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In the search of appropriate Riemannian metrics on quantum state space, the con-
cept of statistical monotonicity, or contraction under coarse graining, has been
proposed by Chentsov. The metrics with this property have been classified by Petz.
All the elements of this family of geometries can be seen as quantum analogs of
Fisher information. Although there exists a number of general theorems shedding
light on this subject, many natural questions, also stemming from applications, are
still open. In this paper we discuss a particular member of the family, the Wigner–
Yanase information. Using a well-known approach that mimics the classical pull-
back approach to Fisher information, we are able to give explicit formulas for the
geodesic distance, the geodesic path, the sectional and scalar curvatures associate
to Wigner–Yanase information. Moreover, we show that this is the only monotone
metric for which such an approach is possible. ©2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1598279#

I. INTRODUCTION

The notion of information proposed by Fisher is fundamental in probability and statistic
a number of reasons; here we mention only the Cramer–Rao inequality and the asympto
havior of maximum lilkelihood estimators for exponential models~one can see Ref. 5 for unex
pected features and applications of Fisher information!. In classical statistics Rao was the first
point out that Fisher information can be seen as a Riemannian metric on the space of prob
densities. This point of view was nicely complemented by the results of Chentsov, saying th~on
the simplex of probability vectors! Fisher information is the unique Riemannian metric contract
under Markov morphisms. This can be rephrased in a more suggestive way. Markov morp
or positive mappings, are the mathematical counterpart of the notion of noise. Now suppo
we want to use a distance to distinguish different states~probability densities! in a statistically
relevant way. Then the effect of noise must be that of contracting the metric. Chentsov th
says therefore that in the classical case there is only one choice, the Fisher information~another
argument producing Fisher information can be found in Ref. 43!.

In the quantum case one deals with density operators instead of density vectors and
pletely positive mappings play the role of Markov morphisms. As often happens in the qua
counterpart of a classical theory, instead of a uniqueness result, one has a classification th
due to Petz. This result states that there is bijection between statistically monotone metr
quantum state space and the operator monotone functions: we have therefore a rich ‘‘gard
candidates for the role of Fisher information in quantum physics. Among the elements o
family of metrics one can find, in a certain sense, the most relevant Riemannian metrics ap
in the literature.35,37
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Despite the existence of general results for the theory13,17,19,26,27,28,30,40,41a number of open
problems resists investigation. For example, it does not exist yet a general formula for th
desic path and the geodesic distance associated to an arbitrary monotone metric. For the us
kind of distances see, for example Ref. 32. Because of the absence of a general formula, in
ties ~giving bounds for the geodesic distance! have been proved.38

In this paper we discuss the Wigner–Yanase skew information. To find the formula
geodesic path and geodesic distance we mimic the classical approach to Fisher informat
sphere geometry~one should note the importance of determining the geodesic path in the stu
the 2-Wasserstein metric6!. Indeed Wigner–Yanase information appears as the pull-back of
square root map.18 Next we prove the formula for the scalar curvature. One proof, due to D
mann, uses the general formula13 and requires a long calculation. The second one just uses
pull-back approach. One should emphasize that, since the scalar curvature determin
asymptotic behavior of the volume~for a Riemannian metric! then it has also a statistical meanin
in relation to the quantum analog of Jeffrey’s rule for determining prior probability distribut
~see Ref. 35!. Finally we prove, as a corollary of the results in Refs. 25, 26, and 19 tha
Wigner–Yanase information is the only monotone metric that can be seen as a pull-back m

The paper is organized as follows. In Sec. II we review the geometric approach to F
information. Sec. III one finds an introduction to the general theory of statistical monotone
rics. Sec. IV shows how the Wigner–Yanase information can be seen as a monotone Riem
metric. In Sec. V we show that the Wigner–Yanase geometry can be seen as the sphere g
transposed on the space of density matrices; moreover, we characterize it as the unique p
metric. Section VI contains some comments on the main results and on some open proble

II. FISHER INFORMATION AND ITS GEOMETRY

The classical definition of Fisher information for an indexed family of densitiespu is given by
the variance of the score. In the case of a family indexed by only one parameteru it is the number

I ~u!5EuF S ]

]u
log p uD 2G , ~2.1!

assigned to the parameteru. For n parameters, sayu5(u1, . . . ,un), it is a matrix defined on the
parameter manifold given by

I ~u! i j 5EuF S ]

]u i log p uD S ]

]u j log p uD G . ~2.2!

