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SUMMARY

Unlike the value at risk, the expected shortfall is a coherent measure of risk. In this paper, we discuss
estimation of the expected shortfall of a random variable Yt with special reference to the case when
auxiliary information is available in the form of a set of predictors Xt . We consider three classes of
estimators of the conditional expected shortfall of Yt given Xt : a class of fully non-parametric estimators
and two classes of analog estimators based, respectively, on the empirical conditional quantile function
and the empirical conditional distribution function. We study their sampling properties by means of a set
of Monte Carlo experiments and analyze their performance in an empirical application to financial data.
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1. INTRODUCTION

A measure of risk is coherent if it simultaneously satisfies the following properties: sub-additivity,
monotonicity, positive homogeneity, and translation invariance (see Artzner et al. [1] and
Delbaen [2]). As described in Acerbi and Tasche [3], sub-additivity may be violated by the value
at risk (VaR). Although popular in financial applications, because it gives a lower bound on the
loss made in the worst � percent of the cases during a prespecified period, the VaR is therefore
not a coherent measure of risk. In addition, the practical usefulness of the VaR is limited by the
fact that it tells us nothing about the potential size of the loss in the worst-case scenario.

Even before the introduction of the VaR, the expected value of the left tail of the returns
on a risky asset has been proposed as an alternative measure of risk. This quantity, variously
known as the expected shortfall or the tail conditional expectation or the tail conditional mean,
measures the loss that one may expect to make in the worst � percent of the cases. Formally, let
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the random variable (rv) Yt represent the returns on a given asset during a prespecified period.
Then the VaR at level � is equal to the �th quantile of Yt , Q(�), and the �-level expected shortfall
is �(�)=E(Yt |Yt�Q(�)), where E(Yt | At ) denotes the conditional expectation of Yt given the
event At . Unlike the VaR, the expected shortfall takes into account all possible losses that exceed
the severity level corresponding to the VaR. Besides satisfying all the properties of a coherent
measure of risk (see Acerbi and Tasche [3]), the expected shortfall is continuous with respect to �
regardless of the underlying distribution of Yt and therefore is not too sensitive to small changes
in �.

In this paper, we consider the important question of how to estimate the expected shortfall when
auxiliary information about asset returns Yt is provided by a set of predictors. We therefore depart
from Bassett et al. [4] and Koenker [5, pp. 289–292], who are concerned with using the expected
shortfall for asset allocation problems. We focus on the simple case when asset returns may be
represented by a continuous rv Yt with a continuous and strictly increasing distribution function
(df) conditional on a set of predictors Xt , which represents the information available at time t−1.
If this conditional df (cdf) is known, at least up to a finite-dimensional parameter, then one may
in some cases compute the expected shortfall analytically. For example, this is the case when
the conditional distribution of Yt given Xt is Gaussian. Notwithstanding the apparent simplicity of
the problem, in practice we face two issues. First, even when the cdf of Yt has a known shape, the
integral that defines the expected shortfall may be hard to compute. Second, we might not even
know the shape of the cdf of Yt .

In this paper we introduce two classes of analog estimators based on two alternative representa-
tions of the conditional expected shortfall, either as an integral of the conditional quantile function
(cqf) of Yt given Xt or as an integral of the cdf of Yt given Xt . Both representations open the
way to estimation of the expected shortfall by replacing the population cqf and the population
cdf by suitable estimates. Estimators based on the first representation are easily interpretable, as
the passage from the unconditional to the conditional case is very intuitive, and are particularly
simple to obtain when the cqf is assumed to be linear in parameters. Unfortunately, estimated
linear conditional quantiles may cross each other, especially when evaluated in the tails of the
distribution of Xt . As for the second representation, the approach in Peracchi [6] makes it possible
to naturally impose monotonicity of the estimated cdf and therefore avoid the quantile crossing
problem that might arise with the first representation. Although quite straightforward, these two
classes of estimators appear to be novel.

The remainder of the paper is organized as follows. Section 2 presents the formal definitions
of expected shortfall and conditional expected shortfall and illustrates their computation in a few
examples. Section 3 shows how the expected shortfall and the conditional expected shortfall may
be estimated. Section 4 presents some Monte Carlo evidence. Section 5 presents an empirical
illustration. Finally, Section 6 summarizes and concludes.

2. THE EXPECTED SHORTFALL

Let Yt be a real-valued rv with a continuous and strictly increasing df F(y)=Pr{Yt�y}. Its
quantile function (qf) is defined as Q(p)= inf{y:F(y)�p}, with p∈(0,1). Since F is continuous
and strictly increasing, Q is also continuous and strictly increasing. Further, F(Q(p))= p and
Q(F(y))= y, and so Q(p)=F−1(p) and F(y)=Q−1(y).
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If Yt has a finite mean, then the mean of Yt conditional on Yt�c, where c is any real number,
is defined as

E(Yt |Yt�c)= 1

F(c)

∫ c

−∞
y dF(y) (1)

The �-level expected shortfall of Yt , with 0<�<1, is therefore

�(�)=E(Yt |Yt�Q(�))= 1

�

∫ Q(�)

−∞
y dF(y) (2)

where Q(�) is the �th quantile of Yt . In financial applications, Yt is the return on a given asset and
�(�) gives the expected value of a loss (negative return) that exceeds Q(�), the VaR at level �.

