
Journal of Econometrics 48 (1991) 119-134. North-Holland 

Bounded-influence estimators for the 
SURE model 

Franc0 Peracchi” 
New York Unit~ersiiy, New York, NY 10003, USA 

Received November 1988, final version received February 1990 

This paper considers robust estimation of the seemingly unrelated regression equations (SURE) 
model, Following the infinitesimal approach to robustness, we characterize the class of optimal 
bounded-influence estimators and we propose two computationally simple estimators. We also 
present the results of a set of Monte Carlo experiments carried out to study the behavior of 
these estimators. 

1. Introduction 

In recent years much research has been devoted to developing regression 
estimators which are robust, that is, not too sensitive, to violations of some of 
the underlying statistical assumptions [see, e.g., Krasker (1980), Huber (1981, 
1983) Krasker and Welsch (1982), Hampel et al. (1986)]. There have been 
also some interesting econometric applications of these estimators. For 
example, Krasker, Kuh, and Welsch (1983) and Small (1986) estimate hedo- 
nic price models for housing, Swartz and Welsch (1986) estimate and forecast 
energy demand, and Thomas (1987) uses a very large data set to estimate 
Engel curves for food. All these studies show that robust methods can lead to 
significant differences with respect to ordinary least squares (LS) in terms of 
point estimates, inference, and forecasts. This is due to the fact that robust 
methods are much less sensitive than LS to local violations of the model 

*I would like to thank Ed Learner and Arnold Zellner for useful comments on an earlier draft 
of this paper. 
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assumptions. All available studies, however, assume that the disturbances 
have a scalar covariance matrix at the ‘central’ model, which rules out 
important practical cases, such as systems of seemingly unrelated regression 
equations (SURE). 

In this paper we consider robust estimation of the SURE model. Following 
the infinitesimal approach to robustness [Hampel et al. (198611, we present a 
class of regular (that is, consistent and asymptotically normal) M-estimators 
that have a bounded and continuous influence function (IF). All these 
estimators are therefore qualitatively robust [Hampel (197111, that is, small 
perturbations of the assumed statistical model can only have small effects on 
the distribution of the estimates. This desirable local stability property is not 
shared by the conventional maximum-likelihood (ML) estimator based on the 
assumption of normal (Gaussian) disturbances. In the class of estimators with 
a bounded and continuous IF, the ones proposed in this paper have mini- 
mum asymptotic mean square error (MSE) at the Gaussian model, and 
therefore attain the best trade-off between efficiency and robustness. 

The rest of this paper is organized as follows. Section 2 examines the 
robustness properties of the Gaussian ML estimator. Section 3 characterizes 
the class of optimal bounded-influence estimators. Section 4 presents some 
Monte Carlo results. Section 5 contains the conclusions. 

2. Robustness properties of the Gaussian ML estimator 

Consider a system of q regression equations of the form 

Yin =xlnPi + Ui*Y i=l ,..., q, ,...,N, n=l 

where pi is a ki x 1 vector of possibly unknown parameters and xin is a 
ki X 1 vector of exogenous regressors. The disturbances (uin] are serially 
independent with zero mean and finite variance, but are contemporaneously 
correlated across regression equations. The system can be rewritten as 

Y,=xAP”++u n, n=l ,..., N, (I) 

where y,, is a q X 1 vector, PO = (Pi,. . . , p;>’ is a k x 1 vector of parameters 

with k = Cq=,ki, 

Xln 

x, = 

i .I . . 

x qn 
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is a k x q matrix of exogenous regressors, and {u,) are q X 1 independently 
and identically distributed random vectors with zero mean and finite variance 
Co, a symmetric, positive definite (p.d.) q x q matrix. Let 0 and B0 = 
(P(,, ~g>’ E 0 denote, respectively, the parameter space and the vector of 
parameters to be estimated. The parameter of interest is PO, whereas 
a,, = vet X,, is a nuisance parameter.’ 

