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Problem

Posidonia oceanica (L.) Delile is the most abundant sea-

grass in the Mediterranean Sea (Lipkin et al. 2003; Pro-

caccini et al. 2003). This phanerogam forms large and

widespread beds, covering about 40,000 km2 (Pergent

1993), and is one of the most productive Mediterranean

ecosystems (Ott 1980; Buia & Mazzella 1991; Mazzella

et al. 1992). Because of its important role in the marine

environment, several direct and indirect methods have

been developed to evaluate the ecological status of the

meadows (Giraud 1977; Ott & Maurer 1977; Fresi & Sag-

giomo 1981; Meinesz et al. 1981; Boudouresque et al.

1983; Belsher et al. 1988; Buia et al. 1992; Pasqualini et al.

1998; Marcos-Diego et al. 2000). Among direct methods,

measuring density (number of shoots m)2) is probably

the most straightforward. Shoot density depends on struc-

ture and functionality of a meadow as well as on its abil-

ity to adapt to substrate variability. Moreover, shoot

density plays an important role when estimates of quanti-

tative properties of P. oceanica beds are to be calculated

(e.g. for primary production studies; Wittmann 1984;

Romero 1989; Buia et al. 1992; Cebrian & Duarte 2001;

Dumay et al. 2002). The assessment of shoot density is

usually carried out by counting the number of shoots

within square frames, and then averaging several counts

(Giraud 1977; Pergent-Martini & Pergent 1996). If the

positioning of the frames is not biased and if enough

counts are available, reasonably accurate estimates can be

obtained of the mean shoot density within the sampling

area. However, small scale spatial analyses showed very

complex patterns (Panayotidis et al. 1981; Balestri et al.

2003; Gobert et al. 2003; Zupo et al. 2006), which were

observed even within apparently dense and homogeneous

stands in P. oceanica beds (i.e. 56 regularly spaced counts

in 40 · 40 cm squares ranged from 238 to

1438 shoots m)2 within a 16 · 16 m area, according to

Valiante L. M., Casola E., Procaccini G. & Sordino P.,

unpublished data).

To use density data to reconstruct large scale patterns

or to integrate over space other ecological properties of

P. oceanica beds that are related to density, punctual
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Abstract

A case study on the optimization of Posidonia oceanica density interpolation,

using a data set from a large meadow at Porto Conte Bay (NW Sardinia, Italy),

is presented. Ordinary point kriging, cokriging and a weighted average based

on inverse square distance were used to interpolate density data measured in

36 sampling stations. The results obtained from different methods were then

compared by means of a leave-one-out cross-validation procedure. The scale at

which interpolation was carried out was defined on the basis of the Hausdorff

dimension of the variogram. Optimizing spatial scale and data points search

strategy allowed obtaining more accurate density estimates independently of

the interpolation method.
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density estimates have to be interpolated. Several tech-

niques are available, but geostatistical methods (e.g. kri-

ging) have been shown to be the most effective ones

(Field et al. 1987; Scardi et al. 1989; Pergent 1990;

Zupo et al. 2006). The application of these methods to

P. oceanica density interpolation, however, is not as

straightforward as in other applications. This is because

of both the complex spatial structure of the P. oceanica

beds and the above mentioned small scale variability.

This paper focuses on the optimization of some fea-

tures in the interpolation of P. oceanica density data, such

as selection of appropriate methods and spatial scales,

using a data set from a central-western Mediterranean

bed. Results obtained on the basis of different interpola-

tion approaches will be presented and discussed. These

results, however, are only based on a subset of all the

possible combinations of methods, scales and other

options and therefore our conclusions are to be consid-

ered as a starting point for further research rather than as

those of a fully exhaustive geostatistical study. In fact,

such a study would have been too complex to be presen-

ted in a single paper.

Material and Methods

Study area

Porto Conte Bay (Sardinia, Italy, 40�35¢ N–8�12¢ E) is a

large inlet, approximately 6 km long and 3.5 km wide,

where a large Posidonia oceanica bed stretches from 4 to

30 m depth. In this Posidonia bed several morphological

features can be found (Chessa et al. 1988), with the inter-

position of two other phanerogams (i.e. Cymodocea

nodosa and Nanozostera noltii) and of the green alga

Caulerpa prolifera. The overall sea floor area covered by

the P. oceanica bed is about 6 km2.

