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a b s t r a c t

The descending motion of particles in a Sierpinski gasket subject to a branching process is
examined. The splitting on escape nodes of falling particles makes the event of reaching
the base of the gasket possible with positive probability. The r.v.’s Y (k), representing the
number of particles reaching level k (that is the k-th generation) is the main object of
our analysis. The transition probabilities, the means and variances of Y (k) are obtained

∧
explicitly with a number of recursive formulas concerning the probability generating
functions EtY (k), k ≥ 1. A section is also devoted to the analysis of extinction probabilities
for the branching process developing in this specific fractal set.

© 2008 Published by Elsevier B.V.

1. Introduction and description of the process 1

Random motions combined with branching have been studied in the context of diffusions and have also originated the 2

theory of superprocesses (McKean, 1975; Bramson, 1978). 3

Branching processes for particles moving at finite velocity have been examined in some papers
∧
appearing in the physical 4

and probabilistic literature (see Ratanov (2006) and references therein). In both cases the processes develop in Euclidean 5

spaces. Diffusions on planar fractals have been studied since the Eighties by physicists and probabilists (see Barlow and Q1 6

Perkins (1988), Barlow (1998) andDafydd Jones (1996)). The structureswhere these diffusions are inserted are the Sierpinski 7

gaskets and carpets or some of their generalizations (Kumagai, 1993; Metz, 1993; Barlow and Bass, 1989). The Sierpinski 8

gasket is perhaps the simplestmathematically tractable form of fractal structure and for this reason hasmaintained a central 9

role throughout the literature, including the most recent one (Teufl, 2003; Osada, 2007). 10

In our previous paper (2007), we have studied the downward motion under the action of gravity of a single particle 11

on a vertical Sierpinski gasket. In our case, the particle cannot repeatedly visit the same point and this makes our model 12

significantly different from those leading to
∧
diffusion. In the present paper, the downward motion on the Sierpinski gasket 13

is combined with a branching process. Even in the pioneering papers it is remarked that the diffusing particle (on carpets or 14

gaskets) barely leaves the starting point. The same type of behaviour has been noticed in the downward motion studied by 15

Leorato and Orsingher (2007). The branching process introduced here contrasts the disintegration of the moving particles 16

(which can undergo absorption at each step). Instead of branching, we supposed that a growing number of particles was 17

poured on the starting point (the upper vertex of the Sierpinski gasket) in order tomake the attainment of the base possible. 18

We here assume that on the vertex V (corresponding to level 0) of a Sierpinski pregasket Gn, a particle begins a descending 19

motion with the following rules. 20

The pregasket Gn possesses 2n knots (called also nodes) which can be classified as absorbing or escape points (fromwhich 21

further descent is possible). Each particle lying on escape knots at level k splits into two particles (moving independently) 22
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Fig. 1. A realization of the process Y (k) after the occurrence of the first duplication. The symbols ‘‘X’’ refer to particles fallen on absorbing states.

which can reach the two neighbouring nodes of level k + 1 with equal probability 1/2. If an offspring falls on an absorbing1

knot, it is absorbed and dies.2

Particles of the kth generation are those located at level k. Thus the particle located at the vertex V represents the initial3

generation and the two
∧
offspring lying at level 1 represent the first generation. The number Y (k) of components of the4

successive generations (k ≥ 2) is random and the birth and death rates depend on the number of escape nodes encountered5

during the descent.6

The principal aim of this paper is the analysis of the distributions and properties of the process Y (k), k ≥ 0. In particular,7

we obtain the transition probabilities Pr {Y (k) = n|Y (k − 1) = m} for all values of k, n and m, the mean value EY (k) and8

the explicit expression of VarY (k). Furthermore, recursive relationships for the factorial moments are derived and the last9

section is devoted to the analysis of extinction probabilities. Also the martingale behaviour of the subsequence Y (2n) is10

examined.11

The original ideawhichmotivated our first paperwas tomodel the fallingmovement of liquids in
∧
porousmaterialswhere12

the internal structure of the matter is idealized as a disordered ensemble of intersecting filaments. We here imagine that13

the fractal structure causes the splitting of the falling drops, thus igniting the branching process.14

2. Transition probabilities15

We begin by describing the descending motion and the associated branching process. We assume that at the vertex V16

