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Fisher information and Stam inequality on a finite group

Paolo Gibilisco and Tommaso Isola

Abstract

We prove a discrete version of the Stam inequality for random variables taking values on a finite
group.

1. Introduction

The Fisher information IX of a real random variable (with strictly positive differentiable density
function f) is defined as

IX :=
∫

f ′(x)2

f(x)
dx. (1.1)

If X, Y are independent random variables such that IX , IY < ∞, Stam was able to prove the
inequality

1
IX+Y

� 1
IX

+
1
IY

, (1.2)

where equality holds if and only if X, Y are Gaussian (see [1, 17]).
This result has been very useful in a multitude of different areas: analysis, probability,

statistics, information theory, statistical mechanics and so on (see [2, 4, 5, 12, 18]). Therefore it
is not surprising that different proofs and generalizations have appeared in the recent literature
on the subject (see, for example, [14, 20]).

A free analogue of Fisher information has been introduced in free probability. Also, in
this case one can prove a Stam-like inequality. The equality case characterizes the Wigner
distribution that, in many respects, is the free analogue of the Gaussian distribution (see [19]).

Discrete versions of Fisher information and the Stam inequality are well known. On the
integers Z, equality characterizes the Poisson distribution, while on the cyclic group Zn, equality
occurs for the uniform distribution (see [6–11, 13, 15, 16]).

It has been observed that there are group-theoretical features in the proof of Stam inequality
(see [10]). Nevertheless, up to now, inequality (1.2) has been proved only on specific groups like
R, Z and Zn. In this paper we consider the family of all finite groups and we show that, mutatis
mutandis one can introduce Fisher information and prove Stam inequality on an arbitrary
finite group.

2. Preliminaries

We recall the formulation of Stam inequality in the known cases, where it has already been
proved.
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2.1. Stam inequality on R and R
n

Let f : R → R be a differentiable, strictly positive density. One may define the Fisher f -score
Jf : R → R by

Jf :=
f ′

f
.

Let (Ω,F , p) be a probability space. In general, if X : (Ω,F , p) → R is a random variable with
density f , then we write JX = Jf and define the Fisher information as

IX := Varf (Jf ) = Ef (J2
f );

namely,

IX =
∫

R

(
f ′(x)
f(x)

)2

f(x) dx. (2.1)

Theorem 2.1 [1, 17]. If X,Y : (Ω,F , p) → R are independent random variables such that
IX , IY < ∞, then

1
IX+Y

� 1
IX

+
1
IY

, (2.2)

with equality if and only if X, Y are Gaussian (with the same covariance).

The same result holds for random vectors. Let f : R
n → R be a differentiable, strictly positive

density. We use the notation fxi
= ∂f

∂xi
. One may define the Fisher f -score (in the direction xi)

Jxi

f : R
n → R by

Jxi

f :=
fxi

f
.

Let (Ω,F , p) be a probability space. In general, if X : (Ω,F , p) → R
n is a random vector with

density f , then we write Jxi

X = Jxi

f and define the Fisher information as (see [2, p. 201; 3,
p. 838])

IX :=
n∑

i=1

Ef [(Jxi

f )2].

Note that in this case IX is the trace of the Fisher information matrix

Ef

[
∂ log(f)

∂xi

∂ log(f)
∂xj

]
, i, j = 1, . . . , n.

Theorem 2.2. If X,Y : (Ω,F , p) → R
n are independent random vectors such that IX ,

IY < ∞, then
1

IX+Y
� 1

IX
+

1
IY

, (2.3)

with equality if and only if X, Y are Gaussian (with the same covariance matrix).

2.2. Stam inequality on Z

Let f : Z → R be a (discrete) density. We say that f belongs to the class RSP (right side
positivity) if

f(k) > 0 =⇒ f(k + 1) > 0.
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If f ∈ RSP, then we may define the Fisher f -score by

Jf (k) =

⎧⎨
⎩

f(k) − f(k − 1)
f(k)

f(k) > 0,

0 f(k) = 0.

If X : (Ω,F , p) → Z is a random variable with (discrete) density f ∈ RSP, then we write
JX = Jf and define the Fisher information as

IX := Varf (Jf ) = Ef (J2
f ).