Sampling methods

The interpolation procedures presented in this paper

were based on a data set collected in June 1986. At first

30 sampling stations were randomly set in the innermost

part of the bay, within the area in which nautical charts

reported the presence of phanerogams (i.e. ‘weeds’).

Posidonia oceanica was actually found in 26 out of 30

sampling stations (black and white triangles in Fig. 1),

while six out of these 26 stations were located outside

the limits of the main bed (white triangles in Fig. 1).

The exact upper limit of the main bed was outlined by

means of aerial photography after sampling (dashed line

in Fig. 1). After a preliminary analysis of the density

data, 10 supplementary sampling stations (crosses in

Fig. 1) were added where the variance of the density

estimates was the highest. Therefore, a data set including

36 sampling stations was available for spatial analysis

and interpolation.

Station positioning, and all the maps (including the

one shown in Fig. 1), were based on an UTM grid (zone

32T). In order to simplify graphical outputs and compu-

tation of distances, all coordinates in our study are

expressed as distances in meters from the origin of our

maps (lower left corner). These coordinates were obtained

by subtracting the UTM coordinates of the origin from

all the other points. The zone 32T coordinates of the

origin of our maps were 431083 E–4493744 N, corres-

ponding to WGS84 geodetic coordinates 40�35¢29.85¢¢ N–

8�11¢08.02¢¢ E.

Shoot density was measured by SCUBA divers, who

counted the shoots within five square frames (40 · 40 cm)

randomly located in the P. oceanica bed within a 25-m

diameter circle centered on the station point. Afterwards,

the mean value of the five counts was converted to density

expressed as shoots m)2. The percentage of sea floor that

was actually covered by P. oceanica within the circular

sampling area was independently assessed by two divers.

Then the average cover percentage was assumed as the best

estimate of sea floor cover, which is also needed for com-

puting relative density (i.e. density · sea floor cover, also

defined as ‘global density’ by Romero 1985). Cartesian

coordinates of the sampling stations as well as their depth,

sea floor cover and absolute density data are shown in

Table 1.
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Fig. 1. Sampling stations and depth in Porto Conte Bay (Sardinia,

Italy). The dashed line shows the upper limit of the main Posidonia

oceanica bed. At first 26 sampling stations were randomly set: 20 of

them were located within the main bed (black triangles), whereas six

were outside its limits (white triangles). After a preliminary spatial ana-

lysis 10 more sampling stations were added where the interpolation

error was the largest (crosses).
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The purpose of these two ways of evaluating density is

obviously not the same, as well as their interpretation.

Absolute density is more closely related to the health of

the bed and to its short-term dynamics, whereas relative

(or global) density is more useful in ecosystem scale stud-

ies and reflects the outcome of long-term colonization

dynamics (Romero 1985).

Data analysis

Our analyses focused on density (i.e. on the shoot density

within the area covered by P. oceanica) rather than on

relative (or global) density. The interpolation of density

data was based on three techniques. The simplest one was

a weighted average based on inverse square distances

from known points. Ordinary point kriging (Journel &

Huijbregts 1978; Cressie 1991) was also used, as well as

cokriging (Isaaks & Srivastava 1989; Cressie 1991). Inverse

square distance and kriging interpolation were carried out

using software developed by the Authors, whereas a soft-

ware package by Bogaert et al. (1995) was used for cokri-

ging.

Independently of the method, interpolation was car-

ried out on grids whose mesh size was equal to the

diameter of the circular sampling areas (25 m). Det-

rending was not needed for kriging and cokriging inter-

polation, as no significant trends were detected in the

data set. In all kriging and cokriging interpolations, var-

iograms were modeled using a combination of nugget

and spherical terms, optimized by means of a least

squares procedure. Accuracy of interpolation methods

was assessed on the basis of the mean square error

obtained from a leave-one-out cross-validation proce-

dure (Yates & Warrick 1987). To optimize interpolation

results, the spatial scale beyond which spatial ‘noise’