(level 0) a single particle is located and immediately splits into two
∧
offspring, both of which step down to level 1, moving17

independently. Since both nodes of the first level are escape nodes, each of the two
∧
offspring will continue its descent.18

This means that they are not absorbed (they ‘‘survive’’) with probability 1 (i.e. Pr {Y (1) = 2} = 1). Instead, each of their19

4
∧
offspring can fall with probability 1/2 onto an absorbing node (and therefore die) and thus Y (2) ranges from 0 to 4 (see20

Fig. 1). It is easy to see that each particle belonging to an even generation, produces two surviving
∧
offspring with probability21

1. This means that, if Y (2k) = i, then Y (2k + 1) = 2i. The transition from odd to even levels is much more complicated.22

The number of escape knots at level k of the pregasketGn (denoted by νn(k)) satisfies the following recursive relationships23

νn+1(k) =

{
νn(k) 0 ≤ k ≤ 2n

− 1
2νn(k − 2n) 2n

≤ k ≤ 2n+1
− 1 νn(0) = ν(0) = 1 = 20. (2.1)24

The number n represents the order of fragmentation of Gn, which possesses 2n
+ 1 levels (including the vertex and the25

base).26

The autosimilarity explains why νn+1(k) = νn(k) for 0 ≤ k < 2n (the pregasket Gn coincides with the upper half of Gn+1)27

while the lower part of the pre-gasket Gn+1 is a double copy of Gn and this implies that νn+1(k) = 2νn(k − 2n).28

Remark 2.1. The function νn can be expressed in terms of the function βn introduced in Leorato and Orsingher (2007) as29

follows:30

νn(k) = 2βn(k), 0 ≤ k ≤ 2n
− 1, n = 0, 1, . . . . (2.2)31

The function βn(k) is defined by the recursive relationship32

βn+1(k) =

{
βn(k) 0 ≤ k ≤ 2n

− 1
βn(k − 2n) + 1 2n

≤ k ≤ 2n+1
− 1 (2.3)33
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with βn(0) = 0, n = 0, 1, 2 . . .. From (2.3), with k = 1, we get that βn(1) = 1, for all n = 1, 2, . . . (namely, because the two 1

levels of the first node are escape nodes). 2

We first note that νn(0) = 20
= 2βn(0), for all n. Then, the relationship (2.2) can be easily proved by induction. 3

From the definition of νn (or of βn), one can easily see that νn(2m) = 2 for all m < n and νn(2m
− 1) = 2m for all m ≤ n. 4

In fact, from (2.1) we have that 5

νn(2m) = νn−1(2m) = · · · = νm+1(2m) = 2νm(2m
− 2m) = 2 · νm(0) = 2 6

and also that 7

νn(2m
− 1) = · · · = νm(2m

− 1) = 2νm−1(2m
− 1 − 2m−1) = 2νm−1(2m−1

− 1) 8

= 22νm−2(2m−2
− 1) = · · · = 2m−1ν1(1) = 2m. (2.4) 9

We observe that the functions βn and νn are constant in n within their support. In other words, βn(k) = βm(k) (resp. 10

νn(k) = νm(k)) for all k for which both functions are defined, i.e. for all k ≤ 2min{n,m}
− 1. Therefore, in the following we 11

shall omit the subscript n in νn. 12

Some further useful properties of the function ν(k), k ≥ 0 are presented in the following lemmas. 13

Lemma 2.1. For all k ≥ 0, 14

ν(k) = 2p (2.5) 15

where p is the number of ones in the binary representation of k. 16

Proof. By definition ν(0) = 1 and ν(1) = 2 while by drawing a picture, it is evident that ν(2) = 2. 17

In view of (2.1) for all 2m1−1
≤ k ≤ 2m1 − 1 we can write that: 18

ν(k) = 2ν(k − 2m1−1). (2.6) 19

If k − 2m1−1
= 0 we have that ν(k) = 2ν(0) = 2, otherwise we must continue the procedure above. 20

