A Linking Type Method to solve a Class of Semilinear Elliptic Variational Inequalities

Michele Matzeu* and Raffaella Servadei ${ }^{\dagger}$
Dipartimento di Matematica,
Università degli Studi di Roma 'Tor Vergata'
via della Ricerca Scientifica 00133 Roma, ITALIA

Abstract

The aim of this paper is to study the existence of a nontrivial solution of the following semilinear elliptic variational inequality $$
\left\{\begin{array}{l} u \in H_{0}^{1}(\Omega), \quad u \leq \psi \text { on } \Omega \\ \int_{\Omega} \nabla u(x) \nabla(v(x)-u(x)) d x-\lambda \int_{\Omega} u(x)(v(x)-u(x)) d x \geq \\ \\ \forall v \in H_{0}^{1}(\Omega), \quad v \leq \psi \text { on } \Omega \end{array} \quad \geq \int_{\Omega} p(x, u(x))(v(x)-u(x)) d x\right)
$$ where Ω is an open bounded subset of $\mathbb{R}^{N}(N \geq 1), \lambda$ is a real parameter, with $\lambda \geq \lambda_{1}$, the first eigenvalue of the operator $-\Delta$ in $H_{0}^{1}(\Omega), \psi$ belongs to $H^{1}(\Omega), \psi_{\mid \partial \Omega} \geq 0$ and p is a Carathéodory function on $\Omega \times \mathbb{R}$, which satisfies some general superlinearity growth conditions at zero and at infinity. The method of finding the solutions is based on the consideration of a family of penalized equations associated with the variational inequality. A solution of any penalized equation is found through a Linking theorem, using some suitable conditions connecting ψ with the eigenfunctions related to the eigenvalues of $-\Delta$. Some $H_{0}^{1}(\Omega)$-estimates from above and from below for these solutions allow, by a suitable passage to the limit as the penalization parameter ϵ goes to zero, to exhibite a nontrivial solution for the variational inequality. We note that the estimate from above is got by assuming some further regularity properties on ψ, which is moreover required to be a subsolution of a suitable Dirichlet problem.

AMS Subject Classification: 49J40, 35J60, 58E05.
Key Words: semilinear variational inequalities, penalization method, nonlinearity of superlinear growth, linking type critical points.

[^0]
1 Introduction

Let us consider the following variational inequality

$$
\left\{\begin{array}{c}
u \in K_{\psi}=\left\{v \in H_{0}^{1}(\Omega): v(x) \leq \psi(x) \text { on } \Omega\right\} \text { such that } \forall v \in K_{\psi} \tag{1}\\
\int_{\Omega} \nabla u(x) \nabla(v(x)-u(x)) d x-\lambda \int_{\Omega} u(x)(v(x)-u(x)) d x \geq \\
\quad \geq \int_{\Omega} p(x, u(x))(v(x)-u(x)) d x
\end{array}\right.
$$

where Ω is an open bounded subset of $\mathbb{R}^{N}(N \geq 1)$ with a sufficiently smooth boundary, $\psi \in H^{1}(\Omega), \psi_{\mid \partial \Omega} \geq 0, \lambda$ is a real parameter and $p(\cdot, \cdot)$ is a real function on $\Omega \times \mathbb{R}$ such that $p\left(\cdot, v(\cdot)\right.$ belongs to $L^{2}(\Omega), \forall v \in H_{0}^{1}(\Omega)$.

In the case $\lambda<\lambda_{1}$, the first eigenvalue of the operator $-\Delta$ on $H_{0}^{1}(\Omega)$, an extensive literature was developed concerning various existence and multiplicity results, even with K_{ψ} replaced by

$$
K^{\psi}=\left\{v \in H_{0}^{1}(\Omega): v(x) \geq \psi(x) \text { on } \Omega\right\},\left(\psi_{\mid \partial \Omega} \leq 0\right)
$$

(see the papers $[4,5,6,7,9,10]$ and the introduction of [3] for a short discussion of the relative results).
Still in case $\lambda<\lambda_{1}$, an existence result was proved in [3] (actually presented with the choice $\lambda=0$, but trivially extendible to the general case $\lambda<\lambda_{1}$), in case that p has a suitable superlinear growth at zero and at infinity with respect to the second variable (i.e. $p(x, t)$ is of the type $t|t|^{\beta-2}$, with $\beta>2$). In [3] a penalization method and some estimates for the Mountain Pass type solutions found for the penalized equations yield a nonnegative not identically zero solution of (1).

The case $\lambda \geq \lambda_{1}$ was firstly studied in [2] with the choice $\lambda=\lambda_{1}$. In [10] Szulkin proved various significant existence, nonexistence and multiplicity results even in case where $\lambda>\lambda_{1}$ with the constraint set K_{ψ} replaced by K^{ψ} with $\psi=0$. The methods used in [10] are based on a general minimax theory for a large class of variational inequalities.
Always for general $\lambda \geq \lambda_{1}$, Passaseo studied in [7] various cases with $p(x, t)$ independent of t (that is linear case), by using some interesting methods of subsolutions and supersolutions for the equation related to (1).
Other important results were obtained in [9].
The aim of the present paper is to extend the idea of [3] based on the penalization method to the general case $\lambda \geq \lambda_{1}$. In this situation one gives some conditions connecting the obstacle ψ with the eigenfunctions related to the eigenvalues of $-\Delta$ which are less or equal to λ. Under these assumptions one proves the existence of a family $\left(u_{\epsilon}\right)_{\epsilon>0}$ of Linking type solutions for the penalized equations associated with (1) (here ϵ denotes the penalization parameter). Still as in [3] some estimates for $\left\|u_{\epsilon}\right\|_{H_{0}^{1}(\Omega)}$ allow to obtain a solution $u \not \equiv 0$ of (1), by passing to the limit as $\epsilon \rightarrow 0$. We point out that the proof of the estimate from above is rather delicate and requires, in particular, that the obstacle ψ belongs to $H^{2}(\Omega) \cap L^{q}(\Omega)$, for a suitable q (see condition (H1)) and that ψ is a subsolution of a Dirichlet problem depending on λ (see condition (H3)). Finally we observe that, in this case, one cannot expect, as in case $\lambda<\lambda_{1}$, the nonnegativity of u, which could change sign as any u_{ϵ}, because a

Linking theorem, as well known, does not guarantee at all the nonnegativity of related critical point (see e.g. [8], remark 5.19).

