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BOUNDED-INFLUENCE ESTIMATORS FOR THE 
TOBIT MODEL* 

Franc0 PERACCHI 

Utliversity of California, L.os Angeles, CA 90024, USA 

This paper introduces a class of bounded-influence estimators for the Gaussian censored-regres- 
sion or Tobit model. These estimators can be interpreted as weighted ML estimators, with weights 
chosen to attain the best trade-off between efficiency and robustness, An empirical example 
illustrates the feasibility and usefulness of these estimators, as well as their performance vis-a-vis 
the Tobit ML, CLAD, and SCLS estimators. 

1. Introduction 

This paper introduces a class of robust estimators for the Gaussian cen- 
sored-regression (or Tobit) model. It is well known that the Tobit ML 

estimator is not robust, being very sensitive to small departures from the 
model assumptions. Recently, several semiparametric estimators have been 
proposed in the literature. Examples include Powell’s (1984) censored least 
absolute deviation (CLAD) estimator and Powell’s (1986) symmetrically cen- 
sored least squares (SCLS) estimator. These estimators have certain robustness 
properties, but can be very inefficient, for they disregard entirely the informa- 
tion contained in the parametric assumptions. The estimators presented in this 
paper provide a compromise between efficiency and robustness, for they make 
use of parametric assumptions, thereby attaining high efficiency at the Tobit 
model, but are robust in Hampel’s (1971) sense, that is, their probability 
distribution changes only little under small changes in the underlying proba- 
bility distribution of the observations. These estimators will be referred to as 
‘optimal bounded-influence estimators’, for they have a bounded-influence 
function [Hampel (1974)], which ensures protection against the effects of small 
departures from the Tobit assumptions, and attain the best trade-off between 
efficiency and robustness. They can all be interpreted as weighted ML estima- 
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tors, the exact form of the weights depending on the particular choice of the 
efficiency and robustness criteria. 

So far, bounded-influence estimation has been largely confined to the 
linear-regression model [see, e.g., Hampel (1978) Krasker (1980) Krasker and 
Welsch (1982), and Hampel et al. (1986)]. A notable exception is the 
bounded-influence estimator proposed by Stefanski, Carroll, and Ruppert 
(1986) for the Logit model. This paper provides another example of the 
feasibility and usefulness of bounded-influence estimation outside the context 
of the linear-regression model. As an illustration, we estimate Engel curves 
using Sudanese household budget data with a nonnegligible fraction of re- 
ported zero expenditures. We compare several bounded-influence estimators 
with the Tobit, CLAD, and SCLS estimators. In particular, we address the 
following questions: Is the Tobit model consistent with the data? Do more 
robust estimators lead to different conclusions than Tobit and why? What are 
the differences between semiparametric and bounded-influence estimators? 
What diagnostic information is provided by the various methods. 

Our findings may be summarized as follows. The joint hypothesis of 
normality and censored-regression specification is often at odds with the data. 
The Tobit estimates are very sensitive to a few extreme observations and look 
way off in some cases. Bounded-influence, CLAD, and SCLS estimates are 
close to each other and look more reliable. Bounded-influence estimates, 
however, appear to be more precise than CLAD and SCLS. Finally, bounded- 
influence weights provide useful diagnostic information for identifying poten- 
tial sources of model failure, in particular outliers and influential observations. 

The rest of the paper is organized as follows. Section 2 briefly discusses 
parametric and semiparametric estimation of the censored-regression model. 
Section 3 introduces the class of bounded-influence estimators for the Tobit 
model. Section 4 contains the empirical results. Section 5 offers some conclu- 

sions. 

2. Parametric and semi-parametric estimators for censored regression 

Let z, = (y,,, x;)’ be a vector of observations on k + 1 variables, with y,, 
restricted to be nonnegative. A common statistical model for the relationship 
between y,, and x, is the censored-regression model 

~,=max{O,x%,+~,}, ,.--,N, n=l (1) 

where r,, is an unobservable disturbance assumed to be independent of x,, 
& E Iw k is a vector of unknown regression parameters, and u0 E (0, 00) is an 
unknown scale parameter. When the disturbances are assumed to be indepen- 
dently and identically distributed (i.i.d.) as N(0, l), model (1) is known as the 
Tobit model and the resulting ML estimator as the Tobit estimator. 

In general, the expected value of the likelihood score for the Tobit model is 
equal to zero only when the disturbances in (1) are Gaussian and homoskedas- 
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tic, and so the Tobit estimator is generally inconsistent when these distribu- 
tional assumptions are violated. The available Monte Carlo evidence [see, e.g., 
Arabmazar and Schmidt (1981, 1982) and Goldberger (1983)] shows that the 
bias of the Tobit estimator under heteroskedasticity or nonnormality can be 
quite serious, particularly when the scale parameter is unknown and the degree 
of censoring is high. This lack of robustness of the Tobit estimator motivates 
two lines of research in the literature. The first is concerned with testing the 
normality assumption. The second with consistent estimation of the regression 
parameter &, under weak distributional assumptions. 