Thus, if k − 2m1−1
≥ 1, there exists an integer 1 ≤ m2 < m1, such that 2m2−1

≤ k − 2m1−1
≤ 2m2 − 1. By applying

∧
(2.1) 21

once again, we find that 22

ν(k − 2m1−1) = 2ν(k − 2m1−1
− 2m2−1). (2.7) 23

By combining (2.6) and (2.7) we have that 24

ν(k) = 22ν(k − 2m1−1
− 2m2−1). 25

If k − 2m1−1
− 2m2−1

= 0 we have done, otherwise, we continue our procedure in the same manner,
∧
until for some integer 26

pwe have that 27

k − 2m1−1
− · · · 2mp−1

= 0 28

and 29

ν(k) = 2pν(k − 2m1−1
− · · · − 2mp−1) = 2pν(0) = 2p

30

which proves the claim. � 31

Remark 2.2. From
∧
Lemma 2.1, we can easily derive some properties of ν(k), k ≥ 0. 32

(i) An immediate consequence of (2.5) is that, for all m ≥ 0, ν(2m) = 2 and ν(2m
− 1) = 2m, as was already proved in 33

Remark 2.1. 34

(ii) For all k ≥ 0, ν(k) = ν(2k). This follows straightforwardly from the fact that, if x1x2x3 · · · xm is the binary representation 35

of k, with xi = {0, 1}, i = 1, . . . ,m, then the sequence x1x2x3 · · · xm0 is the binary representation of 2k. 36

(iii) Moreover, ν(2k) − ν(2k − 1) ≤ 0, for all k ≥ 1. In order to check this statement, we remark that for every number k 37

there is a number qk such that the rightmost subsequence of length qk + 1 of the binary representation of k – corresponding 38

to the first qk + 1 powers of 2 – is composed by a 1 and qk consecutive zeros. For example, for k = 40, we have the binary 39

representation 101000 and q40 = 3. In particular, qk = 0 if and only if k is odd, otherwise qk ≥ 1. 40

Now, the binary representations of the two numbers 2k and 2k − 1 differ only for the last qk + 1 numbers, where ones 41

and zeros are interchanged. For example, if 2k = 40, the binary representation of 2k − 1 = 39 is in fact 100111. Thus, if p2k 42

is the total number of ones in the binary representation of 2k, we have that ν(2k) = 2p2k ≤ 2p2k+q2k−1
= 2p2k−1 = ν(2k−1). 43

We are now interested in calculating, for an arbitrary pregasket Gm (with 2m levels), how many layers possess 2j escape 44

knots (from each escape knot two descending branches originate). In symbols, we want to evaluate the number of elements 45

belonging to the sets: 46

Am,j =
{
0 ≤ k ≤ 2m

− 1 : ν(k) = 2j} , m ≥ 1, j = 0, . . . ,m. 47
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Lemma 2.2. For all m ≥ 1, 0 ≤ j ≤ m,1

#
{
Am,j

}
=

(
m
j

)
. (2.8)2

Proof. We proceed by induction and note that form = 1we have two possible levels, the first one with a single escape knot3

(i.e. ν(0) = 1) and the other one with two escape knots (ν(1) = 2) and thus (2.8) holds.4

We assume now that (2.8) is valid for somem ≥ 1 and prove that it also holds form + 1.5

#
{
Am+1,j

}
= #

{
Am,j

}
+ #

{
2m

≤ k ≤ 2m+1
− 1 : ν(k) = 2j}

6

(by (2.1))
= #

{
Am,j

}
+ #

{
2m

≤ k ≤ 2m+1
− 1 : 2ν(k − 2m) = 2j}

7

=

(
m
j

)
+ #

{
0 ≤ k ≤ 2m

− 1 : ν(k) = 2j−1}
8

=

(
m
j

)
+ #

{
Am,j−1

}
=

(
m
j

)
+

(
m

j − 1

)
=

(
m + 1

j

)
. �9

Remark 2.3. We have the following straightforward consequences of the lemma above.10

2m−1∑
k=0

ν(k) =

m∑
j=0

2j
(
m
j

)
= 3m and

2m−1∑
k=0

1
ν(k)

=

m∑
j=0

2−j
(
m
j

)
=

(
3
2

)m

. (2.9)11

Let us introduce the following probabilities12

ρ(k) = Pr
{
a particle at level kmoves to an
escape knot at level k + 1

}
13

=
# {escape knots of level k + 1}

# {directions from level k to level k + 1}
=

ν(k + 1)
2ν(k)