Acerbi and Tasche [3] establish the main properties of the expected shortfall. If �X (�) denotes
the �-level expected shortfall of a real-valued rv X with continuous and strictly increasing df, they
show that (i) �X (�)�0, if X�0 (monotonicity), (ii) �X+Y (�)��X (�)+�Y (�) (sub-additivity), (iii)
�bX =b �X (�) for b�0 (positive homogeneity), and (iv) �X+c(�)=�X (�)+c for c∈R (translation
invariance). Thus, the �-level expected shortfall is a coherent risk measure.

2.1. Alternative representations

Since F is continuous and strictly increasing, a change of variable from F(y) to p gives

E(Yt |Yt�c)= 1

F(c)

∫ F(c)

F(−∞)

F−1(p)dp= 1

F(c)

∫ F(c)

0
Q(p)dp

Thus we have the equivalent representation

�(�)= 1

�

∫ �

0
Q(p)dp (3)

This representation is particularly convenient when the quantiles of an rv Yt have a closed-form
expression. For example, suppose that Yt may be represented as Yt =�+�Ut for some �∈�
and �>0, where Ut is an rv with continuous and strictly increasing df G. Because in this case
F(y)=G((y−�)/�), it follows immediately that Q(p)=�+��(p), where �(p)=G−1(p) is the
pth quantile of Ut . Therefore,

�(�)= 1

�

∫ �

0
[�+��(p)]dp=�+��∗(�)

where �∗(�)=�−1
∫ �
0 �(p)dp is the �-level expected shortfall of Ut .

When the equation F(y)= p does not have a closed-form solution, the existence and uniqueness
theorem for first-order ordinary differential equations (see Hirsch and Smale [7]) guarantees that
the solution exists and is unique provided that F is continuous and strictly increasing. In these
cases, computation of �(�) must typically be carried out by numerical methods.

Another equivalent representation of �(�) is in terms of the df of Yt . Under regularity conditions,
integrating (1) by parts, we get

E(Yt |Yt�c)=c−
∫ c

−∞
F(y)

F(c)
dy
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Therefore,

�(�)=Q(�)− 1

�

∫ Q(�)

−∞
F(y)dy (4)

This shows that the expected shortfall �(�) is larger, in absolute value, than the VaR Q(�).

2.2. Relationship to other concepts

The expected shortfall is closely related to other concepts, such as the mean excess function and
the Lorenz curve.

The mean excess function (or mean residual life function) is the mean excess over a threshold c,
that is

e(c)=E(Yt −c |Yt�c)=E(Yt |Yt�c)−c

This quantity is an important tool in financial risk management and in various other fields, such as
medicine (see Embrechts et al. [8, pp. 294–303]). Evaluating the mean excess function at c=Q(�)

gives

e(Q(�))=�(�)−Q(�)

which is just the difference between the expected shortfall and the VaR.
The Lorenz curve is commonly used in economics to describe the distribution of income and

is associated with measures of inequality such as the Gini coefficient. In this case, Yt is typically
taken to be a non-negative rv with finite, non-zero mean �. The Lorenz curve is defined as

L(�)= 1

�

∫ �

0
Q(p)dp, 0<�<1

and so, from (3),

L(�)= �

�
�(�)

The generalized Lorenz curve [9] is the Lorenz curve scaled up by the mean and is equal to

GL(�)=
∫ �

0
Q(p)dp=��(�), 0<�<1

If the non-negative rv Yt represents individual income, then GL(�) simply cumulates individual
incomes up to the �th quantile.

2.3. Examples

We illustrate computation of the expected shortfall for two leading examples, the normal distribution
and a finite mixture of normals.

If Yt ∼N(�,�2), then we can write Yt =�+�Ut , where Ut ∼N(0,1). By standard results

E(Yt |Yt�c)=�+�E(Ut |Ut�c∗)=�−�
�(c∗)
�(c∗)
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where c∗ =(c−�)/�, and � and �, respectively, denote the density and the df of a standard normal.
If we set c equal to Q(�)=�+��−1(�), then c∗ =(Q(�)−�)/�=�−1(�) and we obtain

�(�)=�− �

�
�(�−1(�)) (5)

Since Q(p)=�+��−1(p), we equivalently have

�(�)=�+ �

�

∫ �

0
�−1(p)dp

Further, from (4), we also have

�(�)=�+��−1(�)− 1

�

∫ �+��−1(�)

−∞
�

(
y−�

�

)
dy

Our second example is a finite mixture of normals. This is an important example because any
continuous distribution may be approximated arbitrarily well by a mixture of J normal distributions
(see McLachlan and Peel [10]). Thus, a finite mixture of normals provides a flexible and tractable
way of allowing for asymmetry, skewness and heavy tails. For simplicity, we consider the case
when J =2, that is, the rv Yt has a distribution that is a mixture of a N(�1,�

2
1) and a N(�2,�

2
2)

distribution, with mixing probabilities �1=� and �2=1−�, respectively. In this case, the df of Yt
is equal to

F(y)=��

(
y−�1

�1

)
+(1−�)�

(
y−�2

�2

)

Although we do not have a closed-form expression for the quantiles of a normal mixture, they can
easily be evaluated numerically.

