A Linking Type Method to solve a Class of Semilinear Elliptic Variational Inequalities

Michele Matzeu* and Raffaella Servadei[†]

Dipartimento di Matematica,

Università degli Studi di Roma 'Tor Vergata' via della Ricerca Scientifica 00133 Roma, ITALIA

Abstract

The aim of this paper is to study the existence of a nontrivial solution of the following semilinear elliptic variational inequality

$$\left\{ \begin{array}{l} u \in H^1_0(\Omega), \quad u \leq \psi \quad \text{on} \quad \Omega \\ \displaystyle \int_{\Omega} \nabla u(x) \nabla (v(x) - u(x)) dx - \lambda \int_{\Omega} u(x) (v(x) - u(x)) dx \geq \\ \\ \geq \int_{\Omega} p(x, u(x)) (v(x) - u(x)) dx \\ \forall v \in H^1_0(\Omega), \quad v \leq \psi \quad \text{on} \quad \Omega \end{array} \right.$$

where Ω is an open bounded subset of \mathbb{R}^N $(N\geq 1)$, λ is a real parameter, with $\lambda\geq\lambda_1$, the first eigenvalue of the operator $-\Delta$ in $H^1_0(\Omega)$, ψ belongs to $H^1(\Omega)$, $\psi_{|\partial\Omega}\geq 0$ and p is a Carathéodory function on $\Omega\times\mathbb{R}$, which satisfies some general superlinearity growth conditions at zero and at infinity. The method of finding the solutions is based on the consideration of a family of penalized equations associated with the variational inequality. A solution of any penalized equation is found through a Linking theorem, using some suitable conditions connecting ψ with the eigenfunctions related to the eigenvalues of $-\Delta$. Some $H^1_0(\Omega)$ -estimates from above and from below for these solutions allow, by a suitable passage to the limit as the penalization parameter ϵ goes to zero, to exhibite a nontrivial solution for the variational inequality. We note that the estimate from above is got by assuming some further regularity properties on ψ , which is moreover required to be a subsolution of a suitable Dirichlet problem.

AMS Subject Classification: 49J40, 35J60, 58E05.

Key Words: semilinear variational inequalities, penalization method, nonlinearity of superlinear growth, linking type critical points.

^{*}e-mail:matzeu@mat.uniroma2.it

 $^{^{\}dagger}\mathrm{e\text{-}mail}$:servadei@mat.uniroma2.it

Supported by MURST, project 'Variational Methods and Nonlinear Differential Equations'.

1 Introduction

Let us consider the following variational inequality

$$\begin{cases}
 u \in K_{\psi} = \{ v \in H_0^1(\Omega) : v(x) \leq \psi(x) \text{ on } \Omega \} \text{ such that } \forall v \in K_{\psi}, \\
 \int_{\Omega} \nabla u(x) \nabla (v(x) - u(x)) dx - \lambda \int_{\Omega} u(x) (v(x) - u(x)) dx \geq \\
 \geq \int_{\Omega} p(x, u(x)) (v(x) - u(x)) dx
\end{cases}$$
(1)

where Ω is an open bounded subset of \mathbb{R}^N $(N \geq 1)$ with a sufficiently smooth boundary, $\psi \in H^1(\Omega), \psi_{|\partial\Omega} \geq 0$, λ is a real parameter and $p(\cdot, \cdot)$ is a real function on $\Omega \times \mathbb{R}$ such that $p(\cdot, v(\cdot))$ belongs to $L^2(\Omega), \forall v \in H^1_0(\Omega)$.

In the case $\lambda < \lambda_1$, the first eigenvalue of the operator $-\Delta$ on $H_0^1(\Omega)$, an extensive literature was developed concerning various existence and multiplicity results, even with K_{ψ} replaced by

$$K^{\psi} = \{ v \in H_0^1(\Omega) : v(x) \ge \psi(x) \text{ on } \Omega \}, (\psi_{|\partial\Omega} \le 0)$$

(see the papers [4, 5, 6, 7, 9, 10] and the introduction of [3] for a short discussion of the relative results).

Still in case $\lambda < \lambda_1$, an existence result was proved in [3] (actually presented with the choice $\lambda = 0$, but trivially extendible to the general case $\lambda < \lambda_1$), in case that p has a suitable superlinear growth at zero and at infinity with respect to the second variable (i.e. p(x,t) is of the type $t \mid t \mid^{\beta-2}$, with $\beta > 2$). In [3] a penalization method and some estimates for the Mountain Pass type solutions found for the penalized equations yield a nonnegative not identically zero solution of (1).

The case $\lambda \geq \lambda_1$ was firstly studied in [2] with the choice $\lambda = \lambda_1$. In [10] Szulkin proved various significant existence, nonexistence and multiplicity results even in case where $\lambda > \lambda_1$ with the constraint set K_{ψ} replaced by K^{ψ} with $\psi = 0$. The methods used in [10] are based on a general minimax theory for a large class of variational inequalities.

Always for general $\lambda \geq \lambda_1$, Passaseo studied in [7] various cases with p(x,t) independent of t (that is linear case), by using some interesting methods of subsolutions and supersolutions for the equation related to (1). Other important results were obtained in [9].

The aim of the present paper is to extend the idea of [3] based on the penalization method to the general case $\lambda \geq \lambda_1$. In this situation one gives some conditions connecting the obstacle ψ with the eigenfunctions related to the eigenvalues of $-\Delta$ which are less or equal to λ . Under these assumptions one proves the existence of a family $(u_{\epsilon})_{\epsilon>0}$ of Linking type solutions for the penalized equations associated with (1) (here ϵ denotes the penalization parameter). Still as in [3] some estimates for $\|u_{\epsilon}\|_{H^1_0(\Omega)}$ allow to obtain a solution $u \not\equiv 0$ of (1), by passing to the limit as $\epsilon \to 0$. We point out that the proof of the estimate from above is rather delicate and requires, in particular, that the obstacle ψ belongs to $H^2(\Omega) \cap L^q(\Omega)$, for a suitable q (see condition (H1)) and that ψ is a subsolution of a Dirichlet problem depending on λ (see condition (H3)). Finally we observe that, in this case, one cannot expect, as in case $\lambda < \lambda_1$, the nonnegativity of u, which could change sign as any u_{ϵ} , because a

Linking theorem, as well known, does not guarantee at all the nonnegativity of related critical point (see e.g. [8], remark 5.19).

