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ABSTRACT 1. Using renormalization group methods, we study the Heis-
enberg-Ising XY Z chain in an external magnetic field directed as the z
axis, in the case of small coupling J3 in the z direction. In particular, we
focus our attention on the asymptotic behaviour of the spin correlation
function in the direction of the magnetic field and the singularities of
its Fourier transform.

An expansion for the ground state energy and the effective potential is
derived, which is convergent if the running coupling constants are small
enough. Moreover, by using hidden symmetries of the model, we show
that this condition is indeed verified, if J3 is small enough, and we derive
an expansion for the spin correlation function. We also prove, by means
of an approximate Ward identity, that a critical index, related with the
asymptotic behaviour of the correlation function, is exactly vanishing,
together with other properties, so obtaining a rather detailed description
of the XY Z correlation function.

1. Introduction

1.1 If (S5,52,8%) = L(0l,02,03), for i = 1,2,...,L, 0®, a = 1,2,3, being the Pauli

matrices, the Hamiltonian of the Heisenberg-Ising XY Z chain is given by

L—-1
H==Y [51S1Sh, + 2S252,, + J3S2S3, | + hS3) — hS} + Uf (1.1)

x=1
where the last term, to be fixed later, depends on the boundary conditions. The space-time

spin correlation function at temperature 3! is given by
OF 5(x) =< SLSG >, — <S% >L,< S5 >3, (1.2)

where x = (z,7), ST = ef*0S%e~H20 and < . > 5= Trle PH.]/Trle=PH] denotes the
expectation in the grand canonical ensemble. We shall use also the notation Q*(x) =
limL,B%oo Q%ﬁ (X)

The Hamiltonian (1.1) can be written [LSM] as a fermionic interacting spinless Hamilto-

nian. In fact, it is easy to check that the operators

at = [1:[(—02)] oF (1.3)

y=1
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are a set of anticommuting operators and that, if 0 = (0! +i02)/2, we can write

-1 - ) a1 -
LD DU LS SRR LD DM 3 _ 9atg-
o, = =1 a, , o, =aje v=1 , o0,=2aya, —1. (1.4)

Hence, if we fix the units so that J; + Jo = 2 and we introduce the anisotropy u = (J; —

J2)/(J1 + J2), we get

]. u - -
H:Z{—ﬁ[a ayq taia;] - E[G;ra;rl’*'amﬂ%]—
- (1.5)
1 _
—Js(aza, — 5)(6‘;1%“ 5 } h E (aFf )+ U7,

where U7 is the boundary term in the new variables. We choose it so that the fermionic
Hamiltonian (1.5) coincides with the Hamiltonian of a fermion system on the lattice with
periodic boundary conditions, that is we put U7 equal to the term in the first sum in the
r.hs. of (1.5) with z = L and aL_H = a7 (in [LMS] this choice for the XY chain is called

“c-cyclic”). It is easy to see that this choice corresponds to fix the boundary conditions for

the spin variables so that

J:
[ + i N o+ ’LTI'NO_;]_ “3 3 3 (1.6)

1 . .
U} = —lot ™ or +ope™Vol] - ot +oie 5030t

2

where A = E _, afa,. Strictly speaking, with this choice Uj does not look really like a
boundary term, because N depends on all the spins of the chain. However [(—I)N, H] = 0;
hence the Hilbert space splits up in two subspaces on which (—I)N is equal to 1 or to —1
and on each of these subspaces U} really depends only on the boundary spins. One expects
that, in the L — oo limit, the correlation functions are independent on the boundary term,

but we shall not face here this problem.

1.2 The Heisenberg XY Z chain has been the subject of a very active research over many
years with a variety of methods.

A first class of results is based on the ezact solutions. If one of the three parameters is
vanishing (e.g. J3 = 0), the model is called XY chain. Its solution is based on the fact that
the hamiltonian, in the fermionic form (1.5), is quadratic in the fermionic fields, so that it
can be diagonalized (see [LSM], [LSM1]) by a Bogoliubov transformation. If u = 0, we get
the free Fermi gas with Fermi momentum pp = arccos(—h); if |u| > 0, it turns out that the
energy spectrum has a gap at pr.

The equal time correlation functions Q%(z,0) were explicitly calculated in [Mc] (even at
finite L and f3), in the case h = 0, that is pr = 7/2. Note that, while Q23(x) coincides with
the correlation function of the density in the fermionic representation of the model, Q*(x)
and Q2(x) are given by quite complicated expressions. It turns out, for example, that, if

lu| < 1, Q3(x,0) is of the following form:

al®l T
2(,0) = 5 sin’ (7) F(—|z|loga, |z), a=(1—|u)/1+]u]), (1.7)
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where F'(,n) is a bounded function, such that, if y < 1, F(vy,n) = 14+ O(vlogvy) + O(1/n),
while, if y > 1 and n > 2v, F(v,n) = 7/2 + O(1/7).
For |h| > 0, it is not possible to get a so explicit expression for Q3(x,0). However, it is

not difficult to prove that, if |u| < sinpp, |Q%(z,0)| < o/* and, if # # 0 and |uz| < 1

03(2,0) = _7;7 sin? (prz)[1 + O(|uz|log|uz|) + O(1/|z|)] - (1.8)

Note that, if u = 0, a very easy calculation shows that Q3(z,0) = —(7222) 2sin® (prz).

We want to stress that the only case in which the correlation functions and their asymptotic
behaviour can be computed explicitly in a rigorous way is just the J; = 0 case.

If two parameters are equal (e.g. J; = Js), but J3 # 0, the model is called X X Z model. In
the case h = 0, it was solved in [YY] via the Bethe-ansatz, in the sense that the Hamiltonian
was diagonalized. However, it was not possible till now to obtain the correlation functions
from the exact solution. Such solution is a particular case of the general solution of the
XYZ model by Baxter [B], but again only in the case of zero magnetic field. The ground
state energy has been computed and it has been proved that there is a gap in the spectrum,
which, if .J; — J and J3 are not too large, is given approximately by (see [LP])

sin 12— T3 \*
A= 1.
sl (50— (19)

with cosp = —Js/.J.

The solution is based on the fact that the XY Z chain with periodic boundary conditions is
equivalent to the eight vertex model, in the sense that H is proportional to the logarithmic
derivative with respect to a parameter of the eight vertex transfer matrix, if a suitable
identification of the parameters is done, see [S], [B]. The eight vertex model is obtained by
putting arrows in a suitable way on a two-dimensional lattice with M rows, L columns and
periodic boundary conditions. There are eight allowed vertices, and with each of them an
energy is associated in a suitable way (there are four different values of the energy). With
the above choice of the parameters and T' — T, < 0 and small, u = O(|T — T¢|), so that the
critical temperature of the eight vertex model corresponds to no anisotropy in the XY Z
chain. Moreover, see [JKM], the correlation function C, between two vertical arrows in a
row, separated by x vertices, is given, in the limit M — oo, by C, =< S3S52 >. However, an
explicit expression for the correlation functions cannot be derived for the XY Z or the eight
vertex model. In [JKM] the correlation length of C, was computed heuristically under some
physical assumptions (an exact computation is difficult because it does not depend only on
the largest and the next to the largest eigenvalues). The result is {1 = (T — Tc)ﬁ, if £
is the correlation length. One sees that the critical index of the correlation length is non
universal.

Another interesting observation is that the XY Z model is equivalent to two interpene-

trating two-dimensional Ising lattices with nearest-neighbor coupling, interacting via a four
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spins coupling (which is proportional to Js). The four spin correlation function is identical
to Cp. In the decoupling limit J3 = 0 the two Ising lattices are independent and one can
see that the Ising model solution can be reduced to the diagonalization, via a Bogoliubov

transformation, of a quadratic Fermi Hamiltonian, see [LSM1].

Recent new results using the properties of the transfer matrix can be found in [EFIK],
in which an integro-difference equation for the correlation function of the XXZ chain is
obtained. It is however not clear how to deduce the physical properties of the correlation

function from this equation.

1.3 Since it is very difficult to extract detailed information on the behaviour of the correla-
tion functions from the above exact solutions, the XYZ model has been studied by quantum
field theory methods, see [LP]. The idea is to approximate the fermionic hamiltonian (1.5)
by the hamiltonian of the massive Thirring model, describing a massive relativistic spinning
particle on the continuum d = 1 space interacting with a local current-current potential (for

a heuristic justification of this approximation, see [A]).

As a relativistic field theory, the massive Thirring model is plagued by ultraviolet diver-
gences, which were absent in the original model, defined on a lattice; one can heuristically
remove this problem by introducing ”by hand” an ultraviolet cut-off. A way to introduce
it could be to consider a short-ranged instead of a local potential; if J; = J,, this means
that we have approximated the X X Z-chain with the Luttinger model, whose correlation

functions can be explicitly computed, see [ML], [BGM].

The Luttinger model is defined in terms of two fields 9 ., w = %1, and one expects
that, if |h| < 1 and J3 is small enough, the large distance asymptotic behaviour of Q3(x) is
qualitatively similar to that of the truncated correlation of the operator px = ¥} 1y, where
Yg = > expliowprx) %> if some “reasonable” relationship between the parameters of
the two models is assumed. One can make for instance the substitutions A — —.J3 and
po_1 — a =1, if X is the coupling in the Luttinger model, a is the chain step and po_1 is the

potential range. Moreover, one expects that it is possible to choose a constant v of order

Js, so that h = ho + v and pp = arccos(Js — hg), see §1.4 below.

Of course such identification is completely arbitrary, but one can hope that for large
distances the function 23 (x) has something to do with the truncated correlation of py, which
can be obtained by the general formula (2.5) of [BGM], based on the exact solution of [ML].
There is apparently a problem, since the expectation of px is infinite; however, it is possible
to see that there exists the limit, as 1,2 — 07, of [< Px.e1Pyes > — < Pxer >< Py.es >l
where px . = @ZJ(J;JOJFE)#)(;M), and it is natural to take this quantity, let us call it G(x —y),

as the truncated correlation of p.
Let us define vg = sinpp; from (2.5) of [BGM] (by inserting a missing (—e;&;) in the last
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sum), it follows that, for |x| = occ

cos(2prz) (vomo)? — 22

2m2[(vgmo)? + x2]1H2es(N) 272 (womg)? + 22]?

G(x) ~ [1 + Aas(\)] , (1.10)

where v§ = vo[l + Aaz(N)] and a;(N), i = 1,2,3, are bounded functions. Note that, in
the second term in the r.h.s. of (1.10), the bare Fermi velocity vg appears, instead of the
renormalized one, v, as one could maybe expect.

In the physical literature, it is more usual the introduction of other ultraviolet cutoffs,
such that the resulting model is not exactly soluble, even if J; = Js; however, it can be
studied heuristically, see [LP], and the resulting density-density correlation function is more
or less of the form (1.10).

If J; # Jo, there is no soluble model suitable for a similar analysis of the large distance
behaviour of Q3(x). However, one can guess that the asymptotic behaviour is still of the
form (1.10), if 1 << |x| << 1/|u|®, for some a. We shall prove that this is indeed true, with
a=14+0(Js3).

1.4 In this paper we develop a rigorous renormalization group analysis for the XY Z
Hamiltonian in its fermionic form (some “not optimal” bounds for the correlation function
03 (x) were already found in [M2]). As we said before, Q3 (x) can be obtained from the exact
solution only in the case J3 = 0, when the fermionic theory is a non interacting one. In
particular, if x = (2,0) and |uz| << 1, (1.8) and a more detailed analysis of the “small”
terms in the r.h.s. (in order to prove that their derivatives of order n decay as |z|~"), show
that Q3(z,0) is a sum of “oscillating” functions with frequencies (npr)/7mod1, n = 0, +1,
where pr = arccos(—h); this means that its Fourier transform has to be a smooth function,
even for u = 0, in the neighborhood of any momentum k # 0,+2pr. These frequencies are
proportional to pr, so they depend only on the external magnetic field h.

If J3 # 0, a similar property is satisfied for the leading terms in the asymptotic behaviour,
as we shall prove, but the value of pr depends in general also on u and J3. For example, if
u = 0, the Hamiltonian (1.5) is equal, up to a constant, to the Hamiltonian of a free fermion
gas with Fermi momentum pp = arccos(J3 — h) plus an interaction term proportional to Js.
As it is well known, the interaction modifies the Fermi momentum of the system by terms of
order .J;3 and it is convenient (see [BG], for example), in order to study the interacting model,
to fix the Fermi momentum to an interaction independent value, by adding a counterterm

to the hamiltonian. We proceed here in a similar way, that is we fix pp and hg so that
h=ho—v, cospr = J3 — hg (1.11)

and we look for a value of v, depending on w, Js, hg, such that, as in the J3 = 0 case,
the leading terms in the asymptotic behaviour of Q?i 5(x) can be represented as a sum of

oscillating functions with frequencies (npg)/mmod1, n = 0, £1.
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As we shall see, we can realize this program only if J3 is small enough and it turns out
that v is of order Js. It follows that we can only consider magnetic fields such that |h| < 1.
Moreover, it is clear that the equation h = hg — v(u,Js, hg) can be inverted, once the
function v(u, Js, ho) has been determined, so that pp is indeed a function of the parameters
appearing in the original model.

If J; = Js, it is conjectured, on the base of heuristic calculations, that to fix pr is equivalent
to the impose the condition that, in the limit L, — oo, the density is fixed (“Luttinger
Theorem”) to the free model value p = pp/m. Remembering that p — % is the magnetization
in the 3-direction for the original spin variables, this would mean that to fix pp is equivalent
to fix the magnetization in the 3 direction, by suitably choosing the magnetic field.

If J; # Js, there is in any case no simple relation between pp and the mean magnetization,
as one can see directly in the case J;3 = 0, where one can do explicit calculations. The only
exception is the case pp = m/2, where one can see that, in the limit L — oo, v = J; (so
that h = 0 by (1.11)) and < S2 >= 0. This last property easily follows from the observation
that, if one choose h = 0 in the original Hamiltonian (1.1), then the expectation of S2 has

to be equal to zero, by symmetry reasons, up to terms which go to 0 for L — oc.

Our main achievement is an expansion of Q?iﬁ(x), which provides a very detailed and
explicit description of it. We state in the following theorem some of its properties, but we

stress that many other interesting properties of Q% 3 (x) can be extracted from the expansion.

1.5 THEOREM. Suppose that the equations (1.11) are satisfied and that vo = sinpp > g >
0, for some value of Ty fized once for all, and let us define ag = min{pr /2, (7r — pr)/2};
then the following is true.

a) There exists a constant €, such that, if (u, J3) € A, with

A={(u,Js) : |u| < sl < et (1.12)

8(1++2)

it is possible to choose v, so that |v| < ¢|J5|, for some constant ¢ independent of L, (3, u,
Js3, pr, and the spin correlation function Q%’B(X) is a bounded (uniformly in L, B, pr and
(u, J3) € A) function of x = (xz,20), x =1,...,L, zg € [0, (], periodic in © and zo of period
L and (8 respectively, continuous as a function of xg.

b) We can write
0F 5(x) = cos(2praz) Q)% (x) + Q3% (x%) + 075 (%) (1.13)

with Qizﬁ(x), i = a,b,c, continuous bounded functions, which are infinitely times differen-
tiable as functions of xg, if i = a,b. Moreover, there exist two constants 11 and 12 of the
form

m = a3+ O(J??): N2 = —azJs + O(J:?) ) (1.14)
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a; and ay being positive constants, uniformly bounded in L, 3, pr and (u,J3) € A, such
that the following is true.
Let us define

™o

d(x) = (—sin(f),—sin(—)) (1.15)

and suppose that |d(x)| > 1. Then, given any positive integers n and N, there exist positive
constants ¥ < 1 and C,, n, independent of L, 8, pr and (u, J3) € A, so that, for any integers

ng,n1 > 0 and putting n = ng + nq,

1 Ch.N

no Ani ()3, <
1025 021 X 5 (x)| < [d) 22 1T+ [Aldx)|]Y (1.16)
_ 1 C
ng ani )3,b < n,N
02502 25091 < (g 11 [BlGo (47
. 1T (Ald()]? Co
5 < 2 .
250 < [qooE |[dmop T A meeet | Ty Ay - )

where 8, denotes the discrete derivative and

A = max{|u|"",\/(voB)~2 + L2} . (1.19)

¢) There exist the limits Q% (x) = lim[ 5500 Qizﬁ(x), x € Z x R; they satisfy the bounds
(1.16), with |x| in place of |d(x)|. Moreover, 2*%(x) and Q>*(x) are even functions of x
and there exists a constant 0%, of order Js, such that, if 1 < |x| < A7 and v§ = vo(1+ %),

given any N > 0

3,a _ 1+ A1 (X)
() = 212 (22 + (vgmo) 2]t tm (1.20)
36 () — 1 a3 — (z/v5)? '
0 b(x) o o2m2[z2 + (v§0)?] {xg + (v{ij)Q + AQ(X)} ’
A1 < O { e + 1l + (2} (121

for some constant Cy.
The function Q32(x) is the restriction to ZXR of a function on R?, satisfying the symmetry

relation

3,a e Y: N¢) * ﬁ
0%z, 9) = Q (g;ovo,v ) (1.22)

*

0
d) Let 03 (k), k = (k, ko) € [-m, 7] x R, the Fourier transform of Q3(x). For any fized
k with k # (0,0), (£2pr,0), 93(k) is uniformly bounded as u — 0; moreover, for some

constant ca,

N 1
9°(0.0) < cx |1+ |l log |
T aem (1.23)

2m
Finally, if u = 0, |Q3(k)| < e[l + |J3]1log [k|~1] near k = (0,0), and, at k = (£2pp,0), it

0% (£2pr, 0)] < ¢

is singular only if J3 < 0; in this case it diverges as |k — (£2pg,0)*™ /|m|.

7



e) Let G(z) = Q3(x,0) and G(k) its Fourier transform. For any fived k # 0, +2pp, G(k)
is uniformly bounded as u — 0, together with its first derivative; moreover

10,G(0)] < ¢z,

A (1.24)

|0kG(£2pF)| < ca(1+ A*M) .

Finally, if u = 0, aké(k) has a first order discontinuity at k = 0, with a jump equal to
1+ O(J3), and, at k = X2pp, it is singular only if J3 < 0; in this case it diverges as
[k — (£2pp) M.

1.6 REMARKS.

a)The above theorem holds for any magnetic field & such that sin pp > 0; remember that
the exact solution given in [B] is valid only for h = 0. Moreover u has not to be very small,
but we only need a bound of order 1 on its value, see (1.12); the only perturbative parameter
is J3. However the interesting (and more difficult) case is when also u is small.

b)A naive estimate of ¢ is € = ¢(sinpp)®, with ¢, @ positive numbers; in other words we
must take smaller and smaller J3 for pr closer and closer to 0 or 7, i.e. for magnetic fields of
size close to 1. It is unclear at the moment if this is only a technical problem or a property
of the model.

o)If J; # Jo and J3 # 0, one can distinguish, like in the J; = 0 case (1.7), two different
regimes in the asymptotic behaviour of the correlation function Q3(x), discriminated by an
intrinsic length £, which is approximately given by the inverse of spectral gap, whose size,
is of order |u['T"2, see (1.19), in agreement with (1.9), found by the exact solution.

If 1 << |x| << &, the bounds for the correlation function are the same as in the gapless
J1 = Jo case; if £ << |x|, there is a faster than any power decay with rate of order £~1. In
the first region we can obtain the exact large distance asymptotic behaviour of Q3(x), see
(1.20),(1.21); in the second region only an upper bound is obtained. Note that, even in the
J3 = 0 case, it is not so easy to obtain a more precise result, if A # 0, see §1.2.

The spin interaction in the z direction has the effect that the gap becomes anomalous, in
the sense that it acquires a critical index 1,; the ratio between the “renormalized” and the
“bare” gap is very small or very large, if u is small, depending on the sign of Js.

d)It is useful to compare the expression for the large distance behaviour of Q3(x) in the
case u = 0 with its analogous for the Luttinger model, see §1.3. A first difference is that,
while in the Luttinger model the Fermi momentum is independent, of the interaction, in the
XY Z model in general it is changed non trivially by the interaction, unless the magnetic
external field is zero, i.e. pr = 7. The reason is that the Luttinger model has special
parity properties which are not satisfied by the XY Z chain (except if the magnetic field is
vanishing).

e)Another peculiar property of the Luttinger model correlation function is that it depends

on pp only through the factor cos(2ppx); this is true not only for the asymptotic behaviour
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(1.10), but also for the complete expression given in [BGM], and is due to a special symmetry
of the Luttinger model (the Fermi momentum disappears from the Hamiltonian if a suitable
redefinition of the fermionic fields is done, see [BGM]). This property is of course not true in
the XY Z model and in fact the dependence on pr of Q3(x) is very complicated. However
we prove that Q%(x) can be written as sum of three terms, see (1.13), and the first two terms
are very similar to the two terms in the r.h.s. of (1.10). In particular, the functions Q2 (x)
and Q%°(x) have the same power decay as the analogous functions in the Luttinger model
and are “free of oscillations”, in the sense that each derivative increases the decay power of
one unit, see (1.16),(1.17).

This is not true for the third term Q3:(x), which does not satisfy a similar bound, because
of the presence of oscillating contributions. However we can prove that such term, if u = 0,
is negligible for large distances, see (1.18) (note that ¢ is J3 and u independent, unlike 7).
Of course this is true only for small J3 and it could be that Q3¢(x) plays an important role
for larger Js.

If we compare, in the case u = 0, the functions Q*(x) and Q%*(x), see (1.20), with the
corresponding ones in the Luttinger model, see (1.10), we see that they differ essentially
for the non oscillating functions A;(x), containing terms of higher order in our expansion.
However, this difference is not important in the case of 23:%(x), which also satisfies the same
symmetry property (1.22) as the analogue in the Luttinger model, of course with different
values of v$; note that the validity of (1.22) allows to interpret vg as the renormalized Fermi
velocity. Guided by the analogy with the Luttinger model, one would like to prove a similar
property for Q3 (x) with vy replacing v ; such property holds in fact for the Luttinger model,
see (1.10). However we were not able to prove a similar properties for A,(x), and this has
some influence on our results, see below.

f)Another important property of the Luttinger model correlation function is the fact that
the “not oscillating term”, that is the term corresponding to Q%*(x), does not acquire a
critical index, contrary to what happens for the term corresponding to cos(2ppz)Q32(x).
Hence one is naturally led to the conjecture that the critical index of Qibﬁ(x) is still van-
ishing, see for instance [Sp]. In our expansion, the critical index of (%°(x) is represented
as a convergent series, but, even if an explicit computation of the first order term gives a
vanishing result, it is not obvious that this is true at any order. However, due to some hidden
symmetries of the model (i.e. symmetries approximately enjoyed by the relevant part of the
effective interaction), we can prove a suitable approzimate Ward identity, implying that all

the coefficients of the series are indeed vanishing.

g) The above properties can be used to study the Fourier transform G’(k:) of the equal
time correlation function G(z) = Q3(z,0). If J3 = 0, G(k) is bounded together with its
first order derivative up to u = 0; in fact, the possible logarithmic divergence at k = +2pp

and k = 0 (if u = 0) of AG(k) is changed by the parity properties of G(z) in a first order
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discontinuity.

If J3 # 0, aé(k:) behaves near k¥ = +2pp in a completely different way. In fact it is
bounded and continuous if J3 > 0, while it has a power like singularity, if u = 0 and J3 < 0,
see item €) of Theorem (1.5). This is due to the fact that the critical index 7, characterizing
the asymptotic behaviour of Q2%%(x), has the same sign of J; (note that n; has nothing to

do with the critical index 7 related with the two point fermionic Schwinger function, which

is O((J3)%))-

On the other hand, the behaviour of G(k) near k = 0 is the same for the Luttinger model,
the XY Z model and the free fermionic gas (J; = Ja, J3 = 0) (see also [Sp] for a heuristic
explanation). This is due to the vanishing of the critical index related with Q%*(x) and to
the parity properties of the leading terms, which change, as in the J3 = 0 case, the apparent

dimensional logarithmic divergence in a first order discontinuity.

h) If w = 0, the (two dimensional) Fourier transform can be singular only at k = (0, 0)
and k = (£2pp,0). If J3 = 0, the singularity is logarithmic at k = (£2pp,0); if J3 # 0, the
singularity is removed if J; > 0, while it is enhanced to a power like singularity if J3 < 0,
see item d) in the Theorem (1.5). Hence, the singularity at k = (+2pp,0) is of the same
type as in the Luttinger model, see (1.10).

However, we can not conclude that the same is true for the Fourier transform at k = 0,
which is bounded in the Luttinger model, while we can not exclude a logarithmic divergence.
In order to get such a stronger result, it would be sufficient to prove that the function Q*°(x)
is odd in the exchange of (z,zo) with (zov,x/v), for some v; this property is true for the
leading term corresponding to 2%(x) in (1.10), with v = vg, but seems impossible to prove
on the base of our expansion. We can only see this symmetry for the leading term, with
v = v (or any other value v differing for terms of order .Js, since the substitution of v§ with
v would not affect the bound (1.21)), but this is only sufficient to prove that the singularity
has to be of order J3, at least.

i) If v = 0, the critical indices and v can be computed with any prefixed precision; we
write explicitly in the theorem only the first order for simplicity. However, if u # 0, they
are not fixed uniquely; for what concerns v, this means that, in the gapped case, the system

is insensitive to variations of the magnetic field much smaller than the gap size.

1) There is no reason to restrict the analysis to a nearest-neighbor Hamiltonian like (1.1);
it will be clear in the following that our results still holds for non nearest-neighbor spin

hamiltonians; see also [Spe].

m) The same techniques could perhaps be used to study Q} ;(x) and Q7 ;(x), however
this problem is more difficult, as one has to study the average of the exponential of the sum

of fermionic density operators, see(1.4). In the J3 = 0 case the evaluation of Q} ;(x) and
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Q7 5(x) was done in [Mc].

1.7 In order to prove Theorem 1.5, we use the well known representation of Qi_y in terms

of a Grassmanian integral, that is

03 = fD¢eA(w)Pxpy _ fD¢€A(¢)px . fD¢€A(¢)py
Y [ DipeA) [ DypeA®) [ DypeA®)

(1.25)

where ¢} are elements of a Grassmanian algebra, D is the usual Lebesgue measure on the
algebra, A(1) is the action corresponding to (1.5) and px = 1, . Of course, in order to
give a meaning to (1.25), we have to regularize the model so that the Grassmanian algebra is
finite dimensional, hence we introduce an ultraviolet cutoff also in the time variable (in the
space variable such cut-off is provided by the lattice, while the finite volume and temperature
provide natural infrared cutoffs); see §2.1 for the precise definitions. This procedure allows
to write expansions for the physical quantities, which satisfy uniform bounds in the various
cutoffs and admit a well defined limit as the ultraviolet cutoff is removed and as L, go to
infinity.

For pedagogical reasons we begin our analysis not directly from (1.25) but from the nor-
malization [ Dye(¥), which is much easier to study; the expansion for Q2 will be clearer
once the expansion for [ Dipe ) is understood. The simplest way to evaluate such Grass-
manian integral is to write

%/Dz/)e"‘(w) = /P(d«p)e—VW = i/P(dw)M , (1.26)

n.

where N is a suitable constant, P(dy) is the Grassmanian measure generated by the
quadratic terms of (1.5) for u = 0, to be called the free measure, while V(1)) contains
the other terms together with the counterterm for the chemical potential, in agreement with
the discussion of §1.4. In other words we are considering as reference model the isotropic
XY model with hamiltonian (1.5) with J3 =« =0 and h = — cospp.