The normality assumption may be tested in several ways. One approach is 
to use graphical methods based on some nonparametric estimator of the error 
distribution, such as the Kaplan-Meier estimator [Chesher, Lancaster, and 
Irish (1985)]. A more formal approach is to nest the normal distribution in a 
larger parametric family and then construct a standard score test of the 
restrictions implied by normality [see, for example, Bera, Jarque and Lee 
(1984) and Ruud (1984)]. Although designed against one specific alternative, 
tests of this type have power against a variety of misspecification alternatives. 
A third approach is to construct general specification tests based on the 
comparison of two estimators that are both consistent at the assumed model, 
but have different probability limits when the model is misspecified. The 
various tests differ in the choice of what estimators to compare. For example, 
Nelson (1981) compares a consistent estimator of the covariance of x, and y, 
with the efficient estimator based on the assumption of Gaussian disturbances, 
while Ruud (1984) compares the Probit and Tobit estimators of the normal- 
ized parameter &/uO. All these tests can be interpreted as conditional moment 
tests [Newey (1985)]. They are not specifically designed to test the normality 
assumption and may lack power against certain alternatives. 

Knowledge of the parametric form of the error distribution is not necessary 
for consistent estimation of &. For example, if the errors in (1) are only 
assumed to be i.i.d., & can be estimated consistently jointly with the un- 

known error distribution [see, e.g., Buckley and James (1979) Duncan (1986) 
Fernandez (1986) and Horowitz (1986)]. Little is known, however, about the 
sampling distribution of the proposed estimators. Another possibility is to 
impose restrictions on the conditional distribution of the disturbances that are 
weaker than a parametric assumption but still sufficient to construct m-con- 
sistent and asymptotically normal estimators of &. Two such estimators are 
Powell’s (1984) censored least absolute deviation (CLAD) estimator and 
Powell’s (1986) symmetrically censored least squares (SCLS) estimator. The 
CLAD estimator, defined as 

&LAD = argmin % Iy, - max{O, x;/3} 1, 
P n = 1 

is consistent under the assumption that the conditional error distribution has 
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median zero (homoskedasticity is not required). Estimating the CLAD asymp- 
totic variance matrix, however, involves nonparametric estimation of the error 
density at the median. The SCLS estimator, defined as 

LL = argyn 2 [(IL- mad x& ~3))~ 
n=l 

+l(y,> ~x;P)[(Y,/~)~ - (m=+b:~H2]]~ 

where l(.) denotes the usual indicator function, is consistent under the 
somewhat stronger assumption that the conditional error distribution is sym- 
metric about zero (again homoskedasticity is not necessary). Neither estimator 
requires a knowledge of the scale parameter a,. Monte Carlo evidence [Paarsch 
(1984) Powell (1986)] indicates that both estimators can be very inefficient 
relative to the ML estimator based on a correctly specified 
the question of whether too much information is ignored 
consistency under very weak distributional assumptions. 

3. Bounded-influence estimators for the Tobit model 

model. This raises 
in order to attain 

The behavior of a statistical procedure should be investigated not just at the 
assumed model, but also under small departures from the model assumptions. 
Some kind of ‘stability of behavior’ is necessary, because the assumed model 
need not be exactly true, no matter how weak its assumptions are. In the case 
of model (1) for example, normality and independence between the errors and 
the regressors may fail because of a few gross-errors in the data, and linearity 
of the underlying regression relationship may fail for extreme values of the 
regressors. Further, it may be difficult to assess the exact nature of the model 
misspecification, and therefore it may not be clear what corrective actions are 
appropriate. In this kind of situations, which appear to arise frequently in 
empirical work, it may be sensible to consider statistical procedures that are 
reasonably efficient when the model is correctly specified, while being robust, 
that is, not too sensitive to small violations of the model assumptions. 

3.1. Qualitative and B-robustness 

A rigorous definition of robustness has b!en proposed by Hampel (1971) 
and formalizes the notion that an estimator I?,, indexed by the sample size N, 
is robust if small changes in the probability distribution of the observations 
have only small effects on the probability distribution of &. More precisely, 
let _!YF(f3,) denote the distribution function (d.f.) of ON when F ‘,s the 
underlying d.f. of the observations. Then, the sequence of estimators {O,} is 
called qualitatively robust at the d.f. F if, for large enough N, the mapping 
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F + LY~( J,,,,) is continuous at F with respect to the topology of weak conver- 
gence. 