. (2.10)14

The number 2ν(k) in the denominator of (2.10) corresponds to the fact that from each of the ν(k) knots at level k, two15

branches descend to level k + 1.16

In view of (2.10), we are able to give the transition probabilities of the process Y (k), k ≥ 1.17

Proposition 2.1. The transition probabilities for the process Y = {Y (k), k ∈ N ∪ {0}} have the following form:18

Pr {Y (2k) = n|Y (2k − 1) = m} =

(
2m
n

)(
ν(2k)

2ν(2k − 1)

)n (
1 −

ν(2k)
2ν(2k − 1)

)2m−n

, n = 0, . . . , 2m; (2.11)19

Pr {Y (2k + 1) = n|Y (2k) = m} =

{
1 if n = 2m
0 otherwise. (2.12)20

Proof. Let Xi(j − 1) be a r.v. taking values 1 (if the ith particle lying at level j − 1 descends to an escape node at level j) and21

0 (if the particle is captured by an absorbing state of level j). This means that Xi(j − 1) is a Bernoulli random variable with22

Pr {Xi(j − 1) = 1} = ρ(j − 1). Note that the distribution of Xi(j) is not affected by i. In the light of all this we can represent23

the number of particles at level j by means of the random sum24

Y (j) =

2Y (j−1)∑
i=1

Xi(j − 1). (2.13)25

The branching process, which implies the duplication of particles at each step, explains the 2Y (j−1) appearing in (2.13).26

The distribution (2.11) immediately follows from (2.13) while (2.12) is an immediate consequence of the definition of the27

process. �28

3. Some results about the moments of Y (k)29

From the representation (2.13) we can immediately obtain some results by applying Wald’s formulas.30
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Theorem 3.1. We have the following recursive relationships 1

EY (j) = 2ρ(j − 1)EY (j − 1) =
ν(j)

ν(j − 1)
EY (j − 1) (3.1) 2

Var Y (j) = 2ρ(j − 1) (1 − ρ(j − 1)) EY (j − 1) + 4ρ2(j − 1)Var Y (j − 1) (3.2) 3

NY (j)(t) = EtY (j)
= NY (j−1)

(
(1 − ρ(j − 1) + tρ(j − 1))2

)
. (3.3) 4

Proof. Formula (3.3) can be obtained straightforwardly because 5

NY (j) = E
(
EtX(j−1))2Y (j−1)

. 6

Formulas (3.1) and (3.2) are applications of Wald’s formulas for random sums. � 7

Remark 3.1. For odd values j = 2k + 1, the formulas of Theorem 3.1 simplify as follows: 8

EY (2k + 1) = 2EY (2k) (3.4) 9

Var Y (2k + 1) = 4Var Y (2k) (3.5) 10

NY (2k+1)(t) = NY (2k)(t2) (3.6) 11

because ρ(2k) = ν(2k + 1)/2ν(2k) = 1. 12

With some effort we can extract from Theorem 3.1 the explicit expressions of the mean values and variances of Y (j). 13

Theorem 3.2. We have the following explicit values, for all j ≥ 1 14

EY (j) = ν(j) (3.7) 15

Var Y (2k) =
3
4
ν2(2k)

k∑
j=0

1
ν(j)

+
ν(2k)
4

− ν2(2k) (3.8) 16

while Var Y (2k + 1) = 4Var Y (2k) because of (3.5). 17

Proof. From (3.1), since ν(0) = 1 and Y (0) = 1, we have immediately that 18

EY (j) =
ν(j)

ν(j − 1)
·
ν(j − 1)
ν(j − 2)

· · ·
ν(1)
ν(0)

EY (0) = ν(j). 19

For the proof of (3.8) we apply successively (3.5) and (3.2): 20

Var Y (2k) = ν(2k)
(
1 −

ν(2k)
2ν(2k − 1)

)
+

ν2(2k)
ν2(2k − 1)

Var Y (2k − 1). (3.9) 21

We then get that 22

Var (Y (2k)) = ν(2k)
(
1 −

ν(2k)
2ν(2k − 1)

)
+

ν2(2k)
ν2(2k − 1)

ν2(2k − 1)
ν2(2k − 2)

Var (Y (2k − 2)) 23

= ν(2k) −
ν2(2k)

2ν(2k − 1)
+

ν2(2k)
ν2(2k − 2)

[
ν(2k − 2)