Geometrically this means thatI (u) is a symmetric bilinear form on the tangent spaces of
parameter manifold. In a coordinate free language it reads as

I ~u!~U,V!5Eu@U~ log p u! V~ log p u!#, ~2.3!

whereU andV are vectors tangent to the parameter manifold andU(log p u) is the derivative of
log p u along the directionU, which meansU(log p u)5(d/dt)log p u1tUut50

.
I (u) is a measure for the statistical distinguishabilty of distribution parameters. Under c

regularity conditions foru°p u the image of this mapping is a manifold of distributions. Th
manifold is the actual object of interest in information geometry rather than the space of
bution parameters and formula~2.3! defines a Riemannian metricg on it ~for a general reference
see Ref. 1!. Indeed, a vectoru tangent to this manifold is of the form

u5
d

dt
p u1tU ut50

,

and the right hand side of~2.3! now reads as
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g~u,v !ªEpFu

p

v
pG , ~2.4!

defining the Fisher metric on the manifold of densities.
We restrict now toPn,Rn, the simplex of strictly positive probability vectors, that i

Pnª$rPRn:( i 51
n r i51,r i.0,i 51,...,n%. An elementrPPn is a density on then-point set

$1,...,n% with r( i )5r i . We regard an elementu of the tangent space TrPn[$uPRn:( i 51
n ui

50% as a functionu on $1,...,n% with u( i )5ui .
Definition 2.1:The Fisher–Rao Riemannian metric on TrPn is given by

^u,v&r
F
ª(

i 51

n
uiv i

r i
, ~2.5!

for u, vPTrPn .
To see the relation between this metric and the Fisher metric, letu,vPTrPn . We obtain from

~2.4!,

g~u,v !5(
i 51

n
u~ i !

r i

v~ i !

r i
r i5(

i 51

n
uiv i

r i
,

in accordance with~2.5!.
The following result is well known and is a very special case of a far more general situ

~see Ref. 15, for example!.
Theorem 2.2: The manifoldPn equipped with the Fisher–Rao Riemannian metriĉ•,•&F is

isometric with an open subset of the sphere of radius 2 inRn.
Proof: We consider the mappingw:P n→S2

n21,Rn,

w~r!ª2~Ar1, . . . ,Arn! .

ThenDrw(u)5(u1 /Ar1 , . . . ,un /Arn) and we get

Drw~^•,•&F!~u,v !ª^Drw~u!,Drw~v !&Rn
5(

i 51

n
ui v i

r i
5^u,v&r

F .

Hence the standard metric on the sphere of radius 2 is pulled back to the Fisher–Rao Riem
metric. h

This identification ofPn with an open subset of a radius 2 sphere allows for obtain
differential geometrical quantities of the Riemannian manifold (Pn ,^•,•&F). From the very defi-
nition of geodesic distance, geodesic path and scalar curvature, one has forSr

n21 , with P1 ,P2

PSr
n21 , the following:

~1! geodesic distance,

d~P1 ,P2!5r •arcosS ^P1 ,P2&
r 2 D ;

~2! geodesic path connectingP1 andP2 ,

gP1 ,P2~ t !5r
~12t !P11tP2

i~12t !P11tP2i

~of course,t is not the arc length parameter!;

~3! scalar curvature,
 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Scal~v !5
1

r 2 ~n21!~n22!,

becauseSr
n21 has constant sectional curvature equal to 1/r 2.

Let us denote bydF , gF , ScalF , respectively, the corresponding quantities for the Fis
information. The above considerations give, forr,sPPn , the following:

~1! Bhattacharya distance,

dF~r,s!52 arccosS (
i

r i
1/2s i

1/2D ;

~2! geodesic path connectingr ands,

gF
r,s~ t !52

~~12t !Ar1tAs!2

(
i

~~12t !Ar i1tAs i !
2

;

~3! scalar curvature,

ScalF~r!5
1

4
~n21!~n22!, ;rPPn .

The Levi–Civita connection associated to Fisher metric can be decomposed using the geom
mixture and exponential models. In the rest of the section we explain how.

Definition 2.3:A dualistic structure on a manifoldM is a triple (̂ •,•&,¹,¹̃), where^•,•& is a
Riemannian metric onM and¹,¹̃ are affine connections onM such that

X^Y,Z&5^¹XY,Z&1^Y,¹̃XZ&,

whereX,Y,Z are vector fields. IfU¹,U ¹̃ are the parallel transport associated to¹,¹̃ then the
above equation is equivalent to

^U¹~u!,U ¹̃~v !&5^u,v&.