2 The existence result of a nontrivial solution

Let us consider the following variational inequality

$$
\left\{\begin{array}{l}
u \in H_{0}^{1}(\Omega), \quad u \leq \psi \text { on } \Omega \tag{2}\\
\int_{\Omega} \nabla u(x) \nabla(v(x)-u(x)) d x-\lambda \int_{\Omega} u(x)(v(x)-u(x)) d x \geq \\
\forall v \in H_{0}^{1}(\Omega), \quad v \leq \psi \text { on } \Omega
\end{array}\right.
$$

where Ω is an open bounded subset of $\mathbb{R}^{N}(N \geq 3)$ with a sufficiently smooth boundary, $H_{0}^{1}(\Omega)$ is the usual Sobolev space on Ω obtained as the closure of $C_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|v\|=\left(\int_{\Omega}|\nabla v(x)|^{2} d x\right)^{\frac{1}{2}}
$$

ψ belongs to $H^{1}(\Omega)$, with $\psi_{\mid \partial \Omega} \geq 0, \lambda$ is a real parameter and $p: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following conditions:
(P1) $p(x, \xi)$ is measurable in $x \in \Omega$ and continuous in $\xi \in \mathbb{R}$;
(P2) $|p(x, \xi)| \leq a_{1}+a_{2}|\xi|^{s}$ for some $a_{1}, a_{2}>0$ a.e. $x \in \Omega, \forall \xi \in \mathbb{R}$, with $1<s<\frac{N+2}{N-2}$;
$(P 3) \quad p(x, \xi)=o(|\xi|)$ as $\xi \rightarrow 0$ a.e. $x \in \Omega$.
Moreover, putting

$$
P(x, \xi):=\int_{0}^{\xi} p(x, t) d t, \quad \text { a.e. } x \in \Omega, \quad \forall \xi \in \mathbb{R}
$$

we assume that
$(P 4) \quad$ for all $\xi \in \mathbb{R} \backslash\{0\}$, one has

$$
0<(s+1) P(x, \xi) \leq \xi p(x, \xi) \text { a.e. } x \in \Omega .
$$

Note that ($P 4$) easily yields
$(P 5) \quad P(x, \xi) \geq a_{3}|\xi|^{s+1}-a_{4}$ for some $a_{3}, a_{4}>0$, a.e. $x \in \Omega, \quad \forall \xi \in \mathbb{R}$.
Finally, let $0<\lambda_{1}<\lambda_{2} \leq \ldots \lambda_{j} \leq \ldots$ the divergent sequence of the eigenvalues of the operator $-\Delta$ on $H_{0}^{1}(\Omega)$, where each λ_{i} has finite multiplicity coinciding with the number of its different indexes. Thus, for $\lambda_{k}<\lambda_{k+1}$, the space
V_{k} related to $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ has finite dimension given exactly by k. Let us denote by $\left\{e_{1}, \ldots, e_{k}\right\}$ an $L^{2}(\Omega)$-orthonormal base of V_{k}, where e_{i} is an eigenfunction related to λ_{i}.

In case that $\psi(x) \geq 0$ on $\bar{\Omega}$, it is obvious that $u_{0} \equiv 0$ is a trivial solution of problem (2).

One can state the following
Theorem 1 Let $k \in \mathbb{N}$ such that $\lambda \in\left[\lambda_{k}, \lambda_{k+1}[\right.$ in (2). Let (P1), (P2), (P3), (P4) and the following hypotheses hold
(H1) $\psi \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \cap L^{q}(\Omega)$, where $q=\left(\frac{2^{*}}{s}\right)^{\prime} ;$
(H2)

$$
\psi(x) \geq(k+1) \bar{x} \max _{i=1, \ldots, k+1}\left|e_{i}(x)\right| \text { a.e. } x \in \Omega
$$

where \bar{x} is the positive zero of $f(x)=x^{2}-a_{3} c_{k} x^{s+1}+a_{4}|\Omega|$
and c_{k} is a suitable positive constant depending on k;
$\Delta \psi+\lambda \psi>0$ on $\Omega ;$
$(H 4) \quad s<2$ in (P2) and (P4).
Then there exists a nontrivial solution u of problem (2).
Remark 1 Let us observe that the assumption ' $\psi \in H^{2}(\Omega)$ ' may imply ' $\psi \in$ $L^{q}(\Omega)^{\prime}$, where $q=\left(\frac{2^{*}}{s}\right)^{\prime}$ for some choices of N and s. In particular one can easily check that, if $N=3$, then $\psi \in H^{2}(\Omega) \Rightarrow \psi \in L^{\infty}(\Omega)$ and, if $N=4$, then $\psi \in H^{2}(\Omega) \Rightarrow \psi \in L^{r}(\Omega)$ for all $r \in[1, \infty[$. In case that $N \geq 5$, the calculus of the number $\left(2^{*}\right)^{*}$ yields that $\psi \in H^{2}(\Omega) \Rightarrow \psi \in L^{q}(\Omega)$ if $N \leq$ $\frac{2 s+4}{s-1}\left(2^{*}\right.$ is the critical exponent i.e. $\left.2^{*}=\frac{2 N}{N-2}\right)$.

Remark 2 Note that \bar{x} exists and is unique. Further any $y>\bar{x}$ verifies the relation $f(y)<0$.

Remark 3 Actually the cases $N=1,2$ can be considered too, even under simpler assumptions than those required in theorem 1. ${ }^{1}$ We have decided to present our result only for $N \geq 3$ as, for $N=1,2$, the proof is the same, even using easier arguments in some step of the proof.

The method of finding the solution u relies on the consideration of a family of 'penalized' equations associated, in a standard way, with (2) (see [1]). Indeed, one can prove that any penalized equation possesses a solution of 'Linking type', and that a sequence chosen in this family actually converges to a nontrivial solution u of (2), by suitably using some estimates from below and from above for the $H_{0}^{1}(\Omega)$-norm of the solutions of the penalized equations. As mentioned before, we apply the following Linking theorem (see [8]):