(
1 −

ν(2k − 2)
2ν(2k − 3)

)
24

+
ν2(2k − 2)
ν2(2k − 3)

Var (Y (2k − 3))
]

25

= ν(2k) +
ν2(2k)

ν(2k − 2)
−

ν2(2k)
2

(
1

ν(2k − 1)
+

1
ν(2k − 3)

)
26

+
ν2(2k)

ν2(2k − 3)
ν2(2k − 3)
ν2(2k − 4)

Var (Y (2k − 4)) = · · · 27

= ν(2k) + ν2(2k)
k−1∑
j=1

1
ν(2k − 2j)

−
ν2(2k)

2

k∑
j=1

1
ν(2k − 2j + 1)

. (3.10) 28
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In order to explain the range of the sums appearing in the last member of (3.10) we note that the final application of (3.9)1

yields2

Var (Y (2k)) = ν(2k) +

k−2∑
j=1

ν2(2k)
ν(2k − 2j)

−

k−1∑
j=1

ν2(2k)
2ν(2k − 2j + 1)

+
ν2(2k)
ν2(3)

[
ν2(3)
ν2(2)

Var (Y (2))
]

3

= ν(2k) +

k−2∑
j=1

ν2(2k)
ν(2k − 2j)

−

k−1∑
j=1

ν2(2k)
2ν(2k − 2j + 1)

+
ν2(2k)
ν2(2)

[
ν(2)

(
1 −

ν(2)
2ν(1)

)
+

ν2(2)
ν2(1)

Var (Y (1))
]

4

= ν(2k) +

k−2∑
j=1

ν2(2k)
ν(2k − 2j)

−
1
2

k−1∑
j=1

ν2(2k)
ν(2k − 2j + 1)

+
ν2(2k)
ν(2)

−
ν2(2k)
2ν(1)

.5

In the last step the reader must take into account that Pr {Y (1) = 2} = 1.6

The result (3.10) can be adjusted in the following manner:7

Var (Y (2k)) =
3
4
ν(2k) +

1
4
ν(2k) + ν2(2k)

k−1∑
j=1

(
1

ν(2k − 2j)
−

1
2ν(2k − 2j + 1)

)
−

ν2(2k)
2ν(1)

8

=
3
4

k−1∑
j=0

ν2(2k)
ν(2k − 2j)

+
1
4
ν(2k) −

ν2(2k)
4

=
3
4

k−2∑
j=0

ν2(2k)
ν(2k − 2j)

+
1
4
ν(2k) +

ν2(2k)
8

9

wherewe have used the fact that 2ν(2k−2j+1) = 4ν(2k−2j). The final step consists in applying Lemma 2.1 and observing10

that:11

k−2∑
j=0

1
ν(2k − 2j)

=

k∑
h=0

1
ν(2h)

−
1

ν(0)
−

1
ν(2)

=

k∑
h=0

1
ν(2h)

−
3
2

=

k∑
h=0

1
ν(h)

−
3
2

12

so that13

Var(Y (2k)) =
3
4
ν2(2k)

k∑
j=0

1
ν(j)

−
3
4
ν2(2k)

3
2

+
ν2(2k)

8
+

ν(2k)
4

14

=
3
4
ν2(2k)

k∑
j=0

1
ν(j)

+
ν(2k)
4

− ν2(2k) (3.11)15

and this concludes the proof of (3.8). �16

Remark 3.2. For k = 2m−1
− 1 we can

∧
explicitly evaluate (3.11) because of (2.9) and keeping in mind that ν(2k) = ν(k):17

Var
{
Y
(
2
(
2m−1

− 1
))}

=
3
4
ν2(2m−1

− 1)
(
3
2

)m−1

− ν2(2m−1
− 1) +

ν(2m−1
− 1)

4
18

by (2.4)
=

3
4
22m−2

(
3
2

)m−1

− 22m−2
+

2m−1

22
= 3m

· 2m−3
− 22m−2

+ 2m−3
19

= 2m−3 [3m
+ 1 − 2m+1] .20

By similar calculations, since ν(2m−1) = 2, we have that21

Var
(
Y (2m)

)
=

3
4

· 22

2m−1
−1∑

h=0

1
ν(h)

+
1

ν(2m−1)