was larger than spatial ‘signal’ was estimated after the

Hausdorff dimension (D) of the omnidirectional vario-

gram. The Hausdorff dimension is related to the way

an object occupies space and to the concept of fractal

dimension. Details about its application to variograms

as well as estimates obtained in different geological and

ecological applications can be found in Burrough

(1981). As the topological dimension of a variogram (as

well as that of a line) is one, its Hausdorff dimension

ranges from one to two depending on the way the vari-

ogram occupies its (bidimensional) space, i.e. on how

much crumpled it is. The Hausdorff dimension can be

estimated on the basis of the slope b of the log–log

variogram, given that D ¼ (4 ) b)/2. If variograms were

perfect fractal entities, then the estimated dimension D

would be invariant with respect to the maximum

distance between data pairs considered in the vario-

gram, but in real world situations spatial scale does

affect D. As D ¼ 1 implies an absolutely smooth spatial

structure and D ¼ 2 an infinitely complex one, the

midpoint of this range (i.e. the distance at which D

becomes larger than 1.5) is of particular interest, and it

might indicate the largest significant spatial scale at

which the available information can contribute in a

meaningful way to the interpolation. Therefore, opti-

mized interpolations were performed using a search

radius equal to one-half of the distance at which

D ¼ 1.5. Further optimization was then achieved by

dividing the resulting search circle into four 90� sectors

and interpolating only points that had neighboring data

points in more than a single sector.

Table 1. Depth, susbstrate cover and mean absolute density data.

Coordinates are referred to a zone 32T UTM grid and they are expressed

as distances from an arbitrary origin located at 431083 E–4493744 N.

x (m) y (m) Depth (m) Cover (%)

Absolute density

(shoots m)2)

350 450 10.5 65 281

675 525 11.0 85 350

950 500 10.0 35 119

1350 550 8.5 60 256

1900 550 5.0 28 456

375 1050 8.5 55 231

650 1200 7.5 100 394

1025 1250 8.0 100 400

1725 1350 6.0 100 381

2325 1300 4.0 10 69

500 1350 8.0 100 488

875 1500 8.5 70 450

1225 1550 8.0 90 475

1725 1650 6.0 100 388

2150 1650 5.0 28 138

600 1675 7.0 73 413

900 1775 7.0 75 481

1225 1775 6.0 100 506

1550 1825 6.0 90 331

1925 1850 6.0 42 175

975 2250 5.0 45 525

1350 2250 5.0 50 344

1700 2200 5.5 55 188

1800 2075 4.5 38 175

1250 2525 3.0 50 644

1475 2575 3.5 45 531

450 700 10.5 80 394

800 750 10.0 45 313

675 850 11.0 45 375

1300 850 9.5 50 400

1550 900 7.5 60 475

1800 925 7.0 70 369

1525 1275 7.0 90 388

1300 1275 9.0 80 394

1150 625 9.0 40 294

1475 700 9.0 70 394
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Results

General remarks

An underwater survey carried out in the innermost part

of Porto Conte Bay showed that the Posidonia oceanica

bed was apparently dense below 5 m, while in shallower

sites it became more sparse, being substituted by Caulerpa

prolifera or Cymodocea nodosa (the latter occasionally

mixed with patches of Nanozostera noltii). Intermatte

channels were often present at depths between 5 and

10 m, particularly in the westernmost part of the bay.

The matte height ranged from 70 to 130 cm. In the west-

ern part of the bay (at depths from 8 to 10 m) there were

evident signs of mechanical disturbance on the bed (e.g.

scars due to trawling gear, boat anchoring), and rhizomes

were easy detachable by hand.

Basic interpolation

The first attempt at interpolating density data was carried

out using a weighted average based on the inverse square

distance of all known points from the point to be inter-

polated. This is a very popular and straightforward tech-

nique that partly takes into account the spatial structure

of P. oceanica bed density, although in a simplified way

that does not require variogram modeling. The leave-one-

out cross-validation MSE (mean square error) was 10,090

and the resulting map of the P. oceanica bed density is

shown in Fig. 2. The overall density structure is clear, but

several circular features in the isopleths are present and

they can be regarded as artifacts because of high local

heterogeneity in density data.

Taking into account spatial properties of the variable

to be interpolated by means of variogram analysis allows

using geostatistical tools, like kriging and cokriging. These

methods require user interaction for variogram modeling,

but, in theory, they should be more effective than simpler

methods.