[^1]Saddle Point Theorem Let E be a real Banach space with $E=V \bigoplus X$, where V is finite dimensional. Suppose $I \in C^{1}(E, \mathbb{R})$ satisfies the following conditions:
(PS) for any $\left(u_{n}\right)_{n} \in E$ such that $\left(I\left(u_{n}\right)\right)_{n}$ is bounded and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ in the dual space of E as $n \rightarrow \infty$, there exists a subsequence of $\left(u_{n}\right)_{n}$ strongly converging in E;
(I_{1}^{\prime}) there are constants $\rho, \alpha>0$ such that $I_{\mid \partial B_{\rho} \cap X} \geq \alpha$, where B_{ρ} is the ball of center 0 and radius ρ;
(I_{5}) there are an element $e \in \partial B_{1} \cap X$ and some $R>\rho$ such that, if $Q=$ $\left(\bar{B}_{R} \cap V\right) \bigoplus\{r e: 0 \leq r \leq R\}$, then $I_{\mid \partial Q} \leq 0$.
Then I possesses a critical value $c \geq \alpha$ which can be characterized as

$$
c \equiv \inf _{h \in \Gamma} \max _{u \in Q} I(h(u)),
$$

where

$$
\Gamma=\{h \in C(\bar{Q}, E): h=i d \quad \text { on } \quad \partial Q\}
$$

First of all, let us introduce the 'penalized' problem associated with (2), that is, for any $\epsilon>0$, the weak equation

$$
\left\{\begin{align*}
& u_{\epsilon} \in H_{0}^{1}(\Omega) \text { such that } \tag{3}\\
& \int_{\Omega} \nabla u_{\epsilon}(x) \nabla v(x) d x-\lambda \int_{\Omega} u_{\epsilon}(x) v(x) d x+ \\
&+\frac{1}{\epsilon} \int_{\Omega}\left(u_{\epsilon}-\psi\right)^{+}(x) v(x) d x=\int_{\Omega} p\left(x, u_{\epsilon}(x)\right) v(x) d x \\
& \forall v \in H_{0}^{1}(\Omega)
\end{align*}\right.
$$

where g^{+}denotes the positive part of the function g. Let us note that the last integral is well defined for all $v \in H_{0}^{1}(\Omega)$ as a consequence of $(P 2)$ and of the continuous embedding of $H_{0}^{1}(\Omega)$ into $L^{2^{*}}(\Omega)$.
Actually in order to look for solutions of (3), we study the critical points of the functional
$I_{\epsilon}(v)=\frac{1}{2} \int_{\Omega}|\nabla v(x)|^{2} d x-\frac{\lambda}{2} \int_{\Omega} v^{2}(x) d x+\frac{1}{\epsilon} \int_{\Omega} \int_{0}^{v(x)}(t-\psi(x))^{+} d t d x-\int_{\Omega} P(x, v(x)) d x$,
$\forall v \in H_{0}^{1}(\Omega)$.
Indeed one can easily check that I_{ϵ} belongs to $C^{1}\left(H_{0}^{1}(\Omega)\right)$ and that the pairing $\left\langle I_{\epsilon}^{\prime}\left(u_{\epsilon}\right), v\right\rangle$ between $H_{0}^{1}(\Omega)$ and its dual space coincides with the difference between the first and the second member in (3).
At this point, to prove theorem 1, we verify that the functional I_{ϵ} satisfies all the hypotheses of the Saddle Point Theorem where $E \equiv H_{0}^{1}(\Omega), V \equiv V_{k} \equiv$ span

$$
\left\{e_{1}, \ldots, e_{k}\right\} \text { and } X \equiv \overline{\operatorname{span}\left\{e_{j}: j \geq k+1\right\}}\left(\text { i.e. } X \equiv V^{\perp}\right)
$$

Proof: (of theorem 1) Let us proceed by steps.
Step 1. The functional I_{ϵ} verifies, for any $\epsilon>0$, the conditions

$$
\begin{equation*}
I_{\epsilon}(0)=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
I_{\epsilon \mid \partial B_{\rho} \cap X} \geq \alpha \text { for some } \rho, \alpha>0 \tag{5}
\end{equation*}
$$

Proof. Property (4) is trivial. As for (5), let us note that the positivity of ψ on Ω yields

$$
\begin{equation*}
\int_{\Omega} \int_{0}^{u(x)}(t-\psi(x))^{+} d t d x=\int_{\{x \in \Omega: u(x) \geq \psi(x)\}} \int_{\psi(x)}^{u(x)}(t-\psi(x)) d t d x \geq 0 \tag{6}
\end{equation*}
$$

for all $u \in H_{0}^{1}(\Omega)$.
On the other hand, as a consequence of $(P 2),(P 3)$, one gets that

$$
\begin{equation*}
\forall \delta>0 \quad \exists c(\delta)>0 \text { such that } P(x, \xi) \leq \frac{\delta}{2}|\xi|^{2}+c(\delta)|\xi|^{s+1} \tag{7}
\end{equation*}
$$

a.e. $x \in \Omega, \forall \xi \in \mathbb{R}$.

Then, by using (6),(7), the variational characterization of the eigenvalue λ_{k+1} and by choosing $\rho>0$ such that $c(\delta) c_{s} \rho^{s-1}<\frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}-\delta\right)\left(c_{s}\right.$ denoting the embedding Sobolev constant of $H_{0}^{1}(\Omega)$ into $\left.L^{s+1}(\Omega)\right)$, for all $u \in \partial B_{\rho} \cap X$, we have

$$
\begin{aligned}
I_{\epsilon}(u) & \geq \frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x-\frac{\lambda}{2} \int_{\Omega} u^{2}(x) d x-\int_{\Omega} P(x, u(x)) d x \geq \\
& \geq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}\right)\|u\|_{H_{0}^{1}(\Omega)}^{2}-\frac{\delta}{2}\|u\|_{H_{0}^{1}(\Omega)}^{2}-c(\delta) c_{s} \rho^{s-1}\|u\|_{H_{0}^{1}(\Omega)}^{2}= \\
& =\left(\frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}-\delta\right)-c(\delta) c_{s} \rho^{s-1}\right)\|u\|_{H_{0}^{1}(\Omega)}^{2}= \\
& =\left(\frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}-\delta\right)-c(\delta) c_{s} \rho^{s-1}\right) \rho^{2} .
\end{aligned}
$$

So step 1 follows from the fact that $\lambda<\lambda_{k+1}$.

Remark 4 Note that the positive constant α does not depend on ϵ and this fact will be used in the proof of theorem 1.

Step 2. There exist an element $e \in \partial B_{1} \cap X$ and some $R>\rho$ such that $I_{\epsilon} \mid \partial Q \leq 0$, where $Q=\left(\bar{B}_{R} \cap V\right) \bigoplus\{r e: 0 \leq r \leq R\}$.