A simple characterization of qualitative robustness can be obtained in the 
case of M- (or generalized ML) estimators, defined as roots of ‘estimating 
equations’ of the form 

where the function n(z, 8) is called the score function associated with the 
given estimator. Tobit, CLAD, and SCLS are all members of this class. The 

Tobit estimator corresponds to choosing n(z, 0) = s(z, 19) where s(z, 8) de- 
notes the Tobit likelihood score and 6 = (/3’, a)‘. The CLAD and SCLS 
estimators correspond to choosing, respectively, n( z, fi) = l(x’j3 > O)[sign( y - 
x’p)]x and n( z, j?) ; l( x’p > O)[min( y - x’fl, x’B)]x. 

An M-estimator 8, can generally be represented, at least in large samAples, 
as a function e( .) defined on a suitable space of d.f.‘s, that is, 8, is 
asymptotically equivalent to e( FN), where FN denotes the empirical d.f. of the 
observations. Let F,, = denote the mixture, with mixing probabilities 1 - E and 
E, of the d.f. F and anothe! d.f. with mass concentrated at the point z. The 
influence function (IF) of 0 at F, denoted by ZF(z, 8, F), is defined to be the 
limit, as E -+ 0, of the normalized difference [e< F,, ,) - e( F)]/E [_Hampel 
(1974)]. The 1,F provides an approximation to the asymptotic bias of 8,, as an 
estimator of rY( F), under a small contamination of the d.f. F by a point mass 
distribution centered at z. The sup-norm of an estimator’s IF, called the 
estimator’s sensitivity, provides a natural quantitative measure of robustness. 
An estimator with a finite sensitivity is called a bounded-influence or B-(bias-) 
robust estimator. For an M-estimator with a continuous IF, B-robustness and 
qualitative robustness are equivalent [see, e.g., Hampel et al. (1986)]. Further, 
since the IF and the score function of an M-estimator are related by a 
nonsingular linear transformation [see, e.g., Serfling (1980)], B-robustness is 
equivalent to the score function being bounded, and qualitative robustness to 
the score function being bounded and continuous. 

The Tobit estimator is not qualitatively robust because the Tobit score is 
not bounded. The CLAD and SCLS score functions are bounded only if the 
regressors take values in a bounded set. Even in this restrictive case, however, 
their sensitivity can be unacceptably high. Further, their score function is not 
continuous, and so both can be sensitive to rounding or grouping of the 
observations [see, e.g., Hampel et al. (1986)]. 

3.2. Optimal bounded-influence estimators for the Tobit model 

In this section we shall assume that the observations { zn} are i.i.d. and their 
common d.f. F, belongs to the parametric family P= {F,: 8 E 0, 0 = Rk x 
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(0, co)], specified by the Tobit model (1). Thus F, = Fe, for some BO E 0. We 
shall exploit this information to construct estimators of 0, that are consistent 
at the Tobit model and cannot be improved upon simultaneously with respect 
to the criteria of asymptotic efficiency at the assumed model and robustness to 
small departures from the model assumptions. More precisely, let z denote 
the class of M-estimators of 8, that are consistent and asymptotically normal 
at the Tobit mode! and have a sensitivity that does not exceed a given bound 
c, i.e., supZ/IIF(z, 0, F,)II B I c, where llxll a denotes the norm of the vector x in 
the metric of the p.d. matrix B. Within the class q, we seek an estimator that 
is efficient at the Tobit model according to an asymptotic mean square error 
(MSE) criterion of the form MSE(8, F,,Q) = trace[Q AV(8, Fe)], where Q is 
some p.d. matrix and AV(fI, F,) denotes the asymptotic variance matrix of 4 
at the d.f. F,. Such an estimator, called an optimal bounded-influence estima- 
tor, is qualitatively robust if, in addition, its score function is continuous. 

Peracchi (1987) provides conditions for the existence of an optimal 
bounded-influence estimator and characterizes its score function in the case of 
a general parametric model and arbitrary metrics for the sensitivity and the 
MSE criterion. The form of the optimal bounded-influence estimator simplifies 
considerably when the sensitivity and the MSE criterion are both defined in 
the same metric, that is, Q = B. By specializing his results to the Tobit case we 
obtain the following: 

Proposition 1. Suppose that Amemiya’s (1973) conditions for consistency and 
asymptotic normality of the Tobit estimator are satisjied, and assume that there 
exists a pair of continuousb diflerentiable functions (a( .), P(e)), dejned on an 
open set O,, containing t$, such that P(8) is a p-d. matrix and (a(B), P(8)) 

solve the system of equations 

E~min{l,c/~~P~‘[s(z,8) -a]IIB}[s(z,e) -a] =O, (4 

E,min{l,c/~~P~1[s(z,B)-a]~~,}[~(~,8)-a]s(z,~)’-P=O, 

(3) 

where E, denotes expectations taken with respect to F,. Let 6, = 6( FN) be the 

M-estimator of 0, based on the score function q( z, 0) = w( z, e)[s( z, 0) - a(S)], 
where the function w( z, 8) is defined by 

i 

C 

w(z, e) = min 1, 
lip(e)-‘[+, 0) - a@91 lb I . 