A divergence on a manifold is a smooth non-negative functionD:M3M→R such that
D(r,s)50 iff r5s. To each divergenceD one may associate a dualistic structu
(^•,•&,¹,¹̃) ~see Refs. 1 and 14!.

Let ¹2 be the Levi–Civita connection of Fisher information. The Kullback–Leibler rela
entropyK(r,s)5( ir i(logri2logsi) gives a dualistic structure (^•,•&F,¹m,¹e) such that

¹25 1
2 ~¹m1¹e!,

where¹m,¹e are the mixture and exponential connections. These connections are torsion fr
flat: once the representation by scores is used for the tangent spaces, the associated
transports are given by

Urs
m :TrP→TsP, Urs

m ~u!5
r

s
u,

Urs
e :TrP→TsP, Urs

e ~u!5u2Es~u!.

The geodesics of¹m,¹e are, respectively, the mixture and exponential models.
 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



trace

nnian

n

notone

up

cs on

r

itable
ws

3756 J. Math. Phys., Vol. 44, No. 9, September 2003 P. Gibilisco and T. Isola

Downloaded
III. METRIC CONTRACTION UNDER COARSE GRAINING

In the commutative case a Markov morphism~or stochastic map! is a stochastic matrix
T:Rn→Rk. In the noncommutative case a stochastic map is a completely positive and
preserving operatorT:Mn→Mk whereMn denotes the space ofn by n complex matrices. We
shall denote byDn the manifold of strictly positive elements ofMn and byD n

1,Dn the submani-
fold of density matrices.

In the commutative case a monotone metric is a family of Riemannian metricsg5$gn% on
$Pn%, nPN such that

gT(r)
m ~TX,TX!<gr

n~X,X!

holds for every stochastic mappingT:Rn→Rm and allrPPn andXPTrPn .
In perfect analogy, a monotone metric in the noncommutative case is a family of Riema

metricsg5$gn% on $D n
1%, nPN such that

gT(r)
m ~TX,TX!<gr

n~X,X!

holds for every stochastic mappingT:Mn→Mm and allrPD n
1 andXPTrD n

1 .
Let us recall that a functionf :(0,̀ )→R is called operator monotone if for anynPN, anyA,

BPMn such that 0<A<B, the inequalities 0< f (A)< f (B) hold. An operator monotone functio
is said to be symmetric iff (x)ªx f(x21) and normalized iff (1)51. In what follows by operator
monotone we mean normalized symmetric operator monotone. With each operator mo
function f one associates also the so-called Chentsov–Morotzova function~see Ref. 8!,

cf~x,y!ª
1

y fS x

yD , for x,y.0.

DefineLr(A)ªrA, andRr(A)ªAr. SinceLr ,Rr commute we may definec(Lr ,Rr). Now we
can state the fundamental theorems about monotone metrics~uniqueness and classification are
to scalars!.

Theorem 3.1: ~Ref. 7! There exists a unique monotone metric onPn given by the Fisher
information.

Theorem 3.2:~Ref. 34! There exists a bijective correspondence between monotone metri
D n

1 and operator monotone functions given by the formula

^A,B&r, fªTr„A•cf~Lr ,Rr!~B!….

The tangent space toD n
1 at r is given byTrD n

1[$APMn :A5A* ,Tr(A)50%, and can be
decomposed asTrD n

15(TrD n
1)c

% (TrD n
1)o, where (TrD n

1)c
ª$APTrD n

1 :@A,r#50%, and
(TrD n

1)o is the orthogonal complement of (TrD n
1)c, with respect to the Hilbert–Schmidt scala

product^A,B&ªTr(A* B). Each statistically monotone metric has a unique expression~up to a
constant! given by Tr(r21A2), for AP(TrD n

1)c. The following result will be used in Sec. V.
Proposition 3.3:~see Ref. 3! Let APTrD n

1 be decomposed as A5Ac1 i @r,U# where Ac

P(TrD n
1)c and i@r,U#P(TrD n

1)o. SupposewPC 1(0,1`). Then

~Drw!~A!5w8~r!Ac1 i @w~r!,U#.

