

Zh = c(−h)c′ then we see that the system has an anomalous c, c′-logarithmic scaling.

We do not go through the heuristic argument necessary to establish the above (15.15)

on the asymptotic properties of the Schwinger functions: it is well known, (see [28], chapter

9)). We just mention that, in presence of an infrared cut off at frequency h the (3.9) is

modified into:

S(≥h)(x−y) =
1

Zh
g(≥h)(x−y)−

1

Z2
h

∫

g(≥h)(x−z)V (h)
eff (z−z′)g(≥h)(z′−y)dzdz′ (15.16)

Suppose that one could show that:

V
(h)
eff (z, ~ω, z

′, ~ω′) =Zh2
hνhδ(z − z′) + Zhδhδ(z − z′)(iβ~ω′ ~D~ω′)+

+ Zhw
′
h(z − z′)

(15.17)

where ∂′t, ~D~ω′ are differential operators acting to their right on the z′ variables. Then it

would follow that:

Ŝ(≥h)(k) =
ĝ(≥h)(k)

Zh

(

1 + νh + (~k2 − p2F )δh)ĝ(≥h)(k) + w′
h(k)ĝ(≥h)(k)) (15.18)
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Hence we can use the obvious modification of definitions 1) and 2) of §5 to define the

anomalous Fermi surface (with the same remarks, limitations and comments).

The theory of the flow of V̄ (h) can be done by using the tree expansion. We begin

by writing the functional integral (15.6) as a formal integral over the grassmanian fields

ψ̄+, ψ̄− of the expression:

e−T0(Z
1/2
0 ψ̄)−V̄ (0)(Z

1/2
0 ψ̄) (15.19)

where Z0 = 1, V̄ (0)(Z
1/2
0 ψ̄) ≡ V (0)(ψ̄), and taking C0 from (15.10) T0 is defined by:

T0(ψ̄) ≡
∑

ω

∫

ψ̄+
x,~ω(∂t + iβ~ω ~D~ω)C0ψ̄

−
x,ωdx (15.20)

with ~D denoting the covariant space derivative.

Since exp−T0(Z1/2
0 (ψ)) dψ is the integration with respect to a field with propagator

with Fourier transform:

Z0
−1g(≤0)(k) ≡ Z−1

0 C−1
0 (k)(−ik0 + βkω + k2/2m)−1 ≡ Z0

−1g(0) + Z0
−1g(<0) (15.21)

we can write the integration over ψ by representing ψ as (ψ(0)+ψ̃)Z0
−1/2 with ψ(0) having

propagator g(0)(k) and ψ̃ having propagator g(<0)(k) , see §4.
The integration over ψ(0) leads, via the tree expansion, to:

e−T−1(Z0
1/2ψ)−V (−1)(Z0

1/2ψ)) (15.22)

where V (−1) is defined exactly as in §6,7,9.
Hence the relevant part LV (−1)(Z0

1/2ψ) should look like:

∫

dx[
∑

ω,ω′

Z0

(

nψ+
x,~ωψ

−
x,~ω′ + iaψ+

x,~ω~ω
′ ~D~ω′ψ−

x,~ω′ + zψ+
x,~ω∂tψ

−
x,~ω′

)

eipF (~ω−~ω′)~x

+ Z2
0 lψ

+
x,1ψ

+
x,−1ψ

−
x,1ψ

−
x,−1]

(15.23)

We see that (in general z 6= 0 and) the relevant term involves a non zero coefficient z for

∂t. Therefore, according to the prescription to define Z−1, (15.23) will be rewritten:

∫

dxZ0z
∑

~ω,~ω′

ψ+
x,~ω(∂t + i~ω ~D~ω)C−1ψ

−
x,~ω′e

ipF (~ω−~ω′)~x+

∫

dx
[

∑

ω,ω′

(

Z0nψ
+
x,ωψ

−
x,ω′ + iZ0(a− z)ψ+

x,ωβω
~Dωψ−

x,ω′e
i(o−o′)pF x)+

+ Z2
0 lψ

+
x,ωψ

+
x,−ωψ

−
x,ωψ

−
x,−ω

]

+
{

∫

dx
∑

ω,ω′

ei(o−o
′)pF x (15.24)

Z0zψ
+
x,ω(∂t + iβ~ω′ ~D~ω′)(1− C−1)ψ

−
x,ω′

}
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The exponential of the sum of (15.24) plus the irrelevant terms has to be integrated with

respect to the distribution PZ0
(dψ̄(≤−1)). We can again make use of the structure of

the effective potentials, as in §14, to claim that the integral must be a function of the

quasi particle fields which is expressible in terms of the physical fields. If we imagine for

a moment that the effective potentials are expressed in either way then we see that the

free distribution PZ0
in the integration of the exponential of (15.24) plus the sum of the

irrelevant terms can be regarded as an integration with respect to particle fields or to

quasi particle fields: the value of the integral of the exponential of (15.24) is the same.

(This apparently paradoxical property is most clearly understood in the case of gaussian

integrations where it can be checked explicitly: it is an algebraic consequence of the Wick

integration rule and it holds also in our case where the integrals are only defined via series

expansions and the Wick rule: it is in some sense analogous to the Ward identities in

quantum electrodynamics).

The latter remark shows that if we temporarily return to the integral of the exponential

of (15.24), plus the irrelevant terms, interpreting the PZ0
(dψ̄(≤−1)) as an integral over

the particle fields, we can think that the first term of (15.24) is expressed in terms of the

particle fields as:
∫

dxZ0zψ
+
x (∂t + (−~∂2 − p2F )/2m)C−1ψ

−
x (15.25)

where Ch is defined in (15.10). Hence we can put it togheter with the similar term in

the free integral PZ0
(dψ̄(≤−1)) changing it into PZ−1

(dψ̄(≤−1)) where Z−1 is defined by:

Z−1 = Z0(1 + z).

Finally we can again apply the above remark to think that the integration with respect

to PZ−1
(dψ(≤−1)) is over the quasi particle fields rather than the particle fields. If we

define the operator V̄
(−1)
L (Z

1/2
−1 ψ̄) to be equal to the term in square brackets in (15.24)

and the operator V̄
(−1)
R (Z

1/2
−1 ψ̄) as the difference between V (−1)(Z

1/2
0 ψ̄) and the sum of

the first and second terms of (15.24), we see that V̄ (−1)(Z
1/2
−1 ψ̄) can be written as a sum

of the form:

V̄
(−1)
R (Z

1/2
−1 ψ̄) + V̄

(−1)
L (Z

1/2
−1 ψ̄) = V̄

(−1)
R (Z

1/2
−1 ψ̄) +

∫

dx

[(Z−1

∑

ω,ω′

(iδ−1ψ
+
x,ωω

′ ~Dω′ψ−
x,ω′ + 2−1ν−1ψ

+
x,ωψ

−
x,ω′)e

i(o−o′)pF x+

+ Z2
−1λ−1ψ

+
x,1ψ

+
x,−1ψ

−
x,1ψ

−
x,−1)]