Then, for an_)’ 0 E O,, MSE(& F,, B) 5 MSE(8, F,, B) for all estimators 8 in 

q. Moreover, N’/*( $N - 0,) 2 N(0, Pop ‘Q,Pd- ‘), where P, = 

(V@)E071(z, 4,), Q. = E&, &Jdz, 4)’ and E, denotes expectations taken 

with respect to F,. A consistent estimate of the asymptotic variance matrix of &N 
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is given by pi ‘o,,,ph-‘, where 

N-lC:z&,,, Q,,)V(Zn3 &J’. 

P,= N- and &N= 

The existence of 6, depends on the existence of a solution to the equation 
system (2)-(3). A necessary condition is the following: 

Proposition 2. Suppose that Eel].r(z,B)I] exists and is positive. Then a(e) and 

P(0) exist only if c 2 (trace B)/(Esl]s(z, f?)(le). 

Proposition 1 defines a whole family of estimators, indexed by the choice of 
the matrix B and the sensitivity bound c. Clearly, when the bounded-influence 
constraint is not binding, i.e., c = co, 6 is the Tobit estimator. An optimal 
bounded-influence estimator can be interpreted as a weighted ML estimator, 
where the weight function w(z, 0) depends on the matrix B. When B is equal 
to the identity matrix, 6 is the Tobit analogue of the regression estimator of 
Hampel (1978) and Krasker (1980). When B = AV(6, F,))’ we obtain the 
analogue of the regression estimator of Krasker and Welsch (1982). other 
choices of B will be discussed later. The vector a(0) is a bias correction term 
that ensures consistency of 6 at the Tobit model. Geometrically, the Tobit 
score for one observation is censored to satisfy the bounded-influence con- 
straint, and shifted to guarantee consistency at the assumed model. Since the 
Tobit score is continuous, it is clear that 6 is qualitatively robust. 

When the distribution of the regressors is unknown, the above results should 
be interpreted as conditional on the given set of regressors. When any of the 
assumptions of the Tobit model is violated, 6 is not generally consistent. 
However, since the IF of # is bounded, combining the bias and the asymptotic 
variance of an estimator in some risk function, it is possible to find a 
neighborhood of the assumed model over which the optimal bounded- 
influence estimator has smallest asymptotic risk than the Tobit estimator. 

It can be shown that tests inherit the efficiency and robustness properties of 
the estimators on which they are based [see, e.g., Peracchi (1987)]. In particu- 
lar, tests based on bounded-influence estimators are robust, that is, their level 
and power are relatively stable under small departures from the model 
assumptions. This property is not shared by tests based on estimators that do 
not possess a bounded IF. Tests based on optimal bounded-influence estima- 
tors are robust and have, in addition, certain optimality properties in terms of 
asymptotic power. 

The difference between Tobit and an optimal bounded-influence estimator 6 
can be used to construct a variety of specification tests of the type proposed, 
among others, by Hausman (1978). This type of tests are likely to be quite 
powerful, because the difference between the two estimators can be very large 
when the model is misspecified, but e” will be only slightly less efficient than 
the Tobit estimator when the model is correct. 



114 I? Perrrcchi, Bounded-influence estimators for the Tohit model 

The robust weights (4) computed for each observation in the sample, 
provide useful diagnostics for detecting outliers and influential observations. 
In the case of nonlinear estimators, the use of these weights represent an 
alternative to methods based on deleting a subset of observations at a time 
and then comparing the resulting estimates with the ones obtained from the 
full sample [see, e.g., Belsley, Kuh, and Welsch (1980) for the linear-regression 
case]. Since the robust weights are jointly computed with the parameter 
estimates, they require no additional calculation. Further, they are easy to 
interpret, because of the weighted ML nature of an optimal bounded-influence 
estimator. 

The computation of 6 may be quite expensive, but considerable simplifica- 
tions can be obtained by exploiting the arbitrariness of the metric in which the 
sup-norm of the IF is defined. Here we propose two possibilities. The first is 
to choose B = P(0)2, where P(0) was defined in Proposition 1. Although not 
very natural, this metric is convenient from the point of view of computation, 
since it eliminates the need of solving for the matrix P at each iteration. 
However, the resulting estimator is not invariant under a reparameterization of 
the model. One choice that leads to invariance is B = P(O)J(B)-‘P(B), where 
J(0) is the information matrix associated with the parametric model F,. The 
resulting weight function, which is also computationally simple, rescales the 
recentered likelihood score whenever its norm, in the metric of the inverse 
information matrix, is greater than the given bound c. The estimators based on 
these two choices of weight function will be denoted by BII and BZ2, 
respectively. We shall also consider the estimator based on a score function of 
the form n(z, 0) = w(z, B)[s(z, 0) - a(0)], w h ere the weight function w(z, 0) 
is given by 

dz, e) = min{l, c/ll.r(z,~)ll}, 

Table 1 

Bounded-influence estimators for the censored regression model. All bounded-influence estimators 
in this paper are based on a score function of the form 

i 

c 

T(-,“) = min l, IIA(e)[s(Z,e) - b(S)]ll 1 [s(z.O) -u(O)].” 

