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In the search of appropriate Riemannian metrics on quantum state space, the con-
cept of statistical monotonicity, or contraction under coarse graining, has been
proposed by Chentsov. The metrics with this property have been classified by Petz.
All the elements of this family of geometries can be seen as quantum analogs of
Fisher information. Although there exists a number of general theorems shedding
light on this subject, many natural questions, also stemming from applications, are
still open. In this paper we discuss a particular member of the family, the Wigner—
Yanase information. Using a well-known approach that mimics the classical pull-
back approach to Fisher information, we are able to give explicit formulas for the
geodesic distance, the geodesic path, the sectional and scalar curvatures associated
to Wigner—Yanase information. Moreover, we show that this is the only monotone
metric for which such an approach is possible.2803 American Institute of Phys-

ics. [DOI: 10.1063/1.1598279

I. INTRODUCTION

The notion of information proposed by Fisher is fundamental in probability and statistics for
a number of reasons; here we mention only the Cramer—Rao inequality and the asymptotic be-
havior of maximum lilkelihood estimators for exponential modglse can see Ref. 5 for unex-
pected features and applications of Fisher informatibmclassical statistics Rao was the first to
point out that Fisher information can be seen as a Riemannian metric on the space of probability
densities. This point of view was nicely complemented by the results of Chentsov, sayigrthat
the simplex of probability vectoyg-isher information is the unique Riemannian metric contracting
under Markov morphisms. This can be rephrased in a more suggestive way. Markov morphisms,
or positive mappings, are the mathematical counterpart of the notion of noise. Now suppose that
we want to use a distance to distinguish different stgpesbability densitiesin a statistically
relevant way. Then the effect of noise must be that of contracting the metric. Chentsov theorem
says therefore that in the classical case there is only one choice, the Fisher inforfanttrer
argument producing Fisher information can be found in Ref. 43

In the quantum case one deals with density operators instead of density vectors and com-
pletely positive mappings play the role of Markov morphisms. As often happens in the quantum
counterpart of a classical theory, instead of a uniqueness result, one has a classification theorem,
due to Petz. This result states that there is bijection between statistically monotone metrics on
quantum state space and the operator monotone functions: we have therefore a rich “garden” of
candidates for the role of Fisher information in quantum physics. Among the elements of this
family of metrics one can find, in a certain sense, the most relevant Riemannian metrics appeared
in the literature®3’
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Despite the existence of general results for the thiddfy'®26:27.28:30404% hymber of open
problems resists investigation. For example, it does not exist yet a general formula for the geo-
desic path and the geodesic distance associated to an arbitrary monotone metric. For the use of this
kind of distances see, for example Ref. 32. Because of the absence of a general formula, inequali-
ties (giving bounds for the geodesic distahteve been provet

In this paper we discuss the Wigner—Yanase skew information. To find the formulas for
geodesic path and geodesic distance we mimic the classical approach to Fisher information via
sphere geometrgone should note the importance of determining the geodesic path in the study of
the 2-Wasserstein metfic Indeed Wigner—Yanase information appears as the pull-back of the
square root maff Next we prove the formula for the scalar curvature. One proof, due to Ditt-
mann, uses the general formtiand requires a long calculation. The second one just uses the
pull-back approach. One should emphasize that, since the scalar curvature determines the
asymptotic behavior of the voluméor a Riemannian metrjdhen it has also a statistical meaning
in relation to the quantum analog of Jeffrey’s rule for determining prior probability distributions
(see Ref. 3h Finally we prove, as a corollary of the results in Refs. 25, 26, and 19 that the
Wigner—Yanase information is the only monotone metric that can be seen as a pull-back metric.

The paper is organized as follows. In Sec. Il we review the geometric approach to Fisher
information. Sec. Il one finds an introduction to the general theory of statistical monotone met-
rics. Sec. IV shows how the Wigner—Yanase information can be seen as a monotone Riemannian
metric. In Sec. V we show that the Wigner—Yanase geometry can be seen as the sphere geometry
transposed on the space of density matrices; moreover, we characterize it as the unique pull-back
metric. Section VI contains some comments on the main results and on some open problems.