Theorem 2.3 [10, 16]. If X,Y : (Ω,F , p) → Z are independent random variables with
densities in RSP and such that IX , IY < ∞, then

1
IX+Y

� 1
IX

+
1
IY

, (2.4)

with equality if and only if X, Y have (possibly shifted) Poisson distribution.

2.3. Stam inequality on Zn

Let f : Zn → R be a (discrete) density that is strictly positive. We define the Fisher f -score by

Jf (k) =
f(k) − f(k − 1)

f(k)
.

If X : (Ω,F , p) → Zn is a random variable with positive (discrete) density f , then we write
JX = Jf and define the Fisher information as

IX := Varf (Jf ) = Ef (J2
f ).

Theorem 2.4 [6]. If X,Y : (Ω,F , p) → Z are independent random variables with positive
densities, then

1
IX+Y

� 1
IX

+
1
IY

, (2.5)

with equality if and only if X and Y have uniform distribution.

In the following section we generalize this result to an arbitrary finite group.

3. Stam inequality on a finite group

Let G be a finite group. Introduce the class P of strictly positive densities; that is,

P :=
{

f : G −→ R

∣∣∣ ∑
j∈G

f(j) = 1, f(k) > 0 ∀k ∈ G

}
.

We assume, from now on, that all densities belong to P.
Let f ∈ P, g ∈ G. In analogy with the previous definitions; we may introduce Jg

f : G → R,
the f -score in the direction g, by

Jg
f (k) :=

f(k) − f(g−1k)
f(k)

.

Then Jg
f is an f -centred random variable

Ef [Jg
f ] :=

∑
k∈G

Jg
f (k)f(k) = 0. (3.1)
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If X : (Ω,F , p) → G is a random variable with density fX(k) := p(X = k) and if fX ∈ P,
then define the score Jg

X := Jg
f .

Lemma 3.1. Let g ∈ G, let X,Y : (Ω,F , p) → G be two independent random variables with
densities fX , fY ∈ P and let Z := XY . Then

Jg
Z(Z) = Ep[J

g
X(X)|Z] = Ep[J

g
Y (Y )|Z].

Proof. Let fZ be the density of Z; namely,

fZ(k) =
∑
j∈G

fX(j)fY (j−1k), k ∈ G,

so that fZ ∈ P. Then

fZ(k) − fZ(g−1k) =
∑
j∈G

fX(j)fY (j−1k) −
∑
j∈G

fX(j)fY (j−1g−1k)

=
∑
j∈G

(
fX(j) − fX(g−1j)

)
fY (j−1k).

Therefore, for k ∈ G,

Jg
Z(k) =

fZ(k) − fZ(g−1k)
fZ(k)

=
∑
j∈G

fX(j)fY (j−1k)
fZ(k)

fX(j) − fX(g−1j)
fX(j)

=
∑
j∈G

Jg
X(j)p(X = j|Z = k)

= EfX
[Jg

X |Z = k]
= Ep[J

g
X(X)|Z = k].

Similarly, by symmetry of the convolution formula one obtains

Jg
Z(k) = Ep[J

g
Y (Y )|Z = k], k ∈ G,

proving the claim.

Lemma 3.2. Let g ∈ G, let X,Y : (Ω,F , p) → G be two independent random variables with
densities fX , fY ∈ P and let Z := XY . Then, for any a, b ∈ R, we have

(a + b)2Ep[J
g
Z(Z)2] � a2

Ep[J
g
X(X)2] + b2

Ep[J
g
Y (Y )2]. (3.2)

Moreover, if equality holds in (3.2) then Jg
X , Jg

Y are constant on G.