Estimatorb h(B) A(@) Metric on the IF 

BIO 

BIl 

B12 

H-K 

K-W 

0 

a(O) 

u(B) 

a(B) 

o(O) 

I 

I 

5(0)~“2 

P(e)-’ 

Q(e)-” 

p(o)2 
P(B)J(e)-‘P(B) 

I 

f’(@)Q(~)-‘P(~) 

aThe p X 1 vector o(8) and the p Xp matrix P(B) are solutions to eqs. (2)-(3) in the text, and 
Q(S) = &a(~, S)q(z, 0)‘. 

bH-K = Hampel-Krasker type, K-W = Krasker-Welsch type. 
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and a(0) = EBw(z, 8)s(z, 0). This estimator, denoted by B10, does not have 
any optimality property but is simple to compute because w(z, 0) does not 
depend on a( 0). Since the BIO estimator has a bounded IF and can be shown 
to be consistent at the Tobit model, it should provide good starting values for 
one-step versions of an optimal-bounded influence estimator. The method of 
Bickel (1975) can then be used to show that these one-step estimators are 
asymptotically equivalent to the fully iterated estimators. Table 1 summarizes 
the score function for each of the estimators introduced in this section. 

4. Empirical application 

The censored-regression model is frequently used to analyze the income- 
expenditure relationship when household budget data contain a significant 
fraction of reported zero expenditures. In this section we analyze household 
budget data from the Sudan. A comparison between the Tobit, CLAD, SCLS, 
and several bounded-influence estimators is carried out. 

4.1. The data and the$tted models 

The data are taken from the 1978-80 Household Income and Expenditure 
Survey of the Sudan, and were chosen as an example of the type of low-quality 
data that are often used by economists. The data are contaminated in various 
ways, including misreporting by individual households, coding and punching 
errors, data manipulation at the editing stage, etc., but the actual amount of 
contamination is unknown. To keep the model as simple as possible, we only 
consider the subset of 268 observations from the Nile region. We estimate 
Engel curves for three commodities with a nonnegligible fraction of reported 
zero expenditures, namely clothing and footwear (‘clothing’), transport ser- 
vices and repairs (‘transport’), and tobacco products (‘tobacco’). The degree of 
censoring differs for the various commodities and is equal to 8.2% for clothing, 
23.9% for transport, and 31.7% for tobacco. 

We consider a number of popular models of Engel curves for an individual 
commodity i: 

w,=a,+b,lnx [ Working-Leser (WL)] , 

wj = ai + b, In x + d,(ln x)’ [Quadratic Working-Leser (QWL)] , 

piqi = a, + b,x [Linear Expenditure System (LES)] , 

p;qi = a, + bix + dix2 [Quadratic Expenditure System ( QES)] , 
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where w, and p,q, denote, respectively, the budget share and the total 
expenditure on the ith commodity, and x denotes the total outlay. These 
Engel curves are all theory-consistent, that is, each of them can be derived by 
Shephard’s Lemma from some nice cost function. QWL and QES may be 
interpreted as second-order approximations, based, respectively, on powers of 
In x and of x, to an arbitrary Engel curve, 

Demographic and area effects are introduced in the analysis by expressing 
income in per capita terms, and by assuming that for each model the intercept 
ai depends linearly on a number of household characteristics, including the 
household size, a household composition effect (number of household mem- 
bers less than 14 years old), and an area dummy with a value of one for 
households living in rural areas and zero for households living in urban areas. 
This specification may be restrictive, because demographic and area effects 
may in principle affect the whole set of parameters. 

Definitions and summary statistics for all variables considered are presented 
in table 2. 

Variable” 

Table 2 

Definition and summary statistics for the variables in the data set. 

Min Max Median MADh 

SHXCLOTH 0.00 
SHXTRA NS 0.00 
SHXTOBAC 0.00 
XCLOTH 0.00 
XTRA NS 0.00 
XTOBA C 0.00 
XPC 2.88 
XPCSQ 8.29 
LXPC 1.91 
LXPCSQ 63.45 
HHSIZE 2 
LT14 0 

22.35 
30.43 
12.21 
52.63 
73.53 
19.44 

118.46 
14032.43 

11.68 
136.48 
16 
9 

4.0 
0.97 
0.52 
4.00 
0.94 
0.34 

12.20 
148.89 

9.41 
88.54 

3 

92.24 
0.97 
0.52 
2.73 
0.94 
0.34 
3.73 

84.30 
0.31 
5.17 
2 
1 

“SHXCLOTH = % share of total expenditure on clothing and footwear, 
SHXTRANS = % share of total expenditure on transport services and repairs, 
SHXTOBAC = ‘% share of total expenditure on tobacco products, 
XCLOTH = household expenditure on clothing and footwear, 
XTRA NS = household expenditure on transport services and repairs, 
XTOBAC = household expenditure on tobacco products, 
XPC = total expenditure per household member, 
XPCSQ = square of XPC, 
LXPC = 1000 * log XPC, 
LXPCSQ = square of LXPC, 
HHSIZE = number of household members, 
LT14 = household members less than 14 years old. 