As no anisotropy was detected in density data, an

omnidirectional variogram was used. The empirical vario-

gram and the modeled one are shown in Fig. 3. The

modeled variogram was spherical (range ¼ 1334 m;

scale ¼ 14,910) with a nugget effect [c(0) ¼ 975.5]. Posi-

donia oceanica density data were then kriged using this

variogram, and a significant improvement in the interpo-

lation accuracy was achieved (MSE ¼ 7197). The kriged

density map is shown in Fig. 4.

To improve the interpolation accuracy, covariables (i.e.

variables that tend to covariate with P. oceanica density)

were then taken into account. The relationship between

depth and density is generally well known, although not

significant in Porto Conte Bay. However, density was signi-

ficantly correlated to the percentage of sea floor covered by

P. oceanica in Porto Conte Bay (r ¼ 0.458**). Therefore,

both depth and sea floor cover were associated to density

and normalized variograms and covariograms were com-

puted (Fig. 5).

Depth, although relevant in most sites, did not play a

significant role as a covariable in the Porto Conte P. ocea-

nica bed, and its almost random covariograms were a

clear evidence for this lack of correlation. On the con-

trary, sea floor cover covariated with density, and the cor-

responding covariogram showed this tendency. These

(co)variograms were then used for density cokriging,
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Fig. 2. Posidonia oceanica bed density map obtained from unoptim-

ized weighted average based on inverse square distance.

0 500 1000 1500 2000 2500
h (m)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

γ 
(h

)

Fig. 3. Empirical (dashed line) and modeled (solid line) omnidirec-

tional variograms. Spatial variance c is shown as a function of distance

h. A spherical model (range ¼ 1334 m, scale ¼ 14910) with nugget

effect (975.5) was selected.
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using spherical models (not shown in Fig. 5) with the

same range as the one that was used for ordinary point

kriging (see Fig. 3). However, the cross-validation results

did not show improvement over ordinary point kriging,

as the MSE was slightly larger than in the latter case. The

density map obtained from cokriging is shown in Fig. 6,

and it is evident that it very closely resembles the kriged

one.

Optimizing interpolation technique

The results of density interpolation obtained by means of

(co)kriging were certainly adequate for most purposes,
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Fig. 5. Empirical standardized variograms and covariograms for depth, substrate cover and density of the Posidonia oceanica bed.
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Fig. 4. Posidonia oceanica bed density map obtained from unoptim-

ized ordinary point kriging.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000
meters

m
et

er
s

Fig. 6. Posidonia oceanica bed density map obtained from unoptim-

ized cokriging.
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but our aim was to reduce as much as possible the cross-

validation error. To increase the interpolation accuracy,

the amount of spatial ‘noise’ affecting the interpolation

had to be minimized. Variograms usually convey useful

information about this kind of disturbance, but a suitable

method was needed for separating the really meaningful

part of the variograms from the rest. In particular, when

a variogram is plotted on log–log scale (Fig. 7) its Haus-

dorff dimension, which ranges from 1 to 2, depends on

its slope and can be assumed as a measure of variogram

complexity. However, as real variograms are not fractal

objects, their slope is not constant and the estimate of

their Hausdorff dimension, which is related to the slope b

of the log–log variogram [D ¼ (4 ) b)/2], varies depend-

ing on the spatial scale. In other words, the slope estima-

ted after the first two points in the log–log variogram is

not the same as the one estimated after the first three

points, and the latter is not the same as the one estimated

after the first four points, and so on. Therefore, the esti-

mate of the Hausdorff dimension is a function – usually

monotonically growing – of the maximum distance

between data points.

In the case of Porto Conte P. oceanica density, the vari-

ogram slope decreased with maximum distance between

data points and therefore the estimate of its Hausdorff

dimension increased with this distance (Fig. 8). The dis-

tance at which the estimate of the Hausdorff dimension

became D ¼ 1.5, which in our data set was approximately

equal to 1050 m, could be regarded as the maximum spa-

tial scale at which P. oceanica density patterns were

smooth and ordered enough to be useful for geostatistical

analyses. Therefore, taking into account only data points

that were no farther than 1050 m from each other was a

sensible choice for optimizing P. oceanica density interpo-

lation independently of the adopted method.