The parameter 8,, can be estimated using various methods, including 
single-equation LS or, if efficiency gains are sought, Zellner’s (1962) feasible 
GLS procedure and the method of ML. In the ML case, it is common to 
assume that the distribution of the disturbances in (1) is q-variate Gaussian. 
If this model is correctly specified and possesses a finite, positiye definite 
(p.d.) Fisher information matrix, then the Gaussian ML estimator 13 = <p^‘, 6’) 
is consistent and asymptotically efficient. Further, p^ is asymptotically inde- 
pendent of & and is asymptotically equivalent to Zellner’s estimator. 

To investigate the robustness properties of the Gaussian ML estimator, let 

iN-1 denote the estimate corresponding to a sample of size N - 1, and 
consider adding to the sample an additional observation z = (y, (vet x>‘Y E 3, 
where g denotes the sample space. Let ON,: denote the resulting estimate. 
The resealed difference NCe^,, z - iN_, > can be shown to converge in proba- 
bility to a finite limit. This limit, viewed as a function of z, is called the 
influence function (IF) of 8 [Hampel (1974)] and is a measure of the 
asymptotic bias of e^ when the distribution of the observations is subject to an 
infinitesimal amount of contamination at a given point in the sample space. 
The IF therefore provides a description of the local robustness properties of 
an estimator. It follows from standard results [see, e.g., Serfling (198O)l that 
the IF of e^ (and of any other estimator asymptotically equivalent to 61, 
evaluated at the Gaussian model IF,}, is given by 

ZF(z,p^, F,) =.$(e)-‘x6 

IF(z,~,F,) = &f,(e)-‘[v@ V’]vec(rr’-I,), 

where I/ is a finite, p.d. matrix such that W’ =X-l, r = v’(y -x’/3> is the 
vector of standardized disturbances, JJf3> and J,(f3> are the diagonal blocks 
of the Fisher infofmation matrix, and @ denotes the Kronecker product. 
Notice that ZF(z, p, Fo) and ZF(z, 3, F,) are both unbounded functions of z. 

“Vet’ denotes the operator that stacks the columns of a matrix in a single column vector. 
Strictly speaking, we should consider the q(q + 1)/Z-vector of distinct elements of the matrix 
EO, but this would only complicate the notation. 
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This reflects the fact that one large disturbance or one gross-error in x are 
sufficient to completely spoil the estimates. Also notice that while the 
influence of a single disturbance on p^ is linear, its effect on & is quadratic. 

3. Bounded-influence estimation 

An M-estimator of 0” is a root of an implicit equation of the form 

N 

c TNkY~) =o, (2) 
n=l 

where the vector function nN(., 0), defined on $9~ 0, is called the score 
function associated with the estimator. Clearly, we obtain the ML estimator 
when nN(*, 0) is equal to the likelihood score. 

As is well known, the efficiency and robustness properties of an M-estima- 
tor are closely related to the properties of its IF [see, e.g., Serfling (1980) and 
Huber (198l)l. Given a parametric model, an M-estimator is efficient if and 
only if its IF is a nonsingular linear transformation of the likelihood score. 
On the other hand, an M-estimator is qualitatively robust in the sense of 
Hampel (1971) if and only if its IF is bounded and continuous. Qualitative 
robustness is a desirable property, because it ensures that small departures 
from the assumed statistical model can only have small effects on the 
distribution of an estimator. The Gaussian ML estimator is clearly not 
qualitatively robust. A natural quantitative measure of the robustness of an 
M-estimator is given by the sup-norm of its IF, called the estimator’s 
sensitivity. This measure provides an upper bound on the asymptotic bias 
that may arise under small departures from the model assumptions. An 
estimator with a bounded IF or, equivalently, a finite sensitivity is called a 
bounded-influence estimator. 