II. FISHER INFORMATION AND ITS GEOMETRY

The classical definition of Fisher information for an indexed family of densgjgs given by
the variance of the score. In the case of a family indexed by only one para#rietetthe number

(? 2
1(6)=E, %bgpa) ) 2.1
assigned to the parametérFor n parameters, sag= (6, ...,0"), it is a matrix defined on the
parameter manifold given by
J J
1(60)ij=Eq | 7g7109P o || Zpr109P o |- (2.2)

Geometrically this means tha{#) is a symmetric bilinear form on the tangent spaces of the
parameter manifold. In a coordinate free language it reads as

1(6)(U,V)=E4U(logp,) V(logp )], (2.3

whereU andV are vectors tangent to the parameter manifold difbg p ) is the derivative of
logp 4 along the directiorJ, which meandJ(logp »)=(d/dt)logp BHU g

I(6) is a measure for the statistical distinguishabilty of distribution parameters. Under certain
regularity conditions foré—p , the image of this mapping is a manifold of distributions. This
manifold is the actual object of interest in information geometry rather than the space of distri-
bution parameters and formu(a.3) defines a Riemannian metricon it (for a general reference
see Ref. 1 Indeed, a vectou tangent to this manifold is of the form

_d
u= ap 6+tU \tZO’

and the right hand side @2.3) now reads as
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g(u,v):=E EK, (2.9
Plpp

defining the Fisher metric on the manifold of densities.

We restrict now toP,CR", the simplex of strictly positive probability vectors, that is,
Po={peR"Z_1pi=1p;>0j=1,..n}. An elementpeP, is a density on then-point set
{1,...n} with p(i)=p;. We regard an element of the tangent spaceanE{uER“:E{Llui
=0} as a functioru on {1,...n} with u(i)=u;.

Definition 2.1: The Fisher—Rao Riemannian metric ofP}, is given by

- Uiv;

<u.v>,f==§1 P (2.5)

foru, veT,P,.
To see the relation between this metric and the Fisher metria,det T, 7, . We obtain from
(2.9,

() u(i) v(i) N U
U,U = e T —_—,
g SR
in accordance with2.5).

The following result is well known and is a very special case of a far more general situation
(see Ref. 15, for example

Theorem 2.2: The manifoldP, equipped with the FisheiRao Riemannian metri¢-,-)F is
isometric with an open subset of the sphere of radius R"in

Proof: We consider the mapping: P,— Sy *CR",

@(p)=2(\p1, - - - Wpn) -

ThenD,e(u)=(us/\p1, . .. ,Us/\pn) and we get

D,e((+1)7)(1:0) =(D, 0w D))"= 3, 4% ~(u,0)F.

Hence the standard metric on the sphere of radius 2 is pulled back to the Fisher—Rao Riemannian
metric. O

This identification of P, with an open subset of a radius 2 sphere allows for obtaining
differential geometrical quantities of the Riemannian manifd®y ( -,-)"). From the very defi-
nition of geodesic distance, geodesic path and scalar curvature, one kﬁ{‘s’brwith PPy
€S the following:

(1) geodesic distance,

’

d(Pl,P2)=r-arco:{<Pl—'2Pz>)

(2) geodesic path connectirigy andP,,

PiPoyty=p ———— = =
YO TR, A 1Ry

(of coursept is not the arc length parameter

(3) scalar curvature,
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1
Scalv)= r—z(n—l)(n—Z),

becauseS! ! has constant sectional curvature equal 15.1/
Let us denote bydr, yg, Scal, respectively, the corresponding quantities for the Fisher
information. The above considerations give, fotre P,,, the following:

(1) Bhattacharya distance,

de(p,0)=2 arccoé > pillzo'illz) :
1

(2) geodesic path connectingand o,
(1-t)Vp+tio)®
2 (1=t)pi+tyop)?

YEo(1)=2

(3) scalar curvature,
1
Scak(p)=7(n—1)(n=2), VpeP,.

The Levi—Civita connection associated to Fisher metric can be decomposed using the geometry of
mixture and exponential models. In the rest of the section we explain how.

Definition 2.3:A dualistic structure on a manifold is a triple (-,-),V,V), where(-,-) is a
Riemannian metric oM andV,V are affine connections ai such that

X(Y,Z)=(Vy Y, Z)+(Y,V2Z),

whereX,Y,Z are vector fields. f1UY,UV are the parallel transport associatedWﬁ then the
above equation is equivalent to

(U¥(U),U%(0))=(u,v).