− 22
+

1
2

22

=
3
4

· 22

[(
3
2

)m−1

+
1
2

]
+

1
2

− 4 = 3m
· 2m−1

− 2.23

Remark 3.3. If we write (3.3) as follows24

NY (k)(t) = N2Y (k−1)

(
1 −

ν(k)
2ν(k − 1)

+
ν(k)

2ν(k − 1)
t
)

(3.12)25
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and then we derive (3.12) j times with respect to t , we easily get the following relationship for the factorial moments: 1

E [Y (k) · · · (Y (k) − j + 1)] =

(
ν(k)

2ν(k − 1)

)j

E [2Y (k) (2Y (k) − 1) · · · (2Y (k) − j + 1)] . 2

Remark 3.4. By applying (3.3) twice we get that 3

EtY (k)
= E

[(
1 −

ν(k)
2ν(k − 1)

+
ν(k)

2ν(k − 1)
t
)2
]Y (k−1)

4

= E

[
1 −

ν(k − 1)
2ν(k − 2)

+
ν(k − 1)
2ν(k − 2)

(
1 −

ν(k)
2ν(k − 1)

+
ν(k)

2ν(k − 1)
t
)2
]2Y (k−2)

. (3.13) 5

If k is even, then ν(k − 1)/2ν(k − 2) = 1 and (3.13) becomes 6

EtY (k)
= E

(
1 −

ν(k)
2ν(k − 1)

+
ν(k)

2ν(k − 1)
t
)4Y (k−2)

(3.14) 7

while for an odd kwe have that 8

EtY (k)
= Et2Y (k−1)

= E
(
1 −

ν(k − 1)
2ν(k − 2)

+
ν(k − 1)
2ν(k − 2)

t2
)2Y (k−2)

. (3.15) 9

By applying successively the above relationships, one gets a cumbersome formula which cannot be further developed. 10

Although an exact expression for EtY (k) cannot be obtained for all k, we are able to provide a lower bound in the next 11

theorem. 12

Theorem 3.3. For all k ≥ 1 and 0 < t ≤ 1, 13

NY (k)(t) = EtY (k)
≥

(
1 −

ν(k)
2k

+
ν(k)
2k

t
)2k

= EtBin(2
k,ν(k)/2k). (3.16) 14

Proof. In view of Theorem 3.1 we have that 15

EtY (k)
= E

(
1 −

ν(k)(1 − t)
2ν(k − 1)

)2Y (k−1)

= E

{
E

((
1 −

ν(k)(1 − t)
2ν(k − 1)

)2Y (k−1)
∣∣∣∣∣ Y (k − 2)

)}
16

≥ E


(

E
(
1 −

ν(k)
2ν(k − 1)

(1 − t)
)Y (k−1)

∣∣∣∣∣ Y (k − 2)

)2
 (3.17) 17

where in the last step the conditional Jensen inequality 18

E
[
u2Y (k−1)

|Y (k − 2)
]

≥
[
EuY (k−1)

|Y (k − 2)
]2

19

is applied. 20

By denoting Z(k) ∼ Bin (ρ(k), 2Y (k)), the conditional mean in the last member of (3.17) can be easily evaluated as 21

follows: 22

E

{(
1 −

ν(k)(1 − t)
2ν(k − 1)

)Y (k−1)
∣∣∣∣∣ Y (k − 2)

}
= NZ(k−2)

(
1 −

ν(k)(1 − t)
2ν(k − 1)

)
23

=

(
1 −

ν(k − 1)
2ν(k − 2)

+
ν(k − 1)
2ν(k − 2)

(
1 −

ν(k)
2ν(k − 1)

+
ν(k)

2ν(k − 1)
t
))2Y (k−2)

24

=

(
1 −

ν(k)
22ν(k − 2)

+
ν(k)

22ν(k − 2)
t
)2Y (k−2)

. (3.18) 25

By plugging (3.18) into (3.17) we get that 26
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EtY (k)
≥ E

(
1 −

ν(k)(1 − t)
22ν(k − 2)

)22Y (k−2)

= E

(
E
(
1 −

ν(k)(1 − t)
22ν(k − 2)

)22Y (k−2)
∣∣∣∣∣ Y (k − 3)

)
1

≥ E

(
E
(
1 −

ν(k)(1 − t)
22ν(k − 2)