(15.26)

with Z−1 defined after (15.25), and Z−1δ−1 ≡ Z0(a− z). Furthermore (15.22) becomes:

e−T−1(Z
1/2
−1

ψ̄)−V̄ (−1)(Z
1/2
−1

ψ̄) (15.27)
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At this point we iterate the procedure and define V̄ (h)(Z
1/2
h ψ) of the form:

V̄ (h)(Z
1/2
h ψ) = V̄

(h)
L (Z

1/2
h ψ) + V̄

(h)
R (Z

1/2
h ψ)

V̄
(h)
L (Z

1/2
h ψ) =

∫

dx
[(

Zh
∑

~ω,~ω′

(iδhψ
+
x,~ω~ω

~D~ωψ−
x,~ω′+

+ 2hνhψ
+
x,~ωψ

−
x,~ω′)

)

ei(~ω−~ω
′)pF x + Z2

hλhψ
+
x,1ψ

+
x,−1ψ

−
x,1ψ

−
x,−1

]

(15.28)

and the above analysis also implies that V̄
(h)
R is expressed by a tree expansion exactly

identical to the one associated to the localization operator L in the normal cases of the

preceding sections with the (minor) change that some new two lines vertices may be present

in the graphs, corresponding to the new fields:

(∂t + iβ~ω ~D~ω)(1− Ch′)ψ−
x,~ω (15.29)

with h′ ≥ h. The operation L is extended to the two and four external lines graphs

containing lines of the form (15.29) simply by using (7.7) and computing the result: it

turns out that the result of the action of L on such operators is simply zero.

The beta functional defines a map of the form (9.1) which is constructed by the same

rules with more graphs, to take into account the new possibilities that arise because of the

new terms with the fields (15.29) above, and with a suitable factor (Zh/Zh−1)
n multiplying

each equation (with n = 2 for the equation associated with λh−1 and n = 1 in the cases

corresponding to δh−1, νh−1).

Furthermore one finds, of course, no recurrence relation for the ζh running constant

which by construction is no longer present. The αh running coupling too is no longer

present in some sense: it is replaced by a conceptually new constant which we denote with

a different name, δh; finally there is a new equation which replaces the one for the ζh which

determines the value of Zh/Zh−1 in terms of the previous values of the running couplings.

The lines coming from the fields (Dt + ipF ~ω ~D~ω)(1− Ch′)ψ− originated by the vertices

of the above type do not cause problems in the analysis of the new beta function as they

necessarily occur as internal lines and the bigness of Ch′ is compensated by the ultraviolet

cut off in the propagators. It is in fact easy to see that these internal lines just behave

as lines of scale h′ and, upon summation over h′, as irrelevant terms (the reason is that

1 − Ch′(k) is big for k > 2h
′

, but the fields on which it operates have ultraviolet cut off

precisely at k ≤ 2h
′

). Hence it behaves as a hard line of scale h′ with the power counting

(in the dimensional estimates corresponding in this case to those of §10) of (∂t + i~ω~∂)ψ−

and contribute essentially only on the scale h′ (and therefore no localization operation

is necessary to control their contributions on scales h < h′: explaining why L has been

extended as described after (15.29)).

An explicit calculation of the lowest orders of the beta functional is an easy repetition

of the previous calculations. The only difference is that one should take into account the
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contributions from the new two lines vertices (which however start at fourth order in the

λh equation and to third order in the δh equation).

The result is very similar to the normal scaling case (11.31):

λh−1 =(Zh/Zh−1)
2
[

λh + λ3hB1(λh) + δhλ
2
hB2(λh, δh)+

+ ν2hB3(λh, δh, νh) + 2hR̄1(λh, δh, νh, 2
h)
]

δh−1 =(Zh/Zh−1)[δh + λhδhB4(λh)) + ν2hB5(λh, δh, νh)+

2hR̄2(λh, δh, νh, 2
h)
]

νh−1 =2(Zh/Zh−1)[νh + νhλ
2
hB6(λh)+ (15.30)

+ δhλ
2
hB7(λh, δh, νh) + 2hR̄3(λh, δh, νh, 2

h)
]

1 =(Zh/Zh−1)[(1 + λ2hB8(λh)+

+ δhλ
2
hB9(λh, δh) + λ2hνhB10(λh, δh, νh) + 2hR̄4(λh, δh, νh, 2

h)
]

where we have computed a little more carefully the lowest terms to find out the minimal

power to which each running constant is raised; and the functions Bj , R̄j are analytic in

their arguments λh, δh, νh (with a suitably small radius M of convergence). This conver-

gence for |λk|, |νk|, |δk| small enough, should be again a consequence of the work [19], with

the same warning spelled out n the comment following (14.4) and in the introduction.

Furthermore the Bj can be taken h-independent (note however that the R̄j , depending ex-

plicitly on t = 2h, introduce a h dependence). The R̄j vanish to second order in λh, δh, νh.

Note that the terms depending only on λh are missing from the second of (15.30) in

the B-part: this is essential and it repesents one more motivation for introducing the

anomalous dimension. They disappear as a consequence of the fact that at each step δh is

essentially the difference between the old running constants αh − ζh and the variations of

αh, ζh have the same term of O(λ2h), see the B5 terms in (11.31). A moment of thought

shows that this may mean that the discussion of the qualitative behaviour of the iterates

of the map (15.30) is rather different from the corresponding normal scaling case.

The lowest orders of the functions Bj are explicitly computable; for instance: B1(λ) =

β3λ
2
h + . . ., or B8(λ) = β′

2λ
2
h + . . ., where the coefficients β3, β

′
2 are the same as those

already introduced in the case of the normal scaling discussion (see (15.4)).

It is convenient to eliminate completely the factors Zh/Zh−1 from (15.30), using the

last of (15.30) and expanding the denominators in power series:

λh−1 =λh + λ3hG1(λh) + δhλ
2
hG2(λh, δh) + ν2hλ

2
hG3(λh, δh, νh)+

+thR1(λh, δh, νh, th)

δh−1 =δh + λ2hδhG4(λh, δh) + λ2hνhG5(λh, δh, νh) + thR2(λh, δh, νh, th)

νh−1 =2νh + νhλ
2
hG6(λh, δh, νh, th) + δhλ

2
hG7(λh, δh, νh, th)+

=3(λh, δh, νh, th) (15.31)

th−1 =2−1th
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having set th ≡ 2−h: the functions Gj , Rj are smooth in the (trivial) parameter th to any

order and are analytic in their arguments λh, δh, νh for small values, uniformly in th. The

Rj vanish to second order in the λ, δ, ν variables.

Clearly the first question is whether: β3
≥
<
2β′

2. If β3 < 2β′
2 we see that the first and

the fourth of (15.30) have interesting consequences. If by fixing suitably the initial δ0
(i.e. the initial α0) and ν0, the constants δh and νh approach 0 as h→ −∞, then λh → 0

as h→ −∞ and this happens at the rate O(1/|h|1/2), hence:

Zh ≈ exp

0
∑

k=h

log(1 + β′
2λ

2
k) ≈ c|h| (15.32)

and a more careful analysis shows that c = β′
2λ

2
0(1 + o(λ0)), and we see that we have, in

this case, logarithmically anomalous scaling with exponent c′ = 1 and c proportional to

λ20.