A divergence on a manifold is a smooth non-negative funciiotM X M—R such that
D(p,0)=0 iff p=o. To each divergenceD one may associate a dualistic structure
((-,-),V,V) (see Refs. 1 and 14

Let V2 be the Levi—Civita connection of Fisher information. The Kullback—Leibler relative
entropyK (p,o) ==p;(log pi—log o;) gives a dualistic structurg((,-)F,V™, V®) such that

VZ2=3(VM+V®),
whereV™, V¢ are the mixture and exponential connections. These connections are torsion free and

flat: once the representation by scores is used for the tangent spaces, the associated parallel
transports are given by

po

P
Up,:T,P—T,P, UJ(u)= U

Upe T,P—T, P Up (n)=u—E,(u).

The geodesics oV ™, V€ are, respectively, the mixture and exponential models.
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lll. METRIC CONTRACTION UNDER COARSE GRAINING

In the commutative case a Markov morphidior stochastic mgpis a stochastic matrix
T:R"—RK. In the noncommutative case a stochastic map is a completely positive and trace
preserving operatof:M,— M, where M, denotes the space of by n complex matrices. We
shall denote byD,, the manifold of strictly positive elements &f , and byD,ﬁC D, the submani-
fold of density matrices.

In the commutative case a monotone metric is a family of Riemannian metri¢g"} on
{P,}, ne N such that

971, (TXTX)=g)(X,X)

holds for every stochastic mappifigR"—R™ and allpe P, andXeT,P,.
In perfect analogy, a monotone metric in the noncommutative case is a family of Riemannian
metricsg={g"} on{D}}, ne N such that

971, (TXTX)=g)(X,X)

holds for every stochastic mappifgM,— M, and allpe D andXeT,D}.

Let us recall that a functioh:(0,,2) — R is called operator monotone if for amye N, anyA,
B e M, such that B= A<B, the inequalities & f(A)=<f(B) hold. An operator monotone function
is said to be symmetric if(x) :=xf(x 1) and normalized if (1)=1. In what follows by operator
monotone we mean normalized symmetric operator monotone. With each operator monotone
function f one associates also the so-called Chentsov—Morotzova furisgeenRef. 8

1
Cf(X,Y)==—X,
yf(y)

DefineL ,(A):=pA, andR,(A):=Ap. SinceL ,,R, commute we may define(L,,R,). Now we
can state the fundamental theorems about monotone meiricgueness and classification are up
to scalars

Theorem 3.1: (Ref. 7) There exists a unique monotone metric Bp given by the Fisher
information

Theorem 3.2:(Ref. 39 There exists a bijective correspondence between monotone metrics on
Dﬁ and operator monotone functions given by the formula

for x,y>0.

(A,B), s:=Tr(A-c¢(L,,R,)(B)).

The tangent space B} at p is glven byT, Dl={AecM,:A=A* Tr(A) 0}, and can be
decomposed asT,D;= (T DY (T,Dh)°, where T,D n)C ={AeT,D}:[A,p]=0}, and
(T, Dn)0 is the orthogonal complement of (D n)C with respect to the H|Ibert Schmidt scalar
product(A B):=Tr(A*B). Each statlstlcally monotone metric has a unique expredsiprio a
constant given by Tr(p 1A?), for Ae (T, Dn)C The following result will be used in Sec. V.

Proposmon 3.3:(see Ref. BlLet AeT, D be decomposed as=AA°+i[p,U] where A
e(T,DH¢and i[p,U]e(T,Dp)°. Supposepecl(o +00). Then

(D,e)(A)=¢"(p)A°+i[e(p),U].

As proved by Lesniewski and Ruskai each monotone metric is the Hessian of a suitable
relative entropy; to state this result more precisely, we introduce some notation. In what fgllows
is an operator convex function defined on{@) and such thag(1)=0. The formula

(x—1)?

F0=T600 =050 gD
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associates a normalized, symmetric operator monotone funttidy to eachg. We denote by
A, ,=LoR, ! the relative modular operator. The relatigeentropy ofp and o is defined as

Hq(p. o) :=Tr(p (A, ) (p"?).