If Q(¢) is a monomial in the Grassmanian variables, it is easy to see that [ P(dy)Q(v) is
given by the anticommutative Wick rule; the corresponding propagator has two singularities
in momentum space, as L, 8 — oo, at k = (£pr,0). As a consequence, one can see that the
r.h.s. of (1.26) is, when the ultraviolet cutoff is removed, a series convergent for |ul, |.J5] <
er,3, With €1, 3 =1, 3500 0, 50 that we cannot control the zero temperature infinite volume
limit by the trivial perturbative expansion.

If u # 0, the failure of the above expansion is quite clear, since we are expanding around the
isotropic XY model, so considering the anisotropy, which is a sort of mass, as a perturbation.
We could instead include the anisotropy in the free measure by writing

% / D) = / Pdp)e=P) = ZO / P(d@z;)w , (1.27)
n—

n

where P(di)) is the Grassmanian measure generated by all the quadratic terms of (1.5). In

this case the propagator in momentum space corresponding to I:’(dz/)) has no singularities,
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for L, — oc; in fact, it is easy to see, by a Bogoliubov transformation, that there is an
O(u) mass term which plays the role of an infrared cutoff, so that one can indeed prove
the convergence of the r.h.s. of (1.27) in the L, — oo limit. However convergence holds
only for |J3| < &y, with &4, =40 0, d.e. it is not uniform in the anisotropy. Then also this
expansion fails in providing results in the critical region of parameters we are interested in.
The point is that the evaluation of the correlation functions in the critical region by simple
power series in J3 cannot work (even if one introduces a counterterm in order to fix the
singularities of the correlation functions at the same point when J; = 0 or Js # 0), as the
Js = 0 theory in not analytically close to the J3 # 0 theory; this is clear if one looks, for
instance, to the gap (1.9), which cannot be expanded in a power series of J3 for v small
enough.

We have then to set-up a much more complicated procedure to evaluate the correlation
function (1.25) and the partition function (1.26). This procedure is based on (Wilsonian)
Renormalization group as implemented in [BG1]. The idea is to take as a reference model
the isotropic XY model like in (1.26), by considering v and J3 as perturbations. However,
we do not simply expand in power series of u and J3 as in (1.26). The first step (see
§(2)) is to decompose the measure P(di) as a product of independent measures P(di)) =
H}L:_Oo P(dip)M)), where the momentum space propagator corresponding to P(dy)(")) is not
singular, but O(y~"), for L, 3 — oo, 7y being a fixed scaling parameter greater than 1. This
decomposition is realized by slicing in a smooth way the momentum space, so that ¢,
if h < 0, depends only on the momenta between v"~! and 7"*!. Then we integrate each
field iteratively, starting from (1), so obtaining a sequence of effective potentials V") in the

following way. We write, if 1(<7) = Z{L:_OO )

1
/ P(dp)e W) = / [I Plap®)e e = / Pdp=)e V@S (18)

h=—oc
where V(9 (¢)) can be written as a sum (finite, since we work with a finite algebra) of
monomials in the Grassmanian variables, with coefficients which are perturbative finite
expansions converging, uniformly in L and f, to well defined power series, as the ultraviolet
cutoff is removed.

According to Renormalization Group, one has to identify in the effective potential the
relevant, marginal and irrelevant terms. We write then V() = £V(©) + RV©) where R =
1— £ and £ is a linear operator, called localization operator, whose role is to extract from
V() some local relevant or marginal terms, so that the remainder is irrelevant. It turns
out that all the monomials with six Grassmanian variables or more are irrelevant, while the
terms quartic in ¢ and similar to the original interaction (but with a different coupling) are
marginal. The relevant terms are all quadratic in the Grassmanian variables; more exactly
there are terms like 1)+ (50)¢)=(50) representing the shift in the chemical potential, and terms

like ¢t (S0)gpT(=0) op ¢hp=(£0)4y=(<0) ' which behave as mass terms. Note that the definition
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of relevant terms is not simply based on power counting arguments but also on momentum
conservation considerations, i.e. the power counting must be improved with respect to the
trivial one, as we shall see in §2. The relevant terms corresponding to the shift of the
chemical potential are controlled by choosing in a suitable way the counterterm v so that
they are smaller and smaller at each Renormalization Group iteration. On the contrary, the
relevant mass terms must be included in the reference free measure, which then acquires a
mass. Among the marginal terms there are also quadratic terms of the form ¢ (50 gyp—(50)|
related with the wave function renormalization, which must be also included in the reference
measure; then we write (1.28) as

/p(d¢(§0))e—CVOWSU)—RVOWSU) _ %/p(d,/)(SO))e—LVU(wS")—RV”wSU) (1.29)
where P(dy™) is the new reference measure, obtained by absorbing in the old one the
terms in £V(® which are quadratic in the Grassmanian variables and are related with the
mass and the wave function renormalization. We then integrate the field ¥(®) and the
procedure is iterated, so that at each step we get new contributions to the mass and wave
function renormalization and the field ¢(" is integrated by a measure with mass o and
wave function renormalization Zj; the iteration stops as soon as o, which at the beginning
is of size |u| < 1, becomes of order ", that is the same order of the momenta contributing
to (M. If we call h* the corresponding value of h, the integration of the field (") can be
performed in a single step, since o+ acts as an infrared cutoff on the momentum scale .

Of course h* — —oo as u — 0, but the dependence of the effective mass o+ on u and J3 is
highly non trivial. In fact o+ /u tends to 0 or co, as u — 0, depending on the sign of J3; this
result can be expressed in terms of a critical index, see (1.19). Note that the inclusion of the
mass term in the reference measure means essentially that we have to perform a different
Bogoliubov transformation at each integration step (up to h = h*), instead of a single one
as in (1.28), in order to take into account the anomalous dependence of the effective mass
on u.

Also the dependence of the wave function renormalization Zp+ on « and J3 is non trivial;
it turns out that Zp. ~ 7”32“‘*', with ¢ > 0, so it diverges as u — 0. This result is strictly
related with the fact that, for u = 0, Z, ~ ~v°3|%| implying an anomalous asymptotic
behaviour of the field correlation function.

This iterative procedure allows to write the effective potential on any scale as a sum of
monomials in the Grassmanian variables, with coefficients which are perturbative expansions
(well defined as the ultraviolet cutoff is removed, uniformly in L and /) in terms of a few
running coupling constants and renormalization constants. The running coupling constants
are Ap, which is the effective coupling of the interaction between fermions, v, related with
the chemical potential renormalization, and dy, related with the shift of the Fermi velocity.
The renormalization constants are o, and Zj. The running coupling constants and the

renormalization constants verify a recursive equation called Beta function.
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In §3 we prove that such expansions can be controlled, uniformly in L and § (even if the
renormalization constants are diverging or go to 0 as h — —oc), if the running coupling
constants are small enough, see Theorem 3.12. §3 is the more technical section of the paper;
the expansion is written as sum over trees and we use determinant bounds for the fermionic
expectations. The proof of the convergence requires some care as the power counting has to
be improved. Moreover we pay attention to perform all the estimates taking finite L, §; this
requires some care, as the preceding analysis of similar problems were not so careful about
this point.

In §5 we build an expansion for the correlation function in the direction of the magnetic

field Q3

X

[02S(¢)/0pxOdy]|s=0, Where ¢y is a bosonic external field and

which is very similar to the previous one. The idea is to note that Qf(fy =

S(9) — /p(dd))efvwnf dxéxvi vy (1.30)

Hence, the previous analysis can be applied, by adding a new term to the interaction. As
we shall see, this implies that we have to introduce two new renormalization constants, Z ,(11)
and Z 22), related respectively with the oscillating and non oscillating part of the correlation
function (i.e. the first two addenda in (1.13)). We prove the convergence also for this
expansion and careful estimates on the Fourier transform are obtained, always under the
hypothesis that the running coupling constants are small enough, see Theorem 5.8.

Once the convergence problems of the renormalized expansions are solved, one has still to
face two main problems: the first one is to show that the running coupling constants indeed
remain small if J3 is small enough; the second one is to prove that the ratio between Zj
and Z,(f), both diverging as h — —oo (which is an important property for u small) is close
to one. This last property is not essential to prove the convergence of the series, but it is
crucial to obtain the correct asymptotic behaviour of the correlation function as it is related
to the vanishing of a critical index appearing in the non oscillating part of the correlation
function.

Both problems are solved in §4 and §7 by a careful analysis of the cancellations arising in
our expansions as a consequence of some symmetry properties. We write the beta function
governing the flow of Ay, d, and of Z,(lz)/Zh as a sum of several terms, and we show that
only one term is really crucial, while the other ones have a little effect on the flow in absence
of the first one, if the finite counterterm v is chosen in a proper way. On the other hand,
one recognizes that such crucial contribution to the Beta function of the XY Z model is
coinciding with the Beta function obtained by applying the same Renormalization group
analysis to the Luttinger model. For such model many properties are true, like local gauge
invariance and exact solubility (thanks to the possibility of representing its Hamiltonian as
a quadratic bosonic one, [ML]); these properties are not enjoyed by the XY Z hamiltonian

but the model is close, in a Renormalization group sense, to a model enjoying them.
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Note that, despite the fact that the Luttinger model Hamiltonian is formally gauge invari-
ant, the ultraviolet and infrared cutoffs introduced to perform our Renormalization group
analysis have the effect that gauge invariance is lost even in that model. Nevertheless in §7
we can derive an approximate Ward identity (approximate as the gauge invariance is only

approximately true), which tells us that in the Luttinger model

7@
Zh 1400 . (1.31)
Zh

Note that the formal Ward identity obtained in absence of cutoffs would give exactly one
in the r.h.s. of (1.31). This result is obtained by considering a tree expansion also for the
corrections to the formal Ward identity (the bounds for the corrections are only sketched
and more details will be published elsewhere). In §5 we show how to use (1.31) to prove that
the critical index related with the asymptotic behaviour of the leading non oscillating part
of the XY Z model correlation function (the second term in the r.h.s. of (1.13)) is ezactly
vanishing.

By using another important property of the Luttinger model, i.e. its exact solubility, it was
proved in [GS], [BGPS], [BM1] that the beta function of the Luttinger model for the running
coupling constants is vanishing; this means that the crucial contribution to the XY Z beta
function is vanishing. This result is used in §4 to prove that the running coupling constants
are small for any h.

Finally in §(7) we complete the proof of the main theorem, deriving the correlation function
properties listed in the main theorem. In particular we prove, for J3 small enough

1) upper bounds for the asymptotic behaviour, see (1.16), (1.17), (1.18);
2) a rather explicit expression for the asymptotic behaviour for distances smaller than the

inverse of the gap, see (1.20), (1.21);

3) bounds for the Fourier transform of the correlation function and its derivatives in the limit

L=j3=c.
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2. Multiscale decomposition and anomalous integration

2.1 The Hamiltonian (1.5) can be written, if U} is chosen as explained in §1.1 and the

definitions (1.11) are used, in the following way (by neglecting a constant term):

1 - _

H= Z {(cospp +v)afa; — §[a:az+1 +at, ja;]-
TzEA

u _ _ -

_5[ ;ra;rJrl +a, 0.+ Aay a )(a;+1am+l)} )

(2.1)

where A is an interval of L points on the one-dimensional lattice of step one, which will
chosen equal to (—[L/2],[(L — 1)/2]), the fermionic field aF satisfies periodic boundary

conditions and

A=—Js . (2.2)

The Hamiltonian (2.1) will be considered as a perturbation of the Hamiltonian H, of a
system of free fermions in A with unit mass and chemical potential y = 1—cospp (u = J5 =
v = 0); pr is the Fermi momentum. This system will have, at zero temperature, density
p = pr /7, corresponding to magnetization p — 1/2 in the 3-direction for the original spin

system. Since pp is not uniquely defined at finite volume, we choose it so that

27 1 .
PF—f(nF+§), np €N, lim pp=mp (2.3)

This means, in particular, that pr is not an allowed momentum of the fermions.

We consider also the operators af = e*Hqre Hro with

X:((E,(E(]) 3 _ﬂ/ngo SIB/Qa (24)

for some 3 > 0; on g, which we shall call the time variable, antiperiodic boundary conditions
are imposed.

Many interesting physical properties of the fermionic system at inverse temperature 3 can
be expressed in terms of the Schwinger functions, that is the truncated expectations in the
Grand Canonical Ensemble of the time order product of the field af at different space-time
points. There is of course a relation between these functions and the expectations of some
suitable observables in the spin system. However, by looking at (1.4), one sees that this
relation is simple enough only in the case of the truncated expectations of the time order
product of the fermionic density operator px = afay at different space-time points, which
we shall call the density Schwinger functions; they coincide with the truncated expectations
of the time order product of the operator S2 = e*0H §3e~Hzo at different space-time points.

As it is well known, the Schwinger functions can be written as power series in A and u,
convergent for |A|, |u| < eg, for some constant €3 (the only trivial bound of €5 goes to zero,

as # — oo). This power expansion is constructed in the usual way in terms of Feynman
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graphs, by using as free propagator the function

Tr ﬁHOT a; )
9P (x—y) = ‘ Tr[e=AHo] -
re(k) —(B+7)e(k) (2.5)
—— e—th@—y) ) € e
- LkEED:L {1+e Sy 17> 0) Heﬁe(k)l(TSO)} :

where T is the time order product, N = Y~ _, atal, 7 = xo—yo, 1(E) denotes the indicator

function (1(E) = 1, if E is true, 1(E) = 0 otherwise),
e(k) = cospp — cosk , (2.6)

and Dy, ={k=2mn/L,nez,—[L/2]<n<[(L-1)/2]}.
It is also well known that, if 29 # yo, g¥?(x —y) = limy 00 g¥PM(x — y), where

e~ ik:(x—y)

ﬁ ke%: —ikog + cospr — cosk ’

L.5.M (2.7

g X-y)=
k= (k‘,ko), k-x= k‘oxo + k‘.’E, ’DL’Q =Dy x Dlg, 'Dﬁ = {ko = 2(n+ 1/2)7r/ﬁ,n S Z,—M <
n < M —1}. Note that g&#M(x — y) is real, VM.

Hence, if we introduce a finite set of Grassmanian variables {&ljf}, one for each k € Dy, s,

and a linear functional P(da) on the generated Grassmanian algebra, such that

1

s ot p A1) —
[ Pl i, = Lo saic) . 900 = =, (28)

we have

1i — e~ ik (x—Y) li —at = aP(x: 9.
Mlgloo LB kezD:ﬁ ( ) Ml_I}n(X) (da) Ux dy g (X7y)’ ( 9)

where the Grassmanian field ax is defined by

,ﬂg_ Z afetix (2.10)

ke’DL .8

The “Gaussian measure” P(da) has a simple representation in terms of the “Lebesgue
Grassmanian measure” erDL‘ﬁ da; day; , defined as the linear functional on the Grassma-
nian algebra, such that, given a monomial Q(a™,a™) in the variables a,_, ai, k € Dy g, its
value is 0, except in the case Q(a~,a") =[], @, a;, up to a permutation of the variables.
In this case the value of the functional is determined, by using the anticommuting properties

of the variables, by the condition

/ { II daidak] aay =1. (2.11)

keDL J keDyr g
We have
{ H LBgk)ay: a, } exp { — Z(Lﬁgk) Yala, } . (2.12)
Kk

k
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Note that, since (ag)? = (a;)2 = 0, e *4x % = 1 — 2d;"dy, for any complex 2.

Remark. The ultraviolet cutoff M on the kg variable was introduced so that the Grass-
manian algebra is finite; this implies that the Grassmanian integration is indeed a simple
algebraic operation and all quantities that appear in the calculations are finite sums. How-
ever, M does not play any essential role in this paper, since all bounds will be uniform with
respect to M and they easily imply the existence of the limit. The only problem is that, if
x1 = Y1, the propagator (2.5) has a first order discontinuity at zo —yo = 0, where it has to be
defined as the limit from the left, while lim s, g©?*(0,0) = [¢%?(0,07) +¢%#(0,07)]/2.
One could take care of this problem, by adding to the r.h.s. of (2.10) a factor exp(idarko),
where d)/ is a suitable positive constant proportional to 5/ Vv/M, and by leaving unchanged
(2.8); then the r.h.s. of (2.7) is multiplied by exp(2idprko) and it is easy to see that the new
propagator has the right value in x = 0 for M — oo. In order to simplify the notation, we
shall neglect this minor problem in the following and we shall not stress the dependence on

M of the various quantities we shall study.

By using standard arguments (see, for example, [NO], where a different regularization
of the propagator is used), one can show that the partition function and the Schwinger
functions can be calculated as expectations of suitable functions of the Grassmanian field
with respect to the “Gaussian measure” P(da). In particular the partition function Tr[e =]

is equal to Z, s Tr[e #Ho], with
ZLp= /P(da)e_v(“) : (2.13)
where

V(a) = uVy(a) + AVy(a) + vN(a) ,

B/2 B/2 B/2
Va(a) = Z / d.’I,'(]/ dyow\(x—y)a;{a;a*a; , N(a) = Z/ droatay ,
=Y —5/2 O

8/2 B8/2
Vu(a) = Z / dxo/ dyovu(x —y) [aiaj - a;a;] (2.14)
z,yGA *,3/2 7,8/2

1

1
un(x—y) = Eélﬁ‘w,y‘é(a:g —Y0), Uu(x—y)= §6z’y+1(5($0 — o) - (2.15)

Note that the parameter v has been introduced in order to fix the singularities of the
interacting propagator to the values of the free model, that is k = (0, £pr). Hence v is a
function of A\, u, pr, which has to be fixed so that the perturbation expansion is convergent
(uniformly in L, 8). This choice of v has also the effect of fixing the singularities of the spin
correlation function Fourier transform, as we explained in the introduction, see §1.4.

Note that, if pp = m/2, one can prove that v = —\, by using simple symmetry properties

of our expansion; this implies, by using (1.11), that h = 0.
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If w = 0, it is conjectured, on the base of heuristic calculations, that this condition is
equivalent to the condition that, in the limit L, — oo, the density is fixed (“Luttinger
Theorem”) to the free model value p = pp /7. If u # 0, there is no simple relation between
the value of pr and the density, as one can see directly in the case A = 0, where one can do

explicit calculations.

2.2 We shall begin our analysis by rewriting the potential V(a) as

V(a) = VY (a) + uVy(a) + 6*Vs(a) , (2.16)
where
VW (a) = AVi(a) + vN(a) — 6*Vs(a) , (2.17)
and
Vs(a) = Liﬁ zk:e(k)a,ta; : (2.18)

0* is an arbitrary parameter, to be fixed later, of modulus smaller than 1/2; its introduction
is not really necessary, but allows to simplify the discussion of the spin correlation function
asymptotic behaviour. In terms of the Fermionic system, it will describe the modification
of the Fermi velocity due to the interaction.

Afterwards we “move” the terms uV, (a) and §*Vs(a) from the interaction to the Gaussian
measure. In order to describe the properties of the new Gaussian measure, it is convenient

to introduce a new set of Grassmanian variables I;ﬁ’w, w==1,ke€ D{ﬁ, by defining

Df s=1k€Drp:wk>0}U{k €Dy p:k=0,wko >0}, (2.19)
by, = aly (2.20)

so that, by using (2.10)
ag = Liﬁ S bgeetekex (2.21)

keDf 5, w=+1
It is easy to see that

25 = e loh / Pdb)e=Y®) (2.22)

with VM (b) = V() (a), where a has to be interpreted as the r.h.s. of (2.21),

) (L5)” i
P(db) = { H —k2 — (1 4+ 6*)2e(k)? — u2sin® k H bi’wbk’w}

keD} w==1 (2.23)
1 X ) .
exp{ - L_ Z Z bi(i—wTw’wl(k)bk w} 3
3 . .
keDF @’
[ —iko + (14 0%)e(k) iusin k
(k) = < —iusink —iko — (1 +6%)e(k) ) ° (2.24)
1 k2 + (14 0%)e(k)? + u’sin® k
th=—— Y log=2 . . . (2.25)
Lg keDs, kg + e(k)
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Note that ¢; is uniformly bounded as L, 8 — oo, if |§*| < 1/2, as we are supposing. For

A =v =6* =0, it represents the free energy for lattice site of H — Hy.

2.3 For A = v = 0, all the properties of the model can be analyzed in terms of the

Grassmanian measure (2.23). In particular, we have

01,0 1 —ik(x— — ik(x— —
/ P(daZay = 72 > [ I K) g, = MIT K, |, (2:26)
keD}
where 7! (k) denotes the inverse of the matrix T'(k). This matrix is defined for any k € Dy, 5

and satisfies the symmetry relation
Tﬁl(k)ftm,tn = _Til(_k)ftn,az ) (227)
so that we can write (2.26) also in the form

1 .
/ P(db)aZ'a? = 5 > e IITTNK) L,y 0, (2.28)

keDyr

If A # 0, we shall study the model, for A small, in terms of a perturbative expansion, based
on a multiscale decomposition of the measure (2.23), by using the methods introduced in
[BG] and extended in various other papers ([BGPS], [BM1], [M1]). In order to discuss the
structure of the expansion, it is convenient to explain first how it works in the case of the

free energy for site of H — Hy

1
ELﬁ = —mlogZLﬁ . (229)

Let T be the one dimensional torus, ||k — k'||71 the usual distance between k and k' in

T! and ||k|| = ||k — 0||. We introduce a scaling parameter v > 1 and a positive function

x(k') € C°°(T* x R), k' = (K, ko), such that

) = (k) = { IS o = 0o/ (2.30
where
K = /K2 + (gl IR l| )2 (2.31)
ap = min{pr/2, (r —pr)/2}, (2.32)
vy =vo(1+ %), Vo = sinpp . (2.33)

In order to give a well defined meaning to the definition (2.30), v§ > 0 has to be positive.
Hence we shall suppose that

v > >0, [6]< (2.34)

N | =

where 7g is fixed once for all. All our results will be uniform in vg, under the conditions

(2.34), but we shall not stress this fact anymore in the following.
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The definition (2.30) is such that the supports of x(k — pr, ko) and x(k + pr, ko) are

disjoint and the C* function on T' x R
fik) =1 —x(k —pr,ko) — x(k + pr, ko) (2.35)

is equal to 0, if [v3]|(|k| — pr)|lm]? + k2 < 3.
We define also, for any integer h < 0,

frk) = x(v"K) = x(y"K) (2.36)
we have, for any h < 0,
0 —
XK)= > fulk) +x(v"K) (2.37)
h=h+1

Note that, if h < 0, fr(k') = 0 for [K'| < toy"~! or [K/| > toy"*!, and fr(K') = 1, if
|K'| = toy", so that
fra (&) fo (k') =0, if by —ho| > 1. (2.38)

We finally define, for any h < 0:

fn(k) = fa(k — pr, ko) + fn(k + pr. ko) ; (2.39)

This definition implies that, if h < 0, the support of fi,(k) is the union of two disjoint sets,
A;{ and A, . In A;{, k is strictly positive and ||k — pr||71 < aoy" < ao, while, in A, k is
strictly negative and ||k + pp||m < agy".

The label h is called the scale or frequency label. Note that, ifk € Dr, g, then [k+(pp,0)| >
V(B2 + (vgmL=1)2, by (2.3) and the definition of Dy, 5. Therefore

fak) =0 VA< hpp=min{h: " > \/(xB1)2 + (vgwL1)?) (2.40)

and, if k € Dg, g, the definitions (2.35) and (2.39), together with the identity (2.37), imply
that

1= Y fuk). (2.41)

We now introduce, for each scale label h, such that hr 3 < h <1, a set of Grassmanian
(h)

variables bkwg and a corresponding Gaussian measure P(db(h)), such that, if h = 1, then

ke DL’ﬁ and
—0 o 1 A~
/ P(db ) 70 = L0100 aadi a5 T (k) n fill) , (242)
while, if h <0, then k € D}fﬁ and

/ P(db )b 017 = L0160, 0,0k ko T (K1 )y on Fi (k1 — D, ko) - (2.43)
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The support properties of the r.h.s. of (2.42) and (2.43) allow to impose the condition
b7 =0, i fr(k) =0 (2.44)
kw — O hK) =U. :

By using (2.26) and (2.27), it is easy to see that

1
/ P(db)ag'al> = > > / P(dbM))ph)gren pih)eaws (2.45)
h=hy, g wi,w2
where, if A <0,

1 (o
W =15 2 by eielex (2.46)
keDf

while, if h = 1, a similar definition is used, with Dz g in place of Dz’ﬁ. Note that this
different definition, which is at the origin of the factor 1/2 in the r.h.s. of (2.42), is not
really necessary, but implies that [ P( dp )bSle;‘LQ is bounded for M — oo, a property

which should otherwise be true only for > [ P15 57242 n the following,

W17W2

we shall use this property in order to simplify the discussion in some minor points.

The identity (2.45), as it is well known, implies that, if F'(a) is any function of the variables

aZ, then
/ / H P(db'h ( 21: a(h)), (2.47)
h=hy 5 h=hz,p
where
a7 = 3" b (2.48)
w==1

It is now convenient to introduce a variable which measures the distance of the momentum
from the Fermi surface, by putting k = k' + pr, with &' € D}, = {k' =2(n+1/2)x/L,n €
—[L/2] <n <[(L—-1)/2]}. Moreover, we rename the Grassmanian variables, by defining

7(h)o A o 20 X h)o
A (249
k’ED’

where D ; = D}, x Dg, k' = (K, ko) and pr = (pr,0). Note that, by (2.44),
D=0 i fu(k +pr) =0. (2.50)
The definition (2.49) allows to write (2.48) in the form

alme = ZezaprX¢(h)Uw . (2.51)

The measure P(db™)) can be thought in a natural way as a measure on the variables

)7 that we shall denote P(di)(")). Then, (2.43) and (2.49) imply that, if 1 < 1,

/ P(dp™) i) )7 = (1——6h1)L6méal w20 1 00 (K1), (252)
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where, if fi(k') = fl (k' +pr),

/ i ' i !
G () = fr(k") _ ( ’L{CO IE(k) zu.sm(k +1’JF)> . (2.53)
—k2 — E(K)? —u?sin®(k' 4+ pp) \dusin(k’ +pp)  —iko + E(K')

E(k'") =vysink’ + (14 6%)(1 — cosk') cospp . (2.54)

In the following we shall use also the notation

PiSHe Z )7 PSP = H P(dy™)y, (2.55)

=hr g h'=hp 3

which allows to write the identity (2.47) as

/ P(da)F(a) = / P(dy(SD)F(ED) | (2.56)

where F(1(=1) is obtained from F(3, a™), by using (2.51).

Remark. Note that the sum over ko in (2.49) can be thought as a finite sum for any M,
if h < 0, because of the support properties of z/?l((},l)j . Hence, all quantities that we shall
calculate will depend on M only trough the propagator (V) (k'), if M is large enough.