Let β3 > 2β′
2 and consider the analytic function B(λ) = λ2G1(λ). Then we look for a

non trivial solution λ∗ of the equation:

λ = λ(1 +B(λ)) (15.33)

Clearly the existence of such a solution would be easy if the size of the ratio β3/2β
′
2 was

very big and if β−1
3 was very small compared to the radius of convergence of the series for

B1, B8: and in this case the point λ∗ would be an attractor for the map λ′ = λ(1+B(λ)).

Therefore it could be possible to deduce from (15.30) that if λ0 was small enough then

ν0, δ0 could be so chosen that the complete flow behaved as:

λh → λ∗, δh, νh → 0, Zh ≈ 2−2ηh ≡ (1 +B8(λ
∗))−h > 1 (15.34)

and therefore we would have positive anomalous dimension independent of the actual value

of the initial λ0. Heuristically this should mean that the singularity at |~k| = pF of the

Fourier transform of the Schwinger function changes nature from the discontinuity of (0.2)

to a singularity |~k2 − p2F |2ηsign(pF − |~k|).
The existence of the non trivial fixed point could be checked if the above inequalities

among the constants β′
2, β3 and the radius of convergence were strong enough: one could

envisage trying a computer assisted proof of this fact. One is however a little hesitant

on starting this program as there is no guarantee that it will work, since the inequalities

we hope for are, in any case, just sufficient conditions for the existence of the anomalous

Fermi surface.

Fortunately this extra work, and a rigorous analysis of the above possibilities, seems to

be not necessary at all. There is a third possibility, not yet examined, namely β3 = 2β′
2!

and one may even envisage that in (15.31):

G1 ≡ 0 (15.35)
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i.e. the leading term in (15.31) vanishes, and one is left only with the corrections to scaling

containing the asymptotically vanishing factor th ≡ 2h and terms containing νh or δh as

factors.

This is a very interesting possibility: philosophically the best; because it permits to have

an anomaly which varies continuously with the strength of the interaction at least for small

interaction. In such case the flow will be entirely determined by the terms proportional to

th and hence of size O(2h), and it will be very trivial. Fixing conveniently ν0, δ0 we would

have a flow in which:

λh∂−∂−→h→−∞ λ−∞(λ0),
Zh
Zh−1

∂−∂−→
h→−∞ 1/κ(λ0), νh∂−∂−→h→−∞ 0, δh∂−∂−→h→−∞ 0 (15.36)

with λ−∞, ζ−∞ analytic near λ0 = 0 and with λ−∞ divisible by λ0 and log κ(λ0) positive

near 0 and divisible by λ20 .

Since the series for the Gj are convergent the above is the only way one could have

a flow of running couplings implying anomalies of the type (15.36) under the additional

assumption that λh, δh, νh never get out of a circle of radius O(λ0). This is an anomaly

2η = log2 κ(λ0) = O(λ20) > 0, which is very different from the previously considered ones

which were independent on λ0.

Of course one could envisage intermediate cases in which the functions Gj functions

vanish up to a finite order only. This would not change the situation as it is easy to see

that if they agree to order n then the anomaly is logarithmic with c′ = 1 − 2/n, hence

again independent on λ0 and different from (15.36).

Therefore a way to prove that (15.35) holds is simply to show the existence of a model

in which there is anomalous dimension analytic in λ0 at 0 and in which the flow of the

constants δh and νh is trivial.

It is not even necessary that the model be in the class introduced in §1, considered
so far; it is sufficient that it can be studied via the renormalization group and that it is

described by a beta function with the same Gj as above.

Such models do indeed exist and can be taken to be the Luttinger model or its slight

variation introduced by Mattis and Lieb [25,26,27]: the exact solution of such models by

Mattis-Lieb [26,27], shows that it has anomalous dimension η = O(λ20).

We shall choose here, as a reference model, the above Mattis Lieb variation of the

Luttinger model and not the Luttinger model itself (which, in many respects, would be

equally good) because

a) the variation has been adapted to spinning models, [30], and later we want to make

some comments on the extensions of our work to such cases,

b) the bosonic representation (15.46) used below works for the Mattis Lieb model.

On the other hand the Mattis Lieb variation of the Luttinger model corresponds in our

language to a model confined in an interval [0, L] with periodic boundary conditions and

with propagator:

g(t, ~x; ~ω) =
1

(2π)2

∫

dk0d~k
ei(k0t+

~k~x)

−ik0 + β~ω~k
(15.37)
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with an interaction somewhat artificial because it cannot be written in terms of the particle

fields ψt,~x but only in terms of the fields ψ(t,~x),~ω which are the quasi particles fields (thus

deprived of a direct physical interpretation). Nevertheless it is an interaction acceptable

by our formalism which works always in the quasi particle language. The interaction is

defined to be:

∫

dtd~xd~yλ0(~x− ~y)δ(t− t′)(
∑

~ω

ψ+
(t,~x),~ωψ

−
(t,~x),~ω)(

∑

~ω

ψ+
(t′,~y),~ωψ

−
(t′,~y),~ω)

+
∑

~ω

∫

νψ+
x,~ωψ

−
x,~ωdx+

∫

σdx+∆E

(15.38)

where ν, σ are suitable (possibly divergent) constants, and ∆E is a trivial extra term

(described below, see (15.40)).

We shall fix our model to be (15.38) deprived of the extra term ∆E just because some

formulae are neater (but we stress that this modification changes the Mattis Lieb model

in a trivial way: the energy levels are shifted and the Schwinger functions do not change).

The reason for the introduction of the ν, σ constants has its root in the fact that (15.37),

with a linear dispersion relation, gives rise to theories with an ultraviolet problem.

The ν, σ can be determined by the introduction of a sharp ultraviolet cut off, say at

2Up0 with p−1
0 = [range of the potential λ0], and by imposing that the field theory is well

defined on scale 0 and on this scale it is described (uniformly in U) by an effective potential

V (0) which has short range in the same sense in which the effective potentials V (h) met in

the previous theories have short range for h < 0.

In particular it will be possible to identify a relevant part and an irrelevant part of V (0)

and, setting Z0 = 1, proceed to study the flow of V (h) for h < 0 in the same way as in the

real model: it would be simpler as one can now simply use only the quasi particle fields

without needing the symmetry allowing us to switch from particle fields to quasi particle

fields when desired (this is quite fortunate as the symmetry, in fact, is not present in this

case being already broken in the initial interaction (15.38)).