Hg is a divergence o, in the sense of Refs. 14, and 1.djo are diagonalH, reduces to the
commutative relativg—entropy(see Ref. @
Theorem 3.4:(Ref. 30 Let g be operator convey(1)=0, f=f, andpeD,. Then

Jd d
_ E gHg(p‘HA,P‘f'SB) t:s:0=Tr(A~Cf(Lp ,Rp)(B))-

To state the general formula for the scalar curvature of a monotone metric we need some
auxiliary functions. In what follows’, (logc)’ denote derivatives with respect to the first variable,
andc=cy:

c(X,y)—zc(x,2) c(y,2)
(x—2)(y—2)c(x,2)c(y,2)’

l(X Y.z )

_ (e(x2)—c(y,2)?
MY D Gy ek e 2)e(y.2)

iy e B0 ) o

hy(x,y,2)=2(Inc)"(z,x) (Inc)'(zy),
h3=h1_ %hz‘i‘ 2h3_ h4 .

The functionsh; have no essential singularities if arguments coincide.

Note that(A,B)/:=Tr(A-c(L,,R,)(B)) defines a Riemannian metric also 0@({' (Dlisa
submanifold of codimension)lLet Scaj(p) be the scalar curvature oD (-, ) ) at p and
Scaf(p) be the scalar curvature oD(; (-, )).

Theorem 3.5: (Ref. 13 Let o(p) be the spectrum gf. Then

Scal(p)= >, hxy.2)- > h(x,x,x),

X,y,ze o(p xeo(p)

(3.2
Scaf(p)=Sca}(p) + ;(n*~1)(n*~2).

IV. WIGNER-YANASE INFORMATION AS A RIEMANNIAN METRIC

Let peDﬁ be a density matrix and leA be a self-adjoint matrix. The Wigner—Yanase
information (or skew information, information content relative &) was defined as

I(p,A):=—Tr([p*%A]?),

where[-,-] denotes the commutatésee Ref. 42 Consider nowg(X) :=gy,(X) :=4(1— JX). In
this case

Hg(p,0)=4(1— Tr(pY2012)).

The associated operator monotone and Chentsov—Morotzova functions are
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1 4

T (xHy)?

1
ny(X) ::Z(\/;'i_ 1)21 Cwy(X,Y) = X
vinl

Let us consider the monotone metric,
<A,B>)’,"y::Tr(A Cwy(L,,R,)(B)).
A typical element of T,D,)° has the form [p,A], whereA is self-adjoint. We have
(ilp.ALiLp, Al =Tr ([p, Al4(L, >+ RYD 2(i[p,AD)
=—ATr (LR " H[p.AD (LRI (p.AD)
=—A4Tr(LY*+ R 7 o(L,—R,)(A) (LY+RY) "% (L,~R,)(A))
=—4Tr(L*=RP(A) (L*=RH(A)
=—4T([p"AT?)
=4l(p,A),

and this explains why the monotone metric associated with the fungtign+1)? is called the
Wigner—Yanase monotone metric.

V. THE MAIN RESULT

First of all, we calculate the scalar curvature of Wigner—Yanase information using Theorem
3.5. If fyy(x) :=3(x+1)2, we write Sca},, for Sca} .
Theorem 5.1:

Scaf,(p)= 3(n*~1)(n*~2).

Proof: Let us calculate the auxiliary functions fog,,(x,y) =4 (X +y) "2. We get

N XY +3 X \z+3 \y Vz+2 |
4 (Vx+y)2 (Vx+12) (Vy+2)
hay,2)= (Vx+y+22)? |
4 (Vx+2)2 (Vy+12)?
Jz

h 1 1 ): 1
YD ) (D (WD)

1
h Y, 2)=
Y D (W 4D,

Now one can verify by calculation that the symmetrizatiorhgf 3h, and the symmetriza-
tion of 2h;—h, vanish. Hence, by3.1), the symmetrization dfi vanishes, too. Since we sum up
in formula (3.2) over all triples of eigenvalues we may repldcavith its symmetrization without
changing the summation result. Therefore

Scalyy(p)=0, Scaf,(p)=3(n*~1)(n’~2), VpeD;.
O

Remark 5.2The fact that Scal(p) =0 can be seen by a different approdfok at the Wigner—
Yanase metric oveD,, as the 0-geometry; see Refs. 21 and. 27
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In what follows we use the pull-back approach to defi&ed explain the above formula in a
direct way. Furthermore we deduce the geodesic distance and geodesic equation.

Let us denote byS the manifold{AeM,: TrA A*=4, A=A*}. Clearly, sinceS is the
intersection of the radius 2 sphereGA*" and the subspace of Hermitian matrices, it is isometric

with a radius 2 spherg&} .