Proof. Let us choose $e=\frac{e_{k+1}}{\left\|e_{k+1}\right\|_{H_{0}^{1}}(\Omega)}$ and $R>0$ such that $R_{1} \leq R \leq R_{2}$, with

$$
R_{1}=\bar{x} \quad \text { as in }(H 2)
$$

and

$$
R_{2}=\frac{1}{k+1} \inf _{x \in \Omega} \frac{\psi(x)}{\max \left\{\left|e_{i}(x)\right|: i=1, \ldots, k+1\right\}} .
$$

We observe that $R_{1} \leq R_{2}$ (see hypothesis (H2)).
Actually one notes that $\partial Q \subset A_{1} \cup A_{2}$, where

$$
A_{1}=\{v \in V:\|v\| \leq R\}
$$

and

$$
A_{2}=\{v \in V \oplus \operatorname{span}\{e\}: R \leq\|v\| \leq \sqrt{2} R\}
$$

So it is enough to prove that

$$
\begin{equation*}
I_{\epsilon}(v) \leq 0 \text { for all } v \in A_{1} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{\epsilon}(v) \leq 0 \text { for all } v \in A_{2} \tag{9}
\end{equation*}
$$

First of all, by (H2) and the fact that $R \leq R_{2}$, it follows that $v \leq \psi$ on Ω for all $v \in A_{1} \cup A_{2}$. So

$$
\begin{equation*}
\int_{\Omega} \int_{0}^{v(x)}(t-\psi(x))^{+} d t d x=0 \tag{10}
\end{equation*}
$$

for all $v \in A_{1} \cup A_{2}$.
Let v be an element of A_{1}. By hypothesis (P4) and from the fact that $\lambda \geq \lambda_{i}$ for all $i=1, \ldots, k$, we obtain

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega}|\nabla v(x)|^{2} d x-\frac{\lambda}{2} \int_{\Omega} v^{2}(x) d x-\int_{\Omega} P(x, v(x)) d x \leq 0 . \tag{11}
\end{equation*}
$$

By (10) and (11), one deduces relation (8).
Now let v be an element of A_{2}. From hypothesis (P5), the choice of $R\left(\geq R_{1}\right)$ and remark 2 , one easily deduces the relation

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}|\nabla v(x)|^{2} d x-\frac{\lambda}{2} \int_{\Omega} v^{2}(x) d x-\int_{\Omega} P(x, v(x)) d x \leq \\
& \leq R^{2}-\int_{\Omega}\left(a_{3}|v(x)|^{s+1}-a_{4}\right) d x \leq \tag{12}\\
& \leq R^{2}-a_{3} c_{k} R^{s+1}+a_{4}|\Omega| \leq 0,
\end{align*}
$$

for a suitable c_{k} that exists as $V \oplus \operatorname{span}\{e\}$ is finite dimensional. By (10) and (12) one gets relation (9). Thus $I_{\epsilon \mid \partial Q} \leq 0$ and step 2 is proved.

Remark 5 Note that (10) is true not only for $v \in A_{1} \cup A_{2}$, but also for $v \in Q$.

Step 3. For any $\epsilon>0, I_{\epsilon}$ satisfies the Palais-Smale condition, i.e.
for any $\quad\left(u_{n}\right)_{n} \in H_{0}^{1}(\Omega)$ such that $\left(I_{\epsilon}\left(u_{n}\right)\right)_{n}$ is bounded and
(PS) $\quad I_{\epsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$ in the dual space of $H_{0}^{1}(\Omega)$ as $n \rightarrow \infty$, there exists a subsequence of $\left(u_{n}\right)_{n}$ strongly converging in $H_{0}^{1}(\Omega)$.

Proof. Let us fix $\beta \in\left(\frac{1}{s+1}, \frac{1}{2}\right)$. By the properties of $\left(u_{n}\right)_{n}$ one deduces

$$
\begin{equation*}
I_{\epsilon}\left(u_{n}\right)-\beta\left\langle I_{\epsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \leq K_{1}+\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)} \tag{13}
\end{equation*}
$$

and, by definition of I_{ϵ} and I_{ϵ}^{\prime}, one gets

$$
\begin{align*}
& I_{\epsilon}\left(u_{n}\right)-\beta\left\langle I_{\epsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle= \\
& =\frac{1}{\epsilon} \int_{\left\{x \in \Omega: u_{n}(x) \geq \psi(x)\right\}}\left[\left(\frac{1}{2}-\beta\right) u_{n}^{2}(x)+\frac{1}{2} \psi^{2}(x)+(\beta-1) \psi(x) u_{n}(x)\right] d x+ \\
& +\left(\frac{1}{2}-\beta\right)\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}-\lambda\left(\frac{1}{2}-\beta\right)\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}-\int_{\Omega} P\left(x, u_{n}(x)\right) d x+ \\
& +\beta \int_{\Omega} p\left(x, u_{n}(x)\right) u_{n}(x) d x \tag{14}
\end{align*}
$$

for all $n \in \mathbb{N}$, where K_{1} is a positive constant independent of n.
Actually, as for the integral multiplied by $\frac{1}{\epsilon}$, some obvious calculations and Hölder inequality yield

$$
\begin{align*}
& \frac{1}{\epsilon} \int_{\left\{x \in \Omega: u_{n}(x) \geq \psi(x)\right\}}\left[\left(\frac{1}{2}-\beta\right) u_{n}^{2}(x)+\frac{1}{2} \psi^{2}(x)+(\beta-1) \psi(x) u_{n}(x)\right] d x \geq \\
& \geq-K_{2}\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)} \tag{15}
\end{align*}
$$

for all $n \in \mathbb{N}$, where K_{2} is a positive constant depending on $\epsilon,\|\psi\|_{L^{2}(\Omega)}$, but not on n.
As for the other terms in (14), by using $(P 4)$, the fact that β is greater than $\frac{1}{s+1}$ and the continuous embedding of $L^{s+1}(\Omega)$ into $L^{2}(\Omega)$ one easily gets

$$
\begin{align*}
& \left(\frac{1}{2}-\beta\right)\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}-\lambda\left(\frac{1}{2}-\beta\right)\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}-\int_{\Omega} P\left(x, u_{n}(x)\right) d x+ \\
& \quad+\beta \int_{\Omega} p\left(x, u_{n}(x)\right) u_{n}(x) d x \geq \tag{16}\\
& \geq\left(\frac{1}{2}-\beta\right)\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}-\lambda\left(\frac{1}{2}-\beta\right)\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+ \\
& \quad+(s+1)\left(\beta-\frac{1}{s+1}\right) a_{3}\left\|u_{n}\right\|_{L^{s+1}(\Omega)}^{s+1}-K_{3} \geq
\end{align*}
$$

$$
\begin{aligned}
\geq & \left(\frac{1}{2}-\beta\right)\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2}-\lambda\left(\frac{1}{2}-\beta\right)\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+ \\
& +(s+1)\left(\beta-\frac{1}{s+1}\right) \tilde{a}_{3}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{s+1}-K_{3}
\end{aligned}
$$

for all $n \in \mathbb{N}$, where \tilde{a}_{3} and K_{3} are positive constants independent of n. Finally, combining (13), (14), (15), (16), one gets

$$
\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}^{2} \leq K_{4}\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}+K_{5},
$$

for all $n \in \mathbb{N}$, for suitable positive constants K_{4}, K_{5} independent of n. Thus $\left(u_{n}\right)_{n}$ is bounded in $H_{0}^{1}(\Omega)$. At this point, step 3 easily follows from a standard argument based on the compact embedding of $H_{0}^{1}(\Omega)$ into $L^{2}(\Omega)$.