It should be noted that ν, σ do depend upon the ultraviolet regularization chosen to

give a meaning to the initial hamiltonian. Such ultraviolet regularization is not explicitly

mentioned in [25,26,27]: it appears, however, that the authors proceed as if one had a

sharp cut off at frequency U on the space momenta (i.e. there are no particles nor holes

with momentum |~k| ≥ p02U ).
In this case, however, since the model is soluble one can in fact even compute explicit

expressions for the counterterms. It is easily found (by suitably interpreting [26]) that the

correct choice is:

ν = −4(2Up0 + pF )λ̂(0)/2π, σ = (2Up0 + pF )
2λ̂(0)/π2 (15.39)

This result stems from the fact that one can check that the interaction (15.38) in the

grassmanian fields corresponds to a hamiltonian of interaction equal to the operator H ′ in
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(4.6) of ref. [27] plus (using here the notations of [27]) a (finite) correction:

∆E =
λ̂(0)

L

(

∑

k>0

(a∗k,1ak,1 − a−k,1a∗−k,1 + a∗−k,2a−k,2 − ak,2a∗k,2)
)2

(15.40)

Alternatively one can see that (15.39) inserted into (15.38) can be simply rewritten as

(15.38) itself without the σ, ν terms provided in the fourth degree interaction term one

replaces the monomials in the fields by their Wick products: this prescription seems better

as it is formally regularization independent. If we decided to use a regularization with

rotational symmetry (for π/2 rotations) in the space of (k0, ~k) then the Wick product

would coincide with the ordinary product because the propagator so regularized would

vanish at zero distance, by symmetry. In this case the parameters ν, σ would vanish,

i.e. they would be very different from those in (15.39).

The extra term (15.40) in the interaction is an operator which commutes with the rest of

the hamiltonian: hence our variation of the Mattis Lieb version of the Luttinger model is a

trivial one and it can be solved by exactly the same method and leading to the same ground

state and to the same pair Schwinger function (the excited levels are trivially related to

the ones of the model without the extra term (15.40)).

For purposes of comparison with [26,27] one considers operators in Fock space making

the following identification of the operators ψ±
1 , ψ

±
2 with our ψ±

ω :

ψ±
1 (~x)←→ e±ipF ~xψ±

(~x,0),+, ψ±
2 (~x)←→ e∓ipF ~xψ±

(~x,0),− (15.41)

Note that in [26,27] only the fields ψ±
α (~x, 0) ≡ ψ±

α (~x) are considered; but consistently with

§2 above one could introduce ψ±
α (~x, t) as:

ψ±
α (~x, t) = etT0ψ±

α (~x)e
−tT0

T0 =

∫ L

0

d~x
[

(ψ+
1 (~x)∂ψ

−
1 − ψ+

2 (~x)∂ψ
−
2 )− pF (ψ+

1 (~x)ψ
−
1 (~x) + ψ+

2 (~x)ψ
−
2 (~x))

]

(15.42)

so that, in general:

ψ±
1 (~x, t) = e±ipF ~xψ±

(~x,t),+, ψ±
2 (~x, t) = e∓ipF ~xψ±

(~x,t),−, (15.43)

Proceeding as in §3 one can put the problem in the language of functional integration

with respect to grassmanian fields with propagator (15.37).

In this model the ultraviolet cut off is lowered from U to 0 by using methods of su-

perrinormalizable field theory. The lowering of the cut off is a necessary step because our

methods work only if the range of the interaction is the same as that of the ultraviolet cut

off. In the real model this is a minor problem (as mentioned in the introduction) but in

the case of the Mattis Lieb model it is more serious.
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The reason is that the free propagator behaves, in momentum space, as 1/|k| when
either k0 or ~k go to ∞: while in the real model the behaviour as ~k →∞ is as 1/~k2.

For heuristic purposes one can begin by studying a formal perturbation theory expres-

sion for the effective potential, on scale p−1
0 , V (0): and in fact this suggests what to do to

go beyond the formal level.

One starts by integrating the high frequency components of the field (i.e. the frequencies

higher than p0) directly in one step, without using any scale decomposition. We do not use

the graph elements of §8, (8.1),(8.2); if we adopt the convention of writing the interaction

in Wick ordered form there is only one graph element that matters, namely the first of

fig(2.6).

If one examines the perturbation theory formulae for the effective potential one realizes

that ultraviolet divergences can only be present in subgraphs of the form:

• •

~ω

~ω

x y
(15.44)

However the (logarithmic) divergence is canceled by the summation over ω and by the

symmetry between space and time. So that there is no divergence and the momentum

dependence (at large momenta) of the subgraph (15.44) is λ̂(~k)2σ(k) with σ(k) bounded

(instead of the a priori σ(k) ≃ log |k|). Hence no divergence really arises: as expected

from the above remarked property of the exact solution, which implies that the problem

is well defined as soon as one writes the interaction in Wick ordered form. It also appears

that once σ(k) is bounded the sign of the initial interaction potential does not matter, as

long as the strength is small enough.

The above argument shows that there is no problem at the level of perturbation theory:

if however one wants a fully non perturbative analysis one has to discuss the mechanism

which permits us to put bounds on the kernels defining the effective potential V (0). We can

do this under the extra assumption that the initial potential is positive definite: however

we think that this is a limitation due only to the technique that we develop. And if one

just wants a perturbative theory without control of the convergence this limitation is not

necessary, just as it also emerges from the study of the exact solution in [26]).

Assuming λ̂ ≥ 0 we simply use the well known trick of the introduction of an auxiliary

boson field ϕx,t with propagator F with Fourier transform:

F̂ (k0, ~k) ≡ λ̂(~k)/λ̂(0) (15.45)

and write the interaction:
∑

ω

λ̂(0)1/2
∫

ϕxψ
+
xωψ

−
xωdx (15.46)

which, upon integration over ϕ, manifestly generates the Mattis Lieb model.
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We study the model (15.46) by decomposing the propagators into scales by writing:

F̂ (k0, ~k) ≡
∞
∑

n=1

F̂n(k)

≡ e−(k20+
~k2)p−2

0 /4λ̂(~k) +

∞
∑

n=2

(e−(k2o+
~k2)p−2

0 2−2n − e−4(k2o+
~k2)p−2

0 2−2n

)λ̂(~k)

ĝ(k0, ~k) ≡ g(≤0) +
∞
∑

n=1

ĝ0(2
nk) (15.47)

where we note that the decomposition of g has exact scaling properties (because it cor-

responds to the propagator of the Mattis Lieb model and, hence, it is different from the

one considered in §4 valid for the analysis of the infrared problem in the real model: note,

however, that g0 is nothing else but the function appearing in the leading term of the

infrared propagator of the real model).

We analyze next the size of Fn(x) and we easily find that it is bounded uniformly in

n by const 2n. The size of gn(x) admits the same bound. Hence we can perform the

usual dimensional analysis of the size of the interaction at high frequency [17]. Replacing

ϕ by const2n/2, and ψ by the same quantity and restricting the integral to a box of

the size of 2−2np−2
0 we see that the size of the interaction at large scale (i.e. large n) is

const λ̂(0)2−n/2. Hence the model is still asymptotically free, in its ultraviolet part and

even superrenormalizable. It can have divergences up to order 4 in perturbation theory:

but the interaction structure is such that only even orders in the coupling can be present

and furthermore the expansion parameter squared is the size of the potential. Hence the

only divergent graphs are to be looked for among the terms of second order in the potential

λ0, (which are already of fourth order in the sense of the (15.46)).

Therefore we can apply the known expansion methods of constructive field theory for

renormalizable theories, see [24],[32] for the most recent developments,

Ours can regarded as a two dimensional Yukawa theory with a boson propagator less

singular than usual; furthermore the general techniques of [32] can be applied to our case.