Now, let :DE—SC ™", ¢(p):=2p. Then we have the following resuliee Refs. 25, 18,
27, and 21

Theorem 5.3: The pull-back by the magp of the natural metric or5= 522_1 coincides with
the WignerYanase monotone metric

Proof: Let A andB be vectors tangent t@ﬁ at p. Becausep(p) o(p) =4 p we get from the
Leibniz ruleD ,¢(A) Jp + \/;Dpcp(A) =2A. Thus, the differential ob at the pointp is given by

D,e(A)=2(L "+ R "LA) .
Therefore the pull-back of the real part of the Hilbert—Schmidt metric yields
D,¢(Re(-,-))(A,B)=Re(D,¢(A),D,¢(B))
— 1/2 1/2\ — 1/2 1/2\ —
=4 Re(L,*+R/H)HA),(L;*+R,?)7Y(B))
=4(A, (LA RH7%(B))
=4TrA(L*+ R %(B)
=TrAcyy(L,.R,)(B)=(A,B)Y,

which was to be proved. O

From this result one can deduce the following.

Theorem 5.4: For the geodesic distance, the geodesic path and the scalar curvature of
WignerYanase information the following formulas hold:

(1) geodesic distance,
dwy(p, o) =2 arcco§Tr(p*2'2)); (5.2
(2) geodesic path,

(1-t)Vp+to)?

; 5.2
Tr(1—t)Vp+t\o)?) 52

Yoy (1) =2
(3) scalar curvature

Scaf,,(p) = §(n?=1)(n*-2). (5.3

Proof: The formulas are immediate consequences of the preceding theorem and of sphere
geometry. Indeed by the pull-back argument the Wigner—Yanase metric looks locally like a sphere
of radius 2 of dimensionr?*—1). But for a sphere of this kind the sectional curvatures are all
equal tol and therefore the scalar curvature is givenipg’—1)(n°—2). O

One may ask if other monotone metrics are the pull-back of some fungtiifferent from
the square root. The rest of the section answers this question.

Definition 5.5: A monotone metriq(-,-), ¢ is a pull-back metric if there exists a manifold
SCM,, and a functionp e C1(0,+ =) such that the pull-back metric @‘:DﬁHSCMn coincides
with (-,-), ¢

Proposition 5.6: Let-, - ),  be a monotone metric, let=ec; be the associated CNunction
and letp e C1(0,+%). We have that-,-), ¢ is a pull-back metric byp if and only if

Downloaded 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



3760 J. Math. Phys., Vol. 44, No. 9, September 2003 P. Gibilisco and T. Isola

e()—e(y)|2
(T) —C(X,y). (54)
Proof: Apply the proposition(3.3) to tangent vectors in‘I(pDﬁ)O. O

Definition 5.7:Let ¢, x € C1(0,+ ). We say thate,y) is a dual pair if there exists an operator
monotonef such that

e(X)=@(y) x(X)—x(y)
X—y  x—y

=c(x,y), (5.9

wherec=c; is the CM-function associated witffi.

In such a case we say that(or c;) is a dual function. If(¢,¢) is a dual pair with respect to
f (or c;) we say thaff (or c¢) is self-dual. Obviously one has the following.

Proposition 5.8: To say that, - ), 1 is a pull-back metric by it is equivalent to say that for
c¢) Is self-dual with respect to.

Definition 5.9: Two dual pairs §,x),(¢,x) are equivalent if there exist constants
Al ,A2 y Bl y B2 SUCh thatAlAZZ 1,

Obviously equivalent pairs define the sa@#l-function. In what follows we consider dual
pairs up to this equivalence relation with the traditional abuse of language. We are ready to state
the fundamental result of the theory that classifies dual pairs.

Theorem 5.10:(Refs. 23, 24, 25, 26, 36, and )1Bet ¢, y € C1(0,+ ). Then(e,y) is a dual
pair if and only if one of the following two possibilities hold:

xP xi=p

(@(x),x(x))= (H’ﬁ)’ pe[—1,2\{0,1,

(e(x), x(x))=(x,log(x)).