2 The existence result of a nontrivial solution

Let us consider the following variational inequality

$$\begin{cases}
 u \in H_0^1(\Omega), & u \leq \psi \text{ on } \Omega \\
 \int_{\Omega} \nabla u(x) \nabla (v(x) - u(x)) dx - \lambda \int_{\Omega} u(x) (v(x) - u(x)) dx \geq \\
 & \geq \int_{\Omega} p(x, u(x)) (v(x) - u(x)) dx
\end{cases}$$

$$\forall v \in H_0^1(\Omega), \quad v \leq \psi \text{ on } \Omega$$
(2)

where Ω is an open bounded subset of \mathbb{R}^N $(N \geq 3)$ with a sufficiently smooth boundary, $H_0^1(\Omega)$ is the usual Sobolev space on Ω obtained as the closure of $C_0^{\infty}(\Omega)$ with respect to the norm

$$||v|| = \left(\int_{\Omega} |\nabla v(x)|^2 dx\right)^{\frac{1}{2}},$$

 ψ belongs to $H^1(\Omega)$, with $\psi_{|\partial\Omega} \geq 0$, λ is a real parameter and $p: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies the following conditions:

- (P1) $p(x,\xi)$ is measurable in $x \in \Omega$ and continuous in $\xi \in \mathbb{R}$;
- (P2) $|p(x,\xi)| \le a_1 + a_2 |\xi|^s$ for some $a_1, a_2 > 0$ a.e. $x \in \Omega, \forall \xi \in \mathbb{R}$, with $1 < s < \frac{N+2}{N-2}$;
- (P3) $p(x,\xi) = o(|\xi|)$ as $\xi \to 0$ a.e. $x \in \Omega$.

Moreover, putting

$$P(x,\xi) := \int_0^{\xi} p(x,t)dt$$
, a.e. $x \in \Omega$, $\forall \xi \in \mathbb{R}$,

we assume that

(P4) for all
$$\xi \in \mathbb{R} \setminus \{0\}$$
, one has
$$0 < (s+1)P(x,\xi) \le \xi p(x,\xi) \text{ a.e. } x \in \Omega.$$

Note that (P4) easily yields

(P5)
$$P(x,\xi) \ge a_3 \mid \xi \mid^{s+1} - a_4$$
 for some $a_3, a_4 > 0$, a.e. $x \in \Omega$, $\forall \xi \in \mathbb{R}$.

Finally, let $0 < \lambda_1 < \lambda_2 \leq ... \lambda_j \leq ...$ the divergent sequence of the eigenvalues of the operator $-\Delta$ on $H^1_0(\Omega)$, where each λ_i has finite multiplicity coinciding with the number of its different indexes. Thus, for $\lambda_k < \lambda_{k+1}$, the space

 V_k related to $\{\lambda_1, ..., \lambda_k\}$ has finite dimension given exactly by k. Let us denote by $\{e_1, ..., e_k\}$ an $L^2(\Omega)$ -orthonormal base of V_k , where e_i is an eigenfunction related to λ_i .

In case that $\psi(x) \geq 0$ on $\overline{\Omega}$, it is obvious that $u_0 \equiv 0$ is a trivial solution of problem (2).

One can state the following

Theorem 1 Let $k \in \mathbb{N}$ such that $\lambda \in [\lambda_k, \lambda_{k+1}[$ in (2). Let (P1), (P2), (P3), (P4) and the following hypotheses hold

$$(H1) \quad \psi \in H^1_0(\Omega) \cap H^2(\Omega) \cap L^q(\Omega), \quad \textit{where} \quad q = \left(\frac{2^*}{s}\right)';$$

(H2)
$$\psi(x) \ge (k+1)\bar{x} \max_{i=1,\dots,k+1} |e_i(x)|$$
 a.e. $x \in \Omega$, where \bar{x} is the positive zero of $f(x) = x^2 - a_3 c_k x^{s+1} + a_4 |\Omega|$ and c_k is a suitable positive constant depending on k ;

(H3)
$$\Delta \psi + \lambda \psi > 0$$
 on Ω ;

$$(H4)$$
 $s < 2$ in $(P2)$ and $(P4)$.

Then there exists a nontrivial solution u of problem (2).

Remark 1 Let us observe that the assumption ' $\psi \in H^2(\Omega)$ ' may imply ' $\psi \in L^q(\Omega)$ ', where $q = \left(\frac{2^*}{s}\right)$ for some choices of N and s. In particular one can easily check that , if N=3, then $\psi \in H^2(\Omega) \Rightarrow \psi \in L^\infty(\Omega)$ and, if N=4, then $\psi \in H^2(\Omega) \Rightarrow \psi \in L^r(\Omega)$ for all $r \in [1,\infty[$. In case that $N \geq 5$, the calculus of the number $(2^*)^*$ yields that $\psi \in H^2(\Omega) \Rightarrow \psi \in L^q(\Omega)$ if $N \leq \frac{2s+4}{s-1}\left(2^*$ is the critical exponent i.e. $2^* = \frac{2N}{N-2}\right)$.

Remark 2 Note that \bar{x} exists and is unique. Further any $y > \bar{x}$ verifies the relation f(y) < 0.

Remark 3 Actually the cases N=1,2 can be considered too, even under simpler assumptions than those required in theorem 1. ¹ We have decided to present our result only for $N \geq 3$ as, for N=1,2, the proof is the same, even using easier arguments in some step of the proof.

The method of finding the solution u relies on the consideration of a family of 'penalized' equations associated, in a standard way, with (2) (see [1]). Indeed, one can prove that any penalized equation possesses a solution of 'Linking type', and that a sequence chosen in this family actually converges to a nontrivial solution u of (2), by suitably using some estimates from below and from above for the $H_0^1(\Omega)$ -norm of the solutions of the penalized equations. As mentioned before, we apply the following Linking theorem (see [8]):

¹In particular one only requires $s \in (1,2)$ and $\psi \in H_0^1(\Omega) \cap H^2(\Omega)$.