In this way one shows that the effective potential on scale 0 is a short range potential

with many body components (i.e. terms containing any number of ψ± fields) which become

very small as the number of bodies increases. Since the field ϕ has no components on scales

lower than p0 the effective potential V (0) can be taken as the starting point of our infrared

analysis. The novelty is simply that the initial number of irrelevant terms is not finite,

because of the fact that the effective potential contains components with arbitrarily many

fields.

The latter is not a big problem because even if we had only finitely many components in

V (0), we would immediately generate infinitely many new ones after the integration of the

first infrared component of the field. Thus we only have to check that V (0) obeys bounds

on the kernels of the n fields terms which are no worse than those that V (−1) would obey
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in the case it was generated by an initial interaction with only finitely many terms. This

is precisely the type of bounds that are provided, by the known methods [24],[32], for the

kernels of the effective potential on scale 0 generated by a superrinormalizable, or even

just asymptotically free, interaction. One also finds that in such cases the kernels for V (0)

admit an asymptotic expansion in powers of the intial coupling, which in our case might

even be convergent.

From this point on one continues as in the realistic case treated above. The fact that the

the propagator (15.37) is on all scales our scaling propagator makes the theory of the beta

function even simpler because the parts proportional to th = 2h, which were corrections

to scaling, are absent and the functions Gj which only depend on the scaling propagator

are the same as ours.

At this point we have to make an assumption that we have not been able to deduce

from the exact solution. Namely we must assume that:

Assumption: The running couplings in the Mattis-Lieb model stay smaller than Cλ0 for

some constant C for all values of h.

From the above argument we know that they start being small as desired and from

the exact solution (see (15.48) below), we know that they end up being small as wished:

unfortunately one cannot exclude yet that while going down in frquency they become

large getting out of the perturbative regime and then back into again. This event, that we

consider unlikely, can perhaps be excluded by a more careful analysis of the exact solution.

Furthermore, we consider the appendix of ref. [26] and note that our λ̂(0) is half the

quantity denoted λv(0) in [26]. The results of [26,27] prove that the model shows anomalous

scaling with η given by:

2η = [(1 + λ̂0(0)/π)
1/2 + (1 + λ̂0(0)/π)

−1/2 − 1]/2 =
λ̂0(0)

2

8π2
+ . . . (15.48)

where λ̂0 is the Fourier transform of λ0 and, in our notation, coincides (see (15.38), with

the quantity 2λv(0) of ref. [27]. Note that η, as well as 2η, have a power series expansion

in λ̂0(0)
2.

Note also that if we start from an initial interaction containing a non zero δ coefficient

and a non zero ν coefficient the model is of course still soluble, because this amounts

simply to changing the value of pF and of the coefficient of ∂̃ψ , thus affecting in a trivial

(analytic) way the end result (15.48).

This result holds for any choice of λ0 small enough: a property which is incompatible

with a flow described by (15.31) unless G1 ≡ 0, if one accepts the assumption above.

The realistic model and the Luttinger models have the same G1 functions, hence G1 ≡ 0

for both.

If G1 = 0 the flow (15.31) is easy to study. We look for a solution in which δh =

γhδ̄h, νh = γhν̄h, th = 2h, and δ̄h, ν̄h tend to zero. The recursion becomes, for any γ:

λh−1 =λh + γh(δ̄hλ
2
hG2(λh, δ̄h) + ν̄2hλ

2
hγ

hG3(λh, δ̄h, ν̄h))+
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+ thR1(λh, δ̄h, ν̄h, th)

δ̄h−1 =γδ̄h + λ2hδ̄hγG4(λh, δ̄h) + λ2hν̄hγG5(λh, δ̄h, ν̄h)+

+ thγ
−hγR2(λh, δ̄h, ν̄h, th) (15.49)

ν̄h−1 =2γν̄h + ν̄hλ
2
hγG6(λh, δ̄h, ν̄h, th) + δ̄hλ

2
hγG7(λh, δ̄h, ν̄h, th)+

+ thγ
−hγR3(λh, δ̄h, ν̄h, th)

th−1 =2−1th

Taking γ between 1 and 2 and fixing λ0 small enough, it is clear that one can find δ0, ν0
so that δ̄h → 0, ν̄h → 0 as fast as O((2/γ)h), so that δh, νh tend to zero as O(2h) while

λh → λ−∞.

If there is a flow on (λ, δ, ν) verifying (15.31) and staying bounded of O(λ0) it is clear

that G1 ≡ 0 is the only possibility.

It follows immediately that, if the above assumption holds, all the short range models in

one dimension have anomalous Fermi surface at small coupling: the anomaly is correctly

caught by the Luttinger model. Probably at large coupling the anomaly remains and

follows the pattern predicted by the Mattis-Lieb exact solution of the Luttinger model,

see [26]. The only exception is the set of models for which λ−∞ vanishes: such cases are

not generic as the λ∞ = λ0 + βλ20 + . . . depend analytically on λ0; the value λ0 depends

smoothly on the initial interaction and to first order it is λ̂(0)−λ̂(2pF ), as it can be checked

immediately by an elementary perturbationcalculation. This concludes our analysis of the

one dimensional cases.

Note that we do not have to require, in the realistic case, that the interaction be positive

definite. Positive definiteness of λ0 is used above only as an intermediate step to conclude,

via the theory of the Mattis Lieb model, that G1 = 0. If, however, in the realistic model

the interaction is positive definite then we can use the above method of introducing an

auxiliary boson field to solve the ultraviolet problem mentioned at the beginning of §0.
Hence the theory is complete in this case. As mentioned in §0 we do not think that this is

serious problem even in the attractive case, for small enough interaction. Physically the

only thing that could conceivably go wrong is the extensivity of the lower bound on the

energy levels, i.e. the thermodynamic stability: but if d = 1 the indetermination principle

allows considering a negative interaction without destroying stability, provided it is not

too large.

The degeneracy of the second order in (15.2) (which tends to 0 as h → −∞) does not

occur if there are more degrees of freedom: if we suppose that our fermions, and the quasi

particles as well, carry a spin described by an extra label σ attached to the fields, the

formalism that we have described applies unchanged, with the obvious addition of the

extra labels. As an illustration we present a particularly simple spinning model.

