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Abstract. A class of semilinear elliptic equations with dependence on the gradient is

considered. The existence of a positive and a negative solution is stated through an iterative
method based on mountain pass techniques.
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Introduction. In this paper we consider the solvability of the Dirichlet problem for
semilinear elliptic equations with the nonlinearity depending also on the gradient
of the solution, namely

(1)
{ −∆u = f(x, u,∇u) in Ω

u = 0 on ∂Ω

where Ω is a bounded smooth domain in RN , N ≥ 3. This type of equations
has not been extensively studied as the case when there is not the presence of the
gradient. The obvious reason is that, contrary to the latter case, equation (1) is not
variational. So the well developed critical point theory is of no avail for, at least, a
direct attack to problem (1) above. For that matter, there have been several works
using topological degree. Thus, in this case, appropriate hypotheses are required
on the nonlinearity in order to get a priori bounds on the eventual solutions, as well
as to obtain sub–and supersolutions. See, for instance, [1], [3], [4], [5], [6], [7], [8],
[9], [10]. Our approach here is new and completely distinct of the previous works.
Indeed, the technique used in this paper consists of associating with problem (1)
a family of semilinear elliptic problems with no dependence on the gradient of the
solution. Namely, for each w ∈ H1

0 (Ω), we consider the problem

(2)
{ −∆u = f(x, u, Dw) in Ω

u = 0 on ∂Ω

(∗) IMECC–UNICAMP–Caixa Postal 6065 – Campinas, S.P. Brazil
(∗∗)) Univ. Roma Tre, Dip. Mat., Largo S. Leonardo Murialdo 1, 00146 Roma, Italy
(∗∗∗) Univ. Roma Tor Vergata, Dip. Mat., Viale della Ricerca Scientifica, 00133

Roma, Italy.
Supported by MURST Project “Metodi Variazionali ed Equazioni Differenziali Non
Lineari.

1



2

Now problem (2) is variational and we can treat it by Variational Methods. In this
paper we want to stress the role of mountain–pass techniques to deal with problem
(1). So we assign hypotheses on f in such a way that problem (2) can be treated
by the mountain–pass theorem by Ambrosetti and Rabinowitz (see [2]).

Our first set of assumptions on the nonlinearity f is the following
(f0) f : Ω× R× RN is locally Lipschitz continuous
(f1) limt→0

f(x,t,ξ)
t = 0 uniformly for x ∈ Ω, ξ ∈ RN

(f2) There exist constants a1 > 0 and p ∈
(
1, N+2

N−2

)
such that

|f(x, t, ξ)| ≤ a1(1 + |t|p) ∀x ∈ Ω, t ∈ R, ξ ∈ RN

(f3) There exist constant ϑ > 2 and t0 > 0 such that

0 < θF (x, t, ξ) ≤ tf(x, t, ξ) ∀x ∈ Ω, |t| ≥ t0, ξ ∈ RN

where

F (x, t, ξ) =
∫ t

0

f(x, s, ξ)ds

(f4) There exist constants a2, a3 > 0 such that

F (x, t, ξ) ≥ a2|t|ϑ − a3 ∀x ∈ Ω, t ∈ R, ξ ∈ RN

Remark 1. From (f2) and (f3) it follows that ϑ ≤ p + 1.

Remark 2. An example of a function satisfying the above hypotheses is given by

f(x, t, ξ) = b1|t|p−1tg(ξ)

where b1 > 0 and g is an L∞–function such that 0 < b2 ≤ g(ζ) for some cosntant
b2.

Our first result concerns the solvability of (2) in H1
0 (Ω), and obtaining bounds

on their solutions. The norm in H1
0 (Ω) is the usual one ‖u‖ =

(∫
Ω
|∇u|2

)1/2.

Theorem 1. Suppose that (f0), . . . , (f4) holds. Then there exist positive constnts
c1 and c2 such that, for each w ∈ H1

0 (Ω), problem (2) has one solution uw such
that

c1 ≤ ‖uw‖ ≤ c2

Moreover, under the above hypotheses, (2) has a positive and a negative solution.

Remark 3. If we are looking only for positive solutions, we need assumptions (f3)
and (f4) only for positive t.

Our main result concerns the solvability of equation (1). For that matter we
need a further assumption:

(f5) The function f satisfies the following local Lipschitz conditions:

|f(x, t′, ξ)− f(x, t′′, ξ)| ≤ L1|t′ − t′′| ∀x ∈ Ω, t′, t′′ ∈ [0, ρ1], |ξ| ≤ ρ2
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where ρ1 and ρ2 depend explicitely on p,N, ϑ, a1, a2, a3 given in the previous
hypotheses.

|f(x, t, ξ′)− f(x, t, ξ′′)| ≤ L2|ξ′ − ξ′′| ∀x ∈ Ω, t ∈ [0, ρ1] |ξ′|, |ξ′′| ≤ ρ2

Theorem 2. Assume conditions (f0), . . . , (f5) holds. Then problem (1) has a
positive and a negative solution provided

λ1L1 + λ
1/2
1 L2 < 1 ,

where λ1 is the first eigenvalue of −∆. Moreover the solutions obtained are of class
C2.