Let c∗
j =(c−� j )/� j and Fj (c)=�(c∗

j ), for j =1,2, and define F(c)=�F1(c)+(1−�)F2(c)
and �(c)=�F1(c)/F(c). After some algebra, Equation (1) becomes

E(Yt |Yt�c)=�(c)�1(c)+[1−�(c)]�2(c)
where � j (c)=� j −� j�(c∗

j )/�(c∗
j ), j =1,2. It follows that

�(�)=�(�)�1(�)+[1−�(�)]�2(�)

where � j (�)=� j −� j�(c∗
j )/�(c∗

j ), c
∗
j =[Q(�)−� j ]/� j , with j =1,2, and �(�)=��(c∗

1)/�. Thus,
the �-level expected shortfall of Yt is a convex combination of the expected shortfalls of the two
normal components of the mixture. This result is easily generalized to the case when Yt is a
mixture of J�2 normals with mixing probabilities �1, . . . ,�J that are positive and add up to one.

2.4. Conditional expected shortfall

The previous results are easily generalized to the case when additional information about Yt is
provided by a set of predictors Xt , which represents the information available at time t−1 and
may contain a finite number of lags of Yt .

Let F(y | x)=Pr{Yt�y | Xt = x} and Q(p | x)= inf{y:F(y | x)�p} be, respectively, the cdf and
the cqf of Yt given Xt = x . Assuming that F(· | x) is continuous and strictly increasing for all x ,
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we have that F(Q(p | x) | x)= p and so Q(p | x)=F−1(p | x) for all x . The conditional mean of
Yt given Yt�c and Xt = x is defined as

E(Yt |Yt�c, Xt = x)= 1

F(c | x)
∫ c

−∞
y dF(y | x)

Since F(· | x) is continuous and strictly increasing for all x , we have the equivalent representations

E(Yt |Yt�c, Xt = x) = 1

F(c | x)
∫ F(c|x)

0
Q(p | x)dp

= c−
∫ c

−∞
F(y | x)
F(c | x) dy

The �-level conditional expected shortfall of Yt given Xt = x is obtained by setting c=Q(� | x).
Thus,

�(� | x) = 1

�

∫ Q(�|x)

−∞
y dF(y | x)

= 1

�

∫ �

0
Q(p | x)dp

= Q(� | x)− 1

�

∫ Q(�|x)

−∞
F(y | x)dy (6)

For example, if the conditional distribution of Yt given Xt = x is normal, with mean �(x) and
variance �(x)2, then, from (5),

�(� | x)=�(x)− �(x)

�
�(�−1(�))

3. ESTIMATION

We now consider alternative approaches to estimation of the �-level expected shortfall �(�) and the
�-level conditional expected shortfall �(� | x). The basic idea is to exploit the equivalence between
(2), (3) and (4) in the unconditional case, and the equivalence (6) in the conditional case.

3.1. Estimation of the expected shortfall

Given a random sample Y1, . . . ,YT from a distribution with df F and qf Q, the expected shortfall
�(�) may simply be estimated by replacing F and Q in (2) and (4) by their empirical counterparts,
namely the empirical df (edf) F̂ , defined on the real line by

F̂(y)=

⎧⎪⎨
⎪⎩
0 if y<Y(1)

t/T if Y(t)�y<Y(t+1), t=1, . . . ,T −1

1 if y�Y(T )
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where Y(1)� · · ·�Y(T ) are the sample-order statistics, and the empirical qf (eqf) Q̂, defined on the
unit interval (0,1) by

Q̂(p)=Y(t) if
t−1

T
<p� t

T
, t=1, . . . ,T

Because Q̂(p)= inf{y: F̂(y)�p}, p∈(0,1), it follows that

�̂(�)= 1

�

∫ �

0
Q̂(p)dp= Q̂(�)− 1

�

∫ Q̂(�)

−∞
F̂(y)dy= 1

�T

[�T ]∑
t=1

Y(t)+
(
1− [�T ]

�T

)
Y([�T ]+1) (7)

where [�T ] denotes the integer part of �T . Thus, �̂(�) is a linear combination of extreme-order
statistics. Unlike standard L-estimators, however, both the number and the nature of the terms in the
linear combination change with the sample size. If �T is an integer, then �(�)=(�T )−1∑[�T ]

t=1 Y(t).
Note that this estimator coincides with the maximum likelihood estimator under the assumption
that the distribution of Yt conditional on Yt�Q(�) is exponential on the negative half-line.

The study of the asymptotic distribution of estimators of the form (7) has been carried out by
Csörgö et al. [11]. In particular, they provide necessary and sufficient conditions for �̂(�) to be
asymptotically normal. More precisely, they show that if and only if certain conditions on the
limiting behavior of the smallest- and largest-order statistics in the sum on the right-hand side of
(7) are satisfied (see their Corollary 1), then

√
T (�̂(�)−�(�))

d→N(0,AV(�))

as T →∞, where

AV(�)=
∫ �

0

∫ �

0
[min(s, t)−st]dQ(s)dQ(t) (8)

In fact, Csörgö et al. [11] establish, more generally, the asymptotic properties of weighted sums
of extreme-order statistics of the form

�̃(�)=
I∑

i=1
wi Y(i) (9)

where w1, . . . ,wI is a set of weights and the number of terms I in the weighted sum depends on
the sample size and satisfies I →∞ and I/T →�.

3.2. Estimation of the conditional expected shortfall

In this section we consider the case when we also have available data on a vector Xt of predictors
of Yt , which may include a finite number of lags of Yt . After briefly discussing non-parametric
estimation, we propose two classes of analog estimators based, respectively, on estimates of the
cqf Q(p | x) and the cdf F(y | x).