The model has a potential:

∑

σ,σ′=±1

∫

λ0(~x− ~y) : ψ+
xσψ

+
xσ′ψ

−
xσ′ψ

−
xσ : dx (15.50)
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which represents a spin symmetric interaction. Its relevant part is of the form:

∑

σ,σ′=±1

∫

dx
4
∏

i=1

dωie
ipF (ω1+ω2−ω3−ω4)~xλ0(ω1, ω2, ω3, ω4)

: ψ+
x,σ,ω1

ψ+
x,σ′,ω2

ψ−
x,σ′,ω3

ψ−
x,σ,ω4

: (15.51)

where, if λ(ω−ω′) = λ̂0(pF (ω−ω′)) denotes the Fourier transform of λ0 evaluated at the

difference between a pair of Fermi momenta, it is:

λ0(ω1, ω2, ω3, ω4) = [λ(ω1 − ω4) + λ(ω2 − ω3)]/2 (15.52)

The coupling λ0(ω1, ω2, ω3, ω4) in (15.51) has some symmetries, which are preserved by

the (normal scaling) beta function, that is:

λ0(ω1, ω2, ω3, ω4) = λ0(−ω1,−ω2,−ω3,−ω4) = λ0(ω2, ω1, ω4, ω3) = λ0(ω3, ω4, ω1, ω2)

(15.53)

This reduces to five the number of independent parameters, for example:

y1 = λ0(1, 1, 1, 1) y2 = λ0(1, 1, 1,−1) y3 = λ0(1, 1,−1,−1)
y4 = λ0(1,−1, 1,−1) y5 = λ0(1,−1,−1, 1) (15.54)

The evaluation of the second order beta function is straightforward but laborious. One

finds, up to terms vanishing exponentially in h→ −∞:

y′1 = y1 y′2 = y2 − βy2(2y4 − y5)
y′3 = y3 − 2βy3(y4 − 2y5) y′4 = y4 − 4βy24 (15.55)

y′5 = y5 − 2βy24

where β is a positive constant. It is easy to see that in this dynamical system no tra-

jectory approaches the origin: i.e. the introduction of the spin does not change the non

asymptotically free nature of the model.

The above remarks show that we cannot make a connection with the theory of the

model of Gross-Neveu as treated in [19], because we do not have asymptotic freedom to

second order. Nevertheless the part of [19,24] dealing with the convergence of the beta

function series for small enough M , see (14.1), still applies to our spinning case. Hence

also in the spinning case one may hope to learn more from the analysis of the higher order

contributions to the beta function. One could look for anomalous behaviour: the question

however deserves a separate analysis and we hope to come back on the problem in a future

publication.

Note that the problem looks quite hard because of the many marginal directions: as a

dynamical system this is a rather pathological one due to the resonances associated with

the number of marginal directions.
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It is unclear if the model introduced by Mattis [30,31,32] as a spinning variation of the

Mattis-Lieb model [26,27] used above can play the same role as the Luttinger model did

in the understanding of the spin 0 case. In fact in this model:

V =
∑

σ,σ′=±1

∫

d~xd~ydtdωdω′λ0(~x− ~y) : ψ+
~x,t,σ,ωψ

+
~y,t,σ′,ω′ψ

−
~y,t,σ′,ω′ψ

−
~x,t,σ,ω : (15.56)

so that the relevant part has the form:

VL =
∑

σ,σ′=±1

∫

dxdωdω′λ̂0(0) : ψ
+
x,σ,ωψ

+
x,σ′,ω′ψ

−
x,σ′,ω′ψ

−
x,σ,ω : (15.57)

This implies:

y2 = y3 = y4 = 0 , y1 = y5 = λ̂0(0) (15.58)

These conditions are preserved exactly by the beta function to all orders, so that there

is really only one parameter, as in the spin zero case. For the potential (15.52), on the

contrary:

y1 = y5 = λ(0) , y2 = [λ(0) + λ(2)]/2 , y3 = y4 = λ(2) (15.59)

For this initial condition the dynamical system (15.52) is diverging, unless λ(0) = λ(2) = 0,

which in any case is not preserved, if one takes into account also the terms vanishing in

the limit h→ −∞.

In conclusion the ideas of Tomonaga, which are the basis for the Luttinger model, seem

to be not easily generalizable to spinning models (see also [29], concluding remarks).
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æ

Appendix A1: proof of (4.2).

Let p ≡ pF , β ≡ p/m; let p0 be fixed and α = α′p−2
0 2−2n, τ = 2np0t. Then, denoting

Ωd = 2πd/2Γ(d/2)−1 the surface of the d-dimensional unit sphere and denoting ϑ the angle

between ~x and ~k:

ḡn(~x, t) = p−2
0 2−2n

∫ 1

1/4

dα′
∫

dk0d
d~k

(2π)d+1

e−p
−2
0 2−2nα′(k20+(~k2−p2)2/4m2)−ik0t−ikx cos ϑ(+ik0 + (~k2 − p2)/2m) =

=
Ωdp

−2
0 2−2n

(2π)d+1

∫ 1

1/4

dα

∫

dk0

∫ +∞

−p
dh

∫

d~ωe−p
−2
0 2−2nα(k20+h

2(h+2p)2/4m2)

e−ik0t−i(h+p)x cosϑ(h+ p)d−1(+ik0 + h(h+ 2p)/2m) =

=
Ωdp

d
02
n

(2π)d+1

∫ 1

1/4

dα

∫

dk0

∫ ∞

−2−np/p0

dh (
p

p0
+ 2nh)d−1e−(k20+h

2(1+h2n−1p0/p)
2β2)α

(+ik0 + h(1 + h2n−1 p0
p
)β)e−ik0τJ (d)(px(1 +

p0
p
2nh)) = (A1.1)

=
Ωdπ

1/2pd2n

(2π)d+1

p0
p

∫ 1

1/4

dα

α1/2

∫ +∞

−2−np/p0

dh(1 + 2nh
p0
p
)d−1(−∂τ + h(1 + 2n−1h

p0
p
)β)

e−τ
2/4α−h2(1+h2n−1p0/p)

2αβ2

J (d)(px(1 + h2n
p0
p
)) =

=

∫ 1

1/4

dα√
α
e−τ

2/4α(
τ

2α
goα,n(x) + g1α,n(x))

where if Jν denotes a Bessel function and Γ the gamma function, we set, (see [21], (3.915)),

for dimension d > 1:

J (d)(y) =

∫

e−iy cosϑd~ω =
Ωd−1

Ωd

∫ π

0

e−iy cosϑ(sinϑ)d−2dϑ =

=
Ωd−1π

1/2

Ωd
(−2

y
)(d−2)/2Γ(d− 1/2)J(d−2)/2(−y) (A1.2)

note that J (d) is expressed in terms of Bessel functions trivially related to trigonometric

functions in the case of d odd. The above equalities hold for d ≥ 2: the case d = 1 is easely

treated because the integration over ϑ becomes average over the two values ϑ = 0, π.
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If j = 0, 1:

gjα,n(x) =
Ωdπ

1/2pd2n

(2π)d+1

p0
p

∫ +∞

−2−np/p0

dh(1 + 2nh
p0
p
)d−1(h(1 + 2n−1h

p0
p
)β)j

e−h
2(1+h2n−1p0/p)

2αβ2

J (d)(px(1 + h2n
p0
p
))

(A1.3)

Note that the integrand has a symmetry in h around −2−np/p0: this permits us to rewrite

the (A1.3) as an integral from −∞ to +∞ provided the constant in front of it is divided

by 2. Once the integral is written as an integral over the whole line we can remark that

if χ(k) = π−1/2
∫ k

−∞ dq exp−q2, so that χ(k) + χ(−k) = 1, then we can freely insert in

the integral the function 2χ(h + 2−np/p0). After performing the above transformations

we can develop J (d) via the trigonometric addition formulae and extract from the integral

trigonometric functions of px.