)Y (k−2)
∣∣∣∣∣ Y (k − 3)

)22

2

= E
(
1 −

ν(k)(1 − t)
23ν(k − 3)

)23Y (k−3)

≥ · · · ≥ E
(
1 −

ν(k)(1 − t)
2kν(0)

)2kY (0)

3

and this concludes the proof. �4

Remark 3.5. For k = 2m,m ≥ 1, Theorems 3.1 and 3.3 permit us to write that5

EtY (2m)
= E

(
1 −

1
2m

+
1
2m

t
)2Y (2m−1)

≥

(
1 −

2
22m

+
2

22m
t
)22

m

. (3.19)6

We now have the following general result for conditional means.7

Theorem 3.4. For every 0 < j ≤ k we have that8

E {Y (k)|Y (j)} =
ν(k)
ν(j)

Y (j). (3.20)9

Proof. For all k ≥ j > 0, we clearly have that10

E {Y (k)|Y (j) = h} =

2k−1∑
l=0

E {Y (k)|Y (k − 1) = l, Y (j) = h} Pr {Y (k − 1) = l|Y (j) = h}11

=

2k−1∑
l=0

E {Y (k)|Y (k − 1) = l} Pr {Y (k − 1) = l|Y (j) = h}12

=

2k−1∑
l=0

2lρ(k − 1) Pr {Y (k − 1) = l|Y (j) = h} = 2ρ(k − 1)E {Y (k − 1)|Y (j) = h}13

which easily implies the result:14

E {Y (k)|Y (j) = h} =
ν(k)

ν(k − 1)
·
ν(k − 1)
ν(k − 2)

· · ·
ν(j + 1)

ν(j)
E {Y (j)|Y (j) = h} =

ν(k)
ν(j)

h. �15

Corollary 3.1. We have that16

E
{
Y (r · 2k)|Y (r · 2j)

}
= Y (r · 2j),17

for all r ∈ N and for all k ≥ j > 0. Thus the subsequences Y (r · 2k), k ≥ 0 are martingales with respect to the natural filtrations18

(generated by Y (r · 2k)).19

Proof. From Theorem 3.4 E
{
Y (r · 2k)|Y (r · 2j)

}
=

ν(r·2k)
ν(r·2j)

Y (r · 2j) while from Lemma 2.1 ν(r) = ν(2r) = · · · = ν(2j r) =Q220

· · · = ν(2k r) and this proves the claim. �21

Remark 3.6. As a particular case, from Corollary 3.1 we derive that the subsequence Y (2k), k ≥ 0, which represents the22

number of particles reaching the base of the pregaskets Gk, is a martingale.23

Remark 3.7. If we analyze the subsequence Y (2k), k ≥ 0, we can attack the problem in a different way. The process24

Y (2k), k ≥ 0 represents the number of particles on the outer nodes of the base of the pregasket Gk. If we denote by W1(k)25

andW2(k) the number of particles of the left-most and right-most nodes, respectively, then26

Y (2k) = W1(2k) + W2(2k).27

The r.v.’sWj(2k), j = 1, 2 form two branching processes which develop independently.28

The processes Wj(k), j = 1, 2 have Bernoulli offspring
∧
distributions with mean one and therefore are critical (that is,29

extinguish with probability one). Then, also Y (2k) disappears with probability one.30
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4. Extinction probabilities 1

We devote this section to the analysis of the probabilities of extinction which are a major feature of all branching 2

processes. 3

We now study the probability of the following events: 4

Ek = {Y (k) = 0} = {extinction occurred at or before generation (level) k} . (4.1) 5

We remark that the falling particles die if and only if they reach the absorbing nodes from which the further downward 6

motion is not possible. This means that extinction of particles is strictly related to the dynamics inside the Sierpinski gasket. 7

From the relationship (3.3) we can infer that: 8

Pr {Ek} = NY (k)(0) = NY (k−1)
(
(1 − ρ(k − 1))2

)
= E

(
1 −

ν(k)
2ν(k − 1)

)2Y (k−1)

. (4.2) 9

In view of the autosimilarity of the pregasket Gm, we have the following recursive relationship for the probability of 10

∧
extinction of the subsequence Y (2m),m ≥ 0. Loosely speaking, the autosimilarity consists in that the pregasket Gm−1 is 11

identical to a rescaled version of the three biggest triangles forming the pregasket Gm. 12