‘Median absolute deviation from the median. 
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4.2. Preliminary tests of specijcation 

For each commodity and functional form we first present a number of tests 
for normality, conditional symmetry of the error distribution, and censored- 
regression specification. The normality assumption is tested against the general 
Pearson family using the score test of Bera, Jarque, and Lee (1984) and the 
specification tests of Nelson (1981) and Ruud (1984). As Cragg (1971) first 
pointed out, the censored-regression model may not provide an appropriate 
representation of demand behavior because it does not distinguish between the 
decision to purchase a good and the decision of how much to purchase. We 
test the censored-regression specification against Cragg’s (1971) Model I by 
using the score test of Deaton and Irish (1984) and against Cragg’s Model II 
by using the score test of Lin and Schmidt (1984). Both are tests of the joint 

hypothesis of normality of the error distribution and censored-regression 
specification. The joint hypothesis of conditional symmetry and censored- 

Table 3 

Tests for normality, symmetry, and Tobit specification. 

Testsa 

Ruud Nelson BJL L-S D-I Newey 

Clothing 

WL 14.1‘ 4.01b 4.22b 
LES 93.2 71.5 36.6 

QwL 15.9’ 7.21b 4.78b 
QES 99.0 127.0 20.2 

Trunsport 

WL 110.3 40.6 60.8 
LES 161.5 80.7 37.8 
QwL 118.9 61.0 59.6 
QES 171.5 184.3 70.0 

Tobacco 

WL 48.9 ll.lC 45.8 
LES 10.1 23.8 61.5 
QwL 50.2 17.3 46.7 
QES 75.5 82.0 54.5 

“Ruud = Ruud (1984). 

Nelson = Nelson (1981). 
BJL = Bera. Jarque, and Lee (1984), 
L-S = Lin and Schmidt 1984). 
D-I = Deaton and Irish (1984). 
Newey = Newey (1987). 

bNot significant at the 5% level. 
%ignificant at the 5% but not at the 1% level. 

14.1C 1.68b 
94.6 4.06 
16.0’ 1.69b 

100.6 0.95b 

111.8 10.2 
162.5 12.7 
119.4 10.6 
178.0 11.9 

49.0 6.74 
71.1 1.22 
50.2 6.80 
77.4 6.37 

6.88’ 
19.6 

8.73b 
9.14b 

16.4 
12.0’ 
15.5 

n/a 

6.39b 
6.84b 
3.94b 

n/a 
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regression specification is tested as in Newey (1987). Since all these tests 
assume that the Engel curves are correctly specified, they should also have 
power against misspecification arising from omitted variables or an incorrect 
functional form. Under the null hypothesis, all test statistics except the 
Deaton-Irish statistic have an asymptotic x2 distribution. The number of 
degrees of freedom is equal to two for the Bera-Jarque-Lee test, and to the 
number of regressors for all other tests. The Deaton-Irish statistic has an 
asymptotic N(O,l) distribution under the null hypothesis. If the statistic is 
positive and significantly different from zero, this is evidence against both 
Tobit and Cragg’s Model I. 

The various test statistics are reported in table 4. The hypothesis of a Tobit 
model is rejected in all cases, except the WL form for clothing. Nelson’s test 
tends to reject less frequently than the others. This may be a consequence of 
its low power, as suggested by Ruud (1984). The Ruud and Lin-Schmidt 
statistics are very close and always lead to rejection. The Deaton-Irish statistic 
is always positive, which indicates rejection of the Tobit model but, interest- 
ingly, not in the direction of Cragg’s Model I. The results for the conditional 
symmetry hypothesis are mixed, with rejections in the case of transport and 
the LES form for clothing. All these results indicate that misspecification is 
likely to be present in most cases. However, it is hard to determine its exact 
nature, and, in particular, whether it is due to failures of the censored-regres- 
sion specification, misspecification of the Engel curves, or simply failure of the 
assumption of Gaussian disturbances. 

4.3. Estimation results 

We now present the results obtained by estimating the various models using 
eight different methods: Tobit, the five bounded-influence estimators discussed 
in section 3, and Powell’s CLAD and SCLS estimators. Details on the 
computations are given in the appendix. The estimated standard errors are 
consistent under heteroskedasticity and nonnormality. CLAD standard errors 
are reported for different choices of the bandwidth for the nonparametric 
estimation of the error density at the median. 

Table 4 reports estimates of the income elasticity of demand evaluated at 
the median income. In the case of clothing, the estimates for the WL, LES, 
and QWL specifications tend to be clustered around 1.6. Estimated elasticities 
for the QES specification are higher, particularly in the case of Tobit and 
SCLS. For a given specification of the Engel curve, CLAD and bounded- 
influence estimates look very similar. 