Step 4. For any $\epsilon>0$, there exists a solution u_{ϵ} of problem (3) such that

$$
I_{\epsilon}\left(u_{\epsilon}\right)=\inf _{h \in \Gamma} \max _{u \in Q} I_{\epsilon}(h(u)),
$$

where $\Gamma=\left\{h \in C\left(\bar{Q} ; H_{0}^{1}(\Omega)\right): h=i d\right.$ on $\left.\partial Q\right\}$.
Moreover

$$
I_{\epsilon}\left(u_{\epsilon}\right) \geq \alpha
$$

Proof. It is a consequence of steps $1,2,3$ and of the Saddle Point Theorem.
Step 5. There exists a constant $c_{1}>0$ such that $I_{\epsilon}\left(u_{\epsilon}\right) \leq c_{1}$ for any $\epsilon>0$.
Proof. By remark 5 it follows that

$$
\int_{\Omega} \int_{0}^{u(x)}(t-\psi(x))^{+} d t d x=0
$$

for all $u \in Q$.
Moreover, by step 4 with $h=i d_{\bar{Q}}$ and (P5), one deduces

$$
I_{\epsilon}\left(u_{\epsilon}\right) \leq \max _{u \in Q} I_{\epsilon}(u) \leq \max _{u \in Q}\left\{\frac{1}{2}\|u\|_{H_{0}^{1}(\Omega)}^{2}+a_{4}|\Omega|\right\}
$$

and step 5 is proved as the right member of the previous relation is independent of ϵ.

Step 6. There exists a constant $c_{2}>0$ such that $\left\|u_{\epsilon}\right\|_{H_{0}^{1}(\Omega)} \geq c_{2}$ for any $\epsilon>0$.

Proof. By definition of a solution of problem (3), it follows, in particular,

$$
\begin{align*}
& \int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x-\lambda \int_{\Omega} u_{\epsilon}^{2}(x) d x+\frac{1}{\epsilon} \int_{\Omega}\left(u_{\epsilon}-\psi\right)^{+}(x) u_{\epsilon}(x) d x= \tag{17}\\
& =\int_{\Omega} p\left(x, u_{\epsilon}(x)\right) u_{\epsilon}(x) d x
\end{align*}
$$

We can have two possible cases.
First one:

$$
\left\{\begin{array}{l}
\text { let } \epsilon>0 \text { such that } \tag{18}\\
\frac{1}{\epsilon} \int_{\Omega}\left(u_{\epsilon}-\psi\right)^{+}(x) u_{\epsilon}(x) d x-\lambda \int_{\Omega} u_{\epsilon}^{2}(x) d x \geq 0
\end{array}\right.
$$

Thus, for any $\epsilon>0$ which satisfies (18), by (17), we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x \leq \int_{\Omega} p\left(x, u_{\epsilon}(x)\right) u_{\epsilon}(x) d x \tag{19}
\end{equation*}
$$

On the other hand, as a consequence of $(P 2)$ and $(P 3)$, one gets that $\forall \delta>0 \exists c(\delta)>0$ such that $|\xi p(x, \xi)| \leq \delta|\xi|^{2}+c(\delta)|\xi|^{s+1}$ a. e. $x \in \Omega, \forall \xi \in \mathbb{R}$ which yields, using (19), the arbitrarity of δ and the continuous embedding of $L^{s+1}(\Omega)$ into $L^{2}(\Omega)$, the relation

$$
\int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x \leq \tilde{c} \int_{\Omega}\left|u_{\epsilon}(x)\right|^{s+1} d x
$$

where \tilde{c} is a positive constant. Thus step 6 easily follows from the continuous embedding of $H_{0}^{1}(\Omega)$ into $L^{s+1}(\Omega)$ and the assumption $s+1>2$, for all $\epsilon>0$ which satisfies (18).
Second one:

$$
\left\{\begin{array}{l}
\text { let } \epsilon>0 \text { such that } \tag{20}\\
\frac{1}{\epsilon} \int_{\Omega}\left(u_{\epsilon}-\psi\right)^{+}(x) u_{\epsilon}(x) d x-\lambda \int_{\Omega} u_{\epsilon}^{2}(x) d x<0
\end{array}\right.
$$

By (P4), (20) and by using the fact that $I_{\epsilon}\left(u_{\epsilon}\right) \geq \alpha$ (note that α is independent of ϵ (see remark 4)), it follows
$\frac{1}{\epsilon} \int_{\Omega} \int_{0}^{u_{\epsilon}(x)}(t-\psi(x))^{+} d t d x \geq \alpha+\frac{1}{2 \epsilon} \int_{\Omega}\left(u_{\epsilon}-\psi\right)^{+}(x) u_{\epsilon}(x) d x-\frac{1}{2} \int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x$.

Putting $\Omega_{\epsilon}=\left\{x \in \Omega: u_{\epsilon}(x)>\psi(x)\right\}$, one deduces from (21)

$$
\begin{align*}
& \frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) d x-\frac{1}{\epsilon} \int_{\Omega_{\epsilon}} u_{\epsilon}(x) \psi(x) d x+\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}} \psi^{2}(x) d x \geq \\
& \geq \alpha+\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}}\left(u_{\epsilon}^{2}(x)-u_{\epsilon}(x) \psi(x)\right) d x-\frac{1}{2} \int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x \tag{22}
\end{align*}
$$

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x \geq \alpha+\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}} u_{\epsilon}(x) \psi(x) d x-\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}} \psi^{2}(x) d x> \\
& >\alpha+\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}} \psi^{2}(x) d x-\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}} \psi^{2}(x) d x=\alpha .
\end{aligned}
$$

Thus step 6 follows for all $\epsilon>0$ which satisfies (20). Then step 6 is true for all $\epsilon>0$.

Step 7. There exists a constant $c_{3}>0$ such that $\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq c_{3}$ for any $\epsilon>0$.