Theorem 4.1. The following recursive relationship holds 13

Pr{E2m} = E
(
1 −

1 − Pr{E2m−1}

2m−1

)2Y (2m−1
−1)

. (4.3) 14

Proof. 15

Pr{E2m} = Pr
{
Y (2m) = 0

}
=

22
m−1∑
h=0

Pr
{
Y (2m) = 0|Y (2m−1) = h

}
Pr
{
Y (2m−1) = h

}
. 16

By autosimilarity, the rules governing the branching process are the same for all the pregaskets Gm−1 composing Gm, 17

for all m ≥ 1. In other words, the subprocess {Y (2m),m ≥ 0} is stationary, that is Pr
{
Y (2m) = 0|Y (2m−1) = h

}
= 18

Pr
{
Y (2m−1) = 0|Y (0) = h

}
. Thus, in view of the

∧
independence of particles, 19

Pr{E2m} =

22
m−1∑
h=0

Pr
{
Y (2m−1) = 0|Y (0) = h

}
Pr
{
Y (2m−1) = h

}
20

=

22
m−1∑
h=0

[
Pr
{
Y (2m−1) = 0

}]h
Pr
{
Y (2m−1) = h

}
21

= NY (2m−1)

(
Pr
{
E2m−1

})
= NY (2m−1−1)

(
1 − ρ(2m−1

− 1)
(
1 − Pr

{
E2m−1

}))
. 22

Formula (4.3) emerges once the probability ρ(2m−1
− 1) = 1/2m−1 is taken into account. � 23

Remark 4.1. From Theorem 3.3 for t = 0 we get that 24

Pr{Ek} = EtY (k)
|t=0 ≥

(
1 −

ν(k)
2k

)2k

. (4.4) 25

From (4.2) and the Jensen inequality, we have instead the lower bound: 26

Pr {Ek} = E
(
1 −

ν(k)
2ν(k − 1)

)2Y (k−1)

≥

(
1 −

ν(k)
2ν(k − 1)

)2EY (k−1)

=

(
1 −

ν(k)
2ν(k − 1)

)2ν(k−1)

. (4.5) 27

In the intermediate steps we have applied the Jensen inequality to the convex function g(x) =

(
1 −

ν(k)
2ν(k−1)

)2x
. 28

In view of the fact that ν(k − 1) ≤ 2k−1 and that the function g(x) = (1 − a/x)x is increasing, the lower bound (4.4) is 29

stricter than (4.5). 30

A sequence of lower bounds for {Y (2m),m ≥ 0}, can be written down by applying
∧
(4.3)

∧
recursively together with the 31

Jensen inequality. For this purpose we consider the sequence defined by 32

lm =

(
1 −

1 − lm−1

2m−1

)2m

, m ≥ 2, (4.6) 33
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where l1 = Pr{E2} = 1/16. In order to show that lm ≤ Pr{E2m}, we examine some special cases which illustrate the1

procedure. Form = 2,2

Pr{E22} = E
(
1 −

1 − Pr{E2}
2

)2Y (1)

≥

(
1 −

1
2

(1 − l1)
)2EY (1)

=

(
1 −

1
2

(1 − l1)
)22

= l2.3

By similar steps we have that4

Pr{E23} = E
(
1 −

1 − Pr{E22}
22

)2Y (2)

≥

(
1 −

(1 − l2)
22

)2EY (2)

=

(
1 −

(1 − l2)
22

)23

= l3.5

By iterating this procedure we arrive at Pr{E2m} ≥ lm.6

It is easily seen that the sequence lm is bounded and increasing. Then, by passing to the limit, we get that7

l = lim
m→∞

lm = lim
m→∞

(
1 −

1 − lm−1

2m−1

)2m

= e
−2 lim

m
(1−lm)

= e−2(1−l).8

That is, l = limm lm is the solution to the
∧
transcendental equation9

l = e−2(1−l). (4.7)10

The root of Eq. (4.7) can be computed numerically and we get that l∗ ≈ 0.203. It is to worthwhile
∧
noting that11

lm is a significant lower bound for finite values of m but not for m → ∞, because from Remark 3.7 we know that12

Pr{limm→∞ Y (2m) = 0} = 1.13
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