2.4 If we apply (2.56) to Z1, 3 and we use (2.29) and (2.22), we get

o~ LBFrLs _ ,~Lft /p(di/,(sl))efv‘”(w(sl)) , (2.57)
where
1 1 1
D@ED) = AR Y a™)+eN( YT a5V Y a™). (2.58)
h:hL,B h:hL‘ﬁ h:hL,B

Let us now perform the integration over ¢1); we get

e~ LBELy = o LA(Er+h) / P(dp(<9) eV @ED 5O 0) =0, (2.59)

VO WE)—LpE _ / P(dyHD)e= V! (2.60)

It is easy to see that V(@ (4(=9)) can be written in the form

o) = Ao 3 T
n=1

DU (2.61)

Wiy (K kb ) 6<Zaz~<k; +pr))

where ¢ = (01,...,02n), w = (w1, ..., ws,) and we used the notation
d(k) = 8(k)d(ko) , =LY bkann, (ko) =Boky.0- (2.62)
nEZ
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As we shall prove in §3, the kernels Wi (K,,...,k, ), as well as E, are expressed

2n,0,w

as power series of A\, v, convergent for ¢ = Maxz(|A|,|v|) < &g, for g9 small enough. More-

over there exists a constant C', such that, uniformly in L, 3, |E1| < Ce and |W2(2)(7 wl <
Cnsmax(l,nfl).
Remark - The conservation of momentum and the support property (2.50) of w(<0)a

imply that, if n = 1, only the terms with o7 + 02 = 0 contribute to the sum in (2.61).

Let us now define k* = (k, —ko). It is possible to show, by using the symmetries of the

interaction and of the covariance §(V)(k’), that

(~1)F L WO (ko k)] =

n,o,w

Wi Wi, )

n,o,w

. (2.63)
= (12 2= T ke k)

n,—g,~w

2.5 The integration of the fields of scale h < 0 is performed iteratively.We define a se-
quence of positive constants Z;,, h = hy, g,...,0, a sequence of effective potentials Y(h) (¥),

a sequence of constants Ej, and a sequence of functions o (k’), such that

Z(] = ]., E(] = El + tl, Ug(kl) = USiH(kI +PF) , (264)
and
e LBELs — /PZ}uah’Ch (dw(éh))e*V(h)(\/Zw(sh))*LﬁEh ’ P(h) 0)=0, (2.65)
where (<ht
d’(/)k, d’(/)
Pz, on.Cn (dd}(éh)) = H H
x':C (k’)>0°" +1
(2.66)
expd -4 3 S GERT -
L w,w’ k’ W’ ’
p k/:C;l(k')>o wyw!'==+1
Cr(khZ
M) = h&} LK + B(K)? + on ()22, (2.67)
h
> L), (2.68)
j=hr g

and the 2 x 2 matrix Ty (k') is given by

n _ [ —iko + E(EK) iop—1(k')
(i) —< Cion () —ike —E(k’)) : (2.69)

We shall also prove that the V(®) can be represented as

V) (p(Sh)y = i (Lﬂl)% Z H@Zﬁ(f?a )
L (2.70)




with the kernels WQ(Z)UW verifying the symmetry relations

W G, Koy = (~D)F 2 T ) (kg k)]t =

n,0,w ) Bn—1

(2.71)

BERTED S A O NS

z,fg(

The previous claims are true for h = 0, by (2.59), (2.61), (2.64) and (2.53). In order to
prove them for any h > hr, 5, we must explain how V"~V (3)) is calculated, given V) (3)).
It is convenient, for reasons which will be clear below, to split V(*) as £V + RV(M) | where
R =1— L and L, the localization operator, is a linear operator on functions of the form

(2.70), defined in the following way by its action on the kernels Wil

2n,0,w"

1) If 2n = 4, then

- o
LW (kK k) = Wi (ke kg k) (2.72)
where
— T T
Ky = <nz,n’3> : (2.73)

Note that this definition depends on the the field variables order in the r.h.s. of (2.70), if
E?Zl 0; # 0. In fact, since o4k} = — E?Zl ok, —pr E?Zl o; (modulo (27,0)), if k} =k
for i = 1,2,3, k), = k, only if Z?:l o; = 0. This is apparently a problem, because
the representation (2.70) is not uniquely defined (the terms which differ by a common
permutation of the o and w indices are equivalent). However, it is easy to see, by using the
anticommuting property of the field variables, that the contribution to LV of the terms
with 2n = 4 is equal to 0, unless, after a suitable permutation of the fields, ¢ = (+, —, +, —),
w=(+1,-1,-1,41).

The previous discussion implies that we are free to change the order of the field variables as
we like, before applying the definition (2.72); this freedom will be useful in the construction

of the main expansion in §3.

2) If 2n = 2 and, possibly after a suitable permutation of the fields, ¢ = (+, —) (01 +02 = 0,
by the remark following (2.62)), then

A 1 R _
‘CWézﬁg(kl) 1 Z Wéz,g(knn’) :

n,m'==%1 . o (2.74)
. {1 O ion [n— (bL +aL¥> +n,§k0]} ,
T vy T
where
L L
aL— sin% =1, COZfF (1 —cos %)—FbL; sin% =0. (2.75)

In order to better understand this definition, note that, if L = 8 = oo,

L TEE () 4 kg

B WS, aw") ” 276
vy Ok '
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Hence, CWZ(}:,)w(k’) has to be understood as a discrete version of the Taylor expansion up

to order 1. Since a;, = 1+ O(L™2) and by, = O(L~2), this property would be true also if
ar, = 1 and by, = 0; however the choice (2.75) has the advantage to share with (2.76) another
important property, that is £2W. 2 o w( N = Lk (k).

2,0,w

3) In all the other cases
LW, oK, kb, ) =0. (2.77)

y (2.72) and the remark following (2.76), the operator £ satisfies the relation
RL=0. (2.78)

By using the anticommuting properties of the Grassmanian variables (see discussion in

item 1) above) and the symmetry relations (2.71), we can write £V in the following way:
LYW (M) = iy B 5, FED 4 2, FSY 4 ap FESD 4 1, Y (2.79)

where ny, Su, zn, ap and [, are real numbers and

B = % = 5 > AR

B k’eD’
RN = 3 ( Z ¢£ﬁZ)*z/3£%’i); ,
w==+1 k’ED
E k
FEN = Y Y Z ) gsmgisn— (2.80)
w==%1 ( '8) Yo
L.,B
1
Fc(gh) _ Z (—[3 Z (<h)+1/)kl<h ’
w==+1 €D,
<h 1 <h <h
F>(\7 )= (LB)4 Z 1(<' )Ir K, _1 k’ 21 ¢1(<' +)1 d(ky —k; + kg — ki) .

| SN ) GDIL‘ﬁ
By using (2.72) and (2.74), it is easy to see that, if ¢ = max{|\|, |v|},

lo = 4xsin’(pr + 7/L) + O(e?), ag = —6"vo + M\ + O(e?) ,
(2.81)
so=0(ue), z=0(?), ng=v+0(),

where ¢j is a constant, bounded uniformly in L, 3.
We now renormalize the free measure Pyz, ,, ¢, (dyy ("), by adding to it part of the r.h.s.

of (2.79). We get
_yp(h) (<h)
/PZh’ah’Ch(d¢(Sh))e VO (VTS

o < (2.82)
—e / Py oy cp (d(S0) eV WVEVED)

where P

Zp-1,0n-1,Ch

(dip(=M)) is obtained from Py, »,.c, (d(S?)) by substituting Z, with
Zn 1 (K') = Zp[l + C; (K 2] (2.83)
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and op, (k') with

no_ Zn . ! —1 Nep] :
P10 = o) + O ()] (2:81)

moreover
VO (VZp V) = Y (\/ZipSV) — 51, Zy FSSW — 2, Zy [ + g FSEM] (2.85)

and the factor exp(—Lft) in (2.82) takes into account the different normalization of the

two measures, so that

1 _ K2+ E(K')? 4+ on_1(K')?
=_—— 1 1 L1228 2.
th Lﬂ Z Og{[ +ZhCh ( )] k(Q)+E(k,)2+0_h(k,)2 } ( 86)
k:C; N (K)>0
Note that
LYW (@) = i FSEW 4 (ay, — zpog) FSM + 1, FSP (2.87)

The r.h.s of (2.82) can be written as

B - _pm) (<
e Lﬁth/Pthl,gh,l,chﬂ(dz/)(Sh 1))/ch,hah,hf;l(di/)(h))@ VM (VZn o ) (2.88)

where . ot )
_ F o C, (k) o (K
Zh—1 = Zn(1+ 21) , fuk') = Zh_l[Zhh,l(k’) T2 ]- (2.89)

Note that f4(k') has the same support of fi(k'); in fact, by using (2.38), it is easy to see

that
. k’)
Ky = fic) |14 Zefren ) 2.90
R (290
Moreover, by (2.49),
(h)
h h)— . (h)+ _ Yo (X - y)
/Pz,._l,ah_l,f;(d@/}( Nyl = = (2.91)
where
h 1 —ik'(x—vy) 7 —
o =y) = 5 > e MY RO ITT 0 o (2.92)
kl
and T, ' (k') is the inverse of the T}, (k') defined in (2.69).
T, LK) is well defined on the support of f, (k') and, if we set
Ap(K') =det T (k') = =k — E(K')? — [on_1(K")]?, (2.93)
then
_ 1 —itko — E(K') —iop_1(kK)
I A 0
T () = 200y < ion (k) —iko+E(K) ) - (2.94)

The propagator gifl,(x) is an antiperiodic function of =z and zg, of period L and S,
respectively. Its large distance behaviour is given by the following lemma (see also [BM2]),
where we use the definitions

on = op(0), (2.95)
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L . 7x . T
di(e) = —sin() . ds(zo) = gsm(TO) , (2.96)
d(x —y) = (dr(z — y),ds(zo — yo)) - (2.97)
2.6 LEMMA. Let us suppose that hy g < h <0 and
1 1 1
< — < = < = 2.
el <50 lsnl < glonl . W< 5 (298)
We can write
gl x—y) =gl x—y) +rV x—y) + 1" (x - y) (2.99)
where xey)
—zk xX—y
(h) B 2.1
o x ) Lﬂz_zkowv*k,f( ). (2.100)

Moreover, given the positive integers N,ng,n1 and putting n = ng+ny, there exist a constant

Cn,n such that

2h+n

ooy (k) < Cnon 1 ’
| =¥ < Onn T o R a =y (2.101)

h h+n .
8;108;11 (h)x—y <c n0_2 L ’
[ &=yl = Ol P T A a =y

oh h4n
9705m oM (x — ) < O . ‘ #102
107007 9oy (x = ¥)| < On oo h|1+( Md(x —y) )N (2102

where 8, denotes the discrete derivative.

Note that g(Lh‘)U(x —y) coincides, in the limit 8 — oo, with the propagator “at scale y"”
of the Luttinger model, see [BGM], with f;, in place of f,. This remark will be crucial for

studying the renormalization group flow in [BeM].

2.7 Proof of Lemma 2.6.
By using (2.38), it is easy to see that o, (k') = 01,(0) on the support of fj(k'); hence, by
(2.83) and (2.84), we have

+ (k)1
LK) =2 2.103
Oh 1( ) ].+ZhCh(kl)71 3 ( )
implying, together with (2.98), that there exist two constants ¢;,cs such that:
cilon] < |lon—1(k")| < calon] - (2.104)

Let us now consider two integers Ny, N1 > 0, such that N = Ny + Ny, and note that

dp(x —y)Nds(zo — y0) 9" (x —y) =

) - - 1 oy 2.1
o TN TN (e L S ol 1,001 (€] 41

where Oy and 0O, denote the discrete derivatives.
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If w = W', the decomposition (2.99) is related to the following identity:

1 1 1
T, (K -
7 o = Z3 ookt [—iko +wB(K)  —iko + Wok'] (2.106)
N iko + UJE(k’) _ 1 |
kg + B(R)2 + [on 1K) —iko +wE(K)

The bounds (2.101) and (2.102) easily follow from (2.98), (2.104), the support properties
of fn(k') and the observation that f, (k') and oy, (k') are smooth functions of k’ in R?, in
the support of f5(k'), so that the discrete derivatives can be bounded as the continuous
derivatives. The main point is of course the fact that, on the support of fi(k'), | — iko +

E(K")|, | — iko + wvgk'| and v/k2 + E(k')2 + [o4—1(k')]2 are of order "

2.8 We now rescale the field so that

V(23 S0) = VIO ZapS9) 5 (2.107)
it follows that
LVM () = yPu FSP 4 6, FSP 4 3, F{SP) (2.108)
where
Up = Zf:nh , Oh= %(ah —vizn), Ap= (Zf: )l . (2.109)

We call the set ¥, = (vh,0n, An) the running coupling constants.

If we now define
e_v(h—l)(\/ﬂqp(ﬁh*l))_LﬁEh _ /ch Lo i (d1/}(h)) —V) ([ Zn_1 M) : (2.110)
it is easy to see that V("= (,/Z;,_11p<"=Y)) is of the form (2.70) and that
Ey 1 =Ey+ty,+Ey. (2.111)

It is sufficient to use the well known identity

LBE, + VY (\/Z _p(Sh—D) Zni —)MHErM (WM (/Z, 1 EM)) ) (2.112)

where E " denotes the truncated ezpectation of order m with propagator Z, ', gU(J ZJ,, see

(2.91), and observe that (=P = ¢p(Sh=1) 4 4)(h)

Moreover, the symmetry relations (2.71) are still satisfied, because the symmetry prop-
erties of the free measure are not modified by the renormalization procedure, so that the
effective potential on scale h has the same symmetries as the effective potential on scale 0.

Let us now define EhL‘ﬁ, so that
e, _ [ p, L (dphee)) VR W T ) g 413
hp g=1:0hp B—l’th s
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We have
1

Erpg= Y [En+ti]. (2.114)
h=hp s

Note that the above procedure allows us to write the running coupling constants ¥, h < 0,

in terms of ¥p, 0 > A’ > h+ 1, and A, v, u:
ﬁh = g(ﬁthl:"':ﬁU:AaV:u:(S*) . (2115)

The function E(6h+1, vy Uo, Ay v, 4, 0%) i called the Beta function.

2.9 Let us now explain the main motivations of the integration procedure discussed above.
In a renormalization group approach one has to identify the relevant, marginal and irrelevant
interactions. By a power counting argument one sees that the terms bilinear in the fields are
relevant, hence one should extract from them the relevant and marginal local contributions
by a Taylor expansion of the kernel up to order 1 in the external momenta. Since o1 +05 =0
by the remark following (2.62), we have to consider only two kinds of bilinear terms: those
with wi = wy and those with w; = —ws,. It turns out that, for the bilinear terms with
w; = —wg, a Taylor expansion up to order 0 is sufficient; the reason is that the Feynman
graphs contributing to such terms contain at least one non diagonal propagator and, by
lemma, 2.6, such propagators are smaller than the diagonal ones by a factor o,y "; as we
shall see, this is sufficient to improve the power counting by 1.

The previous discussion implies that the regularization of the bilinear terms produces four
local terms. One of them, that proportional to F,,, is relevant; it reflects the renormaliza-
tion of the Fermi momentum and is faced in a standard way [BG], by fixing properly the
counterterm v in the Hamiltonian, i.e. by fixing properly the chemical potential, so that the
corresponding running coupling v, goes to 0 for h — —oo.

The term proportional to F is marginal, but, as we shall see, stays bounded and of order
Aas h — —oo, if §* is of order A; hence the convergence of the flow is not related to the exact
value of 0*. However, in order to get a detailed description of the spin correlation function
asymptotic behaviour, it is convenient to choose 6* so that d;, — 0 as h — —oo. This choice
implies that v} = vg(1 + 6*) is the “effective” Fermi velocity of the fermion system.

The other two terms are marginal, but have to be treated in different ways. The term
proportional to F; is absorbed in the free measure and produces a field renormalization, as
in the Luttinger liquid (which is indeed obtained for v = 0). The term proportional to F,,
related to the presence of a gap in the spectrum, is also absorbed in the free measure, since
there is no free parameter in the Hamiltonian to control its flow, as for F,. This operation
can be seen as the application of a sequence of different Bogoliubov transformations at each
integration step, to compare with the single Bogoliubov transformation that it is sufficient

to see a gap O(u) at the Fermi surface, in the XY model (A = 0). It turns out that the
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gap is deeply renormalized by the interaction, since oy, is a sort of “mass terms” with a non
trivial renormalization group flow.

Let us now consider the quartic terms, which are all marginal. Since there are many
of them, depending on the labels w; and o; of each field, their renormalization group flow
seems difficult to study. However, as we have explained in §2.5, the running couplings
corresponding to the quartic terms are all exactly equal to 0 for trivial reasons, unless, after
a suitable permutation of the fields, ¢ = (+,—,+,—), w = (+1,—1,—1,+1). Hence, by a
Taylor expansion of the kernel up to order 0 in the external momenta, all quartic terms can
be regularized, by introducing only one running coupling, Ap.

As in the Luttinger liquid [BGPS, BM1], the flow of As and J;, can be controlled by using
some cancellations, due to the fact that the Beta function is “close” (for small u) to the
Luttinger model Beta function. In lemma 2.6 we write the propagator as the Luttinger
model propagator plus a remainder, so that the Beta function is equal to the Luttinger

h

model Beta function plus a “remainder”, which is small if o,y~" is small.

Let us define
h*=inf{h:0>h> hL’g,ao’US’yﬁ_l > 4|o|,Yh: 0> h > h}. (2.116)

Of course this definition is meaningful only if agugy~" > 4|og| = 4|u|vy (see (2.64)), that is
if

lu| < %(1 +6%). (2.117)

If the condition (2.117) is not satisfied, we shall put h* = 1.

Lemma 2.6, (2.86) and the definition of h* easily imply this other Lemma.

2.10 LEeEMMA. If h > h* > 0 and the conditions (2.98) are satisfied, there is a constant C
such that

|tn] < Cy*h . (2.118)

Moreover, given the positive integers N,ng,n1 and puttingn = ng+n1, there exist a constant

Cn,n such that

,yh—l—n

yhld(x —y))NV

02037 9" (%) < Civin T (2.119)

2.11 In §3 we will see that, using the above lemmas and assuming that the running
coupling constants are bounded, the integration of the field ¥(*) in (2.88) is well defined in
the limit L, 8 — oo, for 0 > h > h*.

The integration of the scales from h* to hr g will be performed “in a single step”. This

is possible because we shall prove in §3 that the integration in the r.h.s. in (2.82) is well
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defined in the limit L,3 — oo, for h = h*. In order to do that, we shall use the following

lemma, whose proof is similar to the proof of lemma 2.6.

2.12 LEMMA. Assume that h* is finite uniformly in L, 3, so that oy 1y " | > &, for a

suitable constant K and define

S x—y)

Zh*fl = /ch*—l,ah*—uch* (d¢(Sh*))¢£‘§Wh*)_¢§§j " ) (2120)

Then, given the positive integers N,ng,n1 and putting n = ng + ny, there exist a constant

Cn,n such that
h*+4n

d(x —y)pN

j0n08m g (50 (3 ¥)] < O !

2.121
xo T 1+(’yh* ( )

2.13 Comparing Lemma 2.10 and Lemma 2.12, we see that the propagator of the inte-
gration of all the scales between h* and hr g has the same bound as the propagator of the
integration of a single scale greater than h*; this property is used to perform the integration
of all the scales < h* in a single step. In fact v*" is a momentum scale and, roughly speaking,
for momenta bigger than 4" the theory is “essentially” a massless theory (up to O(opy™")

terms), while for momenta smaller than 7" it is a “massive” theory with mass O(y"").
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3. Analyticity of the effective potential

3.1 We want to study the expansion of the effective potential, which follows from the
renormalization procedure discussed in §2. In order to do that, we find it convenient to
write V"), h < 1, in terms of the variables w(<h)a The two contributions to V1) (p(S1),
see (2.58) and (2.14), become

VA (wél) — Z/dxdy )\U)\(X _ y)eipFX(a1+04)+ipr(02+t73) i

: ’(/)x ,o1 01'¢}§’, 1)021/) (1o, (<1)os (31)

y,—o3 ¥X,—04 7

N = X [aerrsenseplsim

01,02

where [ dx is a shorthand for >~ ., f 5/ dzg.

If we define
WQ(:,)Q,Q(Xla s 5X2n) =
2n
—1 —iY?" oK x h (32)
= (L6)2 Z e E'r‘ k. TWQ(n)Uw(kll"kén—l)é(zo—z(k;"_pF)) ,

k'

100K i=1

2n

we can write (2.70) as

V(h) Z Z / dxy - - lH 1/)}5”51‘“] 2n - w(xl, cey Xon) (3.3)

n=1o,w

Note that
. 2n
Wé:?g’ﬁ(xl +X,..., X0 +X) = P o Wéz)g WX, Xan) (3.4)
hence WQ(n)a w(xl, ...,X2p,) is translation invariant if and only if 2321 o, =0.

The representation of £V (1)(<M) in terms of the 1) variables is obtained by sub-
stituting in the r.h.s. of (2.79) the x-space representations of the definitions (2.80). We

have

=) w /dxz/) YW

w==1
= 3 i [axuEu
w==+1
FEW =3 iw / dx SN T[N + “0“’” LEPPE g2y <] = (3.5)
w==1
-3 iw / dx [~ B+ 4 L OGN
w= :tl ’
F&EP = % /dx PENTB0s! Z /dx Bop ST
w==1 w==+1

FED - / e LS EH S
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where 9y is the derivative w.r.t. xo, 0, is the symmetric discrete derivative w.r.t. z, that is,

given a function f(x),

Oif(x) = [f(z +1,20) - f(z — 1,20)]/2, (3.6)

and 97 (which is not the square of 9;, but has the same properties) is defined by the equation

812f(X) :f(.’E+1,.’E0)+f(.’E—1,.’170)—2f($,$0) - (37)

Let us now discuss the action of the operator £ and R = 1 — £ on the effective potential

in the z-space representation, by considering the terms for which £ # 0.

DIf 2n = 4, by (2.72),

£ [ axwix o [Lvstl = [ I (6o —xulsr ], (39)
i=1
where x = (x1,...,%4), W(x) = Wiz’ﬂ(xl,x%x&xg and
G,(x) = ikt tx = lom(E ) (3.9)

Note that, as we have discussed in §2.5, the r.h.s. of (3.8) is always equal to 0, unless,
after a suitable permutation of the fields, ¢ = (+,—,+,—), w = (+1,—1,—1,+1). In this
last case the function W (x) [T, Go, (xi — X4) = W(x)G4 (X1 — X2 + X3 — X4) is translation
invariant and periodic in the space and time components of all variables x;, of period L
and (3, respectively. It follows that the quantities G, (x; — X4)’(/))((§7,31‘0i in the r.h.s. of (3.8)
can be substituted with Gg, (x; — x},) ,(5}30, k = 1,2,3. Hence we have four equivalent
representations of the localization operation, which differ by the choice of the localization

point. The freedom in the choice of the localization point will be useful in the following.

If the localization point is chosen as in (3.8), we have

xl 7w7,

R/di(g) H@b(sh)‘” =
' (3.10)

- f s [H olstr =TT G s - 2l

The term in square brackets in the above equation can be written as

,(/)(Sh)al (<h)02D1 1(<h)a3,¢) (<h) 04+

X1,wW1 X2,w2 X3,X4,w3 X4,wW4

+ Go’;; (XS _ X4)’(/J(<h)alD1 ,1(<h)oa,,(<h) 03,¢(<h)a4+ (311)

X1,w1 X2,X4,wa X4,w3 X4,wa
+ Gy (X3 — X4) Gy (32 — Xa) D S p(SP)20p (S os g (Sh)os
where
DL _ 1/}(§h)a — G, (y— X),(/)(Sh)a _ (3.12)

Y. X,w y,w X,Ww
Similar expressions can be written, if the localization point is chosen in a different way.
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Note that the decomposition (3.11) corresponds to the following identity:

RV g, ki) = [WUR 0 K, k) — TR (k1L Kb ey | +
+ I:W'rg,’g(kllaké’l_(++) - Wr(ﬁz(kial_(++al_<++)] + (3.13)

+ [W‘S’g(kaaﬁ++vl}++) - WT(Q(R++,R++7R++)] ;

)

and that the i-th term in the r.h.s. of (3.13) is equal to 0 for k! = k.

The field D;,’;(Eh)” is antiperiodic in the space and time components of x and y, of period
L and f, and is equal to 0 if x = y modulo (L, ). This means that it is dimensionally
equivalent to the product of d(x,y) (see (2.97)) and the derivative of the field, so that the
bound of its contraction with another field variable on a scale A’ < h will produce a “gain”
y—(h= ") with respect to the contraction of w(<h)a.

If we insert (3.11) in the r.h.s. of (3.10), we can decompose the Lh.s in the sum of
three terms, which differ from the term which R acts on mainly because one (=" field is
substituted with a D11(=") field and some of the other (<) fields are “translated” in the
localization point. All three terms share the property that the field whose x coordinate is
equal to the localization point is not affected by the action of R.

In our approach, the regularization effect of R will be exploited trough the decomposition
(3.11). However, for reasons that will become clear in the following, it is convenient to start
the analysis by using another representation of the expression resulting from the insertion

of (3.11) in (3.10). If ¢x, = ,((SZ)U, we can write, if the localization point is x4,

R/dzﬁd)xiW(z) =
/dtz/)xl X) — 0(x3 — X4 /dY3W(X1,X2,Y3,X4)G03 (ys — X4)] +

+ /dznlﬁxié(xs —X4)/dYS [W(X1,X2;YS,X4)G03(Y3 —X4)—
i=1 (314)

—0(x2 — X4)/dY2W(X1;Y2aY3,X4)Ga3 (y3 —x4)Goy(y2 — X4)]+
/dXHl/Jx (%2 — X4)d(x3 — X4) /dY2 /dYS W(x1,y2,¥3,%X4)Goy (y3 — Xa)-

=1
3

“Goy(y2 — x4) — 6(x1 — X4) /dY1W(Y1,YQ,Y3,X4) [1G(vi - X4)] ;
i=1
where §(x) is the antiperiodic delta function, that is

8(x) LB D eirkx (3.15)

k’eD’

Similar expressions are obtained, if the localization point is chosen in a different way.

35



In the new representation, the action of R is seen as the decomposition of the original
term in the sum of three terms, which are still of the form (3.3), but with a different kernel,

containing suitable delta functions.

2)If 2n = 2 and, possibly after a suitable permutation of the fields, ¢ = (4, —), w3 = wy =
w, by (2.74),

£/dx1dX2W2(2£(X1 - X2)1/1,(§,’3+1/)XQ7

= [ W) 1 = xS TN (3.16)
= [t s — xa) TS0

with
Trsh7 = p(SM7es(yo — zo)leL(y — @) + brdr(y — o))+

+ s + ”OSPF DM es (yo — z0)ardr (y — 7)+ (3.17)
+ 0o EM 7 dg (yo — leO)CL(y -z,

where dp(z) and dg(zo) are defined as in (2.96) and
cr(z) = cos(rzL™) |, cs(wo) = cos(mxe) . (3.18)

As in the item 1), we define the localization point as the x coordinate of the field which
is left unchanged £. We are free to choose it equal to x; or x». This freedom affects also

the action of R, which can be written as

R/dX1dX2W2(7hg)’g(Xl - X2)¢;(§7h)+1/)x2,

= / dxydxsWyh) (%1 — X))+ DA (3.19)

X1,w X2,X1,w

= /dxldX2W2( ) (Xl — X2 )Dz (sh) +/(/)x2’

X1,X2,W

with
D2(<h)o ¢(<h)a Ti(Sh)o (3.20)

y.X,w y.X,w

Hence the effect of R can be described as the replacement of a /(=7 field with a D*(Sh)e

field, with a gain in the bounds (see discussion in item 1) above) of a factor y=2(*=h")

Also in this case, it is possible to write the regularized term in the form (3.3). We get

R [ dndyit) Jox =)ol ol = [ axdyul S o (i) o - y) -

—4(y — x) / deQ(’;)w(x —z)cg(z0 — xo)[er (2 — ) + brdr(z — z)]—

1COSPF

— [-Bidy %) + B0y ~ )] [ eyl (x = mes(za — mo)asds (s — o)~
+ 800(y — x) /dez(’?w(x — 2)ds (20 — mo)ep (2 — m)} . (3.21)
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3)If 2n = 2 and, possibly after a suitable permutation of the fields, ¢ = (+,—), w1 =
—we = w, by (2.74),

/j/dxldeWQ(ff,)w(m —X2)¢,(§,]3+1/)S,@; =

/dxldX2W2 D (51— X)L ST TSN, (3.22)
= /dxldX2W2(U)w( )T31§Z,+¢x2,—w 3
where
TOERT = ¢5(yo — wo)er(y — 2){Sh7 . (3.23)
Therefore
R/dX1dX2W2(a)w( - XQ)'QZJ;(E,}L)—FQ/):((E,@; =
/ dxdxa Wil | (x1 — %) SMT DM (3:24)
/dx1 dX2W2 Nes w( )Diltﬁgéfl)—i_q/)xi@‘: ’
where
DYSENT =0T — T (329

Hence the effect of R can be described as the replacement of a (5" field with a D-2(Sh)e
field, with a gain in the bounds (see discussion in item 1) above) of a factor v~ ("=") As

before, we can also write

R / dxdyWs"h) | (x — y)plS it = / dxdy S+ lSh =
(3.26)

. {Wéhg)g(x —y) — iy —x) /dez(a)w(x —2z)cg(z0 — xo)cr(z — x)} .