In the case of transport, estimated elasticities vary significantly depending 
on the choice of functional form and estimation method. In particular, Tobit 
gives high point estimates, especially in the QES case. For the WL, LES, and 
QWL specifications, the Tobit estimates are about 6. The H-K estimates also 
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Table 5 

Tests of equality between Tobit and the other estimates of the regression parameters. 

BIO BIl B12 H-K K-W SCLS CLAD 

WL 
LES 

QWL 
QES 

20.0 19.3 
98.8 98.9 

7.86” 7.81” 
30.1 30.1 

WL 
LES 

QWL 
QES 

253.9 257.0 
171.2 175.4 
101.3 120.1 

16.2h 17.0 

Clothing 

18.3 3.82” 

111.9 19.5 

20.4 n/a 
56.4 n/a 

Transport 

228.4 24.5 
164.5 100.0 

203.6 n/a 
56.6 n/a 

15.8 2.02= 
105.1 7.14” 

16.7 1.03a 
44.7 27.7 

123.1 23.6 20.7 
86.2 38.4 13.9h 
43.5 32.3 21.9 
13.0h 54.4 32.1 

1.55” 
19.8 

3.64” 
18.9 

Tohucco 

WL 7.19” 7.51” 8.98” 16.8 13.0b 16.9 15.2 
LES 7.58” 7.69” 2.61” 24.8 8.13” 26.7 30.8 
QWL 19.4 19.8 14.3b n/a 12.0” 18.7 15.6h 
QES 20.0 20.2 1.028 n/a 7.90 27.7 21.8 

“Not significant at the 5% level. 
‘Significant at the 5% but not at the 1% level. 

tend to be high, whereas all other estimates tend to fall between 3.0 and 3.5. In 
the QES case, Tobit gives an estimate of 13.2, which is at least 3 times larger 
than all other estimates. 

For both clothing and transport, elasticities appear to be estimated very 
precisely. However, SCLS and CLAD standard errors tend to be larger than 
the bounded-influence ones. CLAD standard errors are also sensitive to the 
choice of the bandwith for the estimation of the error density at the median. 

In the case of tobacco, Tobit again leads to high point estimates, particu- 
larly in the QES case. All other point estimates are close to zero or negative. 
However, elasticities are now estimated very imprecisely in all cases. 

Table 5 reports tests of significance for the difference between Tobit and the 
other estimates of the regression parameter &. If the Tobit model is correctly 
specified, these differences should be small and the tests statistics should have 
an asymptotic x2 distribution with number of degrees of freedom equal to the 
number of regression parameters. Equality of the regression coefficients is 
typically rejected for clothing and transport, but not for tobacco, because of 
the high imprecision of the estimates. In the case of CLAD and SCLS, 
rejection occurs less frequently, because of the larger standard errors of these 
estimates. 

These results show that using semiparametric (CLAD or SCLS) or 
bounded-influence estimators can lead to significant differences with respect to 
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Fig. la. Scatter of log per-capita outlay and transport share; estimated Engel cmve~ super- 
imposed. 
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Fig. lb. Scatter of per-capita outlay and transport expenditure; estimated Engel curves super- 
imposed. 
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Tobit. Semiparametric and bounded-influence estimates tend to be close, but 

bounded-influence estimates appear to be more precise. Moreover, the CLAD 
standard errors appear to be sensitive to the choice of bandwidth. Among the 
bounded-influence estimators, the relatively simple BIO, BIl, and B12 estima- 
tors proposed in section 3.2 appear to behave very well. 

To gain some insight into the reason for the differences between Tobit and 
the other estimates, it is useful to inspect the scatter of the data. For 
simplicity, we only consider the demand for transport. Fig. la superimposes 
the estimated Engel curves for Tobit, BIl, B12, and CLAD to the scatter of the 
observations on log per-capita outlay and transport share. Fig. lb does the 
same for the scatter of the observations on per-capita outlay and transport 
expenditure. The Engel curves are evaluated for a median household with 
seven household members, four adults and three children, living in a rural 
area. In all cases, Tobit Engel curves lie well above the other estimates. This is 
due to the influence of a small cluster of data points (less than 3% of the total 
sample) characterized by medium-high income and a budget share on trans- 
port that exceeds 15%. The influence exercized by this cluster is particularly 
strong for the quadratic specifications, QWL and QES. Inspection of the 
robust weights (4) shows that this cluster of points is heavily downweighted by 
the bounded-influence estimators. In addition, these estimators heavily down- 
weigh the outlier on the bottom right of the scatter. The leverage exercized by 
this point on the Tobit estimates is not very strong in the WL, LES, and QWL 
cases, but is responsible for the high curvature of the estimated income- 

expenditure relationship in the QES case. The fact that, for this sample, 
outliers tend to be concentrated in the center of the income distribution 
explains why bounded-influence and semiparametric estimates are similar. 
Both methods tend to downweigh the influence of these points, but only 
bounded-influence estimators are explicitly designed to deal with outliers that 
are also high leverage points. 