As proved by Lesniewski and Ruskai each monotone metric is the Hessian of a su
relative entropy; to state this result more precisely, we introduce some notation. In what follog
is an operator convex function defined on (0,1`) and such thatg(1)50. The formula

f ~x![ f g~x!ª
~x21!2

g~x!1xg~x21!
,
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associates a normalized, symmetric operator monotone functionf 5 f g to eachg. We denote by
Ds,r5LsRr

21 the relative modular operator. The relativeg–entropy ofr ands is defined as

Hg~r,s!ªTr„r1/2g~Ds,r!~r1/2!….

Hg is a divergence onDn in the sense of Refs. 14, and 1. Ifr,s are diagonal,Hg reduces to the
commutative relativeg–entropy~see Ref. 9!.

Theorem 3.4: ~Ref. 30! Let g be operator convex, g(1)50, f 5 f g and rPDn . Then

2
]

]t

]

]s
Hg~r1tA,r1sB!U

t5s50

5Tr„A•cf~Lr ,Rr!~B!….

To state the general formula for the scalar curvature of a monotone metric we need
auxiliary functions. In what followsc8,( logc)8 denote derivatives with respect to the first variab
andc5cf :

h1~x,y,z!ª
c~x,y!2z c~x,z! c~y,z!

~x2z!~y2z!c~x,z!c~y,z!
,

h2~x,y,z!ª
„c~x,z!2c~y,z!…2

~x2y!2c~x,y!c~x,z!c~y,z!
,

h3~x,y,z!ªz
~ ln c!8~z,x!2~ ln c!8~z,y!

x2y
, ~3.1!

h4~x,y,z!ªz ~ ln c!8~z,x! ~ ln c!8~z,y! ,

hªh12 1
2 h212h32h4 .

The functionshi have no essential singularities if arguments coincide.
Note that^A,B&r

f
ªTr„A•cf(Lr ,Rr)(B)… defines a Riemannian metric also overDn (D n

1 is a
submanifold of codimension 1!. Let Scalf(r) be the scalar curvature of (Dn ,^•,•&r

f ) at r and
Scalf

1(r) be the scalar curvature of (D n
1 ,^•,•&r

f ).
Theorem 3.5: ~Ref. 13! Let s~r! be the spectrum ofr. Then

Scalf~r!5 (
x,y,zPs(r)

h~x,y,z!2 (
xPs(r)

h~x,x,x!,

~3.2!
Scalf

1~r!5Scalf~r!1 1
4 ~n221!~n222!.

IV. WIGNER–YANASE INFORMATION AS A RIEMANNIAN METRIC

Let rPD n
1 be a density matrix and letA be a self-adjoint matrix. The Wigner–Yanas

information ~or skew information, information content relative toA) was defined as

I ~r,A!ª2Tr~@r1/2,A#2!,

where@•,•# denotes the commutator~see Ref. 42!. Consider nowg(x)ªgwy(x)ª4(12Ax). In
this case

Hg~r,s!54„12Tr~r1/2s1/2!….

The associated operator monotone and Chentsov–Morotzova functions are
 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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f wy~x!ª
1

4
~Ax11!2, cwy~x,y!ª

1

y fwyS x

yD 5
4

~Ax1Ay!2
.

Let us consider the monotone metric,

^A,B&r
wy
ªTr„A cwy~Lr ,Rr!~B!….

A typical element of (TrDn)o has the form i@r,A#, whereA is self-adjoint. We have

^ i @r,A#, i @r,A#&r
wy5Tr „i @r,A#4~Lr

1/21Rr
1/2!22~ i @r,A# !…

524 Tr „~Lr
1/21Rr

1/2!21~@r,A# ! ~Lr
1/21Rr

1/2!21~@r,A# !…

524 Tr „~Lr
1/21Rr

1/2!21+~Lr2Rr!~A! ~Lr
1/21Rr

1/2!21+~Lr2Rr!~A!…

524 Tr „~Lr
1/22Rr

1/2!~A! ~Lr
1/22Rr

1/2!~A!…

524 Tr~@r1/2,A#2!

54I ~r,A!,

and this explains why the monotone metric associated with the function1
4(Ax11)2 is called the

Wigner–Yanase monotone metric.

V. THE MAIN RESULT

First of all, we calculate the scalar curvature of Wigner–Yanase information using The
3.5. If f wy(x)ª 1

4(Ax11)2, we write Scalwy
1 for Scalf

1 .
Theorem 5.1:

Scalwy
1 ~r!5 1

4 ~n221!~n222!.