Consider the case of odd d = 1, 3, for simplicity, obtaining:

ḡn =2n
( sin p|~x|
p|~x| gsn(

~ξ, τ) + 2n
p0
p

cos p|~x| gcn(~ξ, τ)
)

d = 3

ḡn = 2n
(

cos px gsn(ξ, τ)− sin px gcn(ξ, τ)
)

d = 1

(A1.4)

where ~ξ = 2np0~x and we have defined:

gσn(
~ξ) =

Ωdπ
1/2pdp0

(2π)d+1p
∫ 1

1/4

dα

α1/2

∫ +∞

−∞
dh(1 + 2nh

p0
p
)d−1(

τ

2α
+ h(1 + 2n−1h

p0
p
)β)χ(h+ 2−np0/p)

e−τ
2/4αe−h

2(1+h2n−1p0/p)
2αβ2















{

sin(h|~ξ|)/[|~ξ|(1 + 2nhp0/p)] if σ = c and d = 3

cos(h|~ξ|)/(1 + 2nhp0/p) if σ = s and d = 3
{

coshξ if σ = s and d = 1
sinhξ if σ = c and d = 1

(A1.5)

We get the bounds in §4 simply by breaking the trigonometrical expressions inside the

integrals via the Euler relations and, finally, shifting upwards or downwards the h-integral

to a line with constant non zero imaginary part.

The function gn(~ξ, τ, ~ω), defined in (4.5), becomes, with the help of (4.8):

gn(~ξ, τ, ~ω) =g
s
n(
~ξ, τ) + 2n(p0/p)g

c
n(
~ξ, τ)− i~ω~ξgcn(~ξ, τ) d = 3

gn(ξ, τ, ω) =g
s
n(ξ, τ)− iωgcn(ξ, τ) d = 1

(A1.6)

where ~ω ∈ S2 if d = 3 and ω ∈ {−1,+1} ≡ S0 if d = 1.
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If n ≤ 0 the functions gn(~ξn, τn), with ~ξn = 2n~xp0, τn = 2ntp0, can be written, for any

prefixed r ≥ 0:

gn = g0n + 2ng1n + 22ng2n + . . .+ 2rngrn (A1.7)

with gi having the form of a polynomial times a superposition of gaussians for i = 1, . . .,

r − 1. Furthermore, if zn ≡ τ2n + ~ξ2n/β
2, the gin verify the bounds:

|gin| ≤ Cr,κe−κ
√
zn i = 1, . . . , r (A1.8)

The leading term in (A1.7) is:

g0n =
Ωdπp

d
F

2(2π)d+1β

p0
pF

(τn − iβ−1~ω~ξn)γ0(zn) (A1.9)

which comes from an evaluation of the integrals in (A1.5) when n→ −∞, with

γj(z) =

∫ 1

1/4

e−z/4α
dα

α2+j
. (A1.10)

The analysis of the case n > 0 is algebraically similar. Since we are not interested in

decomposing
∑∞

1 ḡn into its components we can use for it the expressions (A1.3),(A1.5)

with n = 0 and the α-integral extended between 0 and 1/4, rather than between 1/4 and

1.
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Appendix A2: Fourfold integrals over the Fermi sphere.

Let ~ω1, ~ω3, ~ω, ~ω
′ be unit vectors and ~Ω = ~ω1 + ~ω− ~ω3 − ~ω′, ~∆ = ~ω1 − ~ω3. We introduce

a test function F and consider the integrals in (13.22).

To find the appropriate coordinates we write:

~ω0 =
~ω + ~∆

|~ω + ~∆|
, ~ω′ = ~ω0 + ~ρ, |~ω + ~∆| = 1 + σ (A2.1)

and denote ϑ1, ϕ1 the polar coordinates of ~ρ in a frame with z–axis parallel to ~ω0. Then:

~ρ · ~ω0 = ρ cosϑ1, ρ = −2 cosϑ1, ~ρ · ~ω0 = −ρ
2

2
(A2.2)

The volume element for ~ω′ is then:

d~ω′ = 2ρ sinϑ1
dϑ1dϕ1

4π
=
ρdρdϕ1

4π
=
d2~ρ1
4π

(A2.3)

where ~ρ1 is a vector with modulus |~ρ1| = ρ and anomaly ϕ1, to be thought as lying in the

plane tangent to the sphere in ~ω0.

The vector ~ω will be described in a system of cooordinates on the sphere with z–axis

parallel to ~∆. Let (ϑ2, ϕ2) be such coordinates, using:

(1 + σ)2 =1 +∆2 + 2~ω · ~∆ = 1 +∆2 + 2∆cosϑ2

(1 + σ)dσ =∆d(cosϑ2)
(A2.4)

we find:

d~ω = sinϑ2
dϑ2dϕ2

4π
≡ 1 + σ

4π∆
dσdϕ2 (A2.5)

The integrations domains and the volume elements are:

0 ≤ |~ρ1| ≤ 2, |σ| ≤ ∆, d~ωd~ω′ ≡ 1 + σ

∆

dϕ2dσd
2~ρ1

(4π)2
(A2.6)

The main variables are:

~Ω =~ω + ~∆− ~ω′ = σ~ω0 − ~ρ
~Ω2 =σ2 + ρ2 − 2σ~ρ · ~ω0 = σ2 + (1 + σ)ρ21

~ω′ · ~Ω =(σ − 1 + σ

2
ρ21), ~ω · ~Ω = (~ω · ~ω0σ − ~ρ · ~ω)

(A2.7)
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and the integral becomes:

∫

|σ|≤∆

(1 + σ)
dσ

∆

∫

|~ρ1|≤2

d~ρ1

∫

dϕ2

(4π)2
[N2e−N

2(σ2+(1+σ)ρ21)]

[
(~ω − ~ω′)2

4
+N2~ω · ~Ω ~ω′ · ~Ω]F

(A2.8)

The leading behaviour for N → ∞ is obtained, therefore, by setting σ = 0, ~ρ1 = ~0 in

the regular parts of (A2.8). In this case the vectors ~ω, ~ω′ are forced in a flag configuration:

~ω′ =Rϕ2
~ω1, ~ω = Rϕ2

~ω3, ~ω − ~ω′ = −~∆
~ω · ~ω0 ≡~ω1 · ~ω3, ~ω′ · ~Ω ~ω · ~Ω = ~ω1 · ~ω3σ

2 + . . .

[
(~ω − ~ω′)2

4
+N2~ω · ~Ω ~ω′ · ~Ω] = [

(~ω1 − ~ω3)
2

4
+ ~ω1 · ~ω3N

2σ2 + . . .]

(A2.9)

and the integral becomes, to leading order, (13.24).

The corrections to (A2.9) have relative order O(N−1). The above argument also leads

to a rigoruos bound on the integral of the form [J(N |~ω1 − ~ω3|) +O(N−1)]max |F | with:

J(x) =
1

x

∫ x

0

y2e−y
2 ≤ x2

1 + x3
(A2.10)

Using the spherical harmonics expansion of λ in a system of polar coordinates with ~∆

parallel to the z–axis, in which ~ω1 = (ϑ, 0), ~ω3 = (π − ϑ, 0) we can write (13.23):

1

4

∑

ll′mm′

λlλl′Yl,m(ϑ, 0)2Yl′,m′(ϑ, 0)2(e−imϕ + (−1)m)(eim′ϕ + 1)(−1)m′

(A2.11)

so that:

〈F 〉 =1

4

∑

ll′mm′

λlλl′Yl,m(ϑ, 0)2Yl′,m′(ϑ, 0)2

[δmm′(−1)m + δm0(−1)m
′

+ δm′0(−1)m + (−1)m+m′

]

(A2.12)

which can be used for an approximate analysis of the flow equations to second order.