Saddle Point Theorem Let E be a real Banach space with $E = V \bigoplus X$, where V is finite dimensional. Suppose $I \in C^1(E,\mathbb{R})$ satisfies the following conditions:

(PS) for any $(u_n)_n \in E$ such that $(I(u_n))_n$ is bounded and $I'(u_n) \to 0$ in the dual space of E as $n \to \infty$, there exists a subsequence of $(u_n)_n$ strongly converging in E:

 $(I_1^{'})$ there are constants $\rho, \alpha > 0$ such that $I_{|\partial B_{\rho} \cap X} \geq \alpha$, where B_{ρ} is the ball of center 0 and radius ρ ;

(I₅) there are an element $e \in \partial B_1 \cap X$ and some $R > \rho$ such that, if $Q = (\overline{B}_R \cap V) \bigoplus \{re : 0 \le r \le R\}$, then $I_{|\partial Q} \le 0$.

Then I possesses a critical value $c \ge \alpha$ which can be characterized as

$$c \equiv \inf_{h \in \Gamma} \max_{u \in Q} I(h(u)),$$

where

$$\Gamma = \{ h \in C(\overline{Q}, E) : h = id \text{ on } \partial Q \}.$$

First of all, let us introduce the 'penalized' problem associated with (2), that is, for any $\epsilon > 0$, the weak equation

$$\begin{cases} u_{\epsilon} \in H_0^1(\Omega) & \text{such that} \\ \int_{\Omega} \nabla u_{\epsilon}(x) \nabla v(x) dx - \lambda \int_{\Omega} u_{\epsilon}(x) v(x) dx + \\ + \frac{1}{\epsilon} \int_{\Omega} (u_{\epsilon} - \psi)^+(x) v(x) dx = \int_{\Omega} p(x, u_{\epsilon}(x)) v(x) dx \\ \forall v \in H_0^1(\Omega), \end{cases}$$

$$(3)$$

where g^+ denotes the positive part of the function g. Let us note that the last integral is well defined for all $v \in H_0^1(\Omega)$ as a consequence of (P2) and of the continuous embedding of $H_0^1(\Omega)$ into $L^{2^*}(\Omega)$.

Actually in order to look for solutions of (3), we study the critical points of the functional

$$I_{\epsilon}(v) = \frac{1}{2} \int_{\Omega} |\nabla v(x)|^2 dx - \frac{\lambda}{2} \int_{\Omega} v^2(x) dx + \frac{1}{\epsilon} \int_{\Omega} \int_{0}^{v(x)} (t - \psi(x))^+ dt dx - \int_{\Omega} P(x, v(x)) dx,$$

 $\forall v \in H_0^1(\Omega).$

Indeed one can easily check that I_{ϵ} belongs to $C^1(H_0^1(\Omega))$ and that the pairing $\langle I_{\epsilon}'(u_{\epsilon}), v \rangle$ between $H_0^1(\Omega)$ and its dual space coincides with the difference between the first and the second member in (3).

At this point, to prove theorem 1, we verify that the functional I_{ϵ} satisfies all the hypotheses of the Saddle Point Theorem where $E \equiv H_0^1(\Omega), V \equiv V_k \equiv \text{span}$

$$\{e_1,...,e_k\}$$
 and $X \equiv \overline{span\{e_j : j \ge k+1\}}$ (i.e. $X \equiv V^{\perp}$).

Proof: (of theorem 1) Let us proceed by steps.

Step 1. The functional I_{ϵ} verifies, for any $\epsilon > 0$, the conditions

$$I_{\epsilon}(0) = 0 \tag{4}$$

$$I_{\epsilon \mid \partial B_{\alpha} \cap X} \ge \alpha \text{ for some } \rho, \alpha > 0.$$
 (5)

Proof. Property (4) is trivial. As for (5), let us note that the positivity of ψ on Ω yields

$$\int_{\Omega} \int_{0}^{u(x)} (t - \psi(x))^{+} dt dx = \int_{\{x \in \Omega : u(x) \ge \psi(x)\}} \int_{\psi(x)}^{u(x)} (t - \psi(x)) dt dx \ge 0, \quad (6)$$

for all $u \in H_0^1(\Omega)$.

On the other hand, as a consequence of (P2), (P3), one gets that

$$\forall \delta > 0 \ \exists \ c(\delta) > 0 \ \text{ such that } \ P(x,\xi) \le \frac{\delta}{2} \mid \xi \mid^2 + c(\delta) \mid \xi \mid^{s+1}$$
 (7)

a.e. $x \in \Omega, \ \forall \xi \in \mathbb{R}$.

Then, by using (6),(7), the variational characterization of the eigenvalue λ_{k+1} and by choosing $\rho > 0$ such that $c(\delta)$ c_s $\rho^{s-1} < \frac{1}{2} \left(1 - \frac{\lambda}{\lambda_{k+1}} - \delta\right)$ (c_s denoting the embedding Sobolev constant of $H_0^1(\Omega)$ into $L^{s+1}(\Omega)$), for all $u \in \partial B_\rho \cap X$, we have

$$I_{\epsilon}(u) \geq \frac{1}{2} \int_{\Omega} |\nabla u(x)|^{2} dx - \frac{\lambda}{2} \int_{\Omega} u^{2}(x) dx - \int_{\Omega} P(x, u(x)) dx \geq$$

$$\geq \frac{1}{2} \left(1 - \frac{\lambda}{\lambda_{k+1}} \right) \|u\|_{H_{0}^{1}(\Omega)}^{2} - \frac{\delta}{2} \|u\|_{H_{0}^{1}(\Omega)}^{2} - c(\delta) c_{s} \rho^{s-1} \|u\|_{H_{0}^{1}(\Omega)}^{2} =$$

$$= \left(\frac{1}{2} \left(1 - \frac{\lambda}{\lambda_{k+1}} - \delta \right) - c(\delta) c_{s} \rho^{s-1} \right) \|u\|_{H_{0}^{1}(\Omega)}^{2} =$$

$$= \left(\frac{1}{2} \left(1 - \frac{\lambda}{\lambda_{k+1}} - \delta \right) - c(\delta) c_{s} \rho^{s-1} \right) \rho^{2}.$$

So step 1 follows from the fact that $\lambda < \lambda_{k+1}$.