3.2.1. Non-parametric estimation. A simple class of fully non-parametric estimators of �(� | x) is
local versions of (7), that is, averages of the smallest sample-order statistics over a neighborhood
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of x defined by a suitably chosen kernel function K (·). This corresponds to the class of estimators
of the form

�̄(� | x)=
∑T

t=1Yt Kt (x)1{Yt�Q̂(� | x)}∑T
t=1 Kt (x)1{Yt�Q̂(� | x)}

where Kt (x)=K ((Xt −x)/h) is the kernel weight, h is a fixed bandwidth, and Q̂(� | x) is some
estimator of the conditional quantile Q(� | x). Consistency of �̄(� | x) requires the bandwidth h to
go to zero as T →∞, but at a slower rate than T . Automatic choice of the bandwidth h is a topic
for future research. Because of the curse-of-dimensionality problem, this fully non-parametric
estimator is unlikely to perform well when the Xt is a vector of predictors, unless the sample size
T is extremely large.

For the empirically more relevant case when Xt is a vector with several components, result (6)
suggests two classes of analog estimators of �(� | x), namely

�̂(� | x)= 1

�

∫ �

0
Q̂(p | x)dp (10)

and

�̃(� | x)= Q̂(� | x)− 1

�

∫ Q̂(�|x)

−∞
F̂(y | x)dy (11)

where Q̂(p | x) is some estimator of Q(p | x) and F̂(y | x) is some estimator of F(y | x). We shall
refer to estimators based on (10) as integrated conditional quantile function (ICQF) estimators
and to estimators based on (11) as integrated conditional distribution function (ICDF) estimators.
Unlike the unconditional case, one cannot generally guarantee that Q̂(p | x)= inf{y: F̂(y | x)�p},
p∈(0,1). Hence, the two classes of estimators need not coincide.
In the remainder of this paper, we propose specific versions of these two classes of estimators,

corresponding to specific choices of Q̂(p | x) and F̂(y | x).

3.2.2. ICQF estimators. Conditional quantiles are often assumed to be linear in parameters, that
is, of the form

Q(p | x)=	(p)�x

This is in fact the case originally considered by Koenker and Bassett [12], who proposed estimating
	(p) by solving

min
	

n∑
t=1

�p(Yt −	�Xt )

where

�p(u)=u(p−1{u<0}), 0<p<1

is the asymmetric absolute loss function. Given a linear regression quantile estimator 	̂(p), an
estimator of Q(p | x) is easily obtained as Q̂(p | x)= 	̂(p)�x . Under general conditions, 	̂(p)
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and Q̂(p | x) can be shown to be consistent provided that Q(p | x) is linear in parameters. These
estimators can also be shown to be asymptotically normal irrespective of whether the linear
conditional quantile model is correctly specified (see Angrist et al. [13]). These results generalize
to any fixed collection 	̂(p1), . . . , 	̂(pI ) of linear regression quantile estimators.

Based on these results, a simple class of ICQF estimators of �(� | x) consists of weighted sums
of linear regression quantile estimators, namely

�̂(� | x)=
I∑

i=1
wi Q̂(pi | x)= 	̂

∗
(�)�x

where w1, . . . ,wI is a set of weights, the number I of terms in the weighted sum may depend on
the sample size, and

	̂
∗
(�)=

I∑
i=1

wi 	̂(pi )

with 0<p1< · · ·<pI��. To guarantee consistency of this estimator, I should be required to increase
with the sample size T . Automatic choice of I is a topic for future research.

As for the asymptotic behavior of estimators of this type, we conjecture that, being linear
combinations of asymptotically normal estimators, they are also asymptotically normal. The Monte
Carlo evidence in Section 4 provides strong support for this conjecture. A formal proof of the
asymptotic properties of �̂(� | x) requires some care because 	̂(p1), . . . , 	̂(pI ) is a collection of
dependent and not identically distributed random vectors, and one needs to control the rate at
which the number of terms I in the collection grows with the sample size T .

A drawback of the class of ICQF estimators is that linear regression quantile estimators may
cross each other, that is, we may have Q̂(p | x)<Q̂(p′ | x) for p>p′ at some x value. This problem
does not occur at x= X̄ , where X̄ is the sample average of the Xt [see Dodge and Jurečková [14],
pp. 127–128], but may occur at x values in the tails of the distribution of Xt , especially when Yt
is conditionally heteroskedastic, that is, its conditional variance is not constant but depends on Xt .
How to impose monotonicity on estimating a family of conditional quantiles is an important but
still largely unresolved issue.

3.2.3. ICDF estimators. In order to estimate F(y | x), we follow the approach in Peracchi [6]. We
select J distinct values y1, . . . , yJ such that Y(1)<y1< · · ·<yJ<Y(T ) and define the log-odds


 j (x)= ln
Fj (x)

1−Fj (x)
, j =1, . . . , J

where Fj (x)=F(y j | x)=Pr{Yt�y j | x}. Because each rv 1{Yt�y j } has a Bernoulli distribution
with parameter Fj (x), we can estimate each 
 j (x) by a separate logistic regression. Given an
estimator 
̃ j (x) of 
 j (x), we can then estimate Fj (x) by

F̃j (x)=
exp 
̃ j (x)

1+exp 
̃ j (x)
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After putting y0=Y(1) and yJ+1=Y(T ), linear interpolation between thresholds gives the following
estimate of the cdf:

F̃(y | x)=

⎧⎪⎪⎨
⎪⎪⎩
F̃0(x)=0 if y�y0

(1−� j )F̃j (x)+� j F̃ j+1(x) if y j�y<y j+1 and j =1, . . . , J

F̃J+1(x)=1 if y�yJ+1

where � j =(y− y j )/(y j+1− y j ).
Given F̃(y | x) and an estimator Q̂(� | x) of Q(� | x), we obtain the following analog estimator

of �(�):

�̃(� | x)= Q̂(� | x)− 1

�

∫ Q̂(�|x)

−∞
F̃(y | x)dy= Q̂(� | x)− 1

�

I∑
i=1

�i F̃i (x)

where �1, . . . ,�I is a set of weights, the number of terms I in the weighted sum is required to
increase with the sample size T , and F̃I (x)=max{�, F̃I−1(x)}.