Proof. By Lemma 3.1,

Ep[aJg
X(X) + bJg

Y (Y )|Z] = aEp[J
g
X(X)|Z] + bEp[J

g
Y (Y )|Z] = (a + b)Jg

Z(Z). (3.3)

Hence by applying Jensen’s inequality it holds that

Ep[(aJg
X(X) + bJg

Y (Y ))2] = Ep[Ep[(aJg
X(X) + bJg

Y (Y ))2|Z]]

� Ep[Ep[aJg
X(X) + bJg

Y (Y )|Z]2] (3.4)

= Ep[(a + b)2Jg
Z(Z)2]

= (a + b)2Ep[J
g
Z(Z)2],
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and thus

(a + b)2Ep[J
g
Z(Z)2] � Ep[(aJg

X(X) + bJg
Y (Y ))2]

= a2
Ep[J

g
X(X)2] + 2abEp[J

g
X(X)Jg

Y (Y )] + b2
Ep[J

g
Y (Y )2]

= a2
Ep[J

g
X(X)2] + b2

Ep[J
g
Y (Y )2],

where the last equality follows from independence and is due to (3.1).
We now consider the case of equality in (3.2). Set c = a + b, and let us prove that equality

in (3.2) holds if and only if

aJg
X(X) + bJg

Y (Y ) = cJg
Z(XY ). (3.5)

Indeed, let H := aJg
X(X) + bJg

Y (Y ); then equality in (3.4) occurs if and only if

Ep[H2|Z] = (Ep[H|Z])2;

that is,
Ep[(H − Ep[H|Z])2|Z] = 0.

Therefore H = Ep[H|Z] so that

Ep[aJg
X(X) + bJg

Y (Y )|Z] = aJg
X(X) + bJg

Y (Y ) = cJg
Z(Z),

due to (3.3). Conversely, if (3.5) holds, then by applying the squared power and the expectation
operator we obtain equality in (3.2).

Using (3.5), we now prove the last statement of the lemma. Let us choose a set of generators
of the group G, that is, Γ := {γ1, . . . , γn} ⊂ G such that the subgroup generated by them is the
whole G. Let us also denote Γ−1 := {γ−1

1 , . . . , γ−1
n }. Now let x, y ∈ G; because of independence,

for any γ ∈ Γ ∪ Γ−1,

p(X = xγ, Y = y) = p(X = xγ) · p(Y = y) > 0,

p(X = x, Y = γy) = p(X = x) · p(Y = γy) > 0.

Thus it makes sense to write equality (3.5) on

A := {X = xγ} ∩ {Y = y} and B := {X = x} ∩ {Y = γy},
so that

aJg
X(xγ) + bJg

Y (y) = cJg
Z(xγy),

aJg
X(x) + bJg

Y (γy) = cJg
Z(xγy).

Subtracting these relations, one has

a[Jg
X(xγ) − Jg

X(x)] = b[Jg
Y (γy) − Jg

Y (y)] ∀x, y ∈ G.

Therefore, for any γ ∈ Γ ∪ Γ−1, there is a(γ) ∈ R such that Jg
X(xγ) − Jg

X(x) = a(γ), for any
x ∈ G. Thus, if n is the order of γ in G, that is, γn = e, the identity of G, then

Jg
X(x) = Jg

X(xγn) = Jg
X(x) + na(γ),

for any x ∈ G, which implies that a(γ) = 0. Therefore

Jg
X(xγ) = Jg

X(x), x ∈ G, γ ∈ Γ ∪ Γ−1. (3.6)

Since any k ∈ G, k 
= e, can be written as a product of elements in Γ ∪ Γ−1, that is,

k = γi1γi2 · . . . · γi�
, for γij

∈ Γ ∪ Γ−1,

we can use (3.6) iteratively, and obtain

Jg
X(xk) = Jg

X(xγi1γi2 · . . . · γi�
) = Jg

X(xγi1γi2 · . . . · γi�−1) = . . . = Jg
X(x), x ∈ G.
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In particular, for x = e we obtain Jg
X(k) = Jg

X(e), for any k ∈ G; that is, Jg
X is constant on G.

The proof for Jg
Y is analogous.

Let us now fix a set of generators of the group G, that is, Γ := {γ1, . . . , γn} ⊂ G such that
the subgroup generated by them is the whole G. If X : (Ω,F , p) → G is a random variable with
density fX ∈ P, then we define the Fisher information

IX :=
∑
γ∈Γ

Ef [(Jγ
f )2] =

∑
γ∈Γ

∑
k∈G

(f(k) − f(γ−1k)
f(k)

)2

f(k).