In this paper we allow for separate sensitivity bounds for the estimators of 

P _a and a,, and we consider the class of bounded-influence estimators 
8 = (p’, F’>’ for which 

(4) 

(5) 

where (B,, B2) are p.d. matrices, (rr,~~) are finite constants, and I/XI/B = 
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(x’Bx)“~ denotes the norm of the vector x in the metric of the p.d. matrix 
B. An estimator in this class is called optimal if it has minimum asymptotic 
mean square error (MSE) at the assumed Gaussian model {F,}. 

An optimal bounded-influence estimator 6 can be characterized by its 
score function. Peracchi (1987) shows that the optimal score has a relatively 
simple form when the MSE criterion is defined in the metric of a block-diag- 
onal matrix with subblocks equal to (B,, B2). In particular, the symmetry of 
the Gaussian error distribution implies that the first k components of the 
optimal score ~(2, f3) are given by 

77,(z, 0) = w,( z, B)xVr, (6) 

where w,(z, 0) is a scalar weight function defined by 

and A, is a p.d. matrix root of the equation 

Emin{l,y,/llAlxl/rllB,]xl/rr’l/‘x’ -A;’ = 0, 

with E denoting expectations taken with respect to the Gaussian model. It 
can be shown that this equation has a solution only if 

y1 2 (traceB,)/[ElIxI/rIIB,]. 

The remaining q2 components of the optimal score are given by 

where w2(z, 0) is a scalar weight function defined by 

and A, is a p.d. matrix root of the equation 

xvec( rr’ - Z,)vec( rr’-zq)‘-/I;l=O, 
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with expectations taken with respect to the multivariate standard normal 
distribution. It can be shown that this equation has a solution only if 

y2 2 (trace B,)/[EJvec(+ - I,)ll~~]. 

Since the optimal score function T(*, 0) is bounded and continuous, 6 is 
qualitatively robust. If (r,, y2) + 00, then 6 reduces to the Gaussian ML 
estimator of 8,. Notice that if y, or y2 are finite, system estimation is 
required even when each equation contains exactly the same regressors and 
there are no cross-equations nor covariance restrictions. 

The optimal estimator 6 can be interpreted as a weighted ML estimator. 
Geometrically, the likelihood score for one observation is shrunk so as to 
satisfy the robustness constraints (3) and (4). The weight applied to the 
likelihood score depends on the choice of the matrices (B,, B,). For example, 
when B, is equal to the identity matrix we obtain the SURE analogue of the 
Hampel-Krasker estimator of regression [Hampel (19781, Krasker (198011. 
When B, = AV(b, F,)- ‘, we obtain the analogue of the regression estimator 
of Krasker and Welsch (1982). 

Computation of 6 for a given sample can be expensive because eq. (2) must 
be solved numerically, and each iteration requires solving two implicit matrix 
equations for A, and A,. Following the suggestion of Peracchi (19871, the 
arbitrariness of the choice of B, and B, can be exploited to simplify the 
computation. In particular, B, and B, can be chosen such that 

wl( z,O> = min{ 1, y,/llxW}, (8) 

w,(z,O) =min{l,y,/llvec(rr’-z,)II}, (9) 

where 11. II denotes the Euclidean norm. The resulting estimator, denoted by 
BZ,, is not invariant under a reparameterization of the model. An invariant 
estimator, denoted by BI,, can be obtained by choosing B, such that 

wl( 2,O) = min{l, r,/ll~~rll~,~0~-~), (10) 

where J,(e) = ExZ- lx’. 
In this paper we shall also consider a simple generalization of Huber’s 

M-estimator of regression. The score function of this estimator has the same 
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form as (6) and (71, with 

w,( z,O) = min{ l,rl/ll~ll}, (11) 

and w&z, 0) given by (9). This estimator has a bounded IF only if the 
regressors take values in a bounded set, but should have good robustness 
properties when disturbances have a thick-tail distribution. 