Automatic choice of I is again a topic for future research. Linear interpolation of the cdf
corresponds to

�i =
{

(yi+1− yi−1)/2 if i=1, . . . , I −1

(yI − yI−1)/2 if i= I

with yI = Q̂(� | x), but other choices of weights are possible.
One drawback of this class of ICDF estimators is that the estimated cdf F̂ need not be monotonic,

that is, it need not satisfy the condition that F̂j (x)�F̂j−1(x) for all x . A simple way of imposing
monotonicity is to exploit the fact that

Fj (x)=1−[1−F1(x)]
j∏

h=2
[1−h(x)], h=2, . . . , J

where

h(x)= Fh(x)−Fh−1(x)

1−Fh−1(x)
=Pr{yh−1�Yt<yh |Yt�yh−1, x}

Estimators for the h(x) may be obtained by fitting J−1 separate logistic regressions, one for
each binary rv 1{Yt<yh} conditional on Yt�yh−1, h=2, . . . , J . Given an estimator F̃1(x) of F1(x)
and estimators ̃h(x) of the h(x), we can then estimate Fj (x) by the monotone estimator

F̃∗
j (x)=1−[1− F̃1(x)]

j∏
h=2

[1− ̃h(x)], j =2, . . . , J

and obtain a monotone estimate F̃∗(y | x) of the cdf by linear interpolation. Replacing the non-
monotone estimate F̃ by the monotone estimate F̃∗ gives another class of ICDF estimators of
�(�), namely

�̃∗(� | x)= Q̂(� | x)− 1

�

∫ Q̂(�|x)

−∞
F̃∗(y | x)dy= Q̂(� | x)− 1

�

I∑
i=1

�∗
i F̃

∗
i (x)
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As for the sampling properties of these two classes of ICDF estimators, in this paper we again
confine ourselves to the Monte Carlo evidence presented in Section 4.

4. MONTE CARLO EVIDENCE

In this section we present some Monte Carlo evidence on the sampling properties of the uncon-
ditional estimator �̂(�), the fully non-parametric estimator �̄(� | x), the ICQF estimator �̂(� | x),
and the two ICDF estimators �̃(� | x) and �̂∗

(� | x). In our Monte Carlo experiments, we consider
varying samples sizes of 250, 500 and 1000 observations. For each sample size, the number of
Monte Carlo replications is set equal to 1000. As for the level �, we consider three typical values,
namely 1, 5 and 10%. The Monte Carlo experiments were carried out using the statistical package
Stata, version 9.1.

4.1. Estimation of the unconditional expected shortfall

We consider the case when the data are a random sample from four alternative distributions, all with
a finite variance and symmetric about a mean of zero. The first distribution is the standard normal,
the second is the mixture of a N(0,1) with probability 80% and a N(0,2) with probability 20%,
the third and the fourth are Student’s t distributions, with 2 and 4 degrees of freedom, respectively.
Details on the Monte Carlo distribution of �̂(�) are given in Table I. In addition to the number
I =[�T ] of extreme-order statistics that enter the estimation, the tables report the values of �(�)

for each parent distribution and summaries of the Monte Carlo distribution of the estimator �̂(�),
namely the mean bias (Bias), the median bias (MBias), the standard deviation (SD), the root mean
squared error (RMSE), and the coefficients of skewness (Skew) and kurtosis (Kurt).

Figures 1 and 2 plot, for each set of parameters, kernel estimates of the Monte Carlo densities,
respectively, for the case when the parent distribution is normal and a normal mixture. The panels
in each figure correspond to different values of � and present Monte Carlo densities corresponding
to the various sample sizes. A vertical line in each panel marks the value of �(�).

The bias of the unconditional estimator tends to be small, except for small values of � in the case
of the t distributions (especially the t distribution with 2 degrees of freedom). In small samples
and for a small values of �, the estimator is not very precise. However, its precision increases with
the sample size T and the level �.

4.2. Estimation of the conditional expected shortfall

To facilitate comparisons of alternative estimators of the conditional expected shortfall, we consider
cases when the conditional mean of the outcome Yt depends linearly on a constant and a single
regressor Xt . Both homoskedastic and heteroskedastic versions of the model are considered. In
the homoskedastic version, the conditional distribution of Yt given Xt = x is N(−1+x,1). In the
heteroskedastic version it is N(−1+x, (1+0.25x)2). In either case, Xt is distributed as N(0,1),
and the population regression R2 is about 50%.

We compare the Monte Carlo behavior of four estimators: (i) the fully non-parametric estimator
�̄(� | x), denoted by NP, (ii) the ICQF estimator �̂(� | x), (iii) the ICDF estimator �̃(� | x) based on
the non-monotonic cdf estimate F̂(y | x), denoted by ICDF1, and (iv) the ICDF estimator �̃∗(� | x)
based on the monotonic cdf estimate F̃(y | x), denoted by ICDF2.
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Figure 1. Monte Carlo densities of the unconditional estimator �̂(�) when Yt ∼N(0,1), for �=1,5,10%.
The densities are based on 1000 samples of size T =250,500,1000.
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Figure 2. Monte Carlo densities of the unconditional estimator �̂(�) when Yt ∼0.8∗N(0,1)+0.2∗N(0,2),
for �=1,5,10%. The densities are based on 1000 samples of size T =250,500,1000.