3.2 By using iteratively the “single scale expansion” (2.112), starting from V) = Y1),
we can write the effective potential V(") (v/Z,1(SM), for h < 0, in terms of a tree expansion,

similar to that described, for example, in [BGPS].

ol 4]
" :<\ Fig. 1
] ™~

h h+1 B 0 +1 +2
We need some definitions and notations.
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1) Let us consider the family of all trees which can be constructed by joining a point r, the

root, with an ordered set of n > 1 points, the endpoints of the unlabeled tree (see Fig. 1),
so that r is not a branching point. n will be called the order of the unlabeled tree and the
branching points will be called the non trivial vertices. The unlabeled trees are partially
ordered from the root to the endpoints in the natural way; we shall use the symbol < to
denote the partial order.

Two unlabeled trees are identified if they can be superposed by a suitable continuous
deformation, so that the endpoints with the same index coincide. It is then easy to see that
the number of unlabeled trees with n end-points is bounded by 4™.

We shall consider also the labeled trees (to be called simply trees in the following); they
are defined by associating some labels with the unlabeled trees, as explained in the following
items.

2) We associate a label h < 0 with the root and we denote T, the corresponding set of
labeled trees with n endpoints. Moreover, we introduce a family of vertical lines, labeled by
an an integer taking values in [h, 2], and we represent any tree 7 € T, so that, if v is an
endpoint or a non trivial vertex, it is contained in a vertical line with index h, > h, to be
called the scale of v, while the root is on the line with index h. There is the constraint that,
if v is an endpoint, h, > h + 1.

The tree will intersect in general the vertical lines in set of points different from the root,
the endpoints and the non trivial vertices; these points will be called trivial vertices. The
set of the vertices of 7 will be the union of the endpoints, the trivial vertices and the non
trivial vertices. Note that, if v; and vy are two vertices and vy < vo, then hy, < hy,.

Moreover, there is only one vertex immediately following the root, which will be denoted
vp and can not be an endpoint; its scale is h + 1.

Finally, if there is only one endpoint, its scale must be equal to +2 or h + 2.

3) With each endpoint v of scale h, = +2 we associate one of the two contributions
to V(D (yp(S1) | written as in (3.1) and a set x, of space-time points (the corresponding
integration variables), two for AVy (4(<1)), one for vN (1)(=V)): we shall say that the endpoint
is of type A or v, respectively. With each endpoint v of scale h, < 1 we associate one of the
four local terms that we obtain if we write £V (hv~1) (see (2.108)) by using the expressions
(3.5) (there are four terms since F, is the sum of two different local terms), and one space-
time point x,; we shall say that the endpoint is of type v, 41, d2, A, with an obvious
correspondence with the different terms.

Given a vertex v, which is not an endpoint, x, will denote the family of all space-time
points associated with one of the endpoints following v.

Moreover, we impose the constraint that, if v is an endpoint and x, is a single space-time
point (that is the corresponding term is local), h, = h, + 1, if v' is the non trivial vertex

immediately preceding v.
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4) If v is not an endpoint, the cluster L, with frequency h, is the set of endpoints
following the vertex v; if v is an endpoint, it is itself a (¢rivial) cluster. The tree provides an
organization of endpoints into a hierarchy of clusters.

5) The trees containing only the root and an endpoint of scale h+ 1 will be called the trivial
trees; note that they do not belong to 7,1, if h < 0, and can be associated with the four
terms in the local part of V(")

6) We introduce a field label f to distinguish the field variables appearing in the terms
associated with the endpoints as in item 3); the set of field labels associated with the
endpoint v will be called I,,. Analogously, if v is not an endpoint, we shall call I, the set of
field labels associated with the endpoints following the vertex v; x(f), o(f) and w(f) will
denote the space-time point, the o index and the w index, respectively, of the field variable
with label f.

If h, < 0, one of the field variables belonging to I, carries also a discrete derivative
o, m € {1,2}, if the corresponding local term is of type 6,,, see (3.5). Hence we can
associate with each field label f an integer m(f) € {0,1,2}, denoting the order of the
discrete derivative. Note that m(f) is not uniquely determined, since we are free to use
the first or the second representation of Fi\="") in (3.5); we shall use this freedom in the

following,.

By using (2.112), it is not hard to see that, if h < 0, the effective potential can be written
in the following way:
V(h)( /Zh¢(§h)) + LﬂEhH - Z Z v h) (r, /Zh1/,(§h)) (3.27) ,
n=1 TGT}Lm

where, if vg is the first vertex of 7 and 71, ..,7s (s = s,,) are the subtrees of 7 with root vy,

V) (1,v/Zpp(SM) is defined inductively by the relation

V) (7, Zpp <P =
D 0y, Zag S0, T Ty
and V4D (7, \/Zap(Sh+1)
a) is equal to RV (7, \/Zpap(SPHD)Y if the subtree 7; is not trivial (see (2.107) for the
definition of V("));
b) if 7; is trivial and h < —1, it is equal to one of the terms in the r.h.s. of (2.108) with

scale h + 1 or, if h = 0, to one of the terms contributing to V() (¢<1).

If h = 0, the r.h.s. of (3.28) can be written more explicitly in the following way. Given
T € To,n, there are n endpoints of scale 2 and only another one vertex, vy, of scale 1; let
us call vy,...,v, the endpoints. We choose, in any set I,,, a subset @,, and we define

P,, = U;Q,,; then we can write (recall that Zy = 1)

VO(r, /2oy =) = > VO (r, P,), (3.29)
Py,
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v Ton \/_‘ Ol/ v0¢<0 (Pyo)K (1) (Xvo): (3.30)

n

K, (x0) = eTW( Pi\Qur), - BV (P NQu [ K2 (x4, (3.31)

i=1

where we used the definitions

¢(h) H 8m(f)¢(h)aw(f) ’ (3.32)
JEP,

K@ (xs,) = ZPF Zfej x(f)o(f) { Ava(x —y) %f v; %S of type A and x,, = (x,y), (3.33)
vi v if v; is of type v,

and we suppose that the order of the (anticommuting) field variables in (3.32) is suitable
chosen in order to fix the sign as in (3.31).

Note that the terms with P,, # ( in the r.h.s. of (3.29) contribute to LAE;, while the
others contribute to V() (y/Zgep(=9).

The potential P(o \/— ¢(<0) needed to iterate the previous procedure, is obtained, as
explained in §2.5 and §2.8, by decomposing V(© in the sum of £V©) and RV©), by moving
afterwards some local terms to the free measure and finally by rescaling the fields variables.
The representation we get for V(_l)(\/Z—,lw(S_l)) depends on the representation we use
for RV (7, P,,). We choose to use that based on (3.14), (3.21) and (3.26), where the
regularization is seen, for each term in the r.h.s. of (3.29) with P,, # 0, as a modification

of the kernel

s fvg

WO, ee,) = [ do s KSR () (3.3

where xp, = Ujep, X(f). In order to remember this choice, we write

RVO(r,P) = V7! [, B0 (P)RK, (x,,)] (3.35)

It is then easy to get, by iteration of the previous procedure, a simple expression for
V) (1, Zpp (S, for any T € Th.n-

We associate with any vertex v of the tree a subset P, of I,,, the ezternal fields of v. These
subsets must satisfy various constraints. First of all, if v is not an endpoint and vy, ..., vs,
are the vertices immediately following it, then P, C U, P,,; if v is an endpoint, P, = I,. We
shall denote @, the intersection of P, and P,,; this definition implies that P, = U;Q,,. The
subsets P,,\ @y, whose union will be made, by definition, of the internal fields of v, have to
be non empty, if s, > 1.

Given 7 € Tj n, there are many possible choices of the subsets P,, v € 7, compatible with

all the constraints; we shall denote P, the family of all these choices and P the elements of

P.. Then we can write

VO (r,/ZypSM) = YT V(r P) (3.36)

PeP.

40



V(") (7, P) can be represented as in (3.30), that is as
P, -
VO (. P) = /Zh / ¢, BN (P ) KUY (x,) (3.37)

with K" (x,,) defined inductively (recall that h,, = h+1) by the equation, valid for any

v € 7 which is not an endpoint,

P
1Pl o

(hv) _ 1 Zhv 2 hy+1
K00 = () T TIRG )

Sy! ‘
=1
EL P (Po\Qu)s - 0 (P, \Qul )]

where & I denotes the truncated expectation with propagator g (without the scaling factor

(3.38)

Zn—1, which is present in the definition of £&! used in (2.112)) and Z; = 1. Moreover, if v is

an endpoint and h, = 2, Kf,h”)(xv) is defined by (3.33), otherwise

Ahy—1 if v is of type A ,
KM (x,) =< iwdn, 1 if v is of type 01, dy and w(f) = w for both f € I,, (3.39)
wyP =y, 1 if vis of type v and w(f) = w for both f € I,.

v

If v is not an endpoint, Kf,h”) =RK ih”g, where 7,...,7s, are the subtrees of 7 with root
v, P; = {P,,v € 7;} and the action of R is defined using the representation (3.14), (3.21)

and (3.26) of the regularization operation, seen as a modification of the kernel
W0 ) = [ e\ ) K0 ) (3.40)

where xp, = Uyep,x(f). Finally we suppose again that the order of the (anticommuting)
field variables is suitable chosen in order to fix the sign as in (3.37).

Remark - The definitions (3.14), (3.21) and (3.26) of R are sufficient, even if they are
restricted to external fields with m(f) = 0, because we can use the freedom in the definition
of m(f), see item 6) above, so that the external fields of v have always m(f) = 0, if v is
a vertex where the R operation is acting on. This last claim follows from the observation
that, since the truncated expectation in (3.38) vanishes if s, > 1 and P,,\Q,, = 0 for some
i, at least one of the fields associated with the endpoints of type é; or d2, the only ones
which have fields with m(f) > 0, has to be an internal field; hence, if one of the two fields
is external, we can put m(f) = 0 for it. If s, = 1 the previous argument should not work,
but in this case the only vertex immediately following v can be an endpoint of type d; or -
only if v = wp, see item 2 above; however this is not a problem since the action of R on a
local term is equal to 0.

Note also that the kernel Kg}",) (xy) is translation invariant, if 3~ p o(f) = 0; in general,

it satisfies the relation

K‘r('f"l;)’) (Xv + X) = eiprZfEPv o(f) K-,(—hlg) (Xv) . (341)

)

There is a simple interpretation of V(") (r,P) as the sum of a family Gp of connected
Feynman graphs build with single scale propagators of different scales, connecting the space-

time points associated with the endpoints of the tree. A graph g € Gp is build by contracting,
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for any v € 7, all the internal fields in couples in all possible ways, by using the propagator

hvso that we get a connected Feynman graph, if we represent as single points all the

g
clusters associated with the vertices immediately following v. These graphs have the property
that the set of lines connecting the endpoints of the cluster L, and having scale h' > h, is a
connected subgraph; by the way this property is indeed another constraint on the possible

choices of P. We shall call these graphs compatible with P.

3.3 The representation (3.37) of V(")(7,P) is based on the choice of representing the
regularization as acting on the kernels. If we use instead the representation of R based on
(3.10), (3.11), (3.19) and (3.24), some field variables have to be substituted with new ones,
depending on two space-time points and containing possibly some derivatives. As we shall
see, these new variables allow to get the right dimensional bounds, at the price of making
much more involved the combinatorics. Hence, it is convenient to introduce a label r,(f)
to keep trace of the regularization in the vertices of the tree where f is associated with an

external field and the action of R turns out to be non trivial, that is R # 1.

There are many vertices, where R = 1 by definition, that is the vertices with more than 4
external fields, the endpoints and vy. For these vertices all external fields will be associated

with a label r,(f) = 0.

Moreover, since LR = 0, the action of R is trivial even in most trivial vertices v with
|P,| < 4. This happens if the vertex (trivial or not) ¥ immediately following v has the same
number of external fields as v, since then the kernels associated with v and ¢ are identical,
up to a rescaling constant. In particular, this remark implies that, given the non trivial
vertex v and the non trivial vertex v’ immediately preceding v on the tree, there are at most
two vertices ¥, such that v’ < o < v and the action of R is non trivial. For the same reason,
given an endpoint v of scale h, = 42 of type A (hence not local), there are at most two
vertices between v and the non trivial vertex v' immediately preceding v, where the action
of R is non trivial. Since the number of endpoints is n and the number of non trivial vertices
is bounded by n — 1, the number of vertices where the action of R is non trivial is bounded
by 2(2n — 1).

Let us now consider one of these vertices, which all have 4 or 2 external fields. If |P,| = 2
and the w indices of the external fields are equal, we keep trace of the regularization by
labeling the field variable, which is substituted with a D? field, see (3.19), with r,(f) = 2
and the other with r,(f) = 0. In principle we are free to decide which variable is labeled
with r,(f) = 2, that is how we fix the localization point; we make a choice in the following
way. If there is no non trivial vertex v’ such that vy < v’ < v, we make an arbitrary choice,
otherwise we put r,(f) = 2 for the field which is an internal field in the nearest non trivial
vertex preceding v. In other words, we try to avoid that a field affected by the regularization

stays external in the vertices preceding v.
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If |P,| = 2 and the w indices of the external fields are different, we label the field variable,
which is substituted with a D'+2 field, see (3.24), with 7, (f) = 1 and the other with r,,(f) = 0;

which variable is labeled with r,(f) = 1 is decided as in the previous case.

If |P,| = 4, first of all we choose the localization point in the following way. If there is a
vertex v’ such that vg < v’ < v and P, contains one and only one f € P,, we chose x(f)
as the localization point in v; in the other cases, we make an arbitrary choice. After that,
we split the kernel associated with v into three terms as in (3.14); then we distinguish the
three terms by putting 7, (f) = 1 for the external field which is substituted with a D' (%)

field, when the delta functions are eliminated, and 7, (f) = 0 for the others.

The previous definitions imply that, given f € I, it is possible that there are many differ-
ent vertices in the tree, such that r,(f) # 0, that is many vertices where the corresponding
field variable appears as an external field and the action of R is non trivial. As a conse-
quence, the expressions given in §3.1 for the regularized potentials would not be sufficient
and we should consider more general expressions, containing as external fields more general
variables. Even worse, there is the risk that field derivatives of arbitrary order have to be
considered; this event would produce “bad” factorials in the bounds. Fortunately, we can
prove that this phenomenon can be easily controlled, thanks to our choice of the localization
point, see above, by a more careful analysis of the regularization procedure, that we shall

keep trace of by changing the definition of the r,(f) labels.

Let us suppose first that |P,| = 4 and that there is f € P,, such that r;(f) # 0 for some
v > v. We want to show that the action of R on v is indeed trivial; hence we can put
ro(f) = 0 for all f € P,, in agreement with the fact that the contribution to the effective
potential associated with v is dimensionally irrelevant. First of all, note that it is not possible
that |P5| = 2, as a consequence of the choice of the localization point in the vertices with
two external fields, see above. On the other hand, if | P;| = 4, the fact that the action of R
in the vertex v is equal to the identity follows from the observation following (3.13) and the

definition (2.72).

Let us now consider the vertices v with P, = (f1, f2). We can exclude as before that
r5(fi) # 0 for i = 1 or i = 2 or both and |P;| = 2. The same conclusion can be reached, if
there is no vertex o > v, such that |P;| = 4, the action of R on ¥ is non trivial and both f;
and fo belong to the set of its external fields; this claim easily follows from the criterion for

the choice of the localization point in the vertices with 4 external fields.

If, on the contrary, f; and fy are both labels of external fields of a vertex v > v, such
that |Py| = 4 and the action of R is non trivial, we have to distinguish two possibilities. If
there is a non trivial vertex v’ such that vg < v’ < v, and one of the external fields of v, let
us say of label f;, is an internal field, our choice of the localization points imply that both

ry(f1) and r3(f1) are different from 0, while r,(f2) = r3(f2) = 0. If there is no non trivial
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vertex v’ < v with the previous property, that is if fi and f, are both labels of external
fields down to vg (hence all vertices between v and vg are trivial) or they become together
labels of internal fields in some vertex v’ < v, we are still free to choose as we want the
localization points in v and ¥; we decide to choose them equal.

The previous discussion implies that, as a consequence of our prescriptions, a field variable
can be affected by the regularization only once, except in the case considered in the last
paragraph. However, also in this case, it is easy to see that everything works as we did
not apply to the variable with label f; the regularization in the vertex v. In fact, the
first or second order zero (modulo (L, 3)) in the difference x(f1) — x(f2), related to the
regularization in the vertex v, see §3.1, cancels the contribution of the term proportional to
the delta function, related with the regularization of v, see (3.14). This apparent lack of
regularization in o is compensated by the fact that x(f;) — x(f2) is of order y~"#, hence

smaller than the factor y—*

v sufficient for the regularization of v (together with the improving
effect of the field derivative). Hence there is a gain with respect to the usual bound of a

factor y~("#=") gsufficient to regularize the vertex .

3.4 There is in principle another problem. Let us suppose that we decide to represent all
the non trivial R operations as acting on the field variables. Let us suppose also that the
field variable with label f is substituted, by the action of R on the vertex v, with a D%
or a D;x field, where y = x(f) and x = x(f') is the corresponding localization point. At
first sight it seems possible that even the variable with label f’ can be substituted with a
D% or a D? field by the action of R on a vertex © > v. If this happens, the point x(f')
can not be considered as fixed and there is an “interference” between the two regularization
operations, or even more than two, since this phenomenon could involve an ordered chain
of vertices. This interference would not produce bad factorials in the bounds, but would
certainly make more involved our expansion. However, we can show that, thanks to our
localization prescription, this problem is not really present.

Let us suppose first that | P,| = 2. In this case, if the field with label f’ is external in some
vertex U > v, with |Py| equal to 2 or 4, we are sure that x(f’) is the localization point in
T, see §3.3, hence the corresponding filed can not be affected by the action of R on ©. The
same conclusion can be reached, if |P,| = 4 and |P5| = 2

If |P,| = |Ps| = 4 and the field with label f’ is substituted, by the action of R on the
vertex o, with a D' or a 2 field, we know that the same can not be true for the field with
label f, since the action of R on v is trivial.

The previous discussion implies that the field with label f' can be affected by the regu-
larization (if |P,| = |P;| = 4) only by changing its x label, but this is not a source of any

problem.

3.5 In this section we want to discuss the representation of the fields D;;’;Sfﬁ)”, 1=1,2,
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and D?,(,;’Z)U introduced in §3.1, which allows to exploit the regularization properties of the

R operation. In order to do that, we extend the definition of the fields 1/),((%)0 to R?, by
using (2.49); we get functions with values in the Grassmanian algebra, antiperiodic in z
and z with periods 8 and L, respectively.
Let us choose a family of positive functions x, . (x), n,7' € {—1,0,+1}, on R?, such that
1 ifjlz—n|<1/4and |xg — 71| < 1/4
X (%) = {0 if |z —n| > 3/4 or |xo — 1| > 3/4
S Xpw(x) =1 ifxe[-1,1]x[-1,1].

n,n’

(3.42)

Given x,y € A x [-3/2,8/2], if xpw(y — %) > 0, where X = (z/L,z0/0) and y =

(y/L,yo/B), we can define y =y — (nL,n'S), so that |zo — %o| < 33/4 and |z — | < 3L/4.

1,1(<h)o _ ( )'H+ﬂ Dl ,1(<h)o

We see immediately that Dy'xo yxw  and we can write

y,X,w

Dyah7 = Wyl — il + [ = Goly — Il (3.43)

It is easy to see that, if |yo| < 34/4 and |y| < 3L/4,

1= Goly) = TGN + 5haG)dalon) . 7= 0/Lwo/B), (344

where h;(y), i = 1,2, are suitable functions, uniformly smooth in L and 3. Moreover
vy =T = (3 %) /0 L IV, &) =x+1(y —x) . (3.45)
where 0 = (01, 0p) is the gradient, and it is easy to see that, if |yo| < 35/4 and |y| < 3L/4,
y = (hs(3)dz(y), ha(¥)ds(yo)) , (3.46)

where h;(y), i = 3,4, are other suitable functions, uniformly smooth in L and £.

Hence we can write

1 Lo 1 o
Dy she =" { {zhlmm’ (¥, %)dr(y — =) + Ehlnm’ (¥, %)ds(yo — mo)} $EMT+ (3.47)

0

+ hs (¥, X)dr(y — / dt 811/)5(1/) + hap (¥,x )dﬁ(yo — o / dt Oy 1/)5 }
where
higa (7,%) = (1) x  (F = %)hi(( — ) /L, (o — m0) /B) , i = 1.4, (3.48)

are smooth functions with support in the region {|y—z—nL| < 3L/4, |yo—zo—1'B| < 36/4},

such that their derivatives of order n are bounded by a constant (depending on n) times

e,
A similar expression is valid for Dll, i(jh) Let us now consider Df,fx ’Z,)”, see (3.20). We
can write
DY = (~1)™ DS + h(F —R)dily — 2) T (3.49)
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where h(y — x) is a uniformly smooth function and

L7 = G — ST — (7 - x) - oS-

y.w X,w

— S [ea(yo — mo)er (y — @) — 1] + bres(Yo — xo)dr(y — z)}—

_ (3.50)
= 0l (e (5o — wo) = Udr(y — 2) + [de(y — @) — (§ — )]}~
— (7 — ) — PSP = 00 S7 [ds (o — wo)er(y — x) — (o — o)) -
Note that
DS — oS = 27 ST R X (sink! — K] (3.51)
5 ) L/B W
KED) ,
behaves dimensionally as 8?1/),(5;)0, hence we shall define
Gl = sl — sl . (3.52)
It is now easy to show that there exist functions hn , . (y,%), with n = (n1,...,ng), and

hijnmy(¥,x), 4,5 = 0,1, smooth uniformly in L and f, such that

DT =S Y b (3.0 (y — @)™ s (o — o)L 80720 w7 +

' n
1
3 by 7Ry =20ty =) [ (1= 000,057} (3.53)
2y}

the sum over n being constrained by the conditions

ny+ne <2, 3226:1”22. (3.54)
i=3

3.6 In order to exploit the regularization properties of formulas like (3.47) or (3.53), one

has to prove that the “zeros” dr(y — ) and dg(yo — o) give a contribution to the bounds of

order 7*’1’, with h' > h, if h is the scale at which the zero was produced by the action of R.

In §3.7 we shall realize this task by “distributing” the zeros along a path connecting a family

of space-time points associated with a subset of field variables. Let xg = x,x1,..., X, =¥

be the family of points connected by the path; it is easy to show that
dr(y —2) = 3 di (@, — z,op)e T EE T (3:55)
r=1

A similar expression is valid for dg(yo — o).

It can happen that one of the terms in the r.h.s. of (3.55) or the analogous expansion
for dg(yo — xo) depends on the same space-time points as the integration variables in the
r.h.s. of a term like (3.21) or (3.26). We want to study the effect of this event. Let us call
W (x —y) the kernel appearing in the Lh.s. of (3.21) or (3.26), Wgr(x —y) its regularization,

that is the quantity appearing in braces in the corresponding r.h.s., and let us define
Ly ny = / dxdy SR Wax—y)le " Edi(y —2))" e F ds(yo — 20)]™ . (3.56)
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In the following we shall meet such expressions for values of n; and ns, such that 1 <
ny +ny < 2.

If W(x—y) is the kernel appearing in the L.h.s. of (3.26), it is easy to see that, if nq1+ngs > 1,

Lymy = / dxdypSEPDTYED "W (x — y) e Edp (y — 2)]" [e " F ds(yo — 20)]™* , (3.57)

that is the presence of the zeros simply erases the effect of the regularization.
Let us now suppose that W (x — y) is the kernel appearing in the Lh.s. of (3.21) and

Wg(x —y) its regularization. We have

L= /dXdW/’;(c,SWhHW(X —y)dr(y — ){Dl Sk~

y,X,w
i cosp (3.58)
— calyo — ) 50He T EYLED ) + FEPLG iyl

Ioy = / dxdyp ST (x — y)ds(yo — o) Dy SM (3.59)
where

DySEMT = e EEDT — ealyo — mo)e” YD (3.60)

pLA(Lh)— _ —m%ﬂ#}(gh)— —ern(y — x)efiw%]d)(gh)— ) (3.61)

y,X,w y.w X,w

Moreover

Y C — T
Lo = [ dxayul W = )y — ) {du(y - a)e Hnt gt - L0 =20).

ar,
(e EYEN ) 4 P (g g SR E)]), (36)
0
Ips = / dxdypSPTW (x — y)ds (yo — mo)2e 2T E (S~ (3.63)
L= / dxdySPTW (x — y)dp (y — 2)ds(yo — @o)e ™ TETITE LW (3.64)

Note that no cancellations are possible for x = y modulo (L, ) between the various terms
contributing to I, n,; hence they will be bounded separately.

Note also that the fields Dll,’i(’éh) and D;, i(jh) have a zero of first order for x = y
modulo (L, ) and can be represented by expressions analogous to the r.h.s. of (3.47).
Moreover, the terms contributing to Ip; and I; o and containing these fields can also be
written in a form analogous to (3.26).

Finally, we want to stress the fact that the integrands in the previous expressions of I, n,;
1 < ny1 +n2 <2, have a zero of order at most two for x = y modulo (L, 3), that is a zero

of order not higher of the zero introduced in the r.h.s. of (3.56). As it will be more clear in

§3.7, this property would be lost if one uses the representation (3.19) of the regularization
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operation, before performing the ”decomposition of the zeros”; one should get in this case
a zero of order four and the iteration of the procedure of decomposition of the zeros would
produce zeros of arbitrary order and, as a consequence, bad combinatorial factors in the

bounds.

3.7 We are now ready to describe in more detail our expansion. First of all, we insert
the decomposition (3.14) of V) (r,4(=")) in the vertices with |P,| = 4, by following the
prescription for the choice of the localization point described in §3.3. The discussion of §3.3
allows also to define a new label r(f), to be called the R-label, for any f € I,,, by putting
(i) r(f) =0, if r,(f) = 0 for any v such that f € P,;

(ii) 7(f) = (i,v), if there exists one and only one vertex v, such that f € P, and r,(f) =
i # 0;

(iii) r(f) = (2,v,0), if there are two vertices v and o, such that v < v, f € P, C P;,
|P,| =2, |P5| =4, ro(f) = 2, r5(f) = 1; see discussion in the last two paragraphs of §3.3.