Let I? = (p, a> denote any of the BZ,, BZ,, and Huber-type estimators. For 
a sample of size N, estimates of PO and X0 can be obtained by a simple 
iteratively reweighted LS algorithm, with the (i + 1)th iteration given by 

-’ N 

where witi is of the form (81, (lo), or (11) and WY; is of the form (91, with p, 
2, and V replaced by the corresponding values obtained from the ith 
iteration. The algorithm can be started at the single-equation LS estimate of 
PO. Starting at some robust estimates is however preferable, and is essential if 
the algorithm is iterated only a few times. 

A simple modification of the argument in Maronna and Yohai (1981) can 
be used to establish consistency and asymptotic normality of e under general 
conditions. The asymptotic variance matrix of 3 can be estimated consistently 

by Pi’QNPi’, where PN = N-‘~~_,(d/aC3)~(~,,, g,,,) and QN = 

N-‘~~=,7)(2,,~~)?(~,,~~)‘. If the distribution of the disturbances in (11 is 

symmetric about zero, the asymptotic variance matrix of s is block-diagonal 
with respect to p and a, which implies that 6 and C are asymptotically 
independent. 

The asymptotic normality of I$ and the asymptotic independence of p and 
5 lead to simple Wald-type tests of hypothesis concerning the regression 
parameters. Score tests can also be constructed, based on the average score 
evaluated at the restricted estimates. The asymptotic normality of s implies 
that the Wald- and score-test statistics have an asymptotic x2 distribution 
under the null hypothesis. Since e is a bounded-influence estimator all these 
tests are robust, that is, their level and power are relatively insensitive to 
small deviations from the assumed statistical model [Peracchi (1987)]. This 
property is not shared by tests based on the Gaussian ML or the Huber-type 
estimators. 
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The difference between 8 and the Gaussian ML estimator of B0 can be 
used as the basis for specification tests of the type proposed, among others, 
by Hausman (1978). In the case of bounded influence estimators, such 
specification tests are likeiy to be quite powerful because, while 8 is only 
slightly less efficient then eML at the assumed model, the difference between 
3 and 6 M,_ can be large when the model is misspecified. 

Finally, in the case of bounded-influence estimators, the weights {w,,J and 
{w*,J summarize all the information on the influence of a particular observa- 
tion and can therefore be used as effective diagnostics for outliers and 
influential observations. Since the weights are jointly computed with the 
estimates, no further calculation is required. 

4. Monte Carlo results 

In this section we report the results of a set of Monte Carlo experiments, 
carried out in order to study the behavior of the various estimators under 
small departures from the assumed Gaussian model (1). The departures 
considered include nonnormal disturbances and gross-errors in the data. 

4.1. Basic design of the experiments 

The ‘central’ model consists of two simple regression equations: 

Y rn = PiI + PizXin + ‘in) i= 1,2, 

where pi, = pi2 = 1. The regressors in each equation have been randomly 
drawn from a U( -c,E) distribution, and experiments have been carried out 
with different values of <. The 2 X 1 disturbance vector has been generated 
as u, = Cr,, where C is an upper triangular matrix and r, is a vector with 
uncorrelated components. Different choices of C have been considered to 
allow for different correlation across the equations. 

The estimators considered include the single-equation LS estimator, 
Zellner’s feasible GLS estimator, the Gaussian ML estimator, the Huber-type 
estimator, and the BZ, and BZ, estimators. The starting values for bounded- 
influence estimation are given by the Huber-type estimates. The sensitivity 
bounds for bounded-influence and Huber-type estimators have been chosen 
so as to attain an average weight of approximately 95% at the central model. 
This choice results in an asymptotic relative efficiency of about 95% at the 
Gaussian model. 

Each Monte Carlo experiment consists of 1000 replications, and each set of 
experiments has been carried out for samples of size 25 and 50.2 

‘All programs are written in GAUSS, Version 1.49b. Computations have been carried out on 
an IBM PS/2 Model 80. 
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Table 1 

Measures of tail length. 