Corollary 5.11: The function (i) = 2(v/x+ 1) is the only self-dual operator monotone func-
tion, that is: the WignerYanase metric is the only pull-back metric among statistically monotone
metrics

VI. CONCLUSIONS

Remark 6.1:Note that the formulg5.1) implies d"Y(p,o)<27. An analogous inequality
holds for the Bures metri¢see Ref. 10, p. 311 also known as theSLD-metric: this is the
monotone metric associated witkix) = 3(1+x). Indeed the formula,

deured p,0) =\2—2 Tr(p*op™) ™", (6.9

seems to be the only other explicit formula for a geodesic disténcthe family of statistically
monotone metrigs
Remark 6.21n general it is difficult to give explicit formulas for geodesic paths of monotone
metrics. In the case of the Bures metric these geodesics can be given because they are projections
of large circles on a sphere in the purifying spé&see Ref. 10, p. 311 and Refs. 12, 4, angl 8&r
a discussion of geodesics farconnections see Refs. 27, 28.
Remark 6.3A classical theorem classifies the spaces of costant curv&tliris. not known at
the moment if there are other monotone metrics of costant sectional and scalar curvature.
Remark 6.4We have seen in the commutative case that for the Levi—Civita connection of the
pull-back of the square root the decomposition is available,
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V2= (VM v
5 .

In the noncommutative case an analogous decomposition for the pull-back of the square root
no longer holds. Indeed, on one hand, the use of Umegaki relative ertitGmyr) = Tr(p(log p
—log o)) produces a similar decomposition, but for the Bogoliubov—Kubo—Mori m&ti¢233
On the other hand, if one usét,(p,0)=4(1—Tr(p*?¢*?)) as a divergence o and con-
structs the associated dualistic structufe, ()wy, VHwy, VHwy) (again following the lines of Refs.
14 and }, then the construction is trivial, namely, the dual connections both coincide with the
Levi—Civita connection of the Wigner—Yanase information. This is easily seefPpowhere
Hgy(p,o) reduces to Csiszar relativg-entropy: it is known that such an entropy induces the
a-geometry wherex is given by the formulaa=3+2g9"(1)/g"(1) (see Ref. 1, p. 57 For g
=4(1- /) this givesa=0, that is, the Fisher information caésee also Ref. 21

ACKNOWLEDGMENTS

This research has been supported by the italian MIUR program “Quantum Probability and
Infinite Dimensional Analysis” 2001-2002. It is a pleasure to thank J. Dittmann for a number of
valuable conversations on this subject and for permitting us to reproduce in this paper the proof of
Theorem 5.1.

LAmari, S. and Nagaoka, SVjethods of Information GeomettAmerican Mathematical Society and Oxford University
Press, Oxford, 2000

2Belavkin, V. P., Hirota, O., and Hudson, R. Quantum Communications and Measurem@ienum, New York, 1995

3Bhatia, R.,Matrix Analysis(Springer-Verlag, New York, 1997

4Braunstein, S. L., and Caves, C. NGgometry of Quantum Statgsp. 21-30 in Ref. 2.

SCarlen, E., “Superadditivity of Fisher’s information and logarithmic Sobolev inequalities,” J. Funct. 031194211
(1991).

SCarlen, E., and Gangbo, W., “Costrained steepest descent in the 2-Wasserstein metric,” preprint, 2002.

"Chentsov, N.Statistical Decision Rules and Optimal Inferer{@enerican Mathematical Society, Providence, RI, 1982

8Chentsov, N. and Morozova, E., “Markov invariant geometry on state manifolds,” J. Sov. B&tB648—26691997).

9Csiszar, I., “Information type measures of difference of probability distribution and indirect observation,” Stud. Sci.
Math. Hung.2, 299-318(1967.

0pittmann, J., “On the Riemannian metric on the space of density matrices,” Rep. Math. 38B09-315(1995.

Upittmann, J., “The scalar curvature of the Bures metric on the space of density matrices,” J. Geon3Phys-24
(1999.

2pijttmann, J. and Uhlmann, A., “Connections and metrics respecting standard purification,” J. Math4Bhg246—
3267(1999.

Bpittmann, J., “On the curvature of monotone metrics and a conjecture concering the Kubo—Mori metric,” Linear Algebr.
Appl. 315, 83-112(2000.

¥ Eguchi, S., “Geometry of minimum contrast,” Hiroshima Math.22, 631—647(1992.

SFriedrich, T., “Die Fisher-Information und symplektische strukturen,” Math. Na&B8, 273—296(1991).