Then, we can write

VW (r,/Zpp )y = Y V(7 Por) (3.65)
PeP.,r
where r = {r(f),f € I,,} and the sum over r must be understood as the sum over the
possible choices of r compatible with P.

We can also write

P, ~
VP = VE ! [ e KO ) B R) (3.66)
with Kgll))’r(xvo) defined inductively as in (3.38).
Let us consider first the action of R on V" (7, P,r). We can write for RV (7, P, r) an
expression similar to (3.66), if we continue to use for the R operation the representation
based on (3.14),(3.21) and (3.26), which affects the kernels leaving the fields unchanged. We

shall use the notation
RV (7. P 1) = / g B SD (P )[RE™), (%20)] (3.67)

Moreover, we define r’ so that r'(f) = r(f) except for the field labels f € P,,, for which
r'(f) takes into account also the regularization acting on wq.
However, we can use for the R operation also the representation based on (3.10), (3.11),

(3.19) and (3.24), which can be derived from the previous one by integrating the §-functions;

the effect is to replace one of the external fields with one of the fields DV4<h7 j =1 2 or
D*(=h)e We can describe the result by writing
RV (o) = [ e, [RIED (P I (x0,) (3.69)
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The discussion in §3.3 and §3.5 implies that there is a finite set A,,, such that

[RYED (P = 3 halp,)dp Vdg T 100Dl (3.69)

a€Ayg JE€Py,
where Xp, = (L™ 'zp, ,B '2op,,), dzl(a) and de(a) are powers of the functions (2.96), with
argument the difference of two points belonging to xp, , and 5?, q=0,1,2,5=1,...,mg,

is a family of operators acting on the field variables, which are dimensionally equivalent to
derivatives of order ¢. In particular mgo = 1, 5? is the identity and the action of R is trivial,
that is |[Ay,| = 1, ho = 1, n1(a) = na(a) = 0 and ¢, (f) = 0 for any f € P,,, except in the

following cases.

1) If |P,,| = 4 and r(f) = 0 for any f € P,,, there is f € P,,, such that the action of R
over the fields consists in replacing one of the field variables with a D; L(jh) field, where
y = x(f) and x = x(f) for some other f € P,,, see (3.11); moreover, one or two of the other
fields change their space-time point. We write Dy, ;(jh)” in the representation (3.47); the
resulting expression is of the form (3.69), with A,, consisting of four different terms, such
that d, = dr,(y—=), ds = ds(yo —0), n1(a) +n2(a) = 1 and, for all f # £, qa(f) = 0, while
¢a(f) = 1. Moreover, if f # f, x,(f) is a single point belonging to Xp,,; not necessarily
coinciding with x(f), while, if f = f, x,(f) is equal to x or to the couple (x,y) (using the
previous definitions). The precise values of x,(f) and [8 (7 )1/)]2’(1};78‘() ) together with the
functions hg, can be deduced from (3.47).

2) If P,, = (f1,f2) and w(f1) = w(f2), the action of R consists in replacing one of the
external fields, of label, let us say, fi, with a Dy(x w) field, where y = x(f1) and x = x(f2),
if fy is the second field label. By using the representation (3.53) of Dys,;w) , we get an
expression of the form (3.69) consisting of many different terms, such that d, = dr.(y — z),
ds = dg(yo — @0), ni(a) + n2(a) < 2, ¢a(f1) =2, ¢a(f2) =0, xa(f2) = x(f2). The values
of x4(f1) and [82 (1) 1/)]5}(1}?)(’]3&1), together with the functions h,, can be deduced from
(3.53).

3) If P,, = (f1,f2) and w(f1) = —w(f2), the action of R consists in replacing one of
the external fields, of label, let us say, fi, with a D;i(éh)a field, where y = x(f;) and
x = x(f2), if f> is the second field label. By using the analogous of the representation (3.47)

for D;, i(ih)g we get an expression of the form (3.69) consisting of four different terms, such

that n1(a) + n2(a) =1, ¢a(f1) = 1, ¢a(f2) = 0, Xa(f2) = x(f2).
Let us now consider the action of £ on V(") (1, \/Z,1p(<")). We get an expansion similar to
that based on (3.68), that we can write, by using (2.79), (3.65) and translation invariance,

in the form

LV 7,/ Zyp S = 4 (1) ZWESSP) 4 s() ZpFSE0 + 2 (1) 20 FLS 4

(3.70)
+ap(1) ZRFSY 4 1, (1) ZEFS
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na(r) = 7 > [ dxihatn, K8 6.
PEPr,r

Pug=(F1.f2).w(f1)=w(fa)=+1

1 -
(1) = 1 > [ xhatn, JKY ()

Lﬁ PEPr,r
Pyg=(f1.f2);w(f1)=—w(f2)=+1
1
() = 13 > [ dxishale, s (i) = oK xi) (57
Pv0=(f1‘f21;’i?}-1‘;=w(f2)=+1
1 -
(0 = 75 D [t Jdualr) = 2K )
PeP r

Pug=(f1.f2)sw(F1)=w(fa)=+1

1 -
(r) = 15 > [ xihs(n JEY x,).
PEP,,r

[Pygl=4,0=(+,—,+,—),w=(+1,-1,—-1,+1)

hi(ipvo), i = 1,...,5, being bounded functions, whose expressions can be deduced from
(3.8), (3.16) and (3.22), also taking into account the permutations needed to order the field
variables as in the r.h.s. of (3.70).

The constants np, Sn, zn, ap and [, which characterize the local part of the effective
potential, can be obtained from (3.71) by summing over n > 1 and 7 € Tj . Finally, the

constant Eh+1 appearing in the Lh.s. of (3.27) can be written in the form

Enp1=Y_ Y Enul(r), (3.72)

n=17€Th »n

where

Epr (1 B > / dxoy K" (%0, - (3.73)

PEPr.r
Py =0

3.8 We want now to iterate the previous procedure, by using equation (3.38), in order to
suitably take into account the non trivial R operations in the vertices v # vg. We shall focus
our discussion on RV " (7, P, r), but the following analysis applies also to LV (r,P,r) and
Epg1 (7).

Let us consider the truncated expectation in the r.h.s. of (3.38) and let us put s = s,,
P; = P,,\Q.,. Moreover we order in an arbitrary way the sets P* = {f € P;,o(f) = £},
we call fij; their elements and we define x() = Usep-x(f), y) = Usep+X(f), xi5 = x(f; ),
yi; = x(f;;). Note that Y7, |P;"| = Y7_, |P;*| = n, otherwise the truncated expectation
vanishes. A couple | = (fi;,fjj,) = (f7, f;") will be called a line joining the fields with
labels f;;

+ . . _ + . . _ _
i) fi,j, and w indices w;, ,w;,” and connecting the points x; = X, ; and y; =y, the

endpoints of [; moreover we shall put m; = m(f;”) + m(f;"). Then, it is well known (see

[Le], [BGPS], for example) that, up to a sign, if s > 1,

ACRCIRNERCHED DY | ST /dPT )det G T(t),  (3.74)

T leT
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where T is a set of lines forming an anchored tree graph between the clusters of points
x() Uy, that is T is a set of lines, which becomes a tree graph if one identifies all the
points in the same cluster. Moreover t = {¢; » € [0,1],1 < 4,4’ < s}, dPr(t) is a probability
measure with support on a set of t such that ¢; = u;-uy for some family of vectors u; € R*
of unit norm. Finally G"T(t) isa (n—s+1) x (n — s+ 1) matrix, whose elements are given
by GT =t 118 () (fT]')ngh,) w+(xij —yirj) with (f;;, f;,rj,) not belonging to 7.

If s = 1, the sum over T is em[l>ty,l but we shall still use equation (3.74), by interpreting

15,45’

the r.h.s. as 1, if P, is empty (which is possible, for s = 1), and as det G*(1) otherwise.

Inserting (3.74) in the r.h.s. of (3.38) (with v = vg) we obtain, up to a sign,

RV (7, P,r) \/ ‘P“‘)'Z / dxy, / dPr,, ()[R (Py,)] -
7 | Pug | Svo
[ IT argh ( yz)] det G" T Two (¢ (t)y ?1 K (x,)]

€Ty,

(3.75)

Let us now consider the contribution to the r.h.s. of (3.75) of one of the terms in the
representation (3.69) of Ry)(SH)(P,,) with n;(a) 4+ na(a) > 0. For each choice of T,,,

") (y — 2) and dZZ(a) (yo — z0), by using equation (3.55) and

we decompose the factors d
the analogous equation for dsg(yo — xo), with X9 = X, x, = y and the other points x,,
r=1,...,n— 1, chosen in the following way.

Let us consider the unique subset (l,...,l,) of T,,, which selects a path joining the
cluster containing xp with the cluster containing x,,, if one identifies all the points in the
same cluster. Let (0;_1,7;), i = 1,m, the couple of vertices whose clusters of points are
joined by [;. We shall put x2;_1, ¢ = 1,m, equal to the endpoint of /; belonging to xz,_,
and x»; equal to the endpoint of I; belonging to xz,. This definition implies that there are
two points of the sequence x,, r = 0,...,n = 2m + 1, possibly coinciding, in any set xs,,
i =0,...,m; these two points are the space-time points of two different fields belonging to
P;,. Since n < 2s,, — 1, this decomposition will produce a finite number of different terms
(< (284, — 1)?, since n1 (@) +na(a) < 2), that we shall distinguish with a label ' belonging
to a set B,,, depending on a € A,, and T,,. These terms can be described in the following
way.

Each term is obtained from the one chosen in the r.h.s. of (3.75) by adding a factor
(htt ) ( 1= Y1)
is multiplied by a factor d > El; (x1,¥1), where dz’, d=0,1,2,j=1,...,mp is a family of

exp{imtL™ni(a)(z +y) +irB 1na(a)(zo + yo)}. Moreover each propagator 9,-

functions so defined. If b =0, mg =1 and d? = 1. If b = 1, m;, = 2 and j distinguishes, up

to the sign, the two functions
B_i%(zl—"—yl)dL(wl _ yz) , e*i%(ﬂfo,ﬂryo,l)dﬁ(wlo _ yzo) ] (3.76)

If b = 2, j distinguishes the three possibilities, obtained by taking the product of two factors
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equal to one of the terms in (3.76). Finally each one of the vertices vy, ..., vs

by a similar factor d g(Xz, Vi)

is multiplied

vo

Note that the deﬁmtlons were chosen so that |d5(x,y)| < |d(x —y)|". Moreover there is

the constraint that

D bar(l)+ Y bar(vi) = na(a) +na(a) . (3.77)
L€Ty, i=1

The previous discussion implies that (3.75) can be written in the form

RV (7, P,r) = \/Z_h'P”U' S>> /dxvo/dPTvo (t)

a€Ayg Tyy @' €By

. o) g (WD) bar (1) o g(h+
- ha(xe,)| 1 wi(fﬂ/’)xa(f),w( JUIT a0 Gy ot e =] - (3.78)
FEPy, 1ET,,

‘ vo‘ Svg
/Z .
- det Gh+1 Tvo ;—i—l H d;):: Ev:; (Xi7 yt)Kz()fl+2) (Xm‘ )] )
=1

where the function h.(Xp,,) has be redefined in order to absorb the factor

exp{imL™'ni(a)(x +y) +im8 *n2(a)(wo + yo)}-

3.9 We are now ready to begin the iteration of the previous procedure, by considering
those among the vertices v1,...,vs, , where the action of R is non trivial. It turns out
that we can not simply repeat the arguments used for vy, but we have to consider some
new situations and introduce some new prescriptions, which will be however sufficient to
complete the iteration up to the endpoints, without any new problem.

Let us select a term in the r.h.s. of (3.78) and one of the vertices immediately following
vg, let us say v, where the action of R is non trivial. We have to consider a few different

cases.

A) Suppose that b(7) = 0 (we shall omit the dependence on a and o). In this case the
action of R is exploited following essentially the same procedure as for vy. If R is different
from the identity, we move its action on the external fields of @, by using the analogous of
(3.69), by taking into account that some of the external fields of ¥ are internal fields of vy,
hence they are involved in the calculation of the truncated expectation (3.74). This means
that, if f is the label of an internal field with ¢(f) > 0, the corresponding (non trivial)

3q(f) operator acts on the quantities in the r.h.s. of (3.78), which depend on f, that is

dﬁ(z)( )g(h_Jr ) (x; — y;) or the matrix elements of det G+ 7> which are obtained by
contracting the ﬁeld with label f with another internal field. For example, if x(f) = x;
and 5‘1((]{)) is the operator associated with the third term in the r.h.s. of (3.47), we must

substitute d°! (1) (xl,yl)(‘){"’g z ) (xl —yi) with

/ dton [} €(t) — 337 g " (€0) - 3] (3.79)

0 w,
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with &(t) = x' + t(x; — x'), for some x’ € x3, X; being defined in terms of x; as g is defined
in terms of y in §3.5 (that is X; and x; are equivalent representation of the same point on
the space-time torus).

There is apparently another problem, related to the possibilities that the operators 5;1((1{))
related with the action of R on v do not commute with the functions h, and the field
variables introduced by the action of R on vyg. However, the discussion in §3.4 implies that
this can not happen, because of our prescription for the choice of the localization points.
This argument is of general validity, hence we will not consider anymore this problem in the

following,.

B) If b(v) > 0, we shall proceed in a different way, in order to avoid growing powers of
the factors dr, and dg, which should produce at the end bad combinatorial factors in the
bounds. We need to distinguish four different cases.

B1) If | P;| = 4, we do not use the decomposition (3.47) for the field changed by the action
of R in a D! field, but we simply write it as the sum of the two terms in the r.h.s. of (3.12)
(in some cases the second term does not really contributes, because the argument of the
factor d;’% is the same as the argument of the delta function in the representation (3.14) of
the R action, but this is not true in general). We still get a representation of the form (3.69)
for [Rz/;(gh) (P;)], but with the property that ¢(f) = 0 for any o € A; and any f € P;. This
procedure works, because we do not need to exploit the regularization property of R in this
case, as the following analysis will make clear.

B2) If |P;| = 2, and the w-labels of the external fields are different, the action of R, after
the insertion of the zero, is indeed trivial, as explained in §3.6, see (3.57). Hence we do not
make any change in the external fields.

B3) If |P;| = 2, the w-labels of the external fields are equal and b(¢) = 2, the presence of
the factor dﬁg does not allow to use for the action of R on the external fields the repre-
sentation (3.69), because that factor depends on the space-time labels of the external fields.
However, we can use the representation following from the equations (3.62),(3.63),(3.64),
by considering the different terms in the r.h.s. as different contributions (in any case no
cancellations among such terms are possible).

Note that this representation has the same properties of the representation (3.69) and
can be written exactly in the same form, by suitable defining the various quantities. In
particular, it is still true that n;(a) + n2(a) < 2.

Of course, we have to take also into account that some of the external fields of ¥ are
internal fields of vg, but this can be done exactly as in item A).

B4) Finally, if | P3| = 2, the w-labels of the external fields are equal and b; = 1, we use for
the action of R on the external fields the representation following from the equations (3.58)

and (3.59), after writing for the fields D3 and D* the analogous of the decomposition
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(3.47).

b(v)

The above procedure can be iterated, by decomposing the factors dj(v) coming from the
previous steps of the iteration along the spanning tree associated with the clusters L,, up
to the endpoints. The final result can be described in the following way.

Let us call a zero each factor equal to one of the two terms in (3.76). Each zero produced
by the action of R on the vertex v is distributed along a tree graph S, on the set z,,, obtained
by putting together an anchored tree graph T for each non trivial vertex o > v and adding a
line for the couple of space-time points belonging to the set x5 for each (not local) endpoint
¥ > v with hy = 2 of type A or u. At the end we have many terms, which are characterized,
for what concerns the zeros, by a tree graph 7" on the set x,, and not more than two zeros
on each line [ € T'; the very important fact that there are at most two zeros on each line

follows from the considerations in item B) of §3.9.

3.10 The final result can be written in the following way:

TeET a€AT

Ada(f), 1 (Sh)o(f) (3.80)
‘ {fel;l [8ja(f)1/)]x;(f)7w(f)} ’
vo
where
Wepwratu) = ha®)| TT (Z0/202)" "]
vnot e.p.

[I_Id;7 Z Xz,Yi)Ki‘Z:’(xv;)] H /dPT (3.81)

i=1 vnot e.p.
. detGZU’Tv( )[ H aqa(;z ))aj:(]{ﬂr [d (l)(xl;}’l)ainlg :}) (Xl _YI)]]};

leT,
T is the set of the tree graphs on x,,, obtained by putting together an anchored tree
graph T, for each non trivial vertex v and adding a line (which will be by definition the only
element of T;,) for the couple of space-time points belonging to the set x,, for each (not local)
endpoint v with h, = 2 of type A or u; Ap is a set of indices which allows to distinguish the
different terms produced by the non trivial R operations and the iterative decomposition
of the zeros; v, ...,v;, are the endpoints of 7, f;” and f;r are the labels of the two fields
forming the line [, “e.p.” is an abbreviation of “endpoint”. Moreover G"+ 7> (t,,) is obtained

from the matrix G T (¢, ) associated with the vertex v and T}, see (3.74), by substituting

ho,To m(f)+m (f/ ) (hy .
Gilwg = to, a0, 7 i;,)wl* (xij — yarjr) with
Ada(£55) Ada(f5) amUSFmEL ) ()

hoTo  _ o . v
Ga,ij,i’j’ - t'”alﬂ 8]a(f;)8ja(ff;)81 gwl_’wl+ (XZJ yi'j ) . (382)

Finally, 5;?, qg=0,1,2,3,5 =1,...,mg, is a family of operators, implicitly defined in the
previous sections, which are dimensionally equivalent to derivatives of order ¢; for each

o € Ar, there is an operator 8q“(f)) associated with each f € I,,.
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It would be very difficult to give a precise description of the various contributions to the
sum over Ap, but fortunately we only need to know some very general properties, which

easily follows from the discussion in the previous sections.

1) There is a constant C such that, VT € T,, |Ar| < C™ and, Va € Ar, |ha(Xy, )| < C™.
2) For any « € Ar, the following inequality is satisfied
[ I1 Wha(f)qa(f)] [H ,yfha(l)ba(l)] < I ™, (3.83)
fely, leTr vnot e.p.

where ho(f) = hyy — 1 if f € P,,, otherwise it is the scale of the vertex where the field with
label f is contracted; ho(l) = hy, if [ € T, and

1 if |P,| =4,
_ )1 if|P]=2and} w(f)#0
P, = fep, ’ 3.84
2D =09 i [P =2 and > sem w(f) =0, (3:84)
0 otherwise.

3.11 In order to prove (3.83), let us suppose first that there is no vertex with two external
fields and equal w indices; hence ¢, (f) < 1, Vf € I, and b,(l) <1, VI € T. Let us choose
f € I, such that ¢,(f) = 1; by analyzing the procedure described in §3.8 and §3.9, one

can easily see that there are three vertices v' < v < v and a line [ € Ty, such that

(i) the field with label f is affected by the action of R on the vertex v;

(i) hy = ho(f) and b, (1) = 1;

(iii) if v < © < © and | € T}, then by(l) = 0;

(iv) if o' <9 <@ and f # f € Py, then ¢o(f) = 0.

(ii) follows from the definition of h,(f) and from the remark that the zero produced by
the action of R on v is moved by the process of distribution of the zeros along T' in some
vertex ¥ > v. The property (iii) characterizes #; in fact the procedure described in item B1)
and B2) of §3.9 guarantees that no zero can be produced by the action of R in the vertices
between v and T, if the zero in ¢ “originated” from the regularization in v. (iv) follows
from the previous remark and from the fact that the action of R is trivial in all the vertices
between v’ and v, see §3.3.

The previous considerations imply that we can associate each factor 4= (/) in the Lh.s. of
(3.83) with a factor y~%= O by forming disjoint pairs; with each pair we can associate two
vertices v’ and © and the path on 7 containing all the vertices v’ < © < . Since each vertex
with four external fields or two external fields and different w indices certainly belongs to
one of these paths, the inequality (3.83) then follows from the trivial identity

,y*(ba(l)*ha(f)) — Wf(hafhu/) — H 7*1 . (3.85)
o <H<D
In order to complete the proof, we have now to consider also the possibility that there

is some vertex with two external fields and equal w indices, where the action of R is non
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trivial. This means that there is some f € I,,, such that ¢,(f) = 2 or even (see B4) in
83.9) ¢o (f) = 1, if there is a zero associated with a line of the spanning tree related with the
vertex where f is affected by the regularization. One can proceed essentially in the same
way, but has to consider a few different situations, since the value of g, (f) is not fixed and,
if ¢o(f) = 2, there are two zeros to associate with a single factor 42#«(/) in the Lh.s. of
(3.83). We shall not give the details, which have essentially to formalize the claim that each
order one derivative couples with a order one zero, so that the corresponding factors in the
L.h.s. of (3.83) contribute a factor 7! to all vertices between the vertex where the derivative

takes its action and the vertex where the zero is “sitting”.

Let us now introduce, given any set P C I,,, the notation

= alf), m@P)=> m(f). (3.86)
fep fep
Note that, by the remark at the end of §3.2, m(P,) = 0 for any v # vo which is not an
endpoint of type d; or d; and that also m(P,,) = 0 for all the terms in the r.h.s. of (3.80).

We also define
|17h| = {Sup{|A|7|V|}: lfh:—f-]_’
Sup{|Ah|i|6h|7|Vh|}, lfh:S 0.

Ep = SUp |17hr| .
h!>h

(3.87)

Moreover, we suppose that the condition (2.117) is satisfied, so that h* > 0. We shall prove

the following theorem.

3.12 THEOREM. Let h > h* > 0, with h* defined by (2.116). If the bounds (2.98) are

satisfied and, for some constants cy,

‘ < eclgh sup ‘

‘ < ecren, (3.88)
h'>h

h’>h Zh’ 1 On -1

there exists a constant € (depending on c1) such that, if e, < &, then, for a suitable constant

co, independent of ¢y, as well as of u, L and j3,

Z Z ZZ Z /dxvo|WrPrTa(Xvo)|S

TETh,n r TET a€Agp
P puglmam a0 (Pog )=k (3.89)

< LBy~ "PE P (coen)"

where

Di(Py)=-2+m+k. (3.90)

Moreover

Y (@) + za (0] + lan(m)] + (D] < (cozn)™ (3.91)

T€Th,n

Z Isn ()] < |onl(coen)™ (3.92)

T€Th,n
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> 1Bna ()] < v (coen) . (3.93)
T€Th,n

3.13 Animportant role in the proof of Theorem 3.12 plays the estimation of det G+ 7> (t,,),
that we shall now discuss, by referring to §3.8 and §3.10 for the notation. From now on C
will denote a generic constant independent of u, L and f.

Given a vertex v which is not an endpoint and an anchored tree graph T, (empty, if v is
trivial), we consider the set of internal fields which do not belong to the any line of T, and
the corresponding sets P7 of field labels with o(f) = o and w(f) = w. The sets U, P~
and U, PT label the rows and the columns, respectively, of the matrix G"To(t,), hence
they contain the same number of elements; however, |P~*| can be different from |P*+|, if
h < 0. We introduce an integer p(T,), that we put equal to 1, if [P—¢| # |PT*|, equal to

0 otherwise. We want to prove that

p(Ty) o
| det G T (1,)] < (I::J) CX Py =P =25-1)

. 7%(2521 ‘P”i | =[P ‘72(5”71))/}/

—ho e, (92 () Faa U7 +m(H+m )]

o 307 40 (P \Qu)+m(Po,\Qu,)] (3.94)
=Y
In order to prove this inequality, we shall suppose, for simplicity, that all the operators
5;1((]’:)) and 5{” () acting on the fields with field label f € U, ., P7* are equal to the identity.
It is very easy to modify the following argument, in order to prove that each operator 5;1((}0))
or 5{n(f) gives a contribution to the bound proportional to 4"+4(/) or ~h+™(f) 5o proving
(3.94) in the general case.
The proof is based on the well known Gram-Hadamard inequality, stating that, if M is a

square matrix with elements A/;; of the form M;; =< A;, B; >, where A;, B; are vectors in

a Hilbert space with scalar product < -, >, then
| det M| < JT 14| - 1B - (3.95)
where || - || is the norm induced by the scalar product.

Let H = R® ® Ho, where Ho is the Hilbert space of complex four dimensional vectors

F(k') = (F1(k'),..., Fy(k")), Fi(k') being a function on the set D} 5, with scalar product

4
1
<FG>=) i > FF(K)Gi(K) . (3.96)
i=1 K’
If h, <0, it is easy to verify that
ho Ty _ oy (he) oo N o a(he) . ® B")
Gijirgt = ti oo ot (xij = i) =<wi @ Ax(fi;),w(f,-;)’“’ ®Bx(f;],),w(f;],) >, (397)
where u; € R®, i =1,...,s, are the vectors such that ¢; 7 = u; - u;, and
A(h) (k/) — eik’x V fh(kl) i { (_i.k(] + E(Ikl); 07 _iohfl(kl); 0)7 lf w = +1;
x,w —An(K) (0,i0p—1(k"),0,0n-1), if w= -1,

(3.98)

g _ ey V) {(1,1,0,0), if = +1,
_ ey VI f 10

X0 —a,00) (0,01, (iko — B(K))/on_1), ifw=—1.
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Let us now define ny = |P~F|, my = |PTF|, m = |[P~F| + |P~—| = |PHH| 4+ |PT|;
by using (3.95) and (3.98), it is easy to see, by proceeding as in §2.7, that, if the conditions
(2.98) hold,

hv m m+ m+ TL+
|det GZE,TU (tv)| S Cmryhun+|0_hu |m—n+ <|’Y—|> = Cm,yhvm (%) . (399)
Op v

_|Pv|_ (Sv_l) and Zz 1 Qa(Pvi/Qvi)_ZleTv [Qa(fl+)+qoc(fl_)] = 0:
we get the inequality (3.94), if m4 > n,, by using (2.116). The case m4 < ny can be treated

Since 2m = 3%, |P,,

in a similar way, by exchanging the definitions of Aﬁc’% (k') and B}(Jz(k’ ).

If h, = 0, the inequality (3.95) can not be directly applied, because of the k, ! behaviour of
the ultraviolet propagator for kg — oco; we would not get bounds uniform in the ultraviolet
cutoff M (see (2.7)). However, we can make a further multiscale expansion of g+ (x), by
an obvious smooth partition of the interval {|ko| > 1}, and we can modify the trees by
putting the endpoints on scale h = M; see [BGPS] for a similar procedure. It is easy to
see that there is no relevant or marginal term on any scale h, > 0, except for those which
are obtained by contracting two fields associated with the same space-time point in a vertex
located between an endpoint and the first non trivial vertex following it. However, the sum
on the scale of this type of term (which is not absolutely convergent for M — oo0) can
be controlled by using the explicit expression of the single scale propagator, since there is
indeed no divergence, but only a discontinuity at xg = 0 for x = 0. Hence, we can reduce
again the calculation to the bound (3.95); we shall omit the details, which are of the same

type of those used below for the infrared part of the model.