Proof. First of all, let us prove that, for any $\epsilon>0$,

$$
\begin{equation*}
\text { meas } \widetilde{\Omega}_{\epsilon}=\text { meas }\left\{x \in \Omega: u_{\epsilon}(x)<-\psi(x)\right\}=0 \tag{23}
\end{equation*}
$$

We note that $\widetilde{\Omega}_{\epsilon} \not \equiv \Omega$. Indeed, let, by contradiction, $\widetilde{\Omega}_{\epsilon} \equiv \Omega$.
Let v_{1} be a positive eigenfunction related to λ_{1}. By the fact that u_{ϵ} solves (3) and the definition of λ_{1} and $\widetilde{\Omega}_{\epsilon}$, one obtains

$$
\left(\lambda_{1}-\lambda\right) \int_{\Omega} u_{\epsilon}(x) v_{1}(x) d x=\int_{\Omega} p\left(x, u_{\epsilon}(x)\right) v_{1}(x) d x
$$

which is a contradiction because the first member is positive and the second is negative ($\operatorname{see}(P 4)$). So $\widetilde{\Omega}_{\epsilon} \not \equiv \Omega$.
Hence, let $\widetilde{\Omega}_{\epsilon} \not \equiv \Omega$ and let us prove (23).
Let, by contradiction, meas $\widetilde{\Omega}_{\epsilon}>0$. Then let us define $\mathcal{U}_{\epsilon, \psi}$ in this way

$$
\mathcal{U}_{\epsilon, \psi}(x)= \begin{cases}u_{\epsilon}(x)+\psi(x) & \text { in } \widetilde{\Omega}_{\epsilon} \\ \varphi_{\epsilon}(x) & \text { in } \widetilde{\Omega}_{\epsilon}^{\prime} \backslash \widetilde{\Omega}_{\epsilon} \\ 0 & \text { in } \Omega \backslash \widetilde{\Omega}_{\epsilon}^{\prime}\end{cases}
$$

where $\widetilde{\Omega}_{\epsilon}{ }^{\prime}$ is a suitable open set with $\widetilde{\Omega}_{\epsilon} \subset \widetilde{\Omega}_{\epsilon}{ }^{\prime} \subset \Omega$ and φ_{ϵ} is a suitable regular function to be chosen in such a way that $\mathcal{U}_{\epsilon, \psi}$ belongs to $H^{2}(\Omega)$.
Actually, on one side, by the definition of $\mathcal{U}_{\epsilon, \psi}$ and λ_{1}, one has

$$
\begin{align*}
& -\int_{\Omega} \Delta \mathcal{U}_{\epsilon, \psi}(x) v_{1}(x) d x=-\int_{\Omega} \mathcal{U}_{\epsilon, \psi}(x) \Delta v_{1}(x) d x= \\
& =\lambda_{1} \int_{\tilde{\Omega}_{\epsilon}}\left(u_{\epsilon}(x)+\psi(x)\right) v_{1}(x) d x+\lambda_{1} \int_{\tilde{\Omega}_{\epsilon}^{\prime} \backslash \tilde{\Omega}_{\epsilon}} \varphi_{\epsilon}(x) v_{1}(x) d x \tag{24}
\end{align*}
$$

on the other side, by the fact that u_{ϵ} solves (3) and $\mathcal{U}_{\epsilon, \psi} \in H^{2}(\Omega)$, one gets

$$
\begin{align*}
& -\int_{\Omega} \Delta \mathcal{U}_{\epsilon, \psi}(x) v_{1}(x) d x=\int_{\tilde{\Omega}_{\epsilon}} p\left(x, u_{\epsilon}(x)\right) v_{1}(x) d x+\lambda \int_{\tilde{\Omega}_{\epsilon}}\left(u_{\epsilon}(x)+\psi(x)\right) v_{1}(x) d x+ \\
& \quad-\int_{\tilde{\Omega}_{\epsilon}}(\Delta \psi(x)+\lambda \psi(x)) v_{1}(x) d x-\int_{\tilde{\Omega}_{\epsilon}^{\prime} \backslash \tilde{\Omega}_{\epsilon}} \Delta \varphi_{\epsilon}(x) v_{1}(x) d x \tag{25}
\end{align*}
$$

Thus (24) and (25) yield

$$
\begin{align*}
& \left(\lambda-\lambda_{1}\right) \int_{\widetilde{\Omega}_{\epsilon}}\left(u_{\epsilon}(x)+\psi(x)\right) v_{1}(x) d x+\int_{\widetilde{\Omega}_{\epsilon}} p\left(x, u_{\epsilon}(x)\right) v_{1}(x) d x= \\
& =\int_{\tilde{\Omega}_{\epsilon}}(\Delta \psi(x)+\lambda \psi(x)) v_{1}(x) d x+\int_{\tilde{\Omega}_{\epsilon}^{\prime} \backslash \tilde{\Omega}_{\epsilon}}\left(\Delta \varphi_{\epsilon}(x)+\lambda_{1} \varphi_{\epsilon}(x)\right) v_{1}(x) d x . \tag{26}
\end{align*}
$$

At this point, if one assumes

$$
\left|\int_{\tilde{\Omega}_{\epsilon}^{\prime} \backslash \tilde{\Omega}_{\epsilon}}\left(\Delta \varphi_{\epsilon}(x)+\lambda_{1} \varphi_{\epsilon}(x)\right) v_{1}(x) d x\right|
$$

sufficently small, (26) yields a contradiction with hypothesis (H3), since the first member of (26) is negative and meas $\widetilde{\Omega}_{\epsilon}>0$. Thus meas $\widetilde{\Omega}_{\epsilon}=0$ and (23) is proved.

On the other hand, by using (23) it follows the obvious relation
$\int_{\Omega \backslash\left(\Omega_{\epsilon} \cup \widetilde{\Omega}_{\epsilon}\right)} u_{\epsilon}^{2}(x) d x=\int_{\Omega \backslash \Omega_{\epsilon}} u_{\epsilon}^{2}(x) d x=\int_{\left\{x \in \Omega:\left|u_{\epsilon}(x)\right| \leq \psi(x)\right\}} u_{\epsilon}^{2}(x) d x \leq\|\psi\|_{L^{2}(\Omega)}^{2}$.
Moreover, by step $5,(P 4)$ and (27), one gets, for any $\epsilon>0$,