Remark 4 Note that the positive constant α does not depend on ϵ and this fact will be used in the proof of theorem 1.

Step 2. There exist an element $e \in \partial B_1 \cap X$ and some $R > \rho$ such that $I_{\epsilon \mid \partial Q} \leq 0$, where $Q = (\overline{B}_R \cap V) \bigoplus \{re : 0 \leq r \leq R\}$.

Proof. Let us choose $e = \frac{e_{k+1}}{\|e_{k+1}\|_{H_0^1(\Omega)}}$ and R > 0 such that $R_1 \le R \le R_2$, with

$$R_1 = \bar{x}$$
 as in $(H2)$

and

$$R_2 = \frac{1}{k+1} \quad \inf_{x \in \Omega} \quad \frac{\psi(x)}{\max\{|e_i(x)| : i = 1, ..., k+1\}} \ .$$

We observe that $R_1 \leq R_2$ (see hypothesis (H_2)).

Actually one notes that $\partial Q \subset A_1 \cup A_2$, where

$$A_1 = \{ v \in V : ||v|| \le R \}$$

and

$$A_2 = \{ v \in V \oplus span\{e\} : R \le ||v|| \le \sqrt{2}R \}.$$

So it is enough to prove that

$$I_{\epsilon}(v) \le 0 \quad \text{for all} \quad v \in A_1$$
 (8)

and

$$I_{\epsilon}(v) \le 0 \text{ for all } v \in A_2.$$
 (9)

First of all, by (H2) and the fact that $R \leq R_2$, it follows that $v \leq \psi$ on Ω for all $v \in A_1 \cup A_2$. So

$$\int_{\Omega} \int_{0}^{v(x)} (t - \psi(x))^{+} dt dx = 0, \tag{10}$$

for all $v \in A_1 \cup A_2$.

Let v be an element of A_1 . By hypothesis (P4) and from the fact that $\lambda \geq \lambda_i$ for all i = 1, ..., k, we obtain

$$\frac{1}{2} \int_{\Omega} |\nabla v(x)|^2 dx - \frac{\lambda}{2} \int_{\Omega} v^2(x) dx - \int_{\Omega} P(x, v(x)) dx \le 0.$$
 (11)

By (10) and (11), one deduces relation (8).

Now let v be an element of A_2 . From hypothesis (P5), the choice of $R \ (\geq R_1)$ and remark 2, one easily deduces the relation

$$\frac{1}{2} \int_{\Omega} |\nabla v(x)|^{2} dx - \frac{\lambda}{2} \int_{\Omega} v^{2}(x) dx - \int_{\Omega} P(x, v(x)) dx \le
\le R^{2} - \int_{\Omega} (a_{3} |v(x)|^{s+1} - a_{4}) dx \le
\le R^{2} - a_{3} c_{k} R^{s+1} + a_{4} |\Omega| \le 0,$$
(12)

for a suitable c_k that exists as $V \oplus span\{e\}$ is finite dimensional. By (10) and (12) one gets relation (9). Thus $I_{\epsilon \mid \partial Q} \leq 0$ and step 2 is proved.

Remark 5 Note that (10) is true not only for $v \in A_1 \cup A_2$, but also for $v \in Q$.

Step 3. For any $\epsilon > 0$, I_{ϵ} satisfies the Palais-Smale condition, i.e.

for any $(u_n)_n \in H^1_0(\Omega)$ such that $(I_{\epsilon}(u_n))_n$ is bounded and (PS) $I'_{\epsilon}(u_n) \to 0$ in the dual space of $H^1_0(\Omega)$ as $n \to \infty$, there exists a subsequence of $(u_n)_n$ strongly converging in $H^1_0(\Omega)$.

Proof. Let us fix $\beta \in \left(\frac{1}{s+1}, \frac{1}{2}\right)$. By the properties of $(u_n)_n$ one deduces

$$I_{\epsilon}(u_n) - \beta \langle I_{\epsilon}'(u_n), u_n \rangle \le K_1 + \| u_n \|_{H_0^1(\Omega)}$$
(13)

and, by definition of I_{ϵ} and $I_{\epsilon}^{'}$, one gets

$$I_{\epsilon}(u_{n}) - \beta \langle I_{\epsilon}'(u_{n}), u_{n} \rangle =$$

$$= \frac{1}{\epsilon} \int_{\{x \in \Omega: u_{n}(x) \geq \psi(x)\}} \left[\left(\frac{1}{2} - \beta \right) u_{n}^{2}(x) + \frac{1}{2} \psi^{2}(x) + (\beta - 1) \psi(x) u_{n}(x) \right] dx +$$

$$+ \left(\frac{1}{2} - \beta \right) \| u_{n} \|_{H_{0}^{1}(\Omega)}^{2} - \lambda \left(\frac{1}{2} - \beta \right) \| u_{n} \|_{L^{2}(\Omega)}^{2} - \int_{\Omega} P(x, u_{n}(x)) dx +$$

$$+ \beta \int_{\Omega} p(x, u_{n}(x)) u_{n}(x) dx,$$
(14)

for all $n \in \mathbb{N}$, where K_1 is a positive constant independent of n. Actually, as for the integral multiplied by $\frac{1}{\epsilon}$, some obvious calculations and Hölder inequality yield

$$\frac{1}{\epsilon} \int_{\{x \in \Omega: u_n(x) \ge \psi(x)\}} \left[\left(\frac{1}{2} - \beta \right) u_n^2(x) + \frac{1}{2} \psi^2(x) + (\beta - 1) \psi(x) u_n(x) \right] dx \ge \\
\ge -K_2 \parallel u_n \parallel_{H_0^1(\Omega)},$$
(11)

for all $n \in \mathbb{N}$, where K_2 is a positive constant depending on ϵ , $\|\psi\|_{L^2(\Omega)}$, but not on n.