3.14 Proof of Theorem 3.12.
By using (3.81) and (3.94) we get

[Py |/2
/dxvo |WT,P,I‘,T,&(X110)| S CnJ‘r,P,r,T,oz H {(ZhU /Zhu—l) :
vnot e.p.
s (Tv) s
O Py =Py =2 1) <|02v|>p o (0 1P = 1Pol=2(s0 1) (3.100)
’y v

,_yhu Z::l [q& (Pvi \Qvi )“Fm(Pvl \Qvl )],y

)

—ho Y en [qa(f,*)+qa(ff)+m(fl+)+m(ff)]}
where

ba (v .
[ i) (s, ya) K O (x|

i=1

[T [ IT 0o o yndrg ™) oo -] )]
T,

vnot e.p. U le
(3.101)

JT,P,r,T,a :/dxvg

v

In §3.15 we will prove that

1 — n 'U U
Jr,P,r,T,oc < CnLﬂ(Eh)n H I:;C?(sv 1),}/’11} v ( H |L ) .
vnot e.p. O €T, (3.102)
W_hv ZleT., ba(l),y—hv(sv—l)/yh” ZleT., [q"( )taa (s )+m(f1+)+m(fli)]:|

b
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where n,,(v) is the number of vertices of type v with scale h, + 1 and T, is the subset of the
lines of T, corresponding to non diagonal propagators, that is propagators with different w
indices.

It is easy to see that

> h an Po\@u) + h qa(Pog) = Y ha(f)ga(f) (3.103)

v not e.p. =1 feI,J0

and, by using also the remark after (3.86), that

Z{%(ilpﬁi

- |Pﬁ|) —2(85-1) +n, (V) + i:m(Pa\Qa)} =

@1 . (3.104)
>0
By inserting (3.102) in (3.100) and using (3.83), (3.103), (3.104), we find
n n . —hDy (P, |Uh |

A% o | Wr P 7,0 (X0,)| < C"LBepy 7 T
vEVs

(3.105)

11 { T )PU|/27‘[—2+’2—“'+2<PU>]} ,

vnot e.p.

where V3 is the set of vertices, which are not endpoints, such that p(T,) + |T,| > 0, while
the vertices v > v do not enjoy this property.

Let us now consider a vertex v, which is not an endpoint, such that |P,| = 2 and
> rep, w(f) # 0. We want to show that there is a vertex ¥ > v, such that o € V5. In
order to prove this claim, we note that, if v* is an endpoint, then ZfEP,,* a(flw(f) =0,
while > . p o(f)w(f) # 0. Since all diagonal propagators join two fields with equal w
indices and opposite o indices, given any Feynman graph connecting the endpoints of the
cluster L,, at least one of its lines has to be a non diagonal propagator, so that at least one
of the vertices v > v must belong to V5.

Moreover, if v € V5,

|Uzv| _ @VTM h=hy < |f7:|7 (h—hy)(1—c1en) < C,Y(hfhv)(l/2) ’ (3.106)
G L /) v

if e, <& and € <1/(2c;). We have used the second inequality in (3.88) and the definition
(2.116), implying that |op| < Z—gfyh, if h > h*.
It follows that

161 |;ZZ| < Cnvnoll.p. yEEP (3.107)
where
= {3 MRS T 020
so that
—24 @ +z(P,) + 2(];”) > % ,  Vounot e.p. . (3.109)
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Hence (3.105) can be changed in
/dXv0|WTP r.T.0(Xv, )| < C"LBepy —hDy(Pyy) .

|Py|/2 Y 2(Py
H { Czl 1‘P |- ‘Pl(Zh /Zh ) 7[2+|PT+Z(P.,)+%}} ,

v not e.p.

(3.110)

In order to complete the proof of the bound (3.89), we have to perform the sums in the
r.h.s. of (3.89). The number of unlabeled trees is < 4"; fixed an unlabeled tree, the number
of terms in the sum over the various labels of the tree is bounded by C™, except the sums
over the scale labels and the sets P. The number of addenda in the sums over a and r is
again bounded by C™, since the action of R can be non trivial at most two times between
two consecutive non trivial vertices (see §3.3) and the number of non trivial vertices is of
order n.

Regarding the sum over T, it is empty if s, = 1. If s, > 1 and N,, = |P,, the

- |Qvi ’

number of anchored trees with d; lines branching from the vertex v; can be bounded, by

using Caley’s formula, by

(S'U — 2)! Ndl Ndsv .

i = D), — 1)1 en e

hence the number of addenda in } ;. is bounded by [], not e.p. So! 02l 1Pl IR

In order to bound the sums over the scale labels and P we first use the inequality, following

from (3.109) and the first inequality in (3.88), if c13 < 1/16,

H (Zhu/Zhv_l)‘Pv\/ ot Bl (p, ) 2B <

vnot e.p.

<[yt T+ =1,

0] vnotep

(3.111)

where ¥ are the non trivial vertices, and ¢’ is the non trivial vertex immediately preceding v
or the root. The factors 7*41_0(’”’}‘5’) in the r.h.s. of (3.111) allow to bound the sums over
the scale labels by C™.

Finally the sum over P can be bound by using the following combinatorial inequality,
trivial for 7 large enough, but valid for any v > 1 (see [BGPS], $3). Let {p,,v € 7} a set of

integers such that p, < >0, py, for all v € 7 which are not endpoints; then

I Yrw<c (3.112)

vnot e.p. P

It follows that

> I %< 11
vnot e.

vnot e.p.

doymEm<on. (3.113)

P p.
| Pygl=2m

The proof of the bounds (3.91) and (3.93) is very similar. For the terms contributing to
nj, one gets a bound like (3.89), with m = 1 and k& = 0, but the factor vy "Pr(Fro) = 4P
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is compensated by the factor 4"

appearing in the definition of ny(7), see (3.71). For the
terms contributing to z;, and ap Dp(P,,) =0 (m =k = 1), as well as for those contributing
to lp (m = 2, k = 0). Finally, for the terms contributing to Eh+1, Dy(P,,) = 2. For the
terms contributing to s, Di(P,,) = —1, but each term has also at least one small factor

|on|y " in its bound, since |V5| > 1, see (3.106); so we get the bound (3.92).

3.15 Proof of (3.102).

We shall refer to the definitions and the discussion in §3.7 and §3.9. Let us consider the
factor in the r.h.s. of (3.101) associated with the line I € T, and let us suppose that x; € x(?,
y: € xU"). By using (3.47), (3.53) and the similar expressions for the other difference fields
produced by the regularization, we can write

Ada () ATa (F;) 1 bl .
8.704 fl )8.70:(f£+ [d Elg(Xl’yl)al g(_) ( l_yl)] =

(3.114)
dtl s g g ) e “<xl<tz),yl<sz))ai"lg () = i)

o (7)) Tda(f) i D)
where, depending on «a, there are essentially two different possibilities for the operators 5;1:‘
and the space-time points x;(;), y;(s:). Let us consider, for example, f;"; then the first

possibility is that 5;1;‘ is a derivative of order g, and
x)(t;) = % + (X, — %) ,for some %x; € xV (3.115)

x; being defined in terms of x; as § is defined in terms of y in §3.5 (that is x; and x; are
equivalent representation of the same point on the space-time torus). The second possibility
is that 5;: is a local operator of the form L=™13~"29/"#95*, with ¢, < 2?21 n; < qoq + 1,
and x}(t;) = %, € x(. Note that, by (2.40), L=~ "2 < yhrs(mtnz) < yhu(nitns),

By proceeding as in the proof of lemma (2.6) and using (2.105) it is very easy to show
that, for any V > 1,

a fl @ fl amg v
g A e (0 i), vi ()3 g 1) (i (1) —yi(slm\ <

hol1aa (500 (S0 Em U0 )+m(f) =ba (D) (|Uh |)
1+ [y (t) = yi(s) 1Y S

(3.116)

<ol
fy v
where d(x) is defined in (2.97) and p; = 1if w(f;) # w(f;"), p = 0 otherwise. We used
here the fact that, if h, = +1, then ¢,(f;) = qa(f;r) = 0, which allows to avoid the
problems connected with the singularity of the time derivatives of the scale 1 propagator at
70(t) — Y o(s1) = 0.

Let us now consider the contribution of the endpoints to the r.h.s. of (3.101) and recall

a('[);‘) = O, while, if Xv;* - (Xi,Yi)a ij

(see §3.10) that T,» is empty, i

contains the line /; connecting x; with y; and h,» = 2. By using (3.33) and (3.39), we get,
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if h; = hy» and S, = {i : v} is of type v},

K2

[ ] dJ Ev i(xi’yi)K%(xv;*)]
i=1

<o T w5

i:|xv?| =2 i€S,

<

(3.117)

Let us now remark that, after the insertion of the bounds (3.116) and (3.117) in the r.h.s.
of (3.101), by possibly changing the constant C, we can substitute [ dx,,, which is there
a shorthand for erxuo
the space-time torus [—L/2, L/2] x [-3/2, /2]. Moreover, equation (3.115) can be thought,

dxg, with the real integral over (T, |x”0|, where Ty, g is
zEA g ,B B

and we shall do that, as defining an interval on T g, when ¢; spans the interval [0, 1]; this
is possible thanks to the introduction of the partition (3.42) in §3.5.

Hence, in order to complete the proof of (3.102), we have to show that, fixed a point
X € X,,, the interpolation parameters associated with the regularization operations and an

integer N > 3,

1 —hy(sy—1
/dxvo\x IT 11 T A ) = <[[cy "0, (3.118)

vetleT, VET

where = denotes the subset of (T, 5)*w0 \X| satisfying all the constraints associated with the
interpolated points of the form (3.115).

Let us call T = U,T,, where T, is the set of lines connecting x;(t;) with y;j(s;), for any
l € T,. T is not a tree in general; however, for any v, T, is still an anchored tree graph
between the clusters of points x(¥), i = 1,...,s,. Hence, the proof of (3.118) becomes trivial,

if we can show that

d(xy,\%) = [] dr:, (3.119)

leT
where r; = xj(t1) — y;(s1).

In order to prove (3.119), we can proceed, for example, as in [BM1]. Let us consider first
a vertex v with |T,| > 0, which is maximal with respect to the tree order; hence either v is a
non local endpoint with h, = 2 or it is a non trivial vertex with no vertex v’ with |T,/| > 0
following it. In this case T, = T,, that is no line depends on the interpolation parameters,

and T, is a tree on the set x,,, so that we get immediately the identity

VT s (3.120)

1T,

where x(*) is an arbitrary point of x,. If we use (3.120) for the family Sy of all maximal

vertices with |T,| > 0, we get

dx., = [] [dx(”) II dr,] . (3.121)

vESH 1T,
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Let us now consider a line I € T, which connects two clusters of points Xy, and X,,, with

vi € So, i = 1,2. By (3.115)
r; = x;(t;) — yi(sp) = tixp + (1= )% — yp(s7) (3.122)
implying that
1) = pp 4+ %) —rp =1y 4 47X = xp) + (1= ) (XYY = %7) + yi(s) - (3.123)

Since y;(s7) depends only on the variables x,, and (x(*1) —x7) and (x(*1) —%;) both depend

only on {r;,l € ’f’vl}, we get

2

2
1 [di(”i) I drl] = dryax" [T I dv:- (3.124)

i=1 Iet,, i=11et,,
By iterating this procedure, one gets (3.119).

3.16 As we have discussed in §2.13, it is not necessary to perform the scale decomposition
of the Grassmanian integration up to the last scale hz g, but we can stop it to the scale h*,

defined in (2.116). Hence, we redefine Ej-, so that

e~ D8Fne _ / Pl ey (A SH) VT VTS (3.125)
implying that
1
Ers= Y [En+ta. (3.126)
h=h*

Thanks to Lemma 2.12, we can proceed as in the proof of Theorem 3.12 to prove the

following Theorem.

3.17 THEOREM. There exists a constant € such that, if ep+ < € and, for h = h*, (2.98)
holds and the bounds (3.88) are satisfied, then

> 1Ew ()] <9 (Cepe)™ (3.127)

TETh*_1,n

3.18 Theorems 3.12 and 3.17, together with (3.126) and (2.118), imply that the expansion
defining Ey, g is convergent, uniformly in L, 3. With some more work (essentially trivial,

but cumbersome to describe) one can also prove that limy, g_,o Er g does exist.
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4. The flow of the running coupling constants

4.1 The convergence of the expansion for the effective potential is proved by theorems
3.12, 3.17 under the hypothesis that, uniformly in A > h*, the running coupling constants
are small enough and the bounds (2.98) and (3.88) are satisfied. In this section we prove
that, if |A| is small enough and v is properly chosen, the above conditions are indeed verified.

Let us consider first the bounds in (2.98). They immediately follow from (3.91) and (3.92),

by a simple inductive argument, if the bounds (3.88) are verified and
ep <& <&, forh>h", (4.1)

with &y small enough.
Let us now consider the bounds (3.88). By (2.83), (2.84), the first of (2.89) and the third
of (2.98), we get

Zp1
=1 4.2
Zh + 2n ) ( )
Th-1 _q 4 5n/0n =20 (4.3)
Oph 1+ 2z,

By explicit calculation of the lower order non zero terms contributing to z, and sp /o, one

can prove that
2 =W\ +0(e), b >0,
(4.4)
Sh/O'h:—bg)\h-FO(E%) , by >0,
which imply (3.88), if &y is small enough, with a suitable constant ¢; depending on the
constant, ¢y appearing in Theorem 3.12, since the value of ¢g is independent of ¢;.

The equation (4.2) and the definitions (2.109) allow to get the following representation of

the Beta function in terms of the tree expansions (3.71):

1 2 oo
Ab = Ant1 + <1 n Zh) M1 (2h +220)+ Y D> ()], (4.5)
n=2T7ETh n
1 oo
On = Opy1 + = —Oni12n + Mo + Z Z (ah(T) - zh(r)) , (4.6)
z n=2T71ETh n
1 oo
Yh = Whit | T kg + " Mg+ D ma(r)]| (4.7)
n=271€Th n

where we have extracted the terms of first order in the running couplings and we have

extended to h = +1 the definition of Aj and J;, so that, see (2.81),
A\ = 4Xsin®(pp + /L), & = —ved” . (4.8)

Note that the first order term proportional to Ap41 in the equation for vy, is of size 'yh, while
the similar term in the equation for d;, is equal to zero, if h < 0; moreover the constants cg

and c; are bounded uniformly in L, 3.

64



Hence, if we put d, = (dp, \n), the Beta function can be written, if condition (4.1) is

satisfied, with &y small enough, in the form

A1 = A+ B (@, vns -3 81,0150, 0%) (4.9)
Sn1 = On + By (@nsvps ... 3 @1, v15u,67) (4.10)
Vpho1 = Yh + By (@n, Va5 A1, 0150, 6%) (4.11)
where 37, 3% and (% are functions of @, vh, ..., a1, v1,u, which can be easily bounded, by

using Theorem 3.12, if the condition (4.1) is verified. Note that these functions depend on
ap,Vp,...,d1,v1,u, directly trough the endpoints of the trees, indirectly trough z;, and the
quantities Zp: /Zp —1 and op—1(k"), h < h' <0, appearing in the tree expansions.

Let us define

pn = supmax{| |, |0k]},  An = sup || . (4.12)
k>h k>h
We want to prove the following Lemma.

4.2 LEMMA. Suppose that u satisfies the condition (2.117) and let us consider the equation
(4.11) for fized values of @, Zn—1 and op—1(k'), h<h<1, satisfying the conditions

Mh < €1 < € , (4.13)
agy" ™' > 4lon] , (4.14)
Yook < —U;: < yteomn (4.15)

Zp—
(A A (416

for some constant c.

Then, if &g is small enough, there exist some constants &1, 1, ', c¢1, B, and a family
of intervals I™ | h < h < 0, such that &1 < &5, 0 < n < 1,1 <~ < ~, IM c [(h+1)

|I(E)| < 015_1(7,)’1 Ll’fld, ny = € I(’_l)’

lvn| < By [y 2R 4yt | < &

>

IN
>

IN
—_

(4.17)

4.3  Proof. Let us consider (4.11), for fixed values of @p, Zp/Zn—1 (hence of z;) and
on_1(k'), h < h < 1, satisfying (4.13)-(4.16).
Note that, if |vs| < & for h < h < 1 and &p is small enough, the r.h.s. of (4.11) is well

defined for h = h and we can write, by using (4.7),
Vi1 =W+ by + 77, (4.18)

where b; = c‘fl_lfyh_l)\B and 7y, collects all terms of second or higher order in &.
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Note also that, in the tree expansion of n,(7), the dependence on wy,...,v; appears
only in the endpoints of the trees and there is no contribution from the trees with n > 2
endpoints, which are only of type v or §, because of the support properties of the single

scale propagators. It follows, by using (3.91) and (4.14)-(4.16), that
Irpl < cappéo (4.19)

Let us now fix a positive constant ¢, consider the intervals

b b
(h)y — % _ o % & 4.9
J [ 7_1 ceq, 7_14—02’:‘1]. (0)

and suppose that there is an interval I (h) such that, if vy spans [ (i’), then v; spans the
interval J(A+1) and lvn| < & for h < h < 1. Let us call J®) the interval spanned by vj_4

when vy spans I(®). Equation (4.18) can be written in the form
br, br,
Vi1 + ’y——hl = fy(l/;L + ’y——hl) + 7y . (4.21)
Hence, by using also the definition of by, and (4.19), we see that

min [Vh_1+ b }:

V1€I(f‘) 'y —_ ].
bt Y (4.22)
= min vy + + min |r; + ——(b; — by < '
Wuhejw+1>[ ] T R R )| <
< —vycé€1 + €19 + C3’)/B51 R
for some constant c¢3. In a similar way we can show that
b, _ o 7
max |(v5_q+ ——=| > yc&1 — 28180 — c3Y"E1 . (4.23)
vrel®) v—1

It follows that, if ¢ is large enough and &y is small enough, J (h) ig strictly contained in .J (R
On the other hand, it is obvious that there is a one to one correspondence between v and
the sequence vy, h —1 < h < 1. Hence there is an interval 11 I(’_l), such that, if
V1 spans I(B’l), then v;_; spans the interval J®) and, if &; is small enough, |v,| < & for
h—1<h<1.

The previous calculations also imply that the inductive hypothesis is verified for h = 0, so
that we have proved that there exists a decreasing family of intervals I (’_l), h<h< 0, such
that, if v = v; € I™ then the sequence vy, is well defined for h > T and satisfies the bound
|vn| < &o.

The bound on the size of I(") easily follows (4.18) and (4.19). Let us denote by v, and

vy, h < h < 1, the sequences corresponding to vy, v} € I™™ . We have
Vhot —Vp_q =Y(vh —vp) + 18 — T}, (4.24)

where 7}, is a shorthand for the value taken from rj in correspondence of the sequence vj,.

Let us now observe that r, —r}, is equal to yzp_1(1+ zp_1) (v}, — ) plus a sum of terms,
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associated with trees, containing at least one endpoint of type v, with a difference v, — v},
k > h, in place of the corresponding running coupling, and one endpoint, of type A. Then,

if \vp — | < |vn —v}|, k > h, we have

[vh—1 — v}

|I/h — V;z| S + C€_1|I/h — I/;L| . (425)

On the other hand, if h = 1, this bound implies that |v; — vi| < |vo — 1], if & is small
enough; hence it allows to show inductively that, given any ', such that 1 < 7' < ~, if &
is small enough, then

= | <" F Dy — ) (4.26)

Since, by definition, if v spans I (’_l), then v;, spans the interval J (E‘H), of size 2c¢#1, the size
of I™ is bounded by 2¢z;y/(F=1),

In order to complete the proof of Lemma 4.2, we have still to prove the bound (4.17).
Note that, if we iterate (4.11), we can write, if h < h < 0 and vy € 1P,

1
Vh:’Y_h+1 v+ Z ’yk_QIBIZ(Vka"'aVl) ) (427)
k=h+1
where now the functions ¥ are thought as functions of vy, ..., v, only.

If we put h = h in (4.27), we get the following identity:

1

v, = — Z Y288 (g ) 9 Ty (4.28)
k=h+1

(4.27) and (4.28) are equivalent to
Vp = _,y—h Z ’yk_lﬁllcl(yka .- '7V1) + ’Y_(h_ﬁ)yﬁ ) B <h S 1. (429)

The discussion following (4.18) implies that

1Bk Wi, .. sv1)| < Cpae (4.30)

if £y is small enough. However this bound it is not sufficient and we have to analyze in more
detail the structure of the functions 3}, by looking in particular to the trees in the expansion
of np(7), which have no endpoint of type v. Let us suppose that, given a tree with this
property, we decompose the propagators by using (2.99); we get a family of C" different

contributions, which can be bounded as before, by using an argument similar to that used

in §3.13. However, the terms containing only the propagators ggh[j cancel out, for simple

parity properties. On the other hand, the terms containing at least one propagator r;h”) or

(hy)

(Cen)™(|on|/¥™)?, by using (2.101) and (3.106). Analogously the terms with at least one

propagator rgh”) can be bounded by (Csj,)"y™, with some positive < 1. In fact, for these

two propagators g (the number of such propagators has to be even) can be bounded by
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terms, by using (2.101), the bound can be improved by a factor 4"+ < At =h) for any

positive n < 1, and the bad factor »7(*»=")

can be controlled by the sum over the scales, if
7 is small enough, thanks to (3.111). Finally, the parity properties of the propagators imply
that the only term linear in the running couplings, which contributes to v, is of order v".

Hence, we can write

1 2
~ loa A~
Bt = om0 e () By, @an
v

k=h

where | Ry, |31, 157 4] < C.
The factor v~ 27(*~") in the r.h.s. of (4.31) follows from the simple remark that the bound
over all the trees contributing to v, which have at least one endpoint of fixed scale k > h,

(k=h) " with ' positive but small enough. It is sufficient to

can be improved by a factor 'y_"’
use again (3.111), which allows to extract such factor from the r.h.s. before performing the
sum over the scale indices, and to choose i = 27, which is possible if 7 is small enough.
Let us now observe that the sequence v, h < h < 1, satisfying (4.29) can be obtained as
the limit as n — oo of the sequence {V,(l")}, h < h<1,n> 0, parameterized by v; € J*+1)

and defined recursively in the following way:

1/,(10):0,
h
n — —1 pv n— n— —(h—h (432)
VF(L):_/Y h Z '7k 1Bk(’/1(c 1)5"'7V§ 1))+’7 (h h)’/ﬁa n>1.
k=h+1

In fact, it is easy to show inductively, by using (4.30), that, if £, is small enough, |1/f(L")| <
Cg; < &g, so that (4.32) is meaningful, and

(n) _ (n=1)) (1= \n
WA vy v, | < (Ca)". (4.33)

In fact this is true for n = 1 by (4.30) and the fact that z/f(LO) = 0; for n > 1 it follows trivially

by the fact that ﬁg(ylgn_l), e l/{"_l)) - Bz(l/,(cn_Q), e, I/§"—2)) can be written as a sum of
terms in which there are at least one endpoint of type v, with a difference 1/,'11,71 — ngz,

h' > k, in place of the corresponding running coupling, and one endpoint of type A\. Then
u,(l") converges as n — oo, for h < h < 1, to a limit vy, satisfying (4.29) and the bound
|vn| < &, if €)1 is small enough. Since the solution of the equations (4.29) is unique, it must
coincide with the previous one.

Conditions (4.14) and (4.15) imply that

lonl _ @MWHL < Gy (R (—com) (4.34)

AR o
Hence, if &; is small enough, by (4.31),

1
18] < Ca1 | Y (vl ™70 4 2gy =3 hh) gk | (4.35)

m=k
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Hence, it is easy to show that there exists a constant ¢ such that

h
ZRELIDS
h

=h+
(h=h) | ~uh +7—<h—ﬁ>] -

1
D0 3ty
1 m=h+1 (436)

|- 3

+ 6_0’}/_
Let us now suppose that, for some constant ¢,_1,

Y| < e [77%(’173) +7nh] <o, (4.37)

which is true for n = 1, since 1/5,?) = 0, if &1 is small enough. Then, it is easy to verify that

the same bound is verified by 1/,(,:1 ), if ¢,,—1 is substituted with

Cp = 5(1 + C4Cn_151) R (438)

where ¢4 is a suitable constant. Hence, we can easily prove the bound (4.17) for v, =

lim, o0 yf(Ln), for £; small enough.

4.4 Let us now consider the equations (4.9) and (4.10), for a fixed, arbitrary, sequence
vh, h < h < 1, satisfying the bound (4.17). In order to study the corresponding flow, we
compare our model with an approximate model, obtained by putting v = v = 0 and by
substituting all the propagators with the Luttinger propagator g(L’fL(x;y), see (2.100). Tt
is easy to see that, in this model, o, (k’) = v, = 0, for any h < 1, so that the flow of the

running couplings is described only by the equations

AP =P gt @l et e, w39)

o = ol v gl as e, |
where the functions 62’1’ and BZ’L can be represented as in (4.5) and (4.6), by suitably
changing the definition of the trees and of the related quantities Iy (7), ap(7), (), which
we shall distinguish by a superscript L. Of course Theorem 3.12 applies also to the new
model, which differs from the well known Luttinger model only because the space variables
are restricted to the unit lattice, instead of the real axis.

Let us define, for a = A, 4§,
- - - o L= S
o (@hy Va5 81,0150, 0%) = B (@hy Vi - . A1, va5u,0%) — B (@, ..., d1;6%) . (4.40)

Note that, in the r.h.s. of (4.40), the function B;f’L is calculated at the values of @y,
h < h' <1, which are the solutions of the equations (4.9) and (4.10); these values are of
course different from those satisfying the equations (4.39). We shall prove the following

Lemma.

4.5 LEMMA. Suppose that u satisfies the condition (2.117), the sequence vy, h < h <1,
satisfies the bound (4.17) and 6* satisfies the condition

| — 0%vo + S| < M), (4.41)
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¢S being the constant appearing in the r.h.s. of (4.6),
Then, if n is defined as in Lemma 4.2 and pn < & (hence (4.1) is satisfied) and &g is
small enough,

[ral + 1| < Oy 207 97, R <R <05 (4.42)

Irt <OAY, |rl| < O\ (4.43)

4.6  Sketch of the proof. Note that all trees with n > 2 endpoints, contributing to the
expansions in the r.h.s. of the equations (4.5)-(4.7), may have an endpoint of type v or ¢
only if there are at least two endpoints of type A; this claim follows from the definition of
localization and the support properties of the single scale propagators. The bound (4.43)
is an easy consequence of this remark, equations (4.5), (4.6), condition (4.41) and Theorem
3.12.

We then consider h < 0 and we define

I
A Z
L h—1 h—1
Azp =2z — 2] = .

Zh zZr
Remember that all quantities in (4.44) have to be considered as functions of the same running

(4.44)

couplings. Suppose now that
|Az| < copily 2 M +9"], h<k<0. (4.45)

We want to prove that this bound is verified also for k = h, together with (4.42). Since the
proof will also imply that (4.45) is verified for k& = 0, we shall achieve the proof of Lemma
4.5.

By using the decomposition (2.99) of the propagator, it is easy to see that
3
re =3t (4.46)
i=1

where the quantities ;" are defined in the following way.

1) 7" is obtained from f§ by restricting the sum over the trees in the r.h.s. of (4.5) and
(4.6) to those containing at least one endpoint of type v.

2) r,’j’Q is obtained from J; by restricting the sum over the trees to those containing
no endpoint of type v, and by substituting, in each term contributing to the expansions
appearing in the r.h.s. of (4.5) and (4.6), at least one propagator with a propagator of type
r%h’) or réhl) (see (2.99)), h < B’ < 1. Note that z, and all the ratios Zy/Z;_1, k > h,
appearing in the expansions are left unchanged.