Proof: Let us calculate the auxiliary functions forcwy(x,y)ª4(Ax1Ay)22. We get

h1~x,y,z!5
Ax Ay13 Ax Az13 Ay Az1z

4 ~Ax1Ay!2 ~Ax1Az! ~Ay1Az!
,

h2~x,y,z!5
~Ax1Ay12 Az!2

4 ~Ax1Az!2 ~Ay1Az!2
,

h3~x,y,z!5
Az

~Ax1Ay! ~Ax1Az! ~Ay1Az!
,

h4~x,y,z!5
1

~Ax1Az! ~Ay1Az!.

Now one can verify by calculation that the symmetrization ofh12 1
2 h2 and the symmetriza-

tion of 2 h32h4 vanish. Hence, by~3.1!, the symmetrization ofh vanishes, too. Since we sum u
in formula ~3.2! over all triples of eigenvalues we may replaceh with its symmetrization without
changing the summation result. Therefore

Scalwy~r!50 , Scalwy
1 ~r!5 1

4 ~n221!~n222!, ;rPD n
1 .

h

Remark 5.2:The fact that Scalwy(r)50 can be seen by a different approach~look at the Wigner–
Yanase metric overDn as the 0-geometry; see Refs. 21 and 27!.
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In what follows we use the pull-back approach to derive~and explain! the above formula in a
direct way. Furthermore we deduce the geodesic distance and geodesic equation.

Let us denote byS the manifold $APMn : Tr A A* 54, A5A* %. Clearly, sinceS is the
intersection of the radius 2 sphere inCn3n and the subspace of Hermitian matrices, it is isome

with a radius 2 sphereS2
n221.

Now, letw:D n
1→S,Cn3n, w(r)ª2Ar. Then we have the following result~see Refs. 25, 18

27, and 21!.

Theorem 5.3:The pull-back by the mapw of the natural metric onS[S2
n221 coincides with

the Wigner–Yanase monotone metric.
Proof: Let A andB be vectors tangent toD n

1 at r. Becausew(r) w(r)54 r we get from the
Leibniz ruleDrw(A)Ar 1Ar Drw(A)52A. Thus, the differential ofw at the pointr is given by

Drw~A!52~Lr
1/21Rr

1/2!21~A! .

Therefore the pull-back of the real part of the Hilbert–Schmidt metric yields

Drw~Rê •,•&!~A,B!5Re^Drw~A!,Drw~B!&

54 Rê ~Lr
1/21Rr

1/2!21~A!,~Lr
1/21Rr

1/2!21~B!&

54 ^A,~Lr
1/21Rr

1/2!22~B!&

54 TrA ~Lr
1/21Rr

1/2!22~B!

5Tr A cwy~Lr ,Rr!~B!5^A,B&r
wy ,

which was to be proved. h

From this result one can deduce the following.
Theorem 5.4: For the geodesic distance, the geodesic path and the scalar curvatu

Wigner–Yanase information the following formulas hold:

(1) geodesic distance,

dwy~r,s!52 arccos„Tr~r1/2s1/2!…; ~5.1!

(2) geodesic path,

gwy
r,s~ t !52

„~12t !Ar1tAs…2

Tr~„~12t !Ar1tAs…2!
; ~5.2!

(3) scalar curvature

Scalwy
1 ~r!5 1

4 ~n221!~n222!. ~5.3!

Proof: The formulas are immediate consequences of the preceding theorem and of
geometry. Indeed by the pull-back argument the Wigner–Yanase metric looks locally like a s
of radius 2 of dimension (n221). But for a sphere of this kind the sectional curvatures are
equal to1

4 and therefore the scalar curvature is given by1
4(n

221)(n222). h

One may ask if other monotone metrics are the pull-back of some functionw different from
the square root. The rest of the section answers this question.

Definition 5.5:A monotone metriĉ •,•&r, f is a pull-back metric if there exists a manifol
S,Mn and a functionwPC 1(0,1`) such that the pull-back metric ofw:D n

1→S,Mn coincides
with ^•,•&r, f .

Proposition 5.6: Let̂ •,•&r, f be a monotone metric, let c5cf be the associated CM-function
and letwPC 1(0,1`). We have that̂ •,•&r, f is a pull-back metric byw if and only if
 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



or

ts

l
o state

c-
one

ne
jections

f the

3760 J. Math. Phys., Vol. 44, No. 9, September 2003 P. Gibilisco and T. Isola

Downloaded
S w~x!2w~y!

x2y D 2

5c~x,y!. ~5.4!