The cokriging interpolation was then performed again,

limiting the data point search radius to 525 m. The cross-

validation results were better than those of the uncon-

strained cokriging interpolation, as the MSE was 15%

lower (MSE ¼ 6330). The density map in Fig. 9 is obvi-

ously similar to the one obtained without limitations in

the search radius, although some finer features appeared.
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Fig. 7. Log–log omnidirectional variogram of density data. The slope

(b) of this variogram is related to its Hausdorff dimension [D ¼
(4 ) b)/2], which can be regarded as a measure of spatial complexity

of the density structure.
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Fig. 9. Posidonia oceanica bed density map obtained from cokriging

with a 525 m maximum search radius.
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Optimizing search strategy

A further improvement in interpolation accuracy was

obtained by constraining the search for data points not

only within a given radius, but also by dividing the search

circle into four sectors and excluding from the interpo-

lated grid those points that did not have at least two

neighbors within the search radius (525 m), but in differ-

ent sectors. As the variogram was omnidirectional, the

role of search sectors was limited, because it only

involved an optimized geometry of data points used for

interpolation.

Applying these constraints to ordinary point kriging

led to a gain in accuracy that was certainly limited, but

not negligible (MSE ¼ 6123). The density map obtained

from this approach is shown in Fig. 10. The hashed area

in the lower left part of the map was not kriged because

of the lack of data points within 525 m in more than one

search sectors out of four.

Is (co)kriging the best interpolation method?

The selection of suitable interpolation methods and

appropriate constraints in searching for neighboring data

points led to a consistent improvement in cross-valid-

ation MSE. However, in order to better understand the

relative weight of these components, we also applied the

search constraints that were set for the last kriging inter-

polation to an inverse square distance interpolation. Sur-

prisingly, the cross-validation results showed that this

method, although much simpler, was slightly more accu-

rate than kriging (MSE ¼ 6006). The hashed areas in the

resulting density map are those where not enough neigh-

boring data points were available for interpolation

(Fig. 11). The overall density structure depicted by this

method was obviously similar to the kriged one, although

it seemed more influenced by single data points. For

instance, there are two low density ‘cores’ in the lower

left part of the map that are deeper than in the kriged

map. The reason for this difference was that local vari-

ance was considered in kriging thanks to the nugget effect

in variograms, while it had no effect in inverse distance

interpolation.

Discussion

Independently of the interpolation method, Posidonia

density was higher in the middle of Porto Conte Bay and

tended to decrease in outer areas, thus ranging from

about 400 shoots m)2 [Type III bed according to Giraud

(1977)] to about 200 shoots m)2 [Type IV bed according

to Giraud (1977)]. This range corresponds to abnormal

density (AD) in most shallow stands (depth < 6 m) and

to normal to lower subnormal density (ND to LSD) in

the central part of the Bay, according to the classification

proposed by Pergent et al. (1995) and Pergent-Martini &

Pergent (1996). The main source of disturbance was

probably illegal bottom trawling (Chessa & Fresi 1994;

Cossu et al. 2001) and extensive SCUBA diving inspec-

tions supported this hypothesis.

From a methodological point of view, it was surprising

to find out that a rather simple interpolation method, like

a weighted average based on inverse square distance, was

slightly better than more complex – and theoretically
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Fig. 10. Posidonia oceanica bed density map obtained from ordinary

point kriging with a 525 m maximum search radius and directional

data point search strategy (four sectors).
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Fig. 11. Posidonia oceanica bed density map obtained from weighted

average based on inverse square distance with a 525 m maximum

search radius and directional data point search strategy (four sectors).
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more effective – geostatistical methods in interpolating

P. oceanica density data (Table 2). Assuming that cross-

validation was the only reliable way to compare interpola-

tion methods in a data-limited situation, differences in

MSE between inverse square distance, kriging and cokri-

ging became very small (<5%) once a suitable data point

search strategy was defined. Therefore, selection of the

interpolation method seemed less important than defini-

tion of an optimal spatial scale for interpolation.

Geostatistical techniques, which are supposed to be

more effective than other methods, rely upon theoretical

assumptions that were probably not met by P. oceanica

density data and this could be the reason why they did

not outperform a simpler approach. The large local vari-

ability of density measurements obviously played a major

role, but other features like, for instance, discontinuities

and patchiness in P. oceanica bed structure, were not less

important.