3) T‘Z’S is obtained by subtracting ﬂZ"L from the expression we get, if we substitute all

propagators appearing in the expansions contributing to ;' with Luttinger propagators and

if we eliminate all trees containing endpoints of type v.

By using (4.17), (2.101) and (4.34), it is easy to prove that r"' and 75* satisfy a bound
like (4.42). The main point is the remark, already used in the proof of Lemma 4.2, that
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there is an improvement of order 7”7’('“4‘), 0 < n' < 1, in the bound of the sum over the
trees with a vertex of fixed scale £ > h. One has also to use a trick similar to that of
§3.13, in order to keep the bound (3.94) on the determinants, after the decomposition of the
propagators. Finally, one has to use the remark made at the beginning of this section in
order to justify the presence of A2, instead of €7, in the r.h.s. of (4.42).

In order to prove that a bound like (4.42) is satisfied also by r§73, one must first prove
that the bound in (4.45) is valid for k = h, with the same constant ¢y. This result can be
achieved by decomposing Az, in a way similar to that used for r; let us call A;zj the three

corresponding terms. By proceeding as before, we can show that
|A1zn| + [Aozn| < CXZ[y 3R 4 ynh] | (4.47)

Let us now consider Azz,; we can write Agzp, = 307, >0 7 Agzp(7), with Azzu(r) =

0, if 7 contains endpoints of type v, and Azzp(7) = >, . Zn(T,v), where zp(r,v) = 0, if v

VET
is an endpoint, otherwise Z,(7,v) is obtained from zj,(7) by selecting a family V' vertices,
which are not endpoints, containing v, and by substituting, for each v' € V, the factor

Zh, | Zn, -1 with Zy_, [Zy 1 — ZF JZF . By using (4.2), we have
Zh, ) Zh,—1 = Zi, | Z5, 1| < ClAzn, [P ; (4.48)

hence it is easy to show that Azz, can be bounded as in the proof of Theorem 3.12, by
adding a sum over the non trivial vertices (whose number is proportional to n) and, for each

term of this sum, a factor
CeoM[y~2=R)  yhlyn(ha=h) (ho — hg)) (4.49)

where © is the non trivial vertex corresponding to the selected term and 9’ is the non trivial

vertex immediately preceding ¢ or the root. Hence, we get
|Asz4] < Ceosi Ay [y 20 H 47 (4.50)

implying, together with (4.47), the bound (4.45) for k = h, if & is small enough and ¢q is
large enough.
Given this result, it is possible to prove in the same manner that TS’S satisfies a bound

like (4.42). This completes the proof of Lemma 4.5.

4.7 Lemma 4.5 allows to reduce the study of running couplings flow to the same problem
for the flow (4.39). This one, in its turn, can be reduced to the study of the beta function for
the Luttinger model, see [BGM]. This model is exactly solvable, see [ML], and the Schwinger
functions can be exactly computed, see [BGM]. It is then possible to show, see [BGM],
[BGPS], [GS], [BM1], that there exists & > 0, such that, if |d@,| < &,

Bt @n, - @n)| < Cgy™™ (4.51)
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where BS’L(Eih,...,al), a = ), 4, denote the analogous of the functions ﬂZ"L(dh, .y @) for
this model and 0 < 1’ < 1. Note that in the Lh.s. of (4.51) all running couplings dy,
h < k <1, are put equal to dp, and that dj can take any value such that |@| < &, since @y,
is a continuous function of @y and @, = dy + O(p3), see [BGPS].

We argue now that a bound like (4.51) is valid also for the functions ﬂZ"L. In fact the
Luttinger model differs from our approximate model only because the space coordinates take
values on the real axis, instead of the unit lattice. This implies, in particular, that we have
to introduce a scale decomposition with a scale index h going up to +o0o. However, as it has
been shown in [GS], the effective potential on scale h = 0 is well defined; on the other hand,
it differs from the effective potential on scale h = 0 of our approximate model only for the
non local part of the interaction. In terms of the representation (2.61) of V(%) ((<9)), this
difference is the same we would get, by changing the kernels of the non local terms (without
qualitatively affecting their bounds) and the delta function, which in the Luttinger model
is defined as LB0x 00k, ,0, instead of as in (2.62).

Note that the difference of the two delta functions has no effect on the local part of
V(©) (1/J(50)), because of the support properties of 12(50), but it slightly affects the non local
terms on any scale, hence it affects the beta function; however, it is easy to show that this
is a negligible phenomenon. Let us consider in fact a particular tree 7 and a vertex v € 7
of scale h, with 2n external fields of space momenta k., r = 1,...,2n; the conservation of
momentum implies that 32", ¢,k = 27wm, with m = 0 in the continuous model, but m
arbitrary integer for the lattice model. On the other hand, k’ is of order v** for any r, hence
m can be different from 0 only if n is of order y"+. Since the number of endpoints following
a vertex with 2n external fields is greater or equal to n — 1 and there is a small factor (of
order up) associated with each endpoint, we get an improvement, in the bound of the terms
with |m| > 0, with respect to the others, of a factor exp(—C~ "*). Hence, by using the
usual arguments, it is easy to show that the difference between the two beta functions is of
order p2y"".

The previous considerations prove the following, very important, Lemma.
4.8 LEMMA. There are & and n' > 0, such that, if |pun| < &, a = A,0 and h <0,

1B (@, .. a@n)| < CAZATE (4.52)

We are now ready to prove the following main Theorem on the running couplings flow.

4.9 THEOREM. If u # 0 satisfies the condition (2.117) and 6* satisfies the condition
(4.41), there exist &3 and a finite integer h* < 0, such that, if |A\1| < &3 and v belongs to a
h*)

suitable interval I™"") | of size smaller than c|\ |y'"" for some constants ¢ and ', 1 < ~' < 7,

then the running coupling constants are well defined for h* —1 < h <0 and h* satisfies the
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definition (2.116). Moreover, there exist positive constants c;, i = 1,...,5, such that

=Ml a0 jonl < el (4.53)
Aicah _ 9h Aiesh
YRt < — <yt (4.54)
go
ymeNR < Zy < yesAi (4.55)
1 -1
log (47—“0*—|00|) log (47—“0— 00|) +1—=)es
hy g, ——= 3 T < pr < h ARNS) . (4

max L,3s 1— )\1(32 S S max L.,3; 1— )\1(33 ( 56)

Finally, it is possible to choose 6* so that, for a suitable n > 0,
|60] < CPM PPy 4yt (4.57)

4.10 Proof. We shall proceed by induction. Equations (4.5), (4.6) and Lemma 4.2 imply
that, if \; is small enough, there exists an interval (%), whose size is of order A;, such that,

if v € 119, then the bound (4.17) is satisfied, together with
Mo = M| < CIMPE, 16— 6] = [5o] < CM] - (4.58)

Let us now suppose that the solution of (4.9)-(4.11) is well defined for h < h < 0 and satisfies
the conditions (4.14)-(4.17), for any v belonging to an interval I, defined as in Lemma
4.2. This implies, in particular, that h* < h, see (4.14) and (2.116). Suppose also that there
exists a constant cg, such that

X < 2[A1] (4.59)

We want to prove that all these conditions are verified also if h is substituted with h— 1, if
A1 is small enough. The induction will be stopped as soon as the condition (4.14) is violated
for some v € I"). We shall put v equal to one of these values, so defining h* as equal to
h+1.

The fact that the condition on v, and the bound (4.17) are verified also if h — 1 takes the
place of h, follows from Lemma 4.2, since the condition (4.13) follows from (4.59), if \; is
small enough. There is apparently a problem in using this Lemma, since in its proof we used
the hypothesis that the values of @, Z,_; and oy, _1(k'), h < h < 1, are independent of v;.
This is not true for the full flow, but the proof of Lemma 4.5 can be easily extended to cover
this case. In fact, the only part of the proof, where we use the fact that @y is constant, is
the identity (4.24), which should be corrected by adding to the r.h.s. the difference by, — b},.
However, since A; is independent of vy, it is not hard to prove that by, — b},| < Clvn — v}
and that the bound on r, —r} does not change (qualitatively), if we take into account also
the dependence on vy of the various quantities, before considered as constant. Hence, the

bound (4.25) is left unchanged.

73



The conditions (4.15) and (4.16) follow immediately from (4.59) and (4.2)-(4.4). Hence,
we still have to show only that (4.59) is verified also if h is substituted with h — 1, if \; is
small enough.

By using (4.39) and (4.40), we have, if a = A, 0,

1

Lo - ~ -
al_zflzal_z'i'ﬂg (aﬁv--'aal_z)+ Z Dg,k+T%(aﬁayﬁ;---;a1;’/1;u)a (460)
k=h+1
where
Dy =By @ny - @n, G g -, @1) = By @ho - @ny G @rgrs .-, @1) . (4.61)

On the other hand, it is easy to see that Dy ; admits a tree expansion similar to that of
§7L(&'h, ...,d1), with the property that all trees giving a non zero contribution must have
an endpoint of scale h, associated with a difference Ay — Ap or d; — §,. Hence, if 7 is the

same constant of Lemma 4.2 and Lemma 4.5 and h <0,
D5 | < CIIy "M — di] (4.62)
Let us now suppose that h < h < 0 and that there exists a constant cg, such that
|dr—1 — x| < colM P2y 2* P 4+4%%] . h<k<0. (4.63)

where ¢ = min{n/2,n'}, n’ being defined as in Lemma 4.8. (4.63) is certainly verified for
k =0, thanks to (4.5), (4.6); we want to show that it is verified also if & is substituted with
h — 1, if A; is small enough.

By using (4.60), (4.62), (4.42), (4.52) and (4.63), we get

jdn—1 — @] < CAY"" 4+ CIA Py 2P 4

Y. 15/2 : —n(k—h) & —l(h’—h*) IR (464)
+ Ceol AP Y- 47" > e +4777,
k=h+1 h'=h+1

which immediately implies (4.63) with h — h — 1 and (4.59) with A — h — 1.

The bound (4.64) implies also (4.53), while the bounds (4.54) and (4.55) are an immediate
consequence of (4.15), (4.16) and an explicit calculation of the leading terms; (4.56) easily
follows from (4.54) and the definition (2.116) of h*.

All previous results can be obtained uniformly in the value of §*, under the condition
(4.41). However, by using (4.63) with h = h*, it is not hard to prove, by an implicit
function theorem argument (we omit the details, which are of the same type of those used

many times before), that one can choose §* so that
00| <CMP*, dpeja =0, (4.65)

which easily implies (4.57), for a suitable value of 7.
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5. The Correlation function

5.1 The correlation function Qi 5.x0 10 terms of fermionic operators, is given by

5 4=t o= - + = )
07 px =< 0xaxa5 0y >1,5 — < axax >1,5< 050 >Lp= 59

damoa@ o0 D

where ¢(x) is a bosonic external field, periodic in z and g, of period L and §3, respectively,

and
eS(#) — /p(d¢(51))efv(”(w($”)+fdx¢<x)¢‘x5”+wiﬁ”* _ (5.2)

Note that, because of the discontinuity at g = 0 of the scale 1 free measure propagator
gS}L in the limit M — oc (see §2.3, the product 1/),((51)+ ,((Sl)_ has to be understood as
1/};((30)-'_ )((go)— +lim, o+ 1/18):;+5)w§§2; Since this remark is important only in the explicit
calculation of some physical quantities, but does not produce any problem in the analysis
of this section, we shall in general forget it in the notation.

We shall evaluate the integral in the r.h.s. of (5.2) in a way which is very close to that
used for the integration in (2.13). We introduce the scale decomposition described in §2.3
and we perform iteratively the integration of the single scale fields, starting from the field

of scale 1. The main difference is of course the presence in the interaction of a new term,

that we shall call B (1)(=1) | ¢); in terms of the fields 1/),((%)0, it can be written as

8(1)(¢(§1)’¢) — Z dxeiPFx(01+U2)¢(X) (31)01¢(§1)a2 ) (5.3)

X,01 X,—02
01,02

After integrating the fields ), ..p(**1 0> h > h*, we find

e‘s(d’) _ e—L,@Eh+5(h+1)(¢) /PZ;L,U;“C;L (dd)gh)e—v(h)(\/Zl/’(sh))+8(h)(mw(§h)’¢) ’ (54)

where Py, 5, .c, (dy(S")) and V" are given by (12.66) and (3.3), respectively, while S(*+1)
(¢), which denotes the sum over all the terms dependent on ¢ but independent of the
field, and B™ (¢)(=") | ¢), which denotes the sum over all the terms containing at least one

¢ field and two v fields, can be represented in the form

S0 () = i /dxl...dxmgwn(xh.__,Xm)[H¢(xi)] (5.5)

B(h)(@b(sh)’qg) — Z Z /dx1 o dxXmdy - dyan -

=lg,

3
&
3

. B,(:’)%’g’g(xl, e Xmi V1,5 Yon) [ ﬁ ¢(Xz)] [ﬁ 1/))(;’}:})10,] _
=1 i=1

Since the field ¢ is equivalent, from the point of view of dimensional considerations, to two
1 fields, the only terms in the r.h.s. of (5.6) which are not irrelevant are those with m = 1 and

. . o2 . .
n = 1, which are marginal. However,if )., o;w; # 0, also these terms are indeed irrelevant,
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since the dimensional bounds are improved by the presence of a non diagonal propagator,
as for the analogous terms with no ¢ field and two 1 fields, see §3.14. Hence we extend the
definition of the localization operator £, so that its action on B™ (¢)(=") ¢) in described in

the following way, by its action on the kernels Bin )2n oo (X155 Xmi Y1, Y2n):

1)ifm=1,n=1and 222»21 o;w; = 0, then

£Bl 2)0' w(x13y1:y2) = o1w10(y1 — x1)d(y2 — X1) -

14,0,W

) /dzldz2cﬁ(2$0 — 210 — 220)cr (21 — ZQ)BI 2 Eﬂ(xl; Z1,%9) ;
2) in all the other cases
£B™ ; =0 5.8
m,2n,g,g(x17"‘xm3y17"'7y2n) . ( . )

Let us define, in analogy to definition (3.2), the Fourier transform of Bﬂgg&(xl;yl,yg

by the equation
h
B£,2)7Q7E(X1;Y1,Y2) =

1 ipx—i 3% oKy, p(h) )
~(LB)? D e 2om Bipow Z”T (k, +pr) —p),
p.ki,k,

(5.9)

where p = (p, po) is summed over momenta of the form (27n/L,27m/3), with n, m integers.
Hence (5.7) can be written in the form

iprx(oc1402) |

LB { ggg(xl;yla}IQ) = o1wi16(y1 — x1)0(y2 — x1)e

1 L (h _
4 Z §72),07w(pﬂ' +2pr(o1 +02), k)
N, ==+1

(5.10)

where k,, , is defined as in (2.73) and

Py = (0 U 2B7T> : (5.11)

By using the symmetries of the interaction, as in §2.4, it is easy to show that
A

(<h) Zy, (<h) z (<
(M) (p(=h) gy = hF Z—Fz_ ; (5.12)

where Z}(Ll) and Z,(f) are real numbers, such that Zil) Z(2) 1 and

F(<h) Z /dX¢ QZUpFX¢(<h)U¢x’SflU’ (513)
o==%1
RS Z 3 /dx¢ YLSMT pSh) 0 (5.14)
o==%1

By using the notation of §2.5, we can write the integral in the r.h.s. of (5.4) as

7Lﬁth (d’(/)(gh))ef]}(h)( /Zh¢(sh))+3(h)( /Zhw(Sh)’(b) _
Zh 1,0n—1,Ch

= Lot / o on s s (<P (5.15)

. /PZh 1,0h—1 f—l(dw(h))e_f)(h)(v Zhilqp(Sh))—i_B(h)( v Zh71¢(5h)7¢) )
—1:0h—1,J}
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where V") (\/Z,_11(S")) is defined as in (2.107) and

BM(\/Z, 1 =M ¢) = BW (\/Zypp =P ) (5.16)

Bh=U(\/Zy_1=h=1D ¢) and S (¢) are then defined through the analogous of (2.110),

that is
eV V(W2 ST 1B (2 S )~ LBER 5P (¢) _

- /P z 1(d’l/)(h))e_f)(h)(\/Zh—lw(sh))'l'lg(h)(\/Zh—lw(sh)#’) (5.17)
- Zh—1,0h=1:f, :
The definitions (5.16) and (5.12) easily imply that
700 ,
bl 1420, i=1,2, (5.18)
79 "

1 2 .- . . .
where z,(l ) and z,(l ) are some quantities of order €5, which can be written in terms of a tree

expansion similar to that described in §3, as we shall explain below.
As in §3, the fields of scale between h* and hp g are integrated in a single step, so we

define, in analogy to (3.125),

oS (@)—LBE. _

/ LY ¥ I LIV e NIV e T R R

It follows, by using (3.126), that

1 ~
S(¢) = —LBEps+S"(¢) = ~LBELs + Y, S™(¢); (5.20)
h=h*
hence, by (5.1)
1
h c(h

0} 5 =5 (x,0)= 3 8" (x,0). (5.21)

h=h*

5.2 The functionals B" (v/Zph(=P) ¢) and S™)(¢) can be written in terms of a tree
expansion similar to the one described in §(3.2). We introduce, for each n > 0 and each
m > 1, a family 7,7 of trees, which are defined as in §(3.2), with some differences, that we

shall explain.

1) First of all, if 7 € T, the tree has n +m (instead of n) endpoints. Moreover, among
the n + m endpoints, there are n endpoints, which we call normal endpoints, which are
associated with a contribution to the effective potential on scale h, — 1. The m remaining
endpoints, which we call special endpoints, are associated with a local term of the form (5.13)
or (5.14); we shall say that they are of type Z(1) or Z(?), respectively.

2) We associate with each vertex v a new integer [, € [0,m], which denotes the number

of special endpoints following v, i.e. contained in L,.
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3) We introduce an external field label f¢ to distinguish the different ¢ fields appearing
in the special endpoints. I will denote the set of external field labels associated with the

endpoints following the vertex v; of course I, = |I¢| and m = |I? |.

These definitions allow to represent BU") (v/Z,1h(<h)  ¢) 4+ Sh+1)(4) in a way similar to that
described in detail in §3.3-3.11. It is sufficient to extend in an obvious way some notations
and some procedures, in order to take into account the presence of the new terms depending
on the external field and the corresponding localization operation.

In particular, if [, # 0, the R operation associated with the vertex v can be deduced from
(5.7) and (5.8) and can be represented as acting on the kernels or on the fields in a way
similar to what we did in §3.1. We will not write it in detail; we only remark that such
definition is chosen so that, when R is represented as acting on the fields, no derivative is
applied to the ¢ field.

All the considerations in §3.2, up to the modifications listed above, can be trivially re-
peated. The same is true for the definition of the labels r,(f), described in §3.3. One has
only to consider, in addition to the cases listed there, the case in which |P,| =2 and [, = 1;
in such a case, if there is no non trivial vertex v’ such that vy < v’ < v, we make an arbitrary
choice, otherwise we put r,(f) = 1 for the ¢ field which is an internal field in the nearest
non trivial vertex preceding v. As in §3.2, this is sufficient to avoid the proliferation of r,
indices.

Also the considerations in §3.4-3.7 can be adjusted without any difficulty. It is sufficient
to add to the three items listed after (3.69) the case l,, = 1, Py, = (f1, f2), by noting that

in this case the action of R consists in replacing one external 1 field with a D}!, field.

5.3 Let us consider in more detail the representation we get for the constants z,(ll), l=1,2,

defined in (5.18). We have

z}(f):i 3 S Y eprla, (5.22)
n=1

T€T} PEPr.riPyg=(f1.f2), TET e€ArT
o -1 ’ da (Pyg)=0
o1=wi=(—1)l"log=(—1)lwg=+1

where, if x is the space time point associated with the special endpoint,

2 Px, T, a) = [ 11 (Zhv/Zhv,l)'P”lh] .

vnot e.p.
T pale)) hs 1

[ o) [TT (D ey k)| { T 5 [dPrte) - 6529
i=1 vnot e.p. ~ °°

Ad o ff Ada flJr o am; v
- det G T (tv)[ H 8;?&((fl,;85a((fﬁ))[d§a8 (x1,y1)0; gi’;fw; (x1 — YI)]]} :
IET,

The notations are the same as in §3.10 and we can derive for zf(f) (r,P,r,T,a) a bound
similar to (3.110), without the volume factor LS (the integration over z,, is done keeping

x fixed). The only relevant difference is that the bounds (3.83) and (3.107) have to be
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modified, in order to take into account the properties of the extended localization operation,

by substituting z(P,) and zZ(P,) with z(P,,l,) and Z(P,,l,), respectively, with

1 if|P|=4,1,=
1 if |P| = ,IEZOandeGPUw(f);éO,

2(Py,ly) =492 if [P =2,1,=0and Y ,.p w(f) =0, (5.24)
1 1f|P|—2,lﬂ—1andzfepva(f)w(f)ZO,
0 otherwise.
1 if|Py|=2,1,=0and ) ;cp w(f) #0,

Z(Py,l,) = { 1 if[P]=2,l,=1and Y ,cp o(flw(f) #0, (5.25)
0 otherwise.

It follows that

|27, P, T, 0)| < Crepy PP ol T {o2ila IPlZIR
v not e.p.
- norep (5.26)
(Zh /Zn. 71) ‘ 7*[*2+‘Pz—”|+lv+z(Pv,lv)+—Z(Pg‘l”)]}’

5!

with
Z(Py, 1) S

1
-2 lv Pvalv )
G b 2 (P ) + = >

@ Vv not e.p. . (5.27)

Hence, we can proceed as in §3.14 and, since Dg(P,,) + l,, = 0, we can easily prove the

following Theorem.

5.4 THEOREM. Suppose that u # 0 satisfies the condition (2.117), §* satisfies the condition
(4.41), &3 is defined as in Theorem 4.9 andv € Ih") | Then, there exist two constants &4 < &3
and c, independent of u, L, 8, such that, if |A\1| < &4, then

129 <], 0<h<h*. (5.28)

5.5 Theorem 5.4, the bound (4.55) on Zj, the definition (5.18) and an explicit first order

(1)

calculation of z,”” imply that there exist two positive constants c¢; and c2, such that

1
—coA1h Zl(l ) —c1A1h
v <—7-<7 , (5.29)
h

A similar bound is in principle valid also for Z,(f) /Zn, but we shall prove that a much
stronger bound is verified, by comparing our model with the Luttinger model. First of all,
we consider an approximated Luttinger model, which is similar to that introduced in §4.4.
It is obtained from the original model by substituting the free measure and the potential

with the following expressions, where we use the notation of §2:

i I Y~
L <0 _ k',
raen = TS
(kr >0w :|:1
(5.30)
exp{ —— Z Z Co(K')(— iko +wogh') Do I D 5
w=El: 0o (k) >0
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V(L)( <0 L)/ dx 1/6(:?%”/&,71 ‘/’x,q 1/5(:?%

+5(L Z zw/ dx 9 <h +8z¢(<h)*

w==%1

(5.31)

where N (k') = Co(K')(LB) ' [k3 + (vik")?]'/?, )\E)L) and 65" have the role of the running
couplings on scale 0 of the original model, but are not necessarily equal to them, Ty, g is the
(continuous, as in §3.15) torus [0, L] x [0, 5] and 9(=9) is the (continuous) Grassmanian field
on Tr, g with antiperiodic boundary conditions. Moreover, the interaction with the external
field BM (4(<D | $) is substituted with the corresponding expression on scale 0, deprived of

the irrelevant terms, that is

BO () Z /dx¢ 2wppx,¢))((<ah) 1/)}((’70 +¢ 1/})(57}1)—0) ‘ (5.32)

oc==+1

We shall call Z}(L27L), 2227”, Z,(lL) and z,(lL) the analogous of Z}(f), z,(f), Zp and zp, for this
approximate Luttinger model.

We want to compare the flow of Z,SQ’L)/Z,SL) with the flow of Z}(Lz)/Zh; hence we write

70 _ z

Zhr _ DTy 8 G, 6

Zp-1 Zy [1+’8 (@, vh3 -3 1, v15u, 8 )] J (5.33)
(2,L) (2,L)

Y _ 2, @0 G0 a0 g

70 =, L+ @" . al, 6] (5.34)
h—1 h

(L)

where a; " are the running couplings in the approximated Luttinger model (by symmetry

( ) = =0, since v = 0, see §4.4), 1+3(3) = (1+z(2))/(1+zh) and 1+ 5Z1) (1+z(2 L))/(1+

L
z,(l )).
The Luttinger model has a special symmetry, the local gauge invariance, which allows to
prove many Ward identities. As we shall prove in §7, the approximate Luttinger model
satisfies some approximate version of these identities and one of them implies that, if |d, +
(06" Jvo)| < 172,

() z{»h ()
ym el < Sho <R (5.35)
Z,

By proceeding as in the proof of (4.51) (see [BGPS], §7), one can show that (5.35) implies

that there exists € > 0 and 7’ < 1, such that, if |@x| < &,

B @, ., @n, 6] < Crza™ (5.36)

Remark - The analogous bound (4.51) was obtained in [BGPS] by a comparison with
the exact solution of the Luttinger model; this was possible, thanks to the proof given in
[GS] that the effective potential on scale 0 is well defined also in the Luttinger model, a non
trivial result because of the ultraviolet problem. This procedure would be much harder in

the case of the bound (5.36), because the density is not well defined in the Luttinger model,
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see §1.3. In any case, the bound (5.35), whose proof is relatively simple, allows to get very
easily the same result.

One can also show, as in the proof of Lemma 4.5, that
8@ @n,vms -, vr5u,0%) = BEE @, 50, 07) < CAR 2P 497t (5.37)

for any h > h* and for some 7 < 1.
Note that, in (5.37), 3>) is evaluated at the values of the running couplings @, of the
original model; this is meaningful, since in (5.36) @5 can take any value such that |@s| < &;

L . . (L
( ) is a continuous function of a((] )

this follows from the remark, already used in §4.7, that @
and @ "(L = aOL) + O(p3), see also [BGPS].
By using (5.36) and (5.37) and proceeding as in the proof of Theorem 4.9, one can easily

prove the following Theorem.

5.6 THEOREM. If the hypotheses of Theorem 5.4 are verified, there exists a positive con-

stant ¢y, independent of u, L, 3, such that

(2)

7
,y—61|>\1\ < ZLh < ,yqlh\ . (5.38)

5.7 We are now ready to study the expansion of the correlation function Q?i ﬁ(x), which
follows from (5.21) and the considerations of §5.2. We have to consider the trees with two
special endpoints, whose space-points we shall denote x and y = 0; moreover, we shall
denote by hyx and hy the scales of the two special endpoints and by hxy the scale of the
smallest cluster containing both special endpoints. Finally 7,2, , will denote the family of all
trees belonging to 7,2,,, such that the two special endpoints are both of type ZW i =1,
both of type Z(?), if I = 2, one of type Z() and the other of type Z(), if | = 3.