The three quasi momenta inequality of §11 is a simple consequence of the change of

variables leading to (A2.6). In fact using (A2.6) with N = 2−h we find, for suitable

constants Cj and for any ~∆:

∫

|δh(~ω−~ω′+ ~∆)|d~ωd~ω′ ≤ C1

∫ ∆

0

1 + σ

∆
dσd2ρ1N

2e−κN
2(σ2+(1+σ)ρ21) ≤ C2

1 +N∆
(A2.13)
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where we use, for simplicity, the bound on the leading term in the propagator gh generating

δh (which explains the gaussian term), and we denote |~∆| as ∆.

Hence, if ~∆ = ~ω2 − ~k, ~k = |~k|~ω0, ~ω2 = ~ω0 + ~ρ, using (A2.3) we find:

∫

|δh(~ω − ~ω′ + ~ω2 − ~k)|d~ωd~ω′d~ω2 ≤ C3

∫

d2~ρ

1 +N |~ρ|

≤ C4

N

∫ 2

0

dρ
Nρ

1 +Nρ
≤ 2C4

N

(A2.14)

proving (11.9).

Another important inequality, used in the derivation of the bound (11.26), is the fol-

lowing:
∣

∣2h
∫

d~ωdx(2ht− i2hβ−1~ω · ~x)eipF (~ω−~ω0)~xγ0(2
2hx2)

∣

∣ ≤ C (A2.15)

where γ0(z) is defined by (A1.8) and x2 = t2 + ~x2/β2. In the l.h.s. of (A2.15) the integral

of the term proportional to t is exactly zero and the remaining part can be bounded by:

C12
−4h

∫ 1

1/4

dα

α2

∫

d~ω(1− ~ω · ~ω0)e
−2αβ22−2h(1−~ω·~ω0) ≤ C (A2.16)

111



Appendix A3: A heuristic analysis of the flow of the running couplings.

In this section we make precise the source of our interpretation of the running couplings

flow as saying that the pair interaction evolves diverging as a delta-like interaction with

integral 2(d−1)h, i.e. as 2−h at its maximum.

We deduce from (A1.7) that, to leading order in n, the propagator g(≤n)(x, ~ω, pF , β)

(we add the explicit dependence of the propagator on pF and β as the coming analysis is

based on rescalings) can be written:

g(≤n)(x, ~ω, pF , β) =
n
∑

−∞
gh(ξh) ≃

Ωdπp
d
F

2(2π)d+1β

p0
pF

2n
0

∑

h=−∞
2h(τn+h − iβ−1~ω~ξn+h)γ0(zn+h) ≃

Ωdπp
d−1
F

2(2π)d+1β

t− iβ−1~ω~x

t2 + ~x2/β2
G(2n|x|p0)

(A3.1)

where |x|2 = t2 + ~x2/β2, and:

G(y) =
0

∑

h=−∞
(2hy)2γ0((2

hy)2) (A3.2)

Hence:

g(≤n)(x, ~ω, pF , β) = 2ndg(≤0)(2n~x, ~ω, 2−npF , β) (A3.3)

so that:

ψ
(≤n)
x,~ω,pF ,β

= 2nd/2ψ
(≤0)
2nx,~ω,2−npF ,β

(A3.4)

The (A3.4) permits us to find, heuristically and for the purpose of motivating the intuitive

statements of the introduction and of §11, the relation between the running coupling

constants in the quasi particles formalism and the pair potential betwen the particles.

We argue as follows: in a first order calculation the relevant part of the interaction

remains the same:

V (n) =

∫

λ0(~ω1, . . . , ~ω4)e
i(~ω1+~ω2−~ω3−~ω4)~xpF d~ω1 . . . dx

: ψ
+(≤n)
x,~ω1,pF ,β

ψ
+(≤n)
x,~ω2,pF ,β

ψ
−(≤n)
x,~ω3,pF ,β

: ψ
−(≤n)
x,~ω4,pF ,β

:

(A3.5)
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On the other hand (A3.4) tells us that:

V (n) =

∫

λ0(~ω1, . . .)2
2nd : ψ

+(≤0)
2nx,~ω1,2−npF ,β

. . . : ei(~ω1+~ω2−~ω3−~ω4)~xpF dxd~ω1 . . . =

=

∫

λ0(~ω1, . . .)2
n(d−1) : ψ

+(≤0)
x,~ω1,2−npF ,β

. . . : ei(~ω1+~ω2−~ω3−~ω4)~x2
−npF dxd~ω1 . . .

(A3.6)

hence we read (A3.6) by saying that the pair potential on scale n is, to first order and

measuring the length scales with a unit 2−n bigger than the initial one, a pair potential

wn(~x) between fermions in a state with a Fermi surface at 2−npF , mass m2−n (so that β

is unchanged) and it is such that, see (6.2),(6.4):

wn(~x) = λ0(2
−n~x)2−n (A3.7)

Therefore our potential is a δ-like potential and precisely it is an approximate delta function

with width 2nr0, r0 being the range of λ0, and integral proportional to 2(d−1)n; we write

it as:

wn(~x) = 2(d−1)nV0δn(~x) (A3.8)

where V0 is the integral of λ0, so the the integral of the delta like potential is V02
(d−1)n,

very small if n → −∞ and d > 1, but not small enough to keep the potential bounded,

∀d ≥ 1.

This divergence of the maximum of the potential forces abandoning the formalism of

the initial particles fields and to adopt, even in d = 1, the quasi particles formalism.
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[16]Gallavotti, G., Nicolò, F.: Renormalization theory for four dimensional scalar

fields, I,II, Communications in Mathematical Physics, 100, 545-590, 1985,

and 101, 1-36, 1985.

114



[17]Gallavotti, G.: Renormalization theory and ultraviolet stability for scalar

fields via renormalization group methods, Reviews of Modern Physics, 57,

471-562, 1985, see also Gallavotti, G., The structure of renormalization the-

ory: renormalization, form factors, and resummations in scalar field theory,

ed. K. Osterwalder, R. Stora, Les Houches, XLIII, 1984, Phenomenes cri-

tiques, Systemes aleatoires, Theories de jauge, Elseviers Science, 1986, p.

467-492.
[18]Felder, G., Gallavotti, G.: Perturbation theory and non renormalizable scalar

fields, Communications in Mathematical Physics, 102, 549-571, 1985.

[19]Gawedski, K., Kupiainen, A.: Gross-Neveu model through convergent per-

turbation expansion, Communications in Mathematical Physics, 102, 1-30,

1986.
[20]Gawedski, K., Kupiainen, A.: Bloch spin renormalization group for dipole

gas and (∂ϕ)4, Annals of Physics, 147, 198-243, 1983.

[21]Gradshteyn, I., Ryzik, I.: Table of integrals, series and products, Academic

Press, New York, 1965.
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