Moreover, density of seagrass beds is an ill-defined

concept, as it changes according to the way field measure-

ments are carried out and to the way density data are

processed. In both cases this mainly depends on spatial

scale, which is probably the most critical choice in the

optimization of a procedure for density interpolation.

Defining an appropriate spatial scale affects all the

phases of a geostatistical study, from data collection to

data analysis and from interpolation to graphical output

or spatial integration. Different approaches can be selec-

ted for optimizing each phase, but variogram analysis is

certainly fundamental for optimizing interpolation

options. Of course, even variogram analysis is not inde-

pendent of spatial scale and therefore a (theoretically)

scale-invariant approach to variogram analysis should be

selected.

Computing the Hausdorff dimensions of a variogram

at increasing spatial scales is a very simple way to assess

the spatial ‘signal’ to spatial ‘noise’ ratio in a set of den-

sity data. Thus, its breakeven point (corresponding to

D ¼ 1.5) might suggest which is the largest radius within

which the spatial ‘signal’ can be exploited by geostatistics

or by simpler methods. This claim is obviously based on

theoretical issues only, as P. oceanica density estimates are

inherently scale-dependent and no information about the

‘real’ density structure of a P. oceanica bed will be ever

available. Therefore, the selection of an interpolation

method in P. oceanica density studies is probably a subor-

dinate issue within a more complex problem (involving

spatial scale, sampling design, software availability, etc.).

In particular, the latter problem cannot be overlooked,

as cokriging, that in theory should be at least as effective

as ordinary kriging, and therefore a good choice in most

cases, is not available in user-friendly commercial soft-

ware packages. The package by Bogaert et al. (1995) used

in this study, on the other hand, was developed 10 years

ago and it is too slow for complex tasks. For instance, the

first cokriged map in this paper (Fig. 9), which was based

on a 105 · 113 grid like all other maps, was computed in

about 28 h by a 2.6 GHz PC. Other geostatistical pack-

ages include cokriging, but they are very expensive and

require specific training. Finally, covariables that effect-

ively support density interpolation are not easy to find.

Depth is the most obvious choice, and substrate cover

(which in some cases can also be obtained from Side-Scan

Sonar surveys) is a second option, but others are neither

obvious nor always available.

At the opposite end of the spectrum of interpolation

methods, weighted average based on inverse square dis-

tance performed very well, providing the smallest MSE in

our cross-validation tests. However, it estimated more

accurately density values that were not too far from aver-

age, while it was slightly less accurate than geostatistical

methods with very small and very large values. The same

problem was also observed with (co)kriging, although to

a lesser extent. It obviously depends on the lack of ade-

quate information about the complex patterns in the

P. oceanica bed, whose structure can be only roughly

approximated (and therefore smoothed) by interpolation

methods.

In this framework, ordinary point kriging is probably

the best compromise between simplicity and efficiency.

It is not as straightforward as a weighted average, but it is

available in user-friendly software packages and, if prop-

erly applied, provides additional information that can be

very useful in sampling optimization. In fact, like cokri-

ging, it allows computing an estimate of the variance or

standard deviation associated to each interpolated value.

Knowing how large is the expected interpolation error

may be very useful for planning additional sampling, thus

improving the accuracy of density estimates where the

interpolation error is large. This way, for instance, ten

additional sampling stations were added to our data set

after a preliminary analysis.

However, variogram modeling plays a critical role in

assessing the interpolation error, which is reliable only in

case the experimental variogram effectively describes the

Table 2. Leave-one-out cross-validation mean square error (MSE)

obtained from the different interpolation procedures.

Interpolation method MSE

Inverse square distance, r ¼ ¥ 10,090

Kriging, r ¼ ¥ 7197

Cokriging, r ¼ ¥ 7333

Cokriging, r ¼ 525 m 6330

Kriging, r ¼ 525 m, 4 sectors 6123

Inv. square dist., r ¼ 525 m, 4 sectors 6006
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spatial properties of the variable to be interpolated, and

the modeled variogram nicely fits experimental data. Even

in this case, search strategy (radius and other constraints)

should be carefully optimized.