The proof of Theorem 1 is given in § 1 using mountain–pass techniques and the
proof of Theorem 2 is given in § 2 using iteration methods.

We point out that some analogous techniques can be applied in order to deal
with the case that the laplacian is replaced by the p–laplacian (with p > 2), with
appropriate conditions on the nonlinear term f .

Finally, we remark that a solution of (1) may be obtained without the assumption
of condition (f5), provided the solution uw of (2), obtained in Lemma 3, is unique
for each w ∈ H1

0 (Ω). In this case the mapping, which associates the unique uw

with each w ∈ H1
0 (Ω) is compact, and we can apply Schauder Fixed Point theorem.

However, such a uniqueness question is a very hard problem, and there are not
many results available in the literature. And in fact, we know of no result for
general non–autonomous equation. We can deal here with a very special case.
Namely the nonlinearity presented in Remark 2 above, provided the function g is
near a constant, p is near 1 and the domain Ω is convex in RN . For that matter
one uses arguments from [4]; this well be discussed elsewhere.

§ 1. Proof of Theorem 1. As usual, a weak solution of a probem as in (2),
which is variational, is obtained as a critical point of an associated functional Iw :
H1

0 (Ω) → R, defined by

(11) Iw(v) =
1
2

∫
Ω

|∇v|2 −
∫

Ω

F (x, v,∇w)

The proof of Theorem 1 is broken in several lemmas. We prove that the functional
Iw has the geometry of the mountain–pass theorem, that it satisfies the Palais–
Smale condition and finally that the obtained solutions have the uniform bounds
stated in the theorem.

Lemma 1. Let w ∈ H1
0 (Ω). Then there exist positive numbers ρ and α, which are

independent of w, such that

(12) Iw(v) ≥ α ∀ v ∈ H1
0 (Ω) : ‖v‖ = ρ
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Proof . It follows from (f1) and (f2) that, given ε > 0, there exists a positive
constant kε, independent of w, such that

|F (x, t, ξ)| ≤ 1
2

εt2 + kε|t|p+1

So, using Poincaré inequality and Sobolev embedding theorem, we estimate

Iw(v) ≥ 1
2

(
1− ε

λ1

)
‖u‖2 − k̃ε‖u‖p+1

where k̃ε is a constant independent of w. Since p > 1, the result follows. �

Lemma 2. Let w ∈ H1
0 (Ω). Fix v0 ∈ H1

0 (Ω), with ‖v0‖ = 1. Then there is a T > 0,
independent of w, such that

(13) Iw(tv0) ≤ 0 for all t ≥ T

Proof . It follows from (f4) that

Iw(tv0) =
1
2

t2 −
∫

Ω

F (x, tv0,∇w) ≤ 1
2

t2 − a2|t|ϑ
∫

Ω

|v0|ϑ − a3|Ω|

Again by Sobolev embedding (ϑ ≤ p + 1) see Remark 1 we obtain

Iw(tv0) ≤
1
2

t2 − a2|t|ϑ(Sϑ)ϑ − a3|Ω|

where Sϑ is the constant of the embedding of H1
0 (Ω) into Lϑ(Ω). Since ϑ > 2, we

obtain independent of v0 and also of w, such that (13) holds.

Lemma 3. Assume (f0), . . . , (f4). Then problem (2) has at least one solution
uw 6≡ 0 for any w ∈ H1

0 (Ω).

Proof . Lemmas 1 and 2 show that the functional has the mountain–pass geom-
etry. Hypotheses (f2) and (f3) imply, in a standard way, that Iw satisfies the
PS–condition. So, by the mountain pass theorem, a weak solution of (2), uw, is
obtained as a critical point of Iw at an inf max level. Namely

I ′w(uw) = 0 , Iw(uw) = inf
γ∈Γ

max
t∈[0,1]

Iw(γ(t))

where Γ = {γ ∈ C0([0, 1];H1
0 (Ω)) : γ(0) = 0, γ(1) = Tv0}, for some v0 and T as in

Lemma 2. From now on we fix such a v0 and such a T . �

Lemma 4. Let w ∈ H1
0 (Ω). There exists a positive constant c1, independent of w,

such that

(14) ‖uw‖ ≥ c1

for all solutions uw obtained in Lemma 3.
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Proof . Using the equation that uw satisfies, namely (2), we obtain

(15)
∫

Ω

|∇uw|2 =
∫

Ω

f(x, uw,∇w)uw

It follows from (f1) and (f2) that, given ε > 0, there exists a positive constant
cε, independent of w, such that

|f(x, t, ξ)| ≤ ε|t|+ cε|t|p

Using this inequality, we estimate (15) and obtain∫
Ω

|∇uw|2 ≤ ε

∫
Ω

|uw|2 + cε

∫
Ω

|uw|p+1

Again by Poincaré inequality and Sobolev embedding, we obtain(
1− ε

λ1

)
‖uw‖2 ≤ c̃ε‖uw‖p+1

which implies (14). �

Lemma 5. Let w ∈ H1
0 (Ω). There exists a positive constant c2, independent of w1

such that

(16) ‖uw‖ ≤ c2

for all solutions uw obtained in Lemma 3.