As for the other terms in (14), by using (P4), the fact that β is greater than $\frac{1}{s+1}$ and the continuous embedding of $L^{s+1}(\Omega)$ into $L^2(\Omega)$ one easily gets

$$\left(\frac{1}{2} - \beta\right) \| u_n \|_{H_0^1(\Omega)}^2 - \lambda \left(\frac{1}{2} - \beta\right) \| u_n \|_{L^2(\Omega)}^2 - \int_{\Omega} P(x, u_n(x)) dx +
+ \beta \int_{\Omega} p(x, u_n(x)) u_n(x) dx \ge
\ge \left(\frac{1}{2} - \beta\right) \| u_n \|_{H_0^1(\Omega)}^2 - \lambda \left(\frac{1}{2} - \beta\right) \| u_n \|_{L^2(\Omega)}^2 +
+ (s+1) \left(\beta - \frac{1}{s+1}\right) a_3 \| u_n \|_{L^{s+1}(\Omega)}^{s+1} - K_3 \ge$$
(16)

$$\geq \left(\frac{1}{2} - \beta\right) \parallel u_n \parallel_{H_0^1(\Omega)}^2 - \lambda \left(\frac{1}{2} - \beta\right) \parallel u_n \parallel_{L^2(\Omega)}^2 +$$

$$+(s+1)\left(\beta-\frac{1}{s+1}\right)\tilde{a}_3 \parallel u_n \parallel_{L^2(\Omega)}^{s+1} - K_3,$$

for all $n \in \mathbb{N}$, where \tilde{a}_3 and K_3 are positive constants independent of n. Finally, combining (13), (14), (15), (16), one gets

$$||u_n||_{H_0^1(\Omega)}^2 \le K_4 ||u_n||_{H_0^1(\Omega)} + K_5,$$

for all $n \in \mathbb{N}$, for suitable positive constants K_4, K_5 independent of n. Thus $(u_n)_n$ is bounded in $H_0^1(\Omega)$. At this point, step 3 easily follows from a standard argument based on the compact embedding of $H_0^1(\Omega)$ into $L^2(\Omega)$.

Step 4. For any $\epsilon > 0$, there exists a solution u_{ϵ} of problem (3) such that

$$I_{\epsilon}(u_{\epsilon}) = \inf_{h \in \Gamma} \max_{u \in Q} I_{\epsilon}(h(u)),$$

where $\Gamma = \{ h \in C(\overline{Q}; H_0^1(\Omega)) : h = id \text{ on } \partial Q \}.$ Moreover

$$I_{\epsilon}(u_{\epsilon}) \geq \alpha.$$

Proof. It is a consequence of steps 1,2,3 and of the Saddle Point Theorem.

Step 5. There exists a constant $c_1 > 0$ such that $I_{\epsilon}(u_{\epsilon}) \leq c_1$ for any $\epsilon > 0$.

Proof. By remark 5 it follows that

$$\int_{\Omega} \int_{0}^{u(x)} (t - \psi(x))^{+} dt dx = 0,$$

for all $u \in Q$.

Moreover, by step 4 with $h = id_{\overline{Q}}$ and (P5), one deduces

$$I_{\epsilon}(u_{\epsilon}) \le \max_{u \in Q} I_{\epsilon}(u) \le \max_{u \in Q} \left\{ \frac{1}{2} \parallel u \parallel_{H_0^1(\Omega)}^2 + a_4 \mid \Omega \mid \right\}$$

and step 5 is proved as the right member of the previous relation is independent of ϵ .

Step 6. There exists a constant $c_2 > 0$ such that $||u_{\epsilon}||_{H_0^1(\Omega)} \ge c_2$ for any $\epsilon > 0$.

Proof. By definition of a solution of problem (3), it follows, in particular,

$$\int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx - \lambda \int_{\Omega} u_{\epsilon}^{2}(x) dx + \frac{1}{\epsilon} \int_{\Omega} (u_{\epsilon} - \psi)^{+}(x) u_{\epsilon}(x) dx =$$

$$= \int_{\Omega} p(x, u_{\epsilon}(x)) u_{\epsilon}(x) dx. \tag{17}$$

We can have two possible cases.

First one:

Thus, for any $\epsilon > 0$ which satisfies (18), by (17), we obtain

$$\int_{\Omega} |\nabla u_{\epsilon}(x)|^2 dx \le \int_{\Omega} p(x, u_{\epsilon}(x)) u_{\epsilon}(x) dx.$$
 (19)

On the other hand, as a consequence of (P2) and (P3), one gets that

$$\forall \delta > 0 \ \exists c(\delta) > 0 \ \text{such that} \ |\xi p(x,\xi)| \leq \delta |\xi|^2 + c(\delta) |\xi|^{s+1} \ \text{a. e. } x \in \Omega, \ \forall \xi \in \mathbb{R}$$

which yields, using (19), the arbitrarity of δ and the continuous embedding of $L^{s+1}(\Omega)$ into $L^2(\Omega)$, the relation

$$\int_{\Omega} |\nabla u_{\epsilon}(x)|^2 dx \leq \tilde{c} \int_{\Omega} |u_{\epsilon}(x)|^{s+1} dx,$$

where \tilde{c} is a positive constant. Thus step 6 easily follows from the continuous embedding of $H_0^1(\Omega)$ into $L^{s+1}(\Omega)$ and the assumption s+1>2, for all $\epsilon>0$ which satisfies (18).

Second one:

$$\begin{cases}
 \text{let } \epsilon > 0 \text{ such that} \\
 \frac{1}{\epsilon} \int_{\Omega} (u_{\epsilon} - \psi)^{+}(x) u_{\epsilon}(x) dx - \lambda \int_{\Omega} u_{\epsilon}^{2}(x) dx < 0.
\end{cases}$$
(20)

By (P4), (20) and by using the fact that $I_{\epsilon}(u_{\epsilon}) \geq \alpha$ (note that α is independent of ϵ (see remark 4)), it follows

$$\frac{1}{\epsilon} \int_{\Omega} \int_{0}^{u_{\epsilon}(x)} (t - \psi(x))^{+} dt dx \ge \alpha + \frac{1}{2\epsilon} \int_{\Omega} (u_{\epsilon} - \psi)^{+}(x) u_{\epsilon}(x) dx - \frac{1}{2} \int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx.$$
(21)

Putting $\Omega_{\epsilon} = \{x \in \Omega : u_{\epsilon}(x) > \psi(x)\}\$, one deduces from (21)

$$\frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) dx - \frac{1}{\epsilon} \int_{\Omega_{\epsilon}} u_{\epsilon}(x) \psi(x) dx + \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} \psi^{2}(x) dx \ge
\ge \alpha + \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} (u_{\epsilon}^{2}(x) - u_{\epsilon}(x) \psi(x)) dx - \frac{1}{2} \int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx$$
(22)

so

$$\frac{1}{2} \int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx \ge \alpha + \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} u_{\epsilon}(x) \psi(x) dx - \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} \psi^{2}(x) dx >
> \alpha + \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} \psi^{2}(x) dx - \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} \psi^{2}(x) dx = \alpha.$$

Thus step 6 follows for all $\epsilon > 0$ which satisfies (20). Then step 6 is true for all $\epsilon > 0$.