In conclusion, our results suggested that the selection

of the interpolation method in P. oceanica density studies

was not as critical as the selection of an appropriate spa-

tial scale. Constraining search radius and directional cri-

teria allowed defining an optimal neighborhood within

which the spatial properties of density data could be best

exploited, thus providing reliable density estimates even

when a very simple interpolation method was used (i.e.

weighted average based on the inverse square distance).

Even in this case, one must always bear in mind that

P. oceanica density is an ill-defined concept, because of its

scale dependency. Moreover, the density we measure – at

a given spatial scale – in a P. oceanica bed is the outcome

of long-term interactions between P. oceanica growth

dynamics and adaptation to the substrate. In older beds

the former certainly plays a major role, whereas the latter

is probably more relevant in younger beds or in cases

where the underlying geomorphological features are very

complex.

In both cases, however, correct interpolation of

P. oceanica density data is much more difficult than

interpolation of variables whose spatial properties are

generated by simpler processes (e.g. diffusion). There-

fore, we can rely upon density interpolation for integra-

ting in space relevant properties of a P. oceanica bed

(e.g. primary production), but we cannot expect to dis-

cover hidden patterns or other fine details [e.g. micro-

scale density variation (Gobert et al. 2003)], unless an

appropriate study is carefully planned and carried out

at the appropriate scale. Moreover, an inherent limita-

tion in the results of interpolation is a tendency toward

underestimation of high values and overestimation of

low values, which is proportional to the local variance

of density data (i.e. on the nugget effect in variograms).

On the other hand, if local variance is ignored or

underestimated, interpolation is likely to produce arti-

facts (e.g. nestlike structures).

Given the complexity of the processes that generate

density patterns in P. oceanica beds, mathematical mode-

ling might be a successful alternate approach or a com-

plement to interpolation. Viable modeling strategies

include rhizome growth models and empirical density

models. The latter are probably easier to develop, as they

can exploit the information conveyed by a number of

environmental variables that are possibly (although not

certainly) related to density (e.g. bottom slope, exposure

to light or to waves, substrate type, etc.). In this frame-

work, artificial neural networks might play a role, as they

are the most effective tool in empirical modeling and a

very promising addition to the marine ecologist’s toolbox

(Scardi 2003).

Summary

Shoot density is an important structural descriptor

when estimating the quantitative properties of Posidonia

oceanica beds. This study focuses on the optimization

of the interpolation of P. oceanica density data collected

in a central-western Mediterranean bed (Porto Conte

Bay, NW Sardinia, Italy). At first 26 sampling stations

were randomly set in the innermost part of the bay,

while 10 more stations were added after a preliminary

analysis of the density data, thus totaling 36 sampling

stations. Density was measured by counting shoots

within five square frames (40 · 40 cm) randomly

located in the P. oceanica bed within a 25-m diameter

circle centered at the station point. Interpolation of

density data was carried out by ordinary point kriging,

cokriging and a weighted average based on inverse

square distance. In all cases, data were gridded using a

mesh size that was of the same size as the diameter of

the sampling stands, i.e. 25 m. The results of different

interpolation procedures were compared by means of a

leave-one-out cross-validation. Geostatistical techniques

(i.e. kriging and co-kriging) provided better results

when applied without optimization, while differences

between methods were negligible when interpolation

spatial scale and data points search strategy were opti-

mized. The Hausdorff dimension (D) of the omnidirec-

tional variogram was analysed to define the largest scale

at which spatial ‘signal’ was still larger than spatial

‘noise’. Assuming that such a scale corresponded to

D ¼ 1.5, the resulting radius (525 m) was then used

for optimized interpolation. Finally, data points within

this radius were searched directionally, i.e. by dividing

the search circle into four sectors and interpolating

only points that had neighbors in at least two different

sectors. As the accuracy of spatially optimized interpola-

tion was almost independent of the technique, other

issues were taken into account to select the most effect-

ive approach. Ordinary point kriging is probably the

best compromise between ease of use, accuracy and

information content of the results. In fact, it is widely

available even in user-friendly software packages and it

also provides estimates for the interpolation error. The

conclusions of our study should be regarded as an eco-

logist’s perspective rather than as thorough and rigor-

ous geostatistical study, as we optimized the

interpolation procedure taking into account only a lim-

ited subset of all the possible combinations of methods

and parameters. Therefore, further work is needed to

confirm and possibly to generalize our results.
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