Distributions Tail length 

Uniform 0.569 
N(O, 1) 1 .oo 
CN(O.O5,3) 1.24 
CN(O.l0,3) 1.53 
CN(O.O5,5) 1.73 
CN(O.l0,5) 2.50 
CN(O.O5,10) 3.43 
CN(O.10, IO) 4.93 
Slash 7.85 

1 

2 

0 2 4 6 8 

Tail weight 

! 
0 2 4 6 0 

Tail weight 

Fig. 1. Efficiency of ML relative to the other estimators (N = 25, population R2 = 0.50). 1: OLS, 
2: Zellner’s GLS, 3: Huber, 4: BI,, 5: BI,. 
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To avoid bothering the reader with an excess of tables, results are pre- 
sented in graphical form. Detailed numerical tables are available from the 
author upon request. For simplicity we only present results for the case when 
.$ = J?- and CC’ is a matrix with ones on the main diagonal and off-diagonal 
elements equal to 0.5. For the Gaussian model, this corresponds to a 
population R* of 0.5 for each equation. 

4.2. Nonnormal disturbances 

First we examine the behavior of the various estimators under small 
departures of the error distribution from normality. The distributions that we 
consider are ordered in table 1 by the index of tail length suggested by 
Rosenberger and Gasko (19831, namely, 

F’(0.99) - F’(0.5) 
T(F) = ~_ 

i 

P(0.75) - P(0.5) 

@ ‘(0.99) - W’(O.5) F’(O.75) - @4(0.5) . 

0.6 1 

1.2 

0.6 

z 

E 
0.7 

0.6 

0 5 

Omega 

5 

Omega 

10 

Fig. 2. Bias and efficiency of ML relative to the other estimators (gross-error model: S = 0, 
T = 0.05, N = 25). 1: OLS, 2: Zellner’s GLS, 3: Huber, 4: BI,, 5: BI,. 
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CN(r, a) denotes a contaminated normal distribution with contamination 
proportion equal to n- and variance of the contaminating distribution equal 
to a*. CN(O.O5,5) and CN(O.10,5) have about the same tail weight as 
Student’s t, and t, distributions, respectively. The ‘slash’ is the distribution 
of the ratio of two independent N(0, 1) and U(0, 1) random variables. The tail 
behavior of this distribution is less extreme than the Cauchy, for which 
T(F) = 9.22. We also include the uniform to allow for distributions with thin 
tails. Because all distributions are symmetric, no bias arises and the relevant 
issue is the precision of the various estimators. 

Fig. 1 shows the efficiency of the Gaussian ML estimator relative to the 
other estimators. For brevity, we only present results for the slope parameter 
in the first equation and samples of size 25. In terms of root mean square 
error (RMSE), the single-equation LS estimator is always dominated by 
Zellner’s and Gaussian ML estimators. These two estimators behave very 
similarly. They are more efficient than robust estimators for thin-tailed 
distributions, but they loose their efficiency very quickly as the tail length 
increases. The BZ, and Huber estimators behave very similarly and are both 
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Fig. 2 (continued) 
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more efficient than the BZ, estimator for heavy-tailed distributions. In the 
case of distributions with long tails, the median absolute error (MAE) 
provides a better measure of an estimator’s variability around the true 
parameter value. The results in terms of MAE agree with the ones in terms 
of RMSE, except that the decline in the efficiency of Zellner’s and Gaussian 
ML estimators relative to more robust estimators is less pronounced. 

Very similar results have been obtained for the slope parameter in the 
second equation, the intercept parameters in both equations, different choices 
of the variance of the regressors and different contemporaneous correlation 
across the two equations. 