Step 7. There exists a constant $c_3 > 0$ such that $||u_{\epsilon}||_{L^2(\Omega)} \le c_3$ for any $\epsilon > 0$.

Proof. First of all, let us prove that, for any $\epsilon > 0$,

meas
$$\widetilde{\Omega}_{\epsilon} = meas \ \{x \in \Omega : u_{\epsilon}(x) < -\psi(x)\} = 0.$$
 (23)

We note that $\widetilde{\Omega}_{\epsilon} \not\equiv \Omega$. Indeed, let, by contradiction, $\widetilde{\Omega}_{\epsilon} \equiv \Omega$. Let v_1 be a positive eigenfunction related to λ_1 . By the fact that u_{ϵ} solves (3) and the definition of λ_1 and $\widetilde{\Omega}_{\epsilon}$, one obtains

$$(\lambda_1 - \lambda) \int_{\Omega} u_{\epsilon}(x) v_1(x) dx = \int_{\Omega} p(x, u_{\epsilon}(x)) v_1(x) dx,$$

which is a contradiction because the first member is positive and the second is negative (see(P4)). So $\widetilde{\Omega}_{\epsilon} \not\equiv \Omega$.

Hence, let $\Omega_{\epsilon} \not\equiv \Omega$ and let us prove (23).

Let, by contradiction, meas $\widetilde{\Omega}_{\epsilon} > 0$. Then let us define $\mathcal{U}_{\epsilon,\psi}$ in this way

$$\mathcal{U}_{\epsilon,\psi}(x) = \begin{cases} u_{\epsilon}(x) + \psi(x) & \text{in } \widetilde{\Omega}_{\epsilon} \\ \varphi_{\epsilon}(x) & \text{in } \widetilde{\Omega}_{\epsilon}^{'} \setminus \widetilde{\Omega}_{\epsilon} \\ 0 & \text{in } \Omega \setminus \widetilde{\Omega}_{\epsilon}^{'}, \end{cases}$$

where $\widetilde{\Omega}_{\epsilon}^{'}$ is a suitable open set with $\widetilde{\Omega}_{\epsilon} \subset \widetilde{\Omega}_{\epsilon}^{'} \subset \Omega$ and φ_{ϵ} is a suitable regular function to be chosen in such a way that $\mathcal{U}_{\epsilon,\psi}$ belongs to $H^{2}(\Omega)$. Actually, on one side, by the definition of $\mathcal{U}_{\epsilon,\psi}$ and λ_{1} , one has

$$-\int_{\Omega} \Delta \mathcal{U}_{\epsilon,\psi}(x)v_{1}(x)dx = -\int_{\Omega} \mathcal{U}_{\epsilon,\psi}(x)\Delta v_{1}(x)dx =$$

$$= \lambda_{1} \int_{\widetilde{\Omega}_{\epsilon}} (u_{\epsilon}(x) + \psi(x))v_{1}(x)dx + \lambda_{1} \int_{\widetilde{\Omega}_{\epsilon}' \setminus \widetilde{\Omega}_{\epsilon}} \varphi_{\epsilon}(x)v_{1}(x)dx,$$
(24)

on the other side, by the fact that u_{ϵ} solves (3) and $\mathcal{U}_{\epsilon,\psi} \in H^2(\Omega)$, one gets

$$-\int_{\Omega} \Delta \mathcal{U}_{\epsilon,\psi}(x)v_{1}(x)dx = \int_{\widetilde{\Omega}_{\epsilon}} p(x, u_{\epsilon}(x))v_{1}(x)dx + \lambda \int_{\widetilde{\Omega}_{\epsilon}} (u_{\epsilon}(x) + \psi(x))v_{1}(x)dx + \int_{\widetilde{\Omega}_{\epsilon}} (\Delta \psi(x) + \lambda \psi(x))v_{1}(x)dx - \int_{\widetilde{\Omega}_{\epsilon}' \setminus \widetilde{\Omega}_{\epsilon}} \Delta \varphi_{\epsilon}(x)v_{1}(x)dx.$$
(25)

Thus (24) and (25) yield

$$(\lambda - \lambda_1) \int_{\widetilde{\Omega}_{\epsilon}} (u_{\epsilon}(x) + \psi(x)) v_1(x) dx + \int_{\widetilde{\Omega}_{\epsilon}} p(x, u_{\epsilon}(x)) v_1(x) dx =$$

$$= \int_{\widetilde{\Omega}_{\epsilon}} (\Delta \psi(x) + \lambda \psi(x)) v_1(x) dx + \int_{\widetilde{\Omega}_{\epsilon}' \setminus \widetilde{\Omega}_{\epsilon}} (\Delta \varphi_{\epsilon}(x) + \lambda_1 \varphi_{\epsilon}(x)) v_1(x) dx.$$
(26)

At this point, if one assumes

$$\left| \int_{\widetilde{\Omega}_{\epsilon}' \setminus \widetilde{\Omega}_{\epsilon}} (\Delta \varphi_{\epsilon}(x) + \lambda_{1} \varphi_{\epsilon}(x)) v_{1}(x) dx \right|$$

sufficiently small, (26) yields a contradiction with hypothesis (H3), since the first member of (26) is negative and meas $\widetilde{\Omega}_{\epsilon} > 0$. Thus meas $\widetilde{\Omega}_{\epsilon} = 0$ and (23) is proved.

