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INDUCED REPRESENTATIONS OF NONLOCALLY
COMPACT GROUPS

P. Gibilisco

0. Introduction

Induced representations were introduced by Frobenius in 1898 for finite groups, and by Mackey in 1949 for
locally compact separable groups. The main result of the theory is the imprimitivity theorem characterizing
induced representations as those which have an associated imprimitivity system. A number of proofs of the
imprimitivity theorem can be found in the literature [1-5]. The proof given by @rsted in 1979 [6] seems to
be the shortest and simplest (see also [7]).

Since the theory of representations of locally compact groups can be seen as a special case of the theory of
*-representations of involutory Banach algebras, the theory of induced representations has been generalized
in the *-algebraic direction by many authors [8-13]. Also, in these contexts, imprimitivity theorems have
been proved. However, when pushed down to the group case, these generalizations are based on the
hypothesis of local compactness.

Physical applications of the theory of induced representations for locally compact groups are well known
(see [14]) and references therein). Actually, infinite dimensional groups arise in physics in at least four
different contexts: fluid dynamics, gauge theory, general relativity, and quantum field theory. It is well
kncwn that in the case of infinite dimension one cannot use the hypothesis of local compactness, and
therefore at first sight it seems impossible to apply the theory of induced representations for solving the
ab-»e-mentioned problems.

Actually, the inducing process has been carried out in many cases (at different levels of rigor) without
the assumption of local compactness (see [4, 15-30]). It was shown (see [16, 18]) that in special cases (as in
the classical theory) the equivalence between irreducibility of the inducing representation and that of the
associated imprimitivity system occurs.

Despite these facts there is no attempt in the mathematical literature (to the author’s knowledge) to prove
the main result of Mackey’s theory, namely the imprimitivity theorem, at least for the class of nonlocally
compact groups. In this paper, we prove such a theorem (see Theorem 4.1 below) in the case of a compact
quotient.

In what follows we consider a separable topological group G and a closed subgroup K C G such that the
quotient M = G/K is a compact Hausdorff space and there exists a Borel cross section from M to G. We
show how to define an induced representation V(&™) of G once one has fixed a representation L of K and
a G-quasi-invariant measure m on M. The main result consists in the proof of the imprimitivity theorem
under the above hypotheses. This result is based on the von Neumann direct integral decomposition theory
for Hilbert spaces [31]. It is remarkable that, although the use of the Haar measure is forbidden by the
hypotheses, the proof appears to be very simple. The scheme of the proof was described earlier in [18, 32];

The path groups, studied in [16, 18] (and, at a physical level of rigor, in [29, 30]), give examples of
nonlocally compact groups satisfying the hypotheses of the theorem. It seems likely that this imprimitivity
theorem applied to the case of path groups, together with Driver’s classification of bundle-connection pairs
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[6], can be used to classify bundle-connection pairs as imprimitive representations of path groups over
symmetry groups for the base manifolds. This problem will be discussed in a forthcoming paper.

1. Preliminary notions

In what follows, G is a separable topological group and K is a closed subgroup such that M = G/K is a
compact Hausdorff space. We assume that there exists a Borel measurable cross section s for the canonical
projection m : G — G/K, i.e., a Borel measurable function s : G/K — G such that (7 0 s)(z) = z for any
2 € M = G/K. There are known criteria which guarantee the existence of such sections [11, 12]. All the
Hilbert spaces are assumed to be complex and separable, and by a representation of a topological group
we mean a continuous unitary representation in a Hilbert space. For the notion of measurable fields of
Hilbert spaces, vector fields, direct integrals, decomposable operators, etc., we refer to [31]. We also use
the following result ([31, p. 167, Proposition 4]).

Proposition 1.1. Let M be a Borel space, m a positive measure on M, and z — H, a field of Hilbert
spaces over M. Assume that fo(-) is a sequence of vector fields possessing the following properties:
(i) the functions z — (fi(z), f;(z)) are measurable;
(i) fa(z) is a total sequence in Hy for any z € M.
Then there ezists ezactly one measurable field structure on the family {H,} such that the fields fn(-) are
measurable.