$$
\begin{align*}
&\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x \leq \\
& \leq \lambda\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) d x+\frac{1}{(s+1) \epsilon} \int_{\Omega}\left(u_{\epsilon}-\psi\right)^{+}(x) u_{\epsilon}(x) d x+ \\
&-\frac{1}{\epsilon} \int_{\Omega} \int_{0}^{u_{\epsilon}(x)}(t-\psi(x))^{+} d t d x+c_{1} \leq \\
& \leq \lambda\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) d x+\frac{1}{\epsilon}\left(\frac{1}{s+1}-\frac{1}{2}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) d x+ \tag{28}\\
&+\frac{1}{\epsilon}\left(1-\frac{1}{s+1}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}(x) \psi(x) d x+\|\psi\|_{L^{2}(\Omega)}^{2}+c_{1} \leq \\
& \leq \lambda\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) d x+\frac{1}{\epsilon}\left(\frac{1}{s+1}-\frac{1}{2}\right) \int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) d x+ \\
&+\frac{1}{\epsilon}\left(1-\frac{1}{s+1}\right)\|\psi\|_{L^{2}(\Omega)}\left\|u_{\epsilon}\right\|_{L^{2}\left(\Omega_{\epsilon}\right)}+\|\psi\|_{L^{2}(\Omega)}^{2}+c_{1} .
\end{align*}
$$

At this point, if $\left(\int_{\Omega} u_{\epsilon}^{2}(x) d x\right)_{\epsilon}$ was unbounded, then, by (27), even $\left(\int_{\Omega_{\epsilon}} u_{\epsilon}^{2}(x) d x\right)_{\epsilon}$
should be unbounded. Then (28) easily would yield an absurdum, since the last member of (28) would be unbounded from below as $\epsilon \rightarrow 0$, while the first member is positive for any $\epsilon>0$. So step 7 is proved.

Step 8. There exists a constant $c_{4}>0$ such that $\left\|u_{\epsilon}\right\|_{H_{0}^{1}(\Omega)} \leq c_{4}$ for any $\epsilon>0$.

Proof. By step 5 and by hypothesis $(P 4)$, one gets, for any $\epsilon>0$,

$$
\begin{aligned}
& \frac{1}{2} \int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x-\frac{\lambda}{2} \int_{\Omega} u_{\epsilon}^{2}(x) d x+\frac{1}{\epsilon} \int_{\Omega} \int_{0}^{u_{\epsilon}(x)}(t-\psi(x))^{+} d t d x \leq \\
& \leq c_{1}+\frac{1}{s+1} \int_{\Omega} p\left(x, u_{\epsilon}(x)\right) u_{\epsilon}(x) d x
\end{aligned}
$$

Thus, as u_{ϵ} solves (3), one gets

$$
\begin{align*}
&\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x \leq \\
& \leq \lambda\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) d x+\frac{1}{(s+1) \epsilon} \int_{\Omega}\left(u_{\epsilon}-\psi\right)^{+}(x) u_{\epsilon}(x) d x+ \\
&-\frac{1}{\epsilon} \int_{\Omega} \int_{0}^{u_{\epsilon}(x)}(t-\psi(x))^{+} d t d x+c_{1} \leq \\
& \leq \lambda\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) d x+\frac{1}{(s+1) \epsilon} \int_{\Omega_{\epsilon}}\left(u_{\epsilon}(x)-\psi(x)\right) u_{\epsilon}(x) d x+ \tag{29}\\
&-\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}}\left(u_{\epsilon}-\psi\right)^{2}(x) d x+c_{1} \leq \\
& \leq \lambda\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) d x+\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}}\left(u_{\epsilon}(x)-\psi(x)\right) u_{\epsilon}(x) d x+ \\
&-\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}}\left(u_{\epsilon}-\psi\right)^{2}(x) d x+c_{1} \leq \\
& \leq \lambda\left(\frac{1}{2}-\frac{1}{s+1}\right) \int_{\Omega} u_{\epsilon}^{2}(x) d x+\frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}}\left(u_{\epsilon}(x)-\psi(x)\right) \psi(x) d x+c_{1} .
\end{align*}
$$

At this point, taking $v=\psi$ in (3) and using ($P 2$), one gets

$$
\begin{align*}
& \frac{1}{2 \epsilon} \int_{\Omega_{\epsilon}}\left(u_{\epsilon}(x)-\psi(x)\right) \psi(x) d x=-\frac{1}{2} \int_{\Omega} \nabla u_{\epsilon}(x) \nabla \psi(x) d x+ \\
& \quad+\frac{\lambda}{2} \int_{\Omega} u_{\epsilon}(x) \psi(x) d x+\frac{1}{2} \int_{\Omega} p\left(x, u_{\epsilon}(x)\right) \psi(x) d x \leq \\
& \leq-\frac{1}{2} \int_{\Omega} \nabla u_{\epsilon}(x) \nabla \psi(x) d x+\frac{\lambda}{2} \int_{\Omega} u_{\epsilon}(x) \psi(x) d x+ \tag{30}\\
& \quad+\frac{1}{2} \int_{\Omega}\left(a_{1} \psi(x)+a_{2}\left|u_{\epsilon}(x)\right|^{s} \psi(x)\right) d x .
\end{align*}
$$

By (29),(30),(H1) and the continuous embedding of $H_{0}^{1}(\Omega)$ into $L^{2^{*}}(\Omega)$, one obtains

$$
\begin{aligned}
\left\|u_{\epsilon}\right\|_{H_{0}^{1}(\Omega)}^{2} & \leq M_{1}\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+M_{2}\left\|u_{\epsilon}\right\|_{L^{2^{*}(\Omega)}}^{s}+M_{3} \leq \\
& \leq M_{1}\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)}^{2}+M_{4}\left\|u_{\epsilon}\right\|_{H_{0}^{1}(\Omega)}^{s}+M_{3},
\end{aligned}
$$

where $M_{1}, M_{2}, M_{3}, M_{4}$ are positive constants depending only on λ, s, ψ, but not on ϵ.
Thus the statement of step 8 easily follows from step 7 and (H4).
Step 9. There exists a constant $c_{5}>0$ such that

$$
\left\|\left(u_{\epsilon}-\psi\right)^{+}\right\|_{L^{2}(\Omega)} \leq c_{5} \sqrt{\epsilon}
$$

for any $\epsilon>0$.
Proof. Since u_{ϵ} is a solution of problem (3), in particular one gets

$$
\begin{align*}
& \frac{1}{\epsilon} \int_{\Omega}\left(u_{\epsilon}-\psi\right)^{+}(x) u_{\epsilon}(x) d x= \tag{31}\\
& =\int_{\Omega} p\left(x, u_{\epsilon}(x)\right) u_{\epsilon}(x) d x-\int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x+\lambda \int_{\Omega} u_{\epsilon}^{2}(x) d x .
\end{align*}
$$

Thus, by the positivity of ψ, it follows

$$
\begin{aligned}
& \frac{1}{\epsilon} \int_{\Omega}\left(\left(u_{\epsilon}-\psi\right)^{+}\right)^{2}(x) d x \leq \\
& \quad \leq \int_{\Omega} p\left(x, u_{\epsilon}(x)\right) u_{\epsilon}(x) d x-\int_{\Omega}\left|\nabla u_{\epsilon}(x)\right|^{2} d x+\lambda \int_{\Omega} u_{\epsilon}^{2}(x) d x
\end{aligned}
$$

By (P2), step 8 and the continuous embedding of $H_{0}^{1}(\Omega)$ into $L^{s+1}(\Omega)$ one deduces the thesis.