For the non-parametric estimator NP, we use a Gaussian kernel with bandwidth h=�X T−1/5,
where �X is the standard deviation of Xt and T is the sample size.

After some experimentation, the number of estimated regression quantiles for the ICQF estimator
and the number of thresholds for the two ICDF estimators is set equal to I =1,2,4, respectively,
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for T =250,500,1000 and �=0.01. For � equal to 5 and 10%, the value of I is scaled up
proportionally (thus, I =5,10,20, respectively, for T =250,500,1000 and �=5%). For the ICQF
estimator, we also choose pi =�(2i−1)/2I , with i=1, . . . , I , and uniform weights wi =1/I . This
corresponds to choosing the pi equally spaced between p1=�/(2I ) and pI =�−�/(2I ), that is,
pi = pi−1+�, with �=�/I . For the ICDF estimators, the thresholds correspond to equally spaced
order statistics between y1=Y(1+�) and yI =Y(1+�I ), where �=[S/(I +1)] is the integer part of
the ratio of the number S of data points to the left of Q̂(� | x) and the number I of thresholds.
In practice, construction of the ICDF estimator requires the estimated conditional quantile to
be greater than the first sample-order statistic Y(1). This condition is not guaranteed, especially
when �=1% and T =250. In this case, we decided to drop the ‘failed’ experiments (those where
the condition is not met) and draw Monte Carlo samples until a predetermined number of 1000
‘successful’ experiments are reached. For �=1%, the ratio of ‘failed’ to ‘successful’ experiments
is between 20 and 25% for T =250, is between 5 and 7% for T =500, drops to less than 1% for
T =1000, and is zero or negligible in all other cases.

Details on the Monte Carlo distribution of the four alternative estimators for different �-levels
(�=1,5 and 10%), sample sizes (T =250,500,1000) and x-values (the 10th and 50th percentiles
of Xt ) are given in Tables II and III, respectively, for the homoskedastic and the heteroskedastic
case. Each table reports the value of I for the ICDF and the ICQF estimators, and the mean bias
(Bias), the standard deviation (SD) and the root mean squared error (RMSE) of all four estimators.
In Figures 3 and 5 (for the homoskedastic case) and Figures 4 and 6 (for the heteroskedastic case),
we plot kernel estimates of the Monte Carlo densities of the various estimators for �=5%. In each
graph, we keep the x-value fixed and increase the size T of the Monte Carlo sample.

The Monte Carlo results follow the same pattern as for the unconditional estimator, with the
bias and the RMSE of all estimators falling with the sample size. In most cases, the coefficients of
skewness and kurtosis (not reported to save space) range in the intervals (−0.5,0.5) and (2.5,3.5),
respectively. For moderate and large sample sizes (500 or 1000 observations) and values of �
equal to 5 and 10%, the Monte Carlo distribution of all estimators looks approximately normal,
supporting the conjecture of asymptotic normality of these estimators. Overall, the fully non-
parametric estimator NP has a smaller bias, a larger SD and a larger RMSE than the other three
estimators. In general, the ICQF estimator performs better than the ICDF estimators in terms of
RMSE except when either the level � or the sample size T is small. This is mostly due to its
smaller bias which, for small � or small T , is offset by a larger variability. Of the two ICDF
estimators, ICDF1 tends to have a smaller bias but a larger variability than ICDF2. In terms of
RMSE, ICDF1 tends to do better in the homoskedastic case irrespective of �, x and T , whereas
ICDF2 tends to do better in the heteroskedastic case.

5. EMPIRICAL ILLUSTRATION

In this section we present an empirical application using real data. The dependent variable is the
daily excess return on the S&P 500 index, while the regressors include a number of real and
financial variables. We report results for the unconditional estimator �̂(�), the ICQF estimator
�̂(� | x) and the two ICDF estimators �̃(� | x) and �̃∗(� | x). We exclude the fully non-parametric
estimator �̄(� | x) because it suffers of curse-of-dimensionality problems given the relatively high
number of predictors that we consider.
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Figure 3. Monte Carlo densities of alternative estimators of �(� | x) in the homoskedastic model Yt |Xt ∼
N(−1+Xt ,1) and Xt ∼N(0,1), for �=5% and x=−1.282 (the 10th percentile of Xt ). The densities

are based on 1000 samples of size T =250,500,1000.
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Figure 4. Monte Carlo densities of alternative estimators of �(� | x) in the heteroskedastic model Yt |Xt ∼
N(−1+ Xt , (1+0.25Xt )

2) and Xt ∼N(0,1), for �=5% and x=−1.282 (the 10th percentile of Xt ).
The densities are based on 1000 samples of size T =250,500,1000.

5.1. The data

Our raw data are daily from 30 December 1994 to 31 December 2004. The dependent variable
is the daily excess return on the U.S. stock market, defined as the difference between the return
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1000 samples of size T =250,500,1000.
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N(−1+ Xt , (1+0.25Xt )

2) and Xt ∼N(0,1), for �=5% and x=0 (the median of Xt ). The densities
are based on 1000 samples of size T =250,500,1000.

on the S&P 500 (the logarithmic difference in the index plus dividend payments) and the return
on a 3-month U.S. money market instrument issued by JPMorgan (the logarithmic difference in
its price), and computed excluding weekends and holidays. The set of predictors includes both
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Table IV. Data sources.