Proof . From the inf max characterization of uw in Lemma 3, we obtain

(17) Iw(uw) ≤ max
t≥0

Iw(tv0)

with v0 choosen in Lemma 3. We estimate Iw(tv0) using (f4):

(18) Iw(tv0) ≤
t2

2
− a2|t|ϑ

∫
Ω

|v|ϑ + a3|Ω| =: h(t) ,

whose maximum is achieved at some t0 > 0 and the value h(t0) can be taken as c2.
Clearly it is independent of w. �

Now we prove the existence of a positive solution (of course the proof of the
existence of a negative one is analogous).

Proof . Proceed as in the previous lemmas replacing the nonlinearity f by f̃ defined
as

f̃(x, t, ξ) =
{

f(x, t, ξ) if t ≥ 0
0 if t < 0

Of course f̃ satisfies (f3) and (f4) only for t ≥ 0. For that matter, in the proof
of Lemma 2, we choose v0 > 0 in Ω. That is the only modification, since (PS)
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also holds for such f̃ . Applying the mountain press theorem as above, we obtain a
solution uw of (2), namely{

−∆uw = f̃(x, uw,∇w) in Ω
uw = 0 on ∂Ω

Multiplying the equation by u−w and integrating by parks, we conclude that u−w ≡ 0.
So uw is positive. �

Remark 4. (On the regularity of the solution of (2)). In Lemma 3 we have obtained
a weak solution uw of (2) for each given w ∈ H1

0 (Ω). since p < N+2
N−2 , a standard

bootstrap argument, using the Lp–regularity theory, shows that uw is, in fact, in
C0,α(Ω). Further regularity cannot be obtained if w is an arbitrary function in
H1

0 (Ω). However, if w is C1, using the Schauder regularity theory, we show that
uw is in C2,α. Recall that f is assumed to be locally Lipschitz continuous in all
variables. As a consequence of the Sobolev embedding theorems and Lemma 5 we
conclude with the following

Lemma 7. Let w ∈ H1
0 (Ω)∩C1(Ω). Then there exist positive constants p1 and p2,

independent of w, such that the solution uw obtained in Lemma 3 satisfies

‖uw‖C0 ≤ ρ1 ‖∇uw‖C0 ≤ ρ2

§ 2. Proof of Theorem 2. The idea of the proof consists of using Theorem 1 in
an interactive way, as follows. We construct a sequence {un} ⊂ H1

0 (Ω) as solutions
of

(21)n

{ −∆un = f(x, un,∇un−1) in Ω
un = 0 on ∂Ω

obtained by the mountain pass theorem in Theorem 1, starting with an arbitrary
u0 ∈ H1

0 (Ω) ∩ C1(Ω).
By Remark 4, we see that

‖un‖C0 ≤ ρ1 and ‖∇un‖C0 ≤ ρ2

On the other hand, using (21)n and (21)n+1, we obtain∫
Ω

∇un+1(∇un+1 −∇un) =
∫

Ω

f(x, un+1,∇un)(un+1 − un)

∫
Ω

∇un(∇un+1 −∇un) =
∫

Ω

f(x, un,∇un−1)(un+1 − un)

which gives

‖un+1 − un‖2 =
∫

Ω

[f(x, un+1,∇un)− f(x, un,∇un)](un+1 − un)+

+
∫

Ω

[f(x, un,∇un)− f(x, un,∇un−1)](un+1 − un)
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We can then estimate the integrals above using hypothesis (f5):

(22) ‖un+1 − un‖2 ≤ L1

∫
Ω

|un+1 − un|2 + L2

∫
Ω

|∇un −∇un−1| |un+1 − un|

Next, using Cauchy–Schartz and Poincaré inequalities, we estimate further (22):

‖un+1 − un‖2 ≤ L1λ
−1
1 ‖un+1 − un‖2 + L2λ

−1/2
1 ‖un+1 − un‖ ‖un − un−1‖

from which it follows

‖un+1 − un‖ ≤
L2λ

−1/2
1

1− L1λ
−1
1

‖un − un−1‖ =: k‖un − un−1‖

Since the coefficient k is less than 1, then it follows that the sequence {un} strongly
converges in H1

0 to some function u ∈ H1
0 , as it easily follows proving that {un} is

a Cauchy sequence in H1
0 .

Since ‖un‖ ≥ c1 for all n (see Lemma 4), it follows that u 6≡ 0. In this way we
obtain a nontrivial solution of (1). As for the positivity of u, we can argue as in
lemma 6 of § 1, by replacing f by f̃ . �
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