4.3. Gross-errors 

Next we report some results that illustrate the robustness properties of the 
various estimators under contamination by gross-errors. Observations are 
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Fig. 3. Bias and efficiency of ML relative to the other estimators (gross-error model: 6 = 0, 
rr = 0.10, N = 25). 1: OLS, 2: Zellner’s GLS, 3: Huber, 4: BI,, 5: B12. 
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now generated from a simple errors-in-variables model, where measurement 
errors occur with small probability. More precisely, observations are gener- 
ated as follows: 

Yin =Y,t + Vjn> 

Xjn = xi*, + Win, i = 1,2, 

where pi, = p,* = 1, the regressors are uniformly distributed on [ - fi, 61, 
and the regression disturbances {u,,) are serially uncorrelated and normally 
distributed with mean zero, unit variance, and cov(u,,, uZn) = 0.5. The mea- 
surement errors {vin) are equal to zero with probability 1 - r(,, and with 
probability rr,, are randomly drawn from a N(0, S2> distribution. Similarly, 
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Fig. 3 (continued) 
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the measurement errors (win} are equal to zero with probability 1 - r,,,, and 
with probability r, are randomly drawn from a NO, w2) distribution. For 
simplicity, we set 7,: = rw = rr. To study the effects of changes in the amount 
and type of contamination, we considered different choices of n, 6, and w. 
When r = 0, we obtain model (1) with Gaussian disturbances. When r = 1, 
we obtain the classical errors-in-variables model. If the regressors are mea- 
sured with errors (that is, r > 01, all estimators are biased. We focus 
attention on the relative behavior of the various estimators in terms of their 
bias and precision when measurement errors occur with small probability. 
Bias is measured by the difference between the (Monte Carlo) mean or 
median and the true parameter value, and precision is measured by the 
RMSE and the MAE. For brevity, we only report results for the slope 
parameter in the first equation and samples of size 25. 

Fig. 2 refers to the case when r = 0.05 and only the regressors are 
measured with error, that is, w > 0 and 6 = 0. The bias and the imprecision 

Omega Omega 

Fig. 4. Bias and efficiency of ML relative to the other estimators (gross-error model: S = 5, 
T = 0.05, N = 25). 1: OLS, 2: Zellner’s GLS, 3: Huber, 4: BI,, 5: BI,. 
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increase with w for all estimators, but this increase is very moderate for the 
two bounded-influence estimators, and especially for the III, estimator. 
Notice that the Huber-type and the Gaussian ML estimators now behave 
very similarly in terms of both the bias and the imprecision, particularly for 
large value of w. Also notice how the superiority of bounded-influence 
estimators is even clearer if the median bias and the MAE are considered. 

Our justification for bounded-influence estimators is that they offer protec- 
tion against small departures from the assumed statistical model. We now 
consider the effects of increasing the ‘degree of misspecification’ of the 
model, by either increasing the measurement error probability r or by 
introducing measurement errors in the dependent variable as well. When the 
measurement error probability r is increased from 0.05 to 0.10 (fig. 3), our 
general conclusions do not change, but the superiority of bounded-influence 
estimators is somewhat reduced. This can also be seen in fig. 4, where the 
measurement error probability is kept at 0.05, but measurement errors can 
occur for both the dependent variables and the regressors. 

1.2 

0.6 - 

Omega Omega 

Fig. 4 (continued) 
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5. Conclusions 

The derivation of optimal bounded-influence estimators relies on asymp- 
totic arguments. The Monte Carlo results presented in this paper indicate 
that these estimators maintain good efficiency and robustness properties even 
in small samples. This provides further evidence in favor of using optimal 
bounded-influence estimators when an investigator seeks protection against 
small departures from the model assumptions, while retaining high efficiency 
at the central model. The price that must be paid, namely some efficiency 
loss if the assumed model is exactly correct, seems rather small compared 
with the potentially large gains in terms of reduced bias and increased 
precision of the estimates of the parameters of interest. Further, one is free 
to choose the efficiency loss that he/she is willing to tolerate. 
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