On the other hand, by using (23) it follows the obvious relation

$$\int_{\Omega \setminus (\Omega_{\epsilon} \cup \widetilde{\Omega}_{\epsilon})} u_{\epsilon}^{2}(x) dx = \int_{\Omega \setminus \Omega_{\epsilon}} u_{\epsilon}^{2}(x) dx = \int_{\{x \in \Omega : |u_{\epsilon}(x)| \le \psi(x)\}} u_{\epsilon}^{2}(x) dx \le ||\psi||_{L^{2}(\Omega)}^{2}.$$
(27)

Moreover, by step 5, (P4) and (27), one gets, for any $\epsilon > 0$,

$$\left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx \leq
\leq \lambda \left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) dx + \frac{1}{(s+1)\epsilon} \int_{\Omega} (u_{\epsilon} - \psi)^{+}(x) u_{\epsilon}(x) dx +
- \frac{1}{\epsilon} \int_{\Omega} \int_{0}^{u_{\epsilon}(x)} (t - \psi(x))^{+} dt dx + c_{1} \leq
\leq \lambda \left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) dx + \frac{1}{\epsilon} \left(\frac{1}{s+1} - \frac{1}{2}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) dx +
+ \frac{1}{\epsilon} \left(1 - \frac{1}{s+1}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}(x) \psi(x) dx + \|\psi\|_{L^{2}(\Omega)}^{2} + c_{1} \leq
\leq \lambda \left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) dx + \frac{1}{\epsilon} \left(\frac{1}{s+1} - \frac{1}{2}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) dx +
+ \frac{1}{\epsilon} \left(1 - \frac{1}{s+1}\right) \|\psi\|_{L^{2}(\Omega)} \|u_{\epsilon}\|_{L^{2}(\Omega_{\epsilon})} + \|\psi\|_{L^{2}(\Omega)}^{2} + c_{1}.$$

At this point, if $\left(\int_{\Omega}u_{\epsilon}^{2}(x)dx\right)_{\epsilon}$ was unbounded, then, by (27), even $\left(\int_{\Omega_{\epsilon}}u_{\epsilon}^{2}(x)dx\right)_{\epsilon}$ should be unbounded. Then (28) easily would yield an absurdum, since the last member of (28) would be unbounded from below as $\epsilon \to 0$, while the first member is positive for any $\epsilon > 0$. So step 7 is proved.

Step 8. There exists a constant $c_4 > 0$ such that $||u_{\epsilon}||_{H_0^1(\Omega)} \le c_4$ for any $\epsilon > 0$.

Proof. By step 5 and by hypothesis (P4), one gets, for any $\epsilon > 0$,

$$\frac{1}{2} \int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx - \frac{\lambda}{2} \int_{\Omega} u_{\epsilon}^{2}(x) dx + \frac{1}{\epsilon} \int_{\Omega} \int_{0}^{u_{\epsilon}(x)} (t - \psi(x))^{+} dt dx \le$$

$$\leq c_{1} + \frac{1}{s+1} \int_{\Omega} p(x, u_{\epsilon}(x)) u_{\epsilon}(x) dx.$$

Thus, as u_{ϵ} solves (3), one gets

$$\left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx \leq
\leq \lambda \left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) dx + \frac{1}{(s+1)\epsilon} \int_{\Omega} (u_{\epsilon} - \psi)^{+}(x) u_{\epsilon}(x) dx +
- \frac{1}{\epsilon} \int_{\Omega} \int_{0}^{u_{\epsilon}(x)} (t - \psi(x))^{+} dt dx + c_{1} \leq
\leq \lambda \left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) dx + \frac{1}{(s+1)\epsilon} \int_{\Omega_{\epsilon}} (u_{\epsilon}(x) - \psi(x)) u_{\epsilon}(x) dx +
- \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} (u_{\epsilon} - \psi)^{2}(x) dx + c_{1} \leq
\leq \lambda \left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) dx + \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} (u_{\epsilon}(x) - \psi(x)) u_{\epsilon}(x) dx +
- \frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} (u_{\epsilon} - \psi)^{2}(x) dx + c_{1} \leq
\leq \lambda \left(\frac{1}{2} - \frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) dx + \frac{1}{2\epsilon} \int_{\Omega} (u_{\epsilon}(x) - \psi(x)) \psi(x) dx + c_{1}.$$

At this point, taking $v = \psi$ in (3) and using (P2), one gets

$$\frac{1}{2\epsilon} \int_{\Omega_{\epsilon}} (u_{\epsilon}(x) - \psi(x))\psi(x)dx = -\frac{1}{2} \int_{\Omega} \nabla u_{\epsilon}(x)\nabla\psi(x)dx + \\
+ \frac{\lambda}{2} \int_{\Omega} u_{\epsilon}(x)\psi(x)dx + \frac{1}{2} \int_{\Omega} p(x, u_{\epsilon}(x))\psi(x)dx \le \\
\le -\frac{1}{2} \int_{\Omega} \nabla u_{\epsilon}(x)\nabla\psi(x)dx + \frac{\lambda}{2} \int_{\Omega} u_{\epsilon}(x)\psi(x)dx + \\
+ \frac{1}{2} \int_{\Omega} (a_{1}\psi(x) + a_{2} | u_{\epsilon}(x) |^{s} \psi(x)) dx.$$
(30)

By (29),(30),(H1) and the continuous embedding of $H_0^1(\Omega)$ into $L^{2^*}(\Omega)$, one obtains

$$\| u_{\epsilon} \|_{H_0^1(\Omega)}^2 \le M_1 \| u_{\epsilon} \|_{L^2(\Omega)}^2 + M_2 \| u_{\epsilon} \|_{L^{2*}(\Omega)}^s + M_3 \le$$

$$\le M_1 \| u_{\epsilon} \|_{L^2(\Omega)}^2 + M_4 \| u_{\epsilon} \|_{H_0^1(\Omega)}^s + M_3,$$

where M_1, M_2, M_3, M_4 are positive constants depending only on λ, s, ψ , but not on ϵ .

Thus the statement of step 8 easily follows from step 7 and (H4).

Step 9. There exists a constant $c_5 > 0$ such that

$$\| (u_{\epsilon} - \psi)^+ \|_{L^2(\Omega)} \le c_5 \sqrt{\epsilon}$$

for any $\epsilon > 0$.