Note that, due to the finiteness of G, the condition IX < ∞ always holds. However, we
cannot ensure in general that IX 
= 0. In fact, it is easy to characterize this degenerate case.

Lemma 3.3. The following conditions are equivalent:

(1) X has uniform distribution;
(2) Jγ

X = 0, for any γ ∈ Γ;
(3) IX = 0;
(4) Jγ

X is constant, for any γ ∈ Γ.

Proof. The implications (1) ⇒ (2) ⇒ (4) are immediately proved. The equivalence of (2)
and (3) is also easy to show.
Therefore, it is enough to prove that (4) implies (1). Therefore, for any γ ∈ Γ there is a(γ) ∈ R

such that Jγ
X(x) = a(γ), for any x ∈ G; that is, with f ≡ fX , (f(x) − f(γ−1x))/f(x) = a(γ),

for any x ∈ G, which is equivalent to

(1 − a(γ))f(x) = f(γ−1x), x ∈ G. (3.7)

Thus if n is the order of γ−1 in G, that is, γ−n = e, the identity of G, then

(1 − a(γ))nf(x) = (1 − a(γ))n−1f(γ−1x) = . . . = f(γ−nx) = f(x),

for any x ∈ G, which implies that a(γ) = 0. Therefore,

f(γ−1x) = f(x), x ∈ G, γ ∈ Γ. (3.8)

From this it also follows that

f(γx) = f(x), x ∈ G, γ ∈ Γ. (3.9)

Since any k ∈ G, k 
= e, can be written as a product of elements in Γ ∪ Γ−1, that is,

k = γi1γi2 · . . . · γi�
, for γij

∈ Γ ∪ Γ−1,

we can use (3.8) and (3.9) iteratively, and obtain

f(kx) = f(γi1γi2 · . . . · γi�
x) = f(γi2 · . . . · γi�

x) = . . . = f(x), x ∈ G.

In particular, for x = e we obtain f(k) = f(e), for any k ∈ G; that is, f is constant on G; that
is, X is uniform. This concludes the proof.

Let us also recall the following result, which is immediate by using the convolution formula.

Proposition 3.4. If X,Y : (Ω,F , p) → G are independent random variables and X is
uniform then also Z = XY is uniform.
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Proposition 3.5. Let X,Y : (Ω,F , p) → be independent random variables such that their
densities belong to P. If X or Y has uniform distribution, then

1
IXY

=
1

IX
+

1
IY

,

in the sense that both sides of equality are equal to infinity.

Proof. Let Z = XY . If X is uniform, then Z is uniform by Proposition 3.4, and by
Lemma 3.3 the proof is complete.

Because of the above proposition, it remains to consider random variables with strictly
positive Fisher information.

We are ready to prove the main result.

Theorem 3.6. Let X,Y : (Ω,F , p) → G be two independent random variables such that
IX , IY > 0. Then

1
IXY

>
1

IX
+

1
IY

. (3.10)

Proof. Define Z := XY , and let a, b ∈ R. Then for any γ ∈ Γ we have, from (3.2):

(a + b)2Ep[J
γ
Z(Z)2] � a2

Ep[J
γ
X(X)2] + b2

Ep[J
γ
Y (Y )2]. (3.11)

Summing over γ ∈ Γ, we obtain

(a + b)2IZ = (a + b)2
∑
γ∈Γ

Ep[J
γ
Z(Z)2]

� a2
∑
γ∈Γ

Ep[J
γ
X(X)2] + b2

∑
γ∈Γ

Ep[J
γ
Y (Y )2]

= a2IX + b2IY .

Now, take a := 1/IX and b := 1/IY ; then we obtain(
1

IX
+

1
IY

)2

IZ � 1
IX

+
1
IY

.

It remains to be proved that the equality sign cannot hold in (3.10). To this purpose, define
c := a + b, where again a = 1/IX and b = 1/IY ; then equality holds if and only if

c2IZ = a2IX + b2IY .

This implies equality in (3.11), for any γ ∈ Γ. From Lemma 3.2 it follows that Jγ
X , Jγ

Y are
constant on G, for any γ ∈ Γ. But then, from Lemma 3.3, IX = IY = 0, which is absurd.
Therefore equality cannot hold in (3.10).
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