2. G-fields of Hilbert spaces and representations of subgroups

For the materials of this section we refer to Ch. 9 of [33]. A field of Hilbert spaces over M is a G-field if
there exists a family of unitary operators A% : H; — H,, such that for all z € M and for all g,h € G one
has Agh = A Al

Two G-fields {H,, A%}, {H., A.%} are isomorphic if there exists a family of unitary operators B, : H, —
H. such that B,z AL = A/ ?B,.

Example 2.1. Let K be a closed subgroup of G, and let L be a representation of K in the Hilbert
space H. Then K acts on the space G x H by the rule (g,v) — (gk,L;'v). Let E := (G x H)/K be the
quotient space under this action, and let M = G/K. Then we have the surjection 7 : E — M defined by
[(g,v)] = gK. Put H; := n~!(z), then H, inherits a Hilbert space structure in the following way. Using
the existence of a Borel section s : G/K — G, we fix an element g, € G such that z = g,K. Then any
element of H, can be written in a unique way as [(go, v)],v € H. Thus, we obtain a natural identification of
H, with H. This identification gives a bijection between vector fields in [] H, and functions f : M — H.
Now let h, be a total sequence in H. Assume that f,(z) := h, for any z € M. It is easy to see that
the sequence of vector fields corresponding to f,(-) satisfies conditions (i) and (ii) of Proposition (1.1).
Therefore, {H.} inherits a measurable field structure. We define the unitary operators A : H, — H,,
by A%[(¢',v)] := [(g¢’,v)], where = = ¢’K. In this way we have obtained a measurable G-field of Hilbert
spaces. Note that by choosing a different section or a different total set one finds an isomorphic measurable

G-field.

Suppose now that we have a transitive measurable G-field of Hilbert spaces {H,, A%} over M. Let K,
be the isotropy group of z, € M. Then we have a representation of K, on H,.

We may construct the G-field of Hilbert spaces as we have done before. Let 7 : G x H;, /K., = G/ K,
and H;' := n7!(z). Let us identify M with G/K,, by the rule z — gK, , where gz, = z. Then the
relation gz, = z implies A : H;, = Hg:, = H; therefore, if v € H;_, then Af v € H;. Hence, the
mapping [(g,v)] € H;' = A v € H, gives an isomorphism B, : H'; — H, between the two G-fields.

In this way we have a bijection between representations of closed subgroups K of G and measurable
transitive G-fields of Hilbert spaces over M = G/K.

A smooth version of the content of this section can be found in the book of Wallach [34] .'
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3. Induced representations and imprimitivity systems

Let L be a representation of A and let m be a G-quasi-invariant Bore! measure on V. As was shown in
the preceding paragraph, using L we can construct a measurable G-field of Hilbert spaces {H;, A} over M.
We now define the direct integral # := H(Lm) .= fﬁ H;dm(z) as the Hilbert space of square-integrable
vector fields. Put H{ := H,,. It is easy to see that {H¢} is a measurable field: therefore, we may consider
the integral

®
HI = /NI Hﬁdm(z) (3%)

We denote by 4™ (z) the Radon-Nykodim derivative of the measure m(g-) with respect to the measure

dm

m(-). Now let us define the operators Ay, Ty : H = HI by

dm?9

dm

RO (w)>1/2f(gx) fen

(3*%)

8]
A, :/ Aldm(z).
M

The operator Ay is unitary, since all the operators AY are unitary.
Moreover, we obtain for Ty,

I, e = [ (T, 1)@y dn(e) = / n(

dm
; dmf _ 2 _ 2
= [ 1502, S @lim) = [ 1@ ) = 11

Thus, T, is an isometry. 1t is easy to see that T, has an inverse. This implies that T, is surjective and,
therefore, unitary.
Definition 3.1. The induced representation

Vg(L’m) cy(Lm) 7(L,m)

p 1/2
d <m>) 7o)l dmiz) =

1s defined by the relations
AR e

Let i € L*°(M,dm). The operator P(y) := P(L'm)(i,[)) : H — H is defined by
(PE™ ()f)(@) = h(2)f (a).
In the same way we can define P, (%) : H9 — H9. Since Ay is decomposable, it follows that
AgP(y) = Py(¢)Ag-
By direct calculations we obtain

Vg(L,m)p(L,m)(¢) - P(L,m)(¢9)vg(b,m),

where 9(z) := (g7 1z).