18Gibilisco, P. and Isola, T., “Connections on statistical manifolds of density operators by geometry of noncommutative
LP-spaces,” Infinite Dimen. Anal., Quantum Probab., Relat. Tyl69—178(1999.

Gibilisco, P. and Isola, T., “Monotone metrics on statistical manifolds of density matrices by geometry of noncommu-
tative L2-spaces,” in:Disordered and Complex Systeneslited by A. C. Coolen, L. Hughston, P. Sollich, and R. F.
Streater(AIP, Melville, NY, 2001), pp. 129-140.

BGibilisco, P. and Isola, T., “A characterisation of Wigner-Yanase skew information among statistically monotone met-
rics,” Infinite Dimen. Anal., Quantum Probab., Relat. Tep.553-557(2001).

Gibilisco, P. and Isola, T., “On the characterisation of dual statistically monotone metrics,” premidth. PR/0305P
2003.

20Gibilisco, P. and Pistone, G., “Connections on non-parametric statistical manifolds by Orlicz space geometry,” Infinite
Dimen. Anal., Quantum Probab., Relat. Tdp.325-347(1998.

2Grasselli, M. R., “Duality, monotonicity and the Wigner—Yanase—Dyson metrics,” preprint, math-ph/0212022, 2002.

2Grasselli, M. R. and Streater, R. F., “On the uniqueness of Chentsov metric in quantum information geometry,” Infinite
Dimen. Anal., Quantum Probab., Relat. T@p.173-182(2001).

2’Hasegawa, H., &-divergence of the non-commutative information geometry,” Rep. Math. P38/s87-93(1993.

2*Hasegawa, H., “Non-commutative extension of the information geometry,” pp. 327337 in Ref. 2.

2Hasegawa, H. and Petz, D., “Non-commutative extension of information geometry, IJuiantum Communication,
Computing and Measuremergdited by D. Hiroteet al. (Plenum, New York, 1997 pp. 109-118.

2Hasegawa, H., “Dual geometry of the Wigner—Yanase—Dyson information content,” Preprint, 2003.

Downloaded 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



3762 J. Math. Phys., Vol. 44, No. 9, September 2003 P. Gibilisco and T. Isola

27 Jenova, A., “Geometry of quantum states: dual connections and divergence functions,” Rep. Math4 BHy1 138
(2009).

28Jenova, A., “Quantum information geometry and standard purification,” J. Math. P4§,s2187—2201(2002.

2%Kobayashi, X. and Nomizu, XFoundations of Differential Geometfynterscience, New York, 1963Vol. I.

30 esniewski, A. and Ruskai, M. B., “Monotone Riemannian metrics and relative entropy on honcommutative probability
spaces,” J. Math. Phy<l0, 5702-5724(1999.

3!Nagaoka, H., “Differential geometric aspects of quantum state estimation and relative entropy,” pp. 449—452 in Ref. 2.

32Njelsen, M. and Chuang, IQuantum Computation and Quantum Informati@ambridge University Press, Cambridge,
2000.

33petz, D., “Geometry of canonical correlation on the state space of a quantum system,” J. Math3RH80—795
(1994).

34petz, D., “Monotone metrics on matrix space,” Linear Algebr. AppA4, 81—-96(1996.

35petz, D., “Covariance and Fisher information in quantum mechanics,” J. Phgs, 829-939(2002.

36petz, D. and Hasegawa, H., “On the Riemannian metriex@ntropies of density matrices,” Lett. Math. Phyas,
221-225(1996.

$7Petz, D. and SudaC., “Geometries of quantum states,” J. Math. Ph§g, 2662—26731996.

38Ruskai, M. B., “Contraction of Riemannian metrics and related distance measures on pairs of qubit states,” preprint,
2002.

3%Uhimann, A., “Parallel transport and quantum holonomy,” Rep. Math. PB¢s229-240(1986.

4°Uhlmann, A., “Density operators as an arena for differential geometry,” Rep. Math. BBy8253—-263(1993.

4lyhlmann, A., “Geometric phases and related structures,” Rep. Math. Bieyg.61—481(1995.

“\Wigner, E. and Yanase, Al., “Information content of distribution,” Proc. Natl. Acad. Sci. U.89910-918(1963.

“Wwootters, W. V., “Statistical distance and Hilbert space,” Phys. Re23D357-362(1981).

Downloaded 06 Feb 2010 to 160.80.2.8. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