5. Conclusions 

The results of section 4 demonstrate the feasibility of bounded-influence 
estimation outside the context of the linear-regression model. It shows that 
Engel curves estimated from the same set of censored data can differ signifi- 
cantly depending on the choice of the estimation technique. In particular, the 
Tobit estimates can differ significantly from other more robust estimates as a 
consequence of the presence of only a small fraction of extreme observations. 
We found that semiparametric and bounded-influence estimates tend to be 
close to each other, but the latter appear to be more precise. It would be 
interesting to verify these indications with a full-scale Monte Carlo study. 

In our view, the class of bounded-influence estimators discussed in this 
paper offers several advantages. First, it ensures protection against the nega- 



124 F. Perocchi, Bounded-influence estimators for the Tobit model 

tive effects, on both estimation and inference, of small departures from the 
assumed parametric model, while maintaining high efficiency if the assumed 
model is correctly specified. Second, the differences with respect to the Tobit 
estimates provide the basis for specification tests that have power against a 
variety of alternatives. Third, the weights from bounded-influence estimation 
provide useful diagnostics for detecting outliers and influential observations. 
The price one has to pay by using these estimators is a loss of efficiency with 
respect to the Tobit estimator if the Tobit model is indeed correct. However, 
and this is yet another advantage, the investigator can choose the efficiency 
loss that he/she is willing to tolerate. 

Appendix 

Computation of the bounded-influence estimates proceeds as follows: 

A 
(1) Start with 0(O) = tYML, A (0) = Z and a (0) = b(O) = 0. 

(2) For the BIO and BIl estimaks put A 
A(‘) = J( @a))- 

(I) = ZP, for the B12 estimator put 
‘/*, for the H-K estimator put A(‘) = P( Z3(“))-1 where 

x [s(z,,@O)) -a(“qs(t,,e(o))‘, 

for the K-W estimator put A(‘) = Q(0(“))-“* where 

x [ s( z,, @)) - u’“‘] [s( t,, e(o)) - U(O)]) 

(3) Given A”‘, compute u(l) as 

where 

a,(r, 0) = 
i 

[l(y,>O)r-l(y,=O)~(x~~)lx, I l(Yn>o)(Y-l-v?J ’ 
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and (Y = P/a and y = l/u. The normal integrals are evaluated numerically 
using the Gauss-Legendre subroutine in Quandt (1988). 

(4) Put b(l) = 0 for the BIO estimator and b(l) = a(‘) otherwise. 

(5) Given A(‘), a(*), and b(l), compute 8(‘) by solving 

N 

= -i mm l, ,,A(‘) [s(znfs, - b”‘] 11 I [s(z,, e) - a(l)] = 0. 
,I = 1 

This is done by using the Newton-Raphson algorithm NEWRAP in GQOPT. 

(6) Given 0(l), compute A’*‘, u(*), b@), and 0(*) as in step (2) to (5) and 
iterate. Convergence of this algorithm is not guaranteed. 

The sensitivity bound c is chosen so as to obtain an average weight of about 
95%, that is, NplX,N=l~(~,, &a> = 0.95, where w(z, 0) is given by (4). When 
c = cc, all bounded-influence estimators that we consider are the same as the 
ML estimator, with an average weight equal to unity. Thus, our choice of the 
sensitivity bound may be interpreted as resulting in an efficiency loss of about 
5% when the Tobit model is indeed correct. The % of downweighted observa- 
tions varies depending on the specification and, to a lesser extent, the type of 
estimator. Typically is between 10% and 15% for the WL and QWL forms, and 
is somewhat lower for LES and QES. In the latter case, however, the value of 
the minimum weight is much smaller, which indicates the presence of highly 
influential observations. 

The convergence criterion requires the maximal change in any of the 
parameter estimates to be less than 10m4. Convergence is typically attained 
after 5 to ten iterations. We had numerical problems with the H-K estimator, 
in particular for the QWL and QES specifications, and we do not report 
results for these two cases. For the other bounded-influence estimators, 
sometimes the algorithm cycled between two values very close to each other. 
In these cases convergence was always reached by weakening the tolerance 
to 1op3. 

The CLAD estimates are computed by iteratively reweighted LS with weight 
function given by w(y, x, p) = l(x’/3)min{ ly - x’/?-‘, E-‘}, where E is posi- 
tive and small. The SCLS estimates are computed by the iterative LS algo- 
rithm suggested in Powell (1986). The convergence criterion requires the 
maximal change in any of the parameter estimates to be less than 10m5. SCLS 
estimates typically need more iterations to converge. In a few cases the limit of 
100 iterations was reached without convergence. 
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