Definition 3.2. A transitive imprimitivity system based on M is a triple (V, P,H), where V is a repre-
sentation of G in a Hilbert space H, G acts transitively on M, and P is *-homomorphism from C(M) to
B(H) such that

VoP(¥) = P(47)V,.

Definition 3.3. A transitive imprimitivity system (V,P,H) is called induced if it is unitary equivalent
to a system of the form (V(L'm),P(L'm),H(L"")).
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4. The imprimitivity theorem
Theorem 4.1. Let (V, P,H) be a transitive imprimitivity system for G, based on a compact space M.
Then (V, P,H) 1s induced.
Proof. Since
VoP(y) = P(y?)Vy,

it follows that KerP is a G-invariant ideal of C(M) and, therefore, is the zero ideal because of transitivity.
This means that P : C(M) — P(C(M)) is an isomorphism and, therefore, the spectrum of P(C(M)) is
homeomorphic to the spectrum of C(M)), i.e., M.

Now let A be the weak closure of P(C(M)) in B(H). Since H is separable, A is o-finite (see [31], p. 3)
and, therefore, M = Sp(P(C(M)) carries a bounded basic measure m (see [31], p. 130). The decompositions
theorem ([31], p. 233, Th. 1; p. 236, Th. 2) imply that # has an integral decomposition

/j Hodm(z),

where the operators P(3) can be identified with the operators f(-) — %(-)f(:) for f € H. Furthermore, P
extends to L°°(M,dm), and P(L*(M,dm)) coincides with A. If S,T belong to B(#), then the mappings
B — 5B, B — BT are weakly continuous (see [31], p. 35). Assume that ¢ € L®(M,dm). Since P(y) is
the weak limit of P(4,) for some sequence ¢, € C(M), it follows that for any g € G we have

VoP () = VolimP(¢n) = limVy P(n) = imP(3)Vy = (imP($2))V, = P(39)V,.
This implies that the measure m(-) is G-quasi-invariant. In fact,
0=n(F) & 0=P(xg) & 0= VgP(XE)Vg—1 = P(x%) © < P(xge)=0 & m(gE)=0.

Now let #? and Ty be defined by (3*) and (3**), respectively. Recall that Py(1) : H¢ — ¢ is defined by
((Pe)f)(z) = ¥(z)f(z) for f(-) € HY. Then we obtain for h € G,

dm?™"

1/2
(T PO = Tms (6 O)) = (Tt 96797 2076 7'2) =
= W9 )Ty £)(2) = )T () = (B (2T, 1) ) (o),

ie.,

Tp-a Pl | = BT .
Define the operator A,-1 : H — H by
Ag-—l = Tg_lVg—l g €G.

Then A,-:1 is unitary and

1

Ag1P($) = TysVyms P() = Ty=s P9 )Wyt = Py($997 ) Tym1Vymr = Py (1) Ag-1.

Therefore (see [31], p. 187, Th. 1), A,-1 is decomposable as

® -1
Ayt :/ A2 dm(z),
M
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where AY : H, — HY are unitary operators.
Fix elements g,h € G, 2 € M. Let f be an arbitrary element of H. Define z := ghz so that hz = g~*z.
Then we have

AL f(a) = ASh, Ly f(h71g71a) = AT (Tom-1 F)(2) = (Ve f)(2)
= (Vo (Ve F)O)(2) = (Va(Abos (5 (Tamr FYENN(2) = (Vi (Abr (o SR ))(2)
= Al (Ahergmiy f(RTg712)) = Af (A2 £(2)).

Since f is arbitrary, we conclude that Vg,h € G and Vz € M the following relation holds:
At = A9 AL

Therefore, {H,; A%} is a G-field, and V| has the standard form
Vg i= A7 Tgmr.

This completes the proof.

I express my deep gratitude to Professor Luigi Accardi for his assistance and encouragement.
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