Proof. Since u_{ϵ} is a solution of problem (3), in particular one gets

$$\frac{1}{\epsilon} \int_{\Omega} (u_{\epsilon} - \psi)^{+}(x) u_{\epsilon}(x) dx =$$

$$= \int_{\Omega} p(x, u_{\epsilon}(x)) u_{\epsilon}(x) dx - \int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx + \lambda \int_{\Omega} u_{\epsilon}^{2}(x) dx.$$
(31)

Thus, by the positivity of ψ , it follows

$$\frac{1}{\epsilon} \int_{\Omega} ((u_{\epsilon} - \psi)^{+})^{2} (x) dx \leq
\leq \int_{\Omega} p(x, u_{\epsilon}(x)) u_{\epsilon}(x) dx - \int_{\Omega} |\nabla u_{\epsilon}(x)|^{2} dx + \lambda \int_{\Omega} u_{\epsilon}^{2}(x) dx.$$

By (P2), step 8 and the continuous embedding of $H^1_0(\Omega)$ into $L^{s+1}(\Omega)$ one deduces the thesis.

Step 10. There exists a sequence $(\epsilon_n)_n$ converging to 0 as n goes to ∞ such that $(u_{\epsilon_n})_n$ weakly converges in $H_0^1(\Omega)$ to some $u \not\equiv 0$.

Proof. First of all, by step 8, there exists a sequence $(u_{\epsilon_n})_n$ weakly converging in $H_0^1(\Omega)$ to some u as ϵ_n goes to 0. We claim that u is not identically zero. Indeed, $u \equiv 0$ would imply an absurdum deduced by step 6 and by passing to the limit as ϵ_n goes to 0 in the following relation (due to the fact that u_{ϵ_n} is a solution of problem (3) with $\epsilon = \epsilon_n$)

$$\int_{\Omega} |\nabla u_{\epsilon_n}(x)|^2 dx - \lambda \int_{\Omega} u_{\epsilon_n}^2(x) dx + \frac{1}{\epsilon_n} \int_{\Omega} (u_{\epsilon_n} - \psi)^+(x) u_{\epsilon_n}(x) dx =$$

$$= \int_{\Omega} p(x, u_{\epsilon_n}(x)) u_{\epsilon_n}(x) dx.$$

Step 11. The element u given by Step 10 is a nontrivial solution of problem(2).

Proof. First of all, u_{ϵ_n} verifies these two convergence properties:

$$u_{\epsilon_n} \to u$$
 in $L^2(\Omega)$

and

$$(u_{\epsilon_n} - \psi)^+ \to 0$$
 in $L^2(\Omega)$,

as ϵ_n goes to 0. So $u \leq \psi$ on Ω .

From the fact that $u_{\epsilon_n} \to u$ weakly in $H_0^1(\Omega)$ as ϵ_n goes to 0, one deduces

$$\liminf_{n \to \infty} \int_{\Omega} |\nabla u_{\epsilon_n}(x)|^2 dx \ge \int_{\Omega} |\nabla u(x)|^2 dx \tag{32}$$

and, by using hypothesis (P2),

$$\int_{\Omega} p(x, u_{\epsilon_n}(x)) u_{\epsilon_n}(x) dx \to \int_{\Omega} p(x, u(x)) u(x) dx. \tag{33}$$

(34)

Finally, as u_{ϵ_n} is a solution of problem (3) with $\epsilon = \epsilon_n$, one gets

$$\int_{\Omega} \nabla u_{\epsilon_n}(x) \nabla (v(x) - u_{\epsilon_n}(x)) dx - \lambda \int_{\Omega} u_{\epsilon_n}(x) (v(x) - u_{\epsilon_n}(x)) dx +$$

$$+ \frac{1}{\epsilon_n} \int_{\Omega} (u_{\epsilon_n} - \psi)^+(x) (v(x) - u_{\epsilon_n}(x)) dx = \int_{\Omega} p(x, u_{\epsilon_n}(x)) (v(x) - u_{\epsilon_n}(x)) dx,$$

 $\forall v \in H_0^1(\Omega), v \leq \psi.$

By (32) and (33) and passing to the limit as ϵ_n goes to 0 in (34), one easily gets that u is a nontrivial solution of problem (2).

References

- [1] Bensoussan A.-Lions J.L.: 'Applications des inéquations variationelles en contrôle stochastique', Dunod, Paris (1978).
- [2] Boccardo L.: 'Alcuni problemi unilaterali in risonanza', Rend. Mat. 13 (1980), pp.647-663.
- [3] Girardi M.-Matzeu M.-Mastroeni L.: 'Existence and regularity results for nonnegative solutions of some semilinear elliptic variational inequalities via mountain pass techniques', ZAA, J. Anal. Appl. vol.20, no.4 (2001), pp.845-857.
- [4] Mancini G.-Musina R.: 'A free boundary problem involving limit Sobolev exponents', Manuscripta Math. 58 (1987), pp.77-93.
- [5] Mancini G.-Musina R.: 'Holes and hobstacles', Ann. Inst. Henri Poincaré, Anal. Non Linéaire, vol.5, no.4 (1988), pp.323-345.
- [6] Marino A.-Passaseo D.: 'A jumping behaviour induced by an obstacle', Progress in Variational Methods in Hamiltonian Systems and Elliptic Equations (M.Girardi-M.Matzeu-F.Pacella Eds.), Pitnam (1992), pp.127-143.

15

- [7] Passaseo D.: 'Molteplicità di soluzioni per disequazioni variazionali non lineari di tipo ellittico', Rend. Acc. Naz. Sc. detta dei XL, Memorie di Mat., 109 vol.XV, fasc.2 (1991), pp.19-56.
- [8] Rabinowitz P.: 'Minimax methods in critical point theory with applications to differential equations', CBMS Regional Conf. Series Math. 65 Amer. Math. Soc. Providence R.I. (1986).
- [9] Szulkin A.: 'On the solvability of a class of semilinear variational inequalities', Rend. Mat. 4 (1984), pp.121-137.
- [10] Szulkin A.: 'On a class of variational inequalities involving gradient operators', J. Math. Anal. Appl. 100 (1984), pp.486-499.