Step 10. There exists a sequence $\left(\epsilon_{n}\right)_{n}$ converging to 0 as n goes to ∞ such that $\left(u_{\epsilon_{n}}\right)_{n}$ weakly converges in $H_{0}^{1}(\Omega)$ to some $u \not \equiv 0$.

Proof. First of all, by step 8 , there exists a sequence $\left(u_{\epsilon_{n}}\right)_{n}$ weakly converging in $H_{0}^{1}(\Omega)$ to some u as ϵ_{n} goes to 0 . We claim that u is not identically zero. Indeed, $u \equiv 0$ would imply an absurdum deduced by step 6 and by passing to the limit as ϵ_{n} goes to 0 in the following relation (due to the fact that $u_{\epsilon_{n}}$ is a solution of problem (3) with $\epsilon=\epsilon_{n}$)

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{\epsilon_{n}}(x)\right|^{2} d x-\lambda \int_{\Omega} u_{\epsilon_{n}}^{2}(x) d x+\frac{1}{\epsilon_{n}} \int_{\Omega}\left(u_{\epsilon_{n}}-\psi\right)^{+}(x) u_{\epsilon_{n}}(x) d x= \\
& =\int_{\Omega} p\left(x, u_{\epsilon_{n}}(x)\right) u_{\epsilon_{n}}(x) d x
\end{aligned}
$$

Step 11. The element u given by Step 10 is a nontrivial solution of problem(2).

Proof. First of all, $u_{\epsilon_{n}}$ verifies these two convergence properties:

$$
u_{\epsilon_{n}} \rightarrow u \text { in } L^{2}(\Omega)
$$

and

$$
\left(u_{\epsilon_{n}}-\psi\right)^{+} \rightarrow 0 \text { in } L^{2}(\Omega),
$$

as ϵ_{n} goes to 0 . So $u \leq \psi$ on Ω.
From the fact that $u_{\epsilon_{n}} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$ as ϵ_{n} goes to 0 , one deduces

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{\epsilon_{n}}(x)\right|^{2} d x \geq \int_{\Omega}|\nabla u(x)|^{2} d x \tag{32}
\end{equation*}
$$

and, by using hypothesis (P2),

$$
\begin{equation*}
\int_{\Omega} p\left(x, u_{\epsilon_{n}}(x)\right) u_{\epsilon_{n}}(x) d x \rightarrow \int_{\Omega} p(x, u(x)) u(x) d x \tag{33}
\end{equation*}
$$

Finally, as $u_{\epsilon_{n}}$ is a solution of problem (3) with $\epsilon=\epsilon_{n}$, one gets

$$
\begin{align*}
& \int_{\Omega} \nabla u_{\epsilon_{n}}(x) \nabla\left(v(x)-u_{\epsilon_{n}}(x)\right) d x-\lambda \int_{\Omega} u_{\epsilon_{n}}(x)\left(v(x)-u_{\epsilon_{n}}(x)\right) d x+ \\
& +\frac{1}{\epsilon_{n}} \int_{\Omega}\left(u_{\epsilon_{n}}-\psi\right)^{+}(x)\left(v(x)-u_{\epsilon_{n}}(x)\right) d x=\int_{\Omega} p\left(x, u_{\epsilon_{n}}(x)\right)\left(v(x)-u_{\epsilon_{n}}(x)\right) d x \tag{34}
\end{align*}
$$

$\forall v \in H_{0}^{1}(\Omega), \quad v \leq \psi$.
By (32) and (33) and passing to the limit as ϵ_{n} goes to 0 in (34), one easily gets that u is a nontrivial solution of problem (2).

References

[1] Bensoussan A.-Lions J.L.: ‘Applications des inéquations variationelles en contrôle stochastique', Dunod, Paris (1978).
[2] Boccardo L.: ‘Alcuni problemi unilaterali in risonanza', Rend. Mat. 13 (1980), pp.647-663.
[3] Girardi M.-Matzeu M.-Mastroeni L.: 'Existence and regularity results for nonnegative solutions of some semilinear elliptic variational inequalities via mountain pass techniques', ZAA, J. Anal. Appl. vol.20, no. 4 (2001), pp.845-857.
[4] Mancini G.-Musina R.: 'A free boundary problem involving limit Sobolev exponents', Manuscripta Math. 58 (1987), pp.77-93.
[5] Mancini G.-Musina R.: 'Holes and hobstacles', Ann. Inst. Henri Poincaré, Anal. Non Linéaire, vol.5, no. 4 (1988), pp.323-345.
[6] Marino A.-Passaseo D.:'A jumping behaviour induced by an obstacle', Progress in Variational Methods in Hamiltonian Systems and Elliptic Equations (M.Girardi-M.Matzeu-F.Pacella Eds.), Pitnam (1992), pp.127-143.
[7] Passaseo D.:'Molteplicità di soluzioni per disequazioni variazionali non lineari di tipo ellittico', Rend. Acc. Naz. Sc. detta dei XL, Memorie di Mat., 109 vol.XV, fasc. 2 (1991), pp.19-56.
[8] Rabinowitz P.:'Minimax methods in critical point theory with applications to differential equations', CBMS Regional Conf. Series Math. 65 Amer. Math. Soc. Providence R.I. (1986).
[9] Szulkin A.:'On the solvability of a class of semilinear variational inequalities', Rend. Mat. 4 (1984), pp.121-137.
[10] Szulkin A.: 'On a class of variational inequalities involving gradient operators', J. Math. Anal. Appl. 100 (1984), pp.486-499.

[^0]: *e-mail:matzeu@mat.uniroma2.it
 $\dagger \mathrm{e}-\mathrm{mail}:$ servadei@mat.uniroma2.it
 Supported by MURST, project 'Variational Methods and Nonlinear Differential Equations'.

[^1]: ${ }^{1}$ In particular one only requires $s \in(1,2)$ and $\psi \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$.