Code Description Source

MKUTR S&P500 total return index Bloomberg
RUSTR 3m U.S. cash total return Thomson Datastream, Bloomberg
OIL Oil Nymex future price (first contract) Bloomberg
COMMDTY Goldman Sachs non-energy index Bloomberg
DYUS S&P500 equity dividend yield Bloomberg
RYUS Lehman U.S. aggregate Baa yield Thomson Datastream, Bloomberg
TB10Y U.S. generic govt 10 year yield Bloomberg
TB3M U.S. treasury bill 90 days yield Bloomberg

real and financial variables. The real variables include the price of oil futures and a price index
of non-energy commodities. The financial variables include the risk spread (the yield difference
between a Lehman U.S. aggregate Baa bond and a U.S. Government 10-year bond), the term
spread (the yield difference between a U.S. Government 10-year bond and a U.S. Treasury 90-day
bill), and the dividend yield (the weighted average of the dividend per share on the stocks entering
the S&P 500). This set of predictors has been chosen to include a broad mix of macro and micro
indicators. The prices of basic materials carry information on the cost of industrial inputs, the risk
spread and the dividend yield carry information on the risk premium and companies’ profitability,
whereas the term spread embodies expectations on short- and long-term inflation. All predictors
are measured as of the end of the day. For the 3-month U.S. money market instrument issued by
JPMorgan and the Lehman U.S. aggregate Baa bond, we use the Thomson Datastream series that
have been concatenated backwards starting with 31 December 1996 and 30 June 1998, respectively.
All other data are from Bloomberg.

Data sources, variable transformations, and summary statistics of the transformed data, namely
the mean, the standard deviation (SD), the 1st percentile (Q.01) and the 99th percentiles (Q.99),
are presented in Tables IV and V.

Figure 7 presents the transformed data. The upper left panel plots the dependent variable, the
daily excess return on the US stock market. Note that the sample period is long enough to include
the bull market of the second half of the 1990s, the bear market between 2000 and 2003, and the
post-2003 period.

5.2. Empirical results

We estimate the model repeatedly using rolling windows of T =499 observations. The first of
these windows goes from 4 January 1995, when all transformed variables are available, to 10
July 1997. In total, we have 1460 windows. All predictors are lagged one period. For each rolling
window, we use the estimated model and the last available value of the predictors to estimate the
expected shortfall over the next day. We call this estimate the one-step ahead predicted shortfall.

Table VI summarizes the results obtained using the unconditional estimator UC, and our three
conditional estimators, namely ICQF, ICDF1 and ICDF2. It presents the mean, the standard
deviation, and the 1st and 99th percentiles of the empirical distribution over our 1460 rolling
windows of the one-step ahead predicted shortfall (expressed in percentage points) for �=5%. The
standard deviation is significantly lower for the unconditional estimator than for the conditional
estimators. This reflects the smoothness of the unconditional estimator, whose value is affected
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490 F. PERACCHI AND A. V. TANASE

Table V. Transformations and summary statistics of the data.

Variable Description Transformation Mean SD Q.01 Q.99

USR S&P500 excess return ln(MKUTRt/MKUTRt−1)− 2.3×10−4 0.011 −0.029 0.033
ln(RUSTRt/RUSTRt−1)

UOIL Oil price log diff ln(OILt/OILt−1) 5.6×10−4 0.023 −0.059 0.053
UCOMM Commodity price log diff ln(COMMDTYt/ 0.8×10−4 0.006 −0.014 0.013

COMMDTYt−1)
URS Risk spread RYUSt −TB10Yt 1.556 0.667 0.707 3.054
UDY Dividend yield ln (DYUSt ) 0.427 0.259 0.044 1.008
USP Term Spread TB10Yt −TB3Mt 1.544 1.120 −0.572 3.612
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Figure 7. Transformed daily data between January 4, 1995, and December 31, 2004.

Table VI. Summary statistics of the empirical distribution over 1460 rolling windows of the one-step ahead
predicted shortfall (expressed in percentage points) for alternative estimators of the expected shortfall.

Estimator Mean SD Q.01 Q.99

UC −2.560 0.360 −2.979 −1.603
ICQF −2.481 0.844 −4.387 −0.978
ICDF1 −2.448 1.764 −6.540 −1.202
ICDF2 −2.302 1.284 −5.984 −1.199

only marginally by the accrual of new information as the rolling window changes. On the other
hand, by construction, the conditional estimators are much more sensitive to short-run variations
in the predictors.
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Figure 8. One-step ahead predicted shortfall based on the unconditional estimator �̂(�) (denoted by UC)
and three conditional estimators, ICDF, ICQF1 and ICQF2, with �=5%.

Figure 8 presents the time-series plot of the one-step ahead predicted shortfall based on the
unconditional estimator UC and the three conditional estimators ICQF, ICDF1 and ICDF2. In a
few cases (29 for the ICDF1 estimator and 23 for the ICDF2 estimator out of a total of 1460),
the one-step ahead predicted shortfall is negative and larger than 5% in absolute value. To avoid
scale problems, in Figure 8, we censor these values at −5%. A pattern that is common to all
conditional estimators is that they follow the observed volatility clustering of the financial returns
and tend to exhibit persistence in sub-intervals. Periods when the one-step ahead predicted shortfall
is particularly high are the second semester of 1998 and 2001, respectively, the last quarter of
2002 and the first quarter of 2003. Among the conditional estimators, the ICDF2 is particularly
sensitive to the market index swings of the second semester of 1997.