Proof: Apply the proposition~3.3! to tangent vectors in (TrD n
1)o. h

Definition 5.7:Let w,xPC 1(0,1`). We say that~w,x! is a dual pair if there exists an operat
monotonef such that

w~x!2w~y!

x2y
•

x~x!2x~y!

x2y
5c~x,y!, ~5.5!

wherec5cf is theCM-function associated withf .
In such a case we say thatf ~or cf) is a dual function. If~w,w! is a dual pair with respect to

f ~or cf) we say thatf ~or cf) is self-dual. Obviously one has the following.
Proposition 5.8: To say that̂•,•&r, f is a pull-back metric byw it is equivalent to say that f~or

cf) is self-dual with respect tow.
Definition 5.9: Two dual pairs (w,x),(w̃,x̃) are equivalent if there exist constan

A1 ,A2 ,B1 ,B2 such thatA1A251,

w̃5A1w1B1 ,

x̃5A2x1B2 .

Obviously equivalent pairs define the sameCM-function. In what follows we consider dua
pairs up to this equivalence relation with the traditional abuse of language. We are ready t
the fundamental result of the theory that classifies dual pairs.

Theorem 5.10:~Refs. 23, 24, 25, 26, 36, and 19! Let w,xPC 1(0,1`). Then~w,x! is a dual
pair if and only if one of the following two possibilities hold:

„w~x!,x~x!…5S xp

p
,
x12p

12pD , pP@21,2#\$0,1%,

„w~x!,x~x!…5„x, log~x!….

Corollary 5.11: The function f(x)5 1
4(Ax11)2 is the only self-dual operator monotone fun

tion, that is: the Wigner–Yanase metric is the only pull-back metric among statistically monot
metrics.

VI. CONCLUSIONS

Remark 6.1:Note that the formula~5.1! implies dwy(r,s)<2p. An analogous inequality
holds for the Bures metric~see Ref. 10, p. 311!, also known as theSLD-metric: this is the
monotone metric associated withf (x)5 1

2(11x). Indeed the formula,

dBures~r,s!5A222 Tr~r1/2sr1/2!1/2, ~6.1!

seems to be the only other explicit formula for a geodesic distance~in the family of statistically
monotone metrics!.

Remark 6.2:In general it is difficult to give explicit formulas for geodesic paths of monoto
metrics. In the case of the Bures metric these geodesics can be given because they are pro
of large circles on a sphere in the purifying space~see Ref. 10, p. 311 and Refs. 12, 4, and 39!. For
a discussion of geodesics fora-connections see Refs. 27, 28.

Remark 6.3:A classical theorem classifies the spaces of costant curvature.29 It is not known at
the moment if there are other monotone metrics of costant sectional and scalar curvature.

Remark 6.4:We have seen in the commutative case that for the Levi–Civita connection o
pull-back of the square root the decomposition is available,
 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



re root

.
the

he

and
er of
roof of

ty

2

. Sci.

lgebr.

utative

mmu-
F.

met-

nfinite

02.
nfinite

,

3761J. Math. Phys., Vol. 44, No. 9, September 2003 Wigner–Yanase information on quantum state

Downloaded
¹25
1

2
~¹m1¹e!.

In the noncommutative case an analogous decomposition for the pull-back of the squa
no longer holds. Indeed, on one hand, the use of Umegaki relative entropyH(r,s)5Tr„r(logr
2logs)… produces a similar decomposition, but for the Bogoliubov–Kubo–Mori metric.31,1,22,33

On the other hand, if one usesHwy(r,s)54„12Tr(r1/2s1/2)… as a divergence onD n
1 and con-

structs the associated dualistic structure (^•,•&Hwy,¹Hwy,¹Hwy) ~again following the lines of Refs
14 and 1!, then the construction is trivial, namely, the dual connections both coincide with
Levi–Civita connection of the Wigner–Yanase information. This is easily seen onPn where
Hg(r,s) reduces to Csiszar relativeg-entropy: it is known that such an entropy induces t
a-geometry wherea is given by the formulaa5312g-(1)/g9(1) ~see Ref. 1, p. 57!. For g
54(12Ax) this givesa50, that is, the Fisher information case~see also Ref. 21!.
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