To assess the predictive accuracy of our estimators, we follow McNeil and Frey [15] who
propose a formal test of the hypothesis that a particular method provides an unbiased predictor of
the expected shortfall. Their test is based on the idea that, under the null hypothesis, the one-step
ahead prediction error (defined as the difference between the observed excess return between T and
T +1 and the one-step ahead predicted shortfall) should have mean zero under quantile violation,
that is, in cases when the observed excess return is lower than the VaR at level �. The test rejects
the null hypothesis whenever the average one-step ahead prediction error is large, the average
being taken over all quantile violation cases.

We depart from McNeil and Frey [15] because we do not formally test the null hypothesis,
but simply compare summaries of the empirical distribution of the one-step ahead prediction error
for the various estimators under quantile violation. We estimate the VaR unconditionally by the
order statistic Y[�T ], where T =499 is the number of observations in each rolling window, and
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Table VII. Summary statistics of the empirical distribution of the one-step ahead prediction error (expressed
in percentage points) in the quantile violation cases for alternative estimators of the expected shortfall.

Estimator Np. obs. Mean SD Q.01 Q.99

UC 77 (5.3%) −0.052 0.670 −3.346 0.698
ICQF 89 (6.1%) −0.033 0.718 −3.366 1.699
ICDF1 89 (6.1%) 0.022 0.776 −3.565 2.076
ICDF2 89 (6.1%) −0.059 1.410 −3.805 8.601

conditionally using the linear quantile regression estimator of Koenker and Bassett [12]. Table VII
shows, for each estimator considered, the number and percentage of quantile violations (out of
1460 cases) and summaries of the empirical distribution of the one-step ahead prediction error—
the mean, the standard deviation, and the 1st and 99th percentiles—under quantile violation. The
standard deviation and the difference between the 99th and the 1st percentile (another measure
of variability) are smallest for the unconditional estimator. However, the mean prediction error
for this estimator (under quantile violation) is larger in absolute value than for the conditional
estimators, except possibly ICDF2. Among the conditional estimators, the mean prediction error is
smallest in absolute value for the ICDF1 estimator, whereas the variability of the prediction error
is smallest for the ICQF estimator. Note that the mean prediction error is negative (underprediction
of the loss) for the ICQF and the ICDF2 estimators, and positive (overprediction of the loss) for
the ICDF1 estimator. Also note that, for the two ICDF estimators, the difference between the 99th
and the 1st percentile tends to be large due to some extreme negative estimates.

6. SUMMARY AND CONCLUSIONS

In this paper we have extended the concept of expected shortfall to the important case when auxiliary
information about the outcome of interest is available in the form of a set of predictors. Our starting
points are two equivalent representations of the �-level expected shortfall. In the unconditional case,
the two representations lead to the same estimator, namely an average of the smallest sample-order
statistics. In the conditional case, instead, they may lead to two alternative classes of estimators,
labelled integrated conditional quantile function (ICQF) and integrated conditional distribution
function (ICDF) estimators. One advantage of the class of ICDF estimators is that we can more
easily impose monotonicity of the estimated cdf and therefore avoid the quantile crossing problem
that one may encounter with the class of ICQF estimators. We also consider a simple class of fully
non-parametric estimators that consist of local versions of the unconditional estimator. The main
drawback of this class of estimators is that they suffer of the curse-of-dimensionality problem.

We study the properties of the proposed estimators through a set of Monte Carlo experiments
and through an empirical application using financial data. The Monte Carlo experiments show that
accuracy of the estimators increases rapidly with the level � and the sample size. For moderate and
large sample sizes (500 or 1000 observations) and values of � equal to 5 and 10%, the Monte Carlo
distribution of the estimators looks approximately normal, supporting the conjecture of asymptotic
normality of these estimators. The behavior of the conditional (ICQF and ICDF) estimators is very
similar for central values of the predictors, but tends to differ for extreme values, in a way that
depends on the underlying model.
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In our empirical application, the predictive performance of the various estimators is assessed by
analyzing the distribution of the one-step ahead prediction errors based on a sequence of rolling
samples. Overall, the conditional estimators, and especially the ICQF estimator, tend to have a
better performance than the unconditional estimator.

ACKNOWLEDGEMENTS

We thank Karim Abadir, Raffaello Seri, Frank Vella, participants to the SMAP 2006 workshop, and three
anonymous referees for their very useful comments. Special thanks go to Samantha Leorato.

REFERENCES

1. Artzner P, Delbaen F, Eber J-M, Heath D. Coherent measures of risk. Mathematical Finance 1999; 9:203–228.
2. Delbaen F. Coherent risk measures on general probability spaces. Advances in Finance and Stochastics. Springer:

Berlin, 2002; 1–37.
3. Acerbi C, Tasche D. On the coherence of expected shortfall. Journal of Banking and Finance 2002; 26:1487–1503.
4. Bassett GW, Koenker R, Kordas G. Pessimistic portfolio allocation and Choquet expected utility. Journal of

Financial Econometrics 2004; 2:477–492.
5. Koenker R. Quantile Regression. Cambridge University Press: New York, 2005.
6. Peracchi F. On estimating conditional quantiles and distribution functions. Computational Statistics and Data

Analysis 2002; 38:433–477.
7. Hirsch MW, Smale S. Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press:

New York, 1794.
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