If we extract from the expansion the contribution of the trees with one special endpoint
and no normal endpoints, we can write

21: Z {62i0ppz.

h,h'=h* c==£1

(Z(l) /)2 , ,
(g (—ox)g") L (—ox) — ) (—ox)g") ) (—ox)]+
VAN YA VS
(Z(2) )2 (5.39)
1 hl
gl (—ox)ally) (0%) + ")y (ox)g ) (ox)] |+
1 1\ 2 @)\ 2 (1) (2)
Zy, (h) Zy, (h) Zy 2y A(h)
+h§* <Z—h> Gips(x)+ (Z—h Gyp 5(x) + =2 7 — =G 15(x) .

where hV b/ = max{h, h'} and gwlm( ) has to be understood as g&i’&? (x); moreover,

G sx) =" Z oy Y Y et nPrTa), (5.40)

n=1 h,=h*—-1 7'67_2 PGP-,— r TeT a€EAT
hr,n,l P, =0
hx,y= 0
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where, if X, denotes the set of space-time points associated with the normal endpoints and
ix = i, if the corresponding special endpoint is of type Z(),
th )(x P, T a)=
zx)Zh Z’(l’;') Zn
Zh _lz(lx Zh —IZ(iy)

/dxvo Xv0 H d x“ yl (1h )(ij )] H /dPT

vnotep

[ H (Zhv/Zhrl)vaW].

vnot e.p.

(5.41)

o () Faa (£1) v
det Gl (8)] 11 e e ) ey 07 g ) e = ]
In the r.h.s. of (5.41) all quantities are defined as in §3, except the kernels Kq()}f)(xv;)
associated with the special endpoints. If v is one of these endpoints, x, is always a single

point and
K (x,) = €% 2yen, 70 (5.42)

We want to prove the following Theorem.
5.8 THEOREM. Suppose that the conditions of Theorem 5.4 are verified, that 24 is defined
as in that theorem and that 6* is chosen so that condition (4.57) is satisfied. Then, there

exist positive constants 9 < 1 and &5 < &4, independent of u, L, B, such that, if |A\1| < &
and v > 14 /2, given any integer N > 0,

2h
G (x)] + |G (%) + MG (%) < On|M | 5.43
| 1,L,ﬁ( )| | 2,L,6( )| | 3,L,ﬁ( )| > | 1|1+[7h|d(x)|]N ( )
for a suitable constant Cy .
Moreover, if h <0, we can write
h ippox (b h
G} (%) = cos(2pra)G + > el s+l ()
o=t1 (5.44)
h ~(h h h
G} 5(x) = GYf) 5(0) + sé,z,ﬁoc) +7) (%) 4
so that
G x) =G (—x), 1=1,2, (5.45)
Ih
h h Y
") )]+ 1) 50 < On Ay e (5.46)

L+ [y"|d) 1Y
and, if we define Dy m, = 05'°07", given any integers mqg,m1 > 0, there exists a constant

CN,mg,my, Such that

S 1Dy s G 5091 < g F o (547

mg,m X)| S UN,mo,m P RN .
1=1,2 B o 4+ [y oY

h
> Dugums 101,50 + | Dangma 5511 ()| <
o==+1
72h,yh(m0+m1) Shh?) oh (5.48)
< CNomoomy M| —————+ +
=~ Y N,mo, 1| 1|1+[’yh|d(x)|] [/7 Y ]
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Q3 5(x), as well as the functions G’l(’hL)’B (x), rl(7}LL)7ﬁ(x), sziLﬁ(x) and sé’gﬁ (x) converge, as
L, — oc, to continuous bounded functions on 7 x R, that we shall denote Q3(x), C_?l(h) (%),
rl(h) (x), sghg(x) and séh) (x), respectively. GY‘) (x) and Ggh) (x) are the restrictions to Z x R
of two even functions on R? satisfying the bound (5.47) with the continuous derivative 0, in
place of the discrete one and |x| in place of |d(x)].

Finally, Ggh) (x), as a function on R?, satisfies the symmetry relation

G (@,m0) = G (z0vg, f—*) : (5.49)
0

5.9 Proof. As in the proof of Theorem 5.4, we shall try to mimic as much as possible the
proof of the bound (3.110), by only remarking the relevant differences. Since Do(Py,)+1y, =
0, if the integral in the r.h.s. of (5.41) were over the set of variables z,,\x, we should get for
Gl(flL’flg)(x, 7,P,r, T, a) the same bound we derived in §5.3 for Z;ll)(’l', P,r,T,a). However, in
this case, we have to perform the integration over the set z,, by keeping fixed two points (x
and y), instead of one; hence we have to modify the bound (3.102) in a way different from
what we did in the proof of Theorem 5.4.

Let us call vp the higher vertex v € 7, such that both x and y belong to x,; by the
definition of A, it is a non trivial vertex and its scale is equal to h. Moreover, given the tree
graph T on z,,, let us call Tx y its subtree connecting the points of x5, and Tx’y = Uy>g, Tv,
T, being defined as §3.15, after (3.118). We want to bound d(x—y) in terms of the distances
between the points connected by the lines I € T y.

Let us call 99, § = 1,...,s5, the non trivial vertices or endpoints following vy. The
definition of 9y implies that sz, > 1 and that x and y belong to two different sets x;); note
also that T;,U is an anchored tree graph between the sets of points x;i:). Hence there is an
integer r, a family [y, ..., [, of lines belonging to Tq—,o and a family v, ..., o™t of vertices

to be chosen among o1, ..., 5(5%) such that 1 < r < s, — 1 and

r r+1
[d(x —y)| <Y 1d(xq, —yi)l + Y 1dxD —yD)| <
Jj=1 j=1
1 (5.50)
< Y e =yl + Y A -y,
IGTT)O j=1
where x(1) = x, y("t1) =y, x;j and yf]_ are defined as in (3.114) and, finally, the couple of
points (x; ,y; ) coincide, up to the order, with the couple (y@), xit1).
If no propagator associated with a line [ € Tx’y is affected by the regularization, we can

iterate in an obvious way the previous considerations, so getting the bound

dx—-y)[ < > ld(x;—y))l . (5.51)
leTy y
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However, this is not in general true and we have to consider in more detail the subsequent
steps of the iteration.

Let us consider one of the vertices x,¢; if xU) = y() there is nothing to do. Hence we
shall suppose that x() # y()) and we shall say that the propagators associated with the
lines 1;,if 1 < j <r,and l;_4, if 2 < j <r+1, are linked to v, There are two different

cases to consider.

1) x) and y¥) belong to two different non trivial vertices or endpoints following v/) and
the propagators linked to v() are not affected by action of R on the vertex v\¥) or some
trivial vertex v, such that 5y < v < v). In this case, we iterate the previous procedure

without any change.

2) One of the propagators linked to v') is affected by action of R on the vertex v¥) or some
trivial vertex v, such that 7 < v < v¥); note that, if there are two linked propagators, only
one may have this property, as a consequence of the regularization procedure described in
§3. This means that x) or y(9), let us say x\), is of the form (3.115), with #; # 1, that is
there are two points X;,x; € x,;) and a point X; € R?, coinciding with x; modulo (L, ),

such that
xD =%+ 41K — %), |Z— | <3L/4,|T10 — w10 < 38/4. (5.52)

By using (2.96), (5.52), the fact that 0 < |¢;| < 1 and the remark that d(%;—%;) = d(x;—%;),
we get

[dxY —yD)| < [d(z -y + V2 d(x; — %) - (5.53)
We can now bound |d(%; — y¥))| and |d(x; — %;)|, by proceeding as in the proof of (5.50),

since the points %;, x; and y/) all belong to v/). We get

[dxD -y <1+ v2) | D Jdx —ypl+ D |dx ™ =y ], (5.54)
IGTU(]) m=1
where 2 < r; < s, and the points x'(m), y’(m) are endpoints of propagators linked to some

non trivial vertex or endpoint following v/,
By iterating the previous procedure we get, instead of (5.51), the bound

dx-y) < Y (1 +V2PdE - ), (5.55)
1T,y
where, if | € T,,, p; is an integer less or equal to the number of non trivial vertices v such
that 99 < v < v;; note that
o < hy —h. (5.56)

Let us now suppose that

y>1+V2. (5.57)
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Since there are at most 2n + 1 lines in T, (5.55), (5.56) and (5.57) imply that there exists

at least one line | € Ty y, such that

Y'd(x —y)|

h ! i
u|d(x; — > .
Yuld(x —yi)| > 5 (5.58)

It follows that, given any IV > 0, for the corresponding propagator we can use, instead of
the bound (3.116), the following one:

o (F7) 8da (F) 1 pba(l am; (hy
O B e () i (8. v ()3 g (i) - YZ(SI))]‘ <

(5.59)

ol (5540 (50 )+m(5)+m(5)=ba (0] (|0’hu|)pl Cn(2n+ 1N

1+ [y ]d(x)(t) — yi(s0)II? Y/ T4 [ydE - )Y
For all others propagators we use again the bound (3.116) with N = 3 and we proceed as in
§3.15, recalling that we have to substitute in (3.118) d(x,,\X) with dx,,. This implies that,
in the r.h.s. of (3.119), one has to eliminate one dr; factor and, of course, this can be done
in an arbitrary way. We choose to eliminate the integration over the r; corresponding to a
propagator of scale h (there is at least one of them), so that the bound (3.118) is improved
by a factor 2"

At the end, we get

2h

(h,hy) n Y
|Gy 15 (x,7,Pr,T.a) < (Cen)"Cn(2n+ 1)NW ‘

(ix) Z(’y)Z
_ < A% Z(§)> hy (@) I {—021 PGP (5.60)
th_lzhzx Zhy_IZth S'u

vnot e.p.

. (Zh /2 71)|Pv‘/277[72‘1‘@4“[1;4»1(}3”’lv)J’»M] }

We can now perform as in §3.14 the various sums in the r.h.s. of (5.40). There are
some differences in the sum over the scale labels, but they can be easily treated. First of
all, one has to take care of the factors (Z,(li")Zh)/(th_lz,(f")) and (Z,(li“’)Zh)/(Zhy_lZf(fy)).
However, by using (5.29) and (5.38), it is easy to see that these factors have the only effect
to add to the final bound a factor y©*11(hv—hwr) for each non trivial vertex v containing one
of the special endpoints and strictly following the vertex vx y; this has a negligible effect,
thanks to analogous of the bound (3.111), valid in this case. The other difference is in
the fact that, instead of fixing the scale of the root, we have now to fix the scale of vyxy.
However, this has no effect, since we bound the sum over the scales with the sum over the
the differences h, — h,.

The previous considerations are sufficient to get the bound (5.43) for Gg}fgﬁ(x) and
Ggh%ﬁ( ). In order to explain the factor 4** multiplying G3 1 5(X), one has to note that the
trees whose normal endpoints are all of scale lower than 2 give no contribution to Gghg 5(%).
In fact, these endpoints have the property that 3, o(f) = 0, while this condition is

satisfied from one of the special endpoints but not from the other, in any tree contributing

85



to Ggh% ﬁ(x). It follows, since any propagator couples two fields with different o indices,
that it is possible to produce a non zero contribution to Gghg B(X), only if there is at least
one endpoint of scale 2; this allows to extract from the bound a factor 7%, with 0 < ¥ < 1,

as remarked many times before.

We now want to show that GY’%’B(X) and Gg’zﬁ(x) can be decomposed as in (5.44), so
that the bounds (5.46), (5.47) and (5.45) are satisfied. To begin with, we define rz(.’hL)’ﬁ(x),
i = 1,2, by using the definition (5.40) of GE?L)ﬁ(x), with the constraint that the sum is
restricted to the trees, which contain at least one endpoint of scale h, = 2; this implies, in
particular, that ngl)ﬁ(x) - rfil)ﬁ(x) = 0. Moreover, in the remaining trees, we decompose

the propagators in the following way:
/(%) + 09", (x) (5.61)

where gfffl, (x) is defined by putting, in the r.h.s. of (2.94), (v¢k') in place of E(k'), and
we absorb in rl(flL)ﬁ(x) the terms containing at least one propagator 690(1%, (x), which is of
size v2". The substitution of (vik’) in place of E(k') is done also in the definition of the R
operator, so producing other “corrections”, to be added to rz(hL) B(X)‘ An argument similar

to that used for Ggfgﬁ(x) easily allows to prove the bound (5.46).

)P exp(iappac)sf;’hﬁ(x) and sghzﬁ(x) will denote the sum of the trees contributing
to Gg}%ﬁ(x) —rﬁ%’ﬁ(x) and Gg}%ﬁ(x)— rg%’ﬁ(x), respectively, which have at least one
endpoint of type v or 4.

Let us now consider the “leading” contribution to Gg’fz’ﬁ(x), which is defined by the

second of the equations (5.44) as Gé’gﬁ (x) and is obtained by using again (5.40), but with

the constraint that the sum over the trees is restricted to those having only endpoints with
scale h, < 1 and only normal endpoints of type A\. Moreover we have to use everywhere the
(R)

propagator g, (x), which has well defined parity properties in the x variables; it is odd, if

w = w’, and even, if w = —w'.

Note that all the normal endpoints with h, < 1aresuchthat .., o(f) = 0and that this
property is true also for the special endpoints, which have to be of type Z(?); hence there is no
oscillating factor in the kernels associated with the endpoints, which are suitable constants
(the associated effective potential terms are local). It follows that any graph contributing to
Gghz ﬁ(x) is given, up to a constant, by an integral over the product of an even number of
propagators (we are using here the fact that there is no endpoint of type v or §). Moreover,
since all the endpoints satisfy also the condition Zfelu o(f)w(f) = 0, which is violated by
the set of two lines connected by a non diagonal propagator, the number of non diagonal
propagators has to be even. These remarks immediately imply that Géh% 5(x) = Gghz 5(=%).

In order to prove the bound (5.47) for G’é’gﬁ (x), we observe that, since the propagators

only couple fields with different o indices and 3_,.; o(f) = 0, given any tree T contributing
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0 Gé’gﬁ(x) and any v € 7, we must have

> o(f)=0. (5.62)

JEP,

Let us now consider the vertex vy, defined as in §5.9, that is the higher vertex v € 7, such
that both x and y = 0 belong to x,, and let vx be the vertex immediately following vy, such
that x € vx. We can associate with v, a contribution to B"()(=P), ¢) (recall that h is the
scale of 7y and hence the scale of the external fields of vy), with m = 1 and 2n = P, (see
(5.6)), whose kernel is of the form, thanks to (5.62)
B(X;¥1,...,¥Y2n) = . Z X iYL oKy
(L6)2n+1 p.k),...k} (5 63)
n
B(p;k,,....k5, 1)6(> ok, —p

If we apply the differential operator 95™° to Gg}gﬁ(x), this operator acts on B(X;y1,...,¥2n),
so that its Fourier transform is multiplied by (ipg)™0; since pg = Zfil o,kro and the external
fields of vx are contracted on a scale smaller or equal to h, it is easy to see that there is
an improvement on the bound of 80G2 1,5(x), with respect to the bound of G2 1.5(x),ofa
factor cm,y"™o, for a suitable constant c,,,. We are using here the fact that G§7L7ﬁ (x) =0,
so that we can suppose h < 0, otherwise we would be involved with the singularity of the
scale 1 propagator gill_)’w;r (x; —y1) at &; —y; = 0, which allows to get uniform bounds on
the derivatives only for |z; — ;| bounded below, a condition not verified in general.

Let us now consider 5{"1@5727[3()() (see (3.6) for the definition of d;). By using (2.62) and
the conservation of the spatial momentum, we find that 0** acts on B(X;y1,---,¥a2n), SO
that its Fourier transform is multiplied by sin(pz)™!, with p = E Z, 00kl +2mm, where m
is an arbitrary integer and p is chosen so that |p| < m. If m = 0, we proceed as in the case
of the time derivative, otherwise we note that the support properties of the external fields,
see §2.2, implies that | 2> o.k%| < 2nagy"; hence, if [m| > 0, 2n > (w/ag)y™". Since the
number of endpoints following v, is proportional to 2n and each endpoint carries a small
factor of order Ay, it is clear that, if A; is small enough, we get an improvement in the bound
of the terms with |m| > 0, with respect to the corresponding contributions to Gghz 5(x), of
a factor exp(—Cy ") < ¢, 7™, for some constant ¢,,,. In the same manner, we can treat

the operator D, m,, so proving the bound (5.47) for Dy, mnghz 5(x).

Let us now consider GLL’B(X— y)— ri 2 (x—y). In this case the kernels of the two special
endpoints x and y are equal to exp(2ioxprz) and exp(2ioypry), respectively. However, since

the propagators couple fields with different o indices and all the other endpoints satisfy the

condition - ;¢ o(f) =0, 0x = —oy and we can write
G(h) _ (h) _ 2iopr (z—y) G(h) _ 9 (h) . 5.64
1,L, 5(X y)—r ,L,3 (x Z € 1,0(X y)+ 51,0,L,g(x y)| ., (5.64)
o==%1
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with Gghg(x) having the same properties as G’éh) (x); in particular it is an even function
of x and satisfies the bound (5.47). Moreover, it is easy to see that Gﬁr (x —y) is equal
to G”yll(y —x) = G’Yll (x — y), hence GYlg(y — x) is independent of o and we get the
decomposition in the first line of (5.44), with Ggh) (x — y) satisfying (5.47) and (5.45).

The bound (5.48) is proved in the same way as the bound (5.47). The factor [y=?(*="") 4
Ih] (h)

7] in the r.h.s. comes from the fact that the trees contributing to s, , ; 5(x) and sghzﬁ(x)

have at least one vertex of type v or §, whose running constants satisfy (4.17) and (4.57).

Note that sgi’l;Lﬂ(x) and sg’%ﬁ (x) are not even functions of x and that sziLﬁ(x) is not
independent of o.

In order to complete the proof of Theorem 5.8, we observe that all the functions appearing
in the r.h.s. of (5.39), as well as those defined in (5.44), clearly converge, as L, 8 — oo, and
that their limits can be represented in the same way as the finite L and S quantities, by
substituting all the propagators with the corresponding limits. This follows from the tree
structure of our expansions and some straightforward but lengthy standard arguments; we
shall omit the details.

Let us consider, in particular, the limits Ggh) (x) of the functions GEhL)B(x) Their tree
expansions contain only trees with endpoints of scale h, < 1, which are associated with local
terms of type A or of the form (5.13) and (5.14), whose v fields are of scale less or equal
to 0. The support properties of the field Fourier transform imply that the local terms of
type A can be rewritten by substituting the sum over the corresponding lattice space point
with a continuous integral over R*. We can of course use these new expressions to build the
expansions, since the propagators of scale h < 0, in the limit L, — oo, are well defined
smooth functions on R%. For the same reason, the tree expansions are well defined also if
the space points associated with the special endpoints vary over R, instead of Z*; therefore
there is a natural way to extend to R? the functions Ggh) (x), which of course satisfy the
bound (5.47), with the continuous derivative d; in place of the discrete one and |x| in place

of |[d(x)|, as well as the analogous of identity (5.45).

The function Ggh% 5(x) satisfies also another symmetry relation, related with a remarkable

property of the propagators g‘(u’fl,, see (5.61), appearing in its expansion, that is
_ . _(h T
gwfft)/.)(x:xo) = _ng(—u);7—w (’U();.’I,'U, ’U_*) 3
0 (5.65)
() _ _=(h) w., T
gw7—w(x;x0) - g_w7+w Voo, o .

0
On the other hand, each tree contributing to GY% 5(x) with n normal endpoints (which are
all of type A) can be written as a sum of Feynman graphs (if we use the representation of the
regularization operator as acting on the kernels, see §3), built by using 4n +4 1 fields, 2n+ 2
with w = +1 and 2n + 2 with w = —1, hence containing the same number of propagators
§Srh1)7 41 and g(_h1)7_1 and, by the argument used in the proof of (5.45), an even number of

non diagonal propagators. Then, by using (5.65), we can easily show that the value of any
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graph, calculated at (x,x¢), is equal to the value at (v3zo,z/vg) of the graph with the same

structure but opposite values for the w-indices of all propagators, which implies (5.49).
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6. Proof of Theorem 1.5

6.1 Theorem 3.12 and the analysis performed in §4 and §5 imply immediately the state-
ments in item a) of Theorem 1.5, except the continuity of Q%’ﬁ(x) in o = 0, which will
be briefly discussed below. Hence, from now on we shall suppose that all parameters are
chosen as in item a).

Let us define

n=log, (1+2%), 2" = 2[pe ) (6.1)

zp, being defined as in (4.2). The analysis performed in §4 allows to show (we omit the

details) that there exists a positive ¥ < 1, such that

|2h = znia| S CX Y P 4% R <h <0, (6.2)
We can write
0 0
log., Zn = Z log, [1+ 2" + (2w — 2")] = —nh + Z Th . (6.3)
h'=h+1 h'=h+1

On the other hand, if A > [h* /2], thanks to (6.2), |rp| < C Ez;l[h*m |2h — 2pig1| < CA2APR
and, if h < [h*/2], |rn] < CA3y~?(=h") it follows that

Ira] < CX ™) 440 (6.4)
Hence, if we define
v 6.5
Ch = Zh—l ) ( . )
we get immediately the bound
len — 1] < OA2 . (6.6)
In a similar way, if we define
~ ry*ﬁlh
m = IOgry(l + Z[(;Z/Q]) ) CS) = 7 (6.7)
h
zg) being defined by (5.18), we get the bound
et — 1] < A - (6.8)

Bounds similar to (6.7) and (6.8) are valid also for the constants Zf(f), but in this case

Theorem 5.6 implies a stronger result; if we define

)
@ _ Zi
¢ = Z, (6.9)
then
et = 1] < A - (6.10)
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Let us now consider the terms in the first three lines of the r.h.s. of (5.39) and let us call

Qi B their sum; we can write
Q3% (x) = Q7% () + 097 % (%) | (6.11)

where Qi 5 is obtained from (23 0 5 by restricting the sums over h and h' to the values < 0
()

and by substituting the propagators g,, ., with the propagators gw w,, defined in (5.61). B

using the symmetry relations

3 (2, m0) = =g, (—2, —0) = 5" (we, 30) | 612
_(h _ _(h '
For)o(®) = 307 (—%) = wil") (x) |
it is easy to show that we can write
0775(x) = cos(2prz),0,5(x) + Qo,1.5(x) (6.13)
_ Z(l) , 2 ,
Q1 p(x) =2 Z % [gsrhﬂ_(z :cg)gsr’f_i)_(—x,zg)%—
h*<h,h'<o “hTL1ER L (6.14)
+ 3" (@.20)g{" (2. 20)]
Qo1 5(x Z th’ Zgﬁﬂ (wz, x0) Sr J)r(wa:, x0)—
h,h' <0 Zh 12w -1 [ w (6.15)

= 25" (a,20)3!" (@,20)] -

By using (5.39), (5.44), (6.13) and the fact that G| ;') (x) — ri7')(x) = 0 for i = 1,2, we

can decompose 0} ; as in (1.14), by defining

0 1 >
‘o z"\ A
D500 = ps(x) + 3 (Z—) G100 (6.16)
h=h*
50 ' " (2P
Q7 5(x) = Qo 1,5(x) + Z Zn Gy 1 5(x) (6.17)
h=h*
3 3,0 - zY’ () 22\
Q500 = 00500 + 7 ) "Ls) 7] 200+
h=h*

(6.18)

1 2
L A2

0 N 2O\ ?
sp.p(x) = Z Z eiorre <—> SY,la,L,ﬁ(X) + (ﬁ) Sgh%ﬁ(x) . (6.19)

h=h* o==+1

Theorem 5.8 implies that Qi%(x), Qibﬁ (x) and sg g(x) are smooth functions of zg, es-
sentially because their expansions do not contain any graph with a propagator of scale +1

(this propagator has a discontinuity at xg = 0). The function Q?icﬁ(x) is not differentiable
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at xg = 0, but it is in any case continuous, since all graphs contributing to it have a Fourier

transform decaying at least as &, 2 as ko — oo.

6.2 We want now to prove the bounds in item b) of Theorem 1.5. To start with, we

consider the function Q1 5(x) defined in (6.14) and note that it can be written in the form

. 0 (ZzW\? _,
Drpx) =Y. <ZLh) o) s, (6.20)

h=h*
with Q") (x) satisfying a bound similar to that d for G\") 5.47), that i
1.1.8 ying a bound similar to that proved for 1’L’B(x),see( A7), that is

72h,}/h(mg+m1)

[ Drmo,ma 4 1, 5 (%) < CN o, 14 [yh|d(x) Y

(6.21)

This claim easily follows from Lemma 2.6, together with (6.5) and (6.6). Hence we can
write, by using (5.47), (6.6), (6.8) and (6.21), given any positive integers ng, n1 and putting

n =ng+ ny,

0 (2+2m+n)h
_ . -
1A Q3 () < O 3 I
Ch:h* [1+ (v d(x)[)N] 6.22)
N,n
S [Gopromn vz ()
where
m=n—"11, (6.23)
0
(’}/h’f)a
Hy.a(r) = 1+ (Ahr)N ° (6.24)
2 T

By using the second of the definitions (2.2), the definition (4.8) and the bounds (4.16),
(5.29), one can see that the constant 7, can be represented as in (1.15).

On the other hand, it is easy to see that, if @« > 1/2 and N —a > 1, there exists a constant
CnN,o such that

Hy o(r) < Cn.a A=A, (6.25)

< T
The definition (2.40), the first of definitions (2.33), the second bound in (2.34) and the bound
(4.56) easily imply that A can be represented as in (1.20), with 7 satisfying the second of
equations (1.15).

By using (6.22) and (6.25), one immediately gets the bound (1.17). A similar procedure
allows to get also the bound (1.18), by using (6.10).

Let us now consider QBLCB (x). By using (5.43) and (5.46), as well as the remark that one
gains a factor " in the bound of ggfl,(x) - ggfl,(x) with respect to the bound of ggfi,(x),
we get

3¢ (x) — 51 alx Cn  [Hyptom+o(|dX)])  Hyoto(ld(x)])
107 5(x) — sL,s(x)] < A )72 Pt ’

(6.26)

for some positive 9 < 1.
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The bound of sz, 5(x) is slightly different, because of the v~ ?("~%") in the r.h.s. of (5.48).
We get, in addition to a term of the same form as the r.h.s. of (6.26), another term of the

form
Cn NP Hy 2429, »(|d(x)])
|d(X)|2( | ( )|) |d(x)|2n1

The bounds (6.26) and (6.27) immediately imply (1.19), if X is so small that, for example,
2lm| < 9/2.

+ Hyo(ldx)])] (6.27)

6.3 We want now to prove the statements in item c¢) of Theorem 1.5. The existence of the
limit as L, 3 — oo of all functions follows from Theorem 5.8. The claim that %%(x) and
03:b(x) are even as functions of x follows from (5.45) and (6.14)-(6.18). Moreover Q%?(x)
and Q3°(x) are the restriction to Z x R of two functions on R?, that we shall denote by
the same symbols, and °:%(x) satisfies the symmetry relation (1.23), since this is true for
limy, 500 Q1.1.5(X), as it is easy to check by using (5.65), and for Ggh) (x), see (5.49).

In order to prove (1.21), we suppose that |x| > 1 and we put Q;(x) = limy, g0 Qi1 5(X);
then we define Q;(x), i = 1,2, as the functions which are obtained by making in the r.h.s.

of (6.14) and (6.15), evaluated in the limit L, 3 — oo, the substitutions

(Z;L{/)hl)2 2 27— (Zl(zQ\/)h’)2
—ThVRT 1?4 (vix m —hvhZ 6.28
Zn_1Zn_1 [ + (vgz0)7] Zn1Zm—1 (6.28)

Note that the choice of 2+ (v§zo)?, instead of 2%+ x3, which is equivalent for what concerns
the following arguments, was done only in order to have a function € (x) satisfying the same
symmetry relation as ()1 (x) in the exchange of (z,x¢) with (vizo,z/vg).

It is easy to see that

- ~ Cn 7" x| 7 x|
Q -0 < — .
060 =6 < e D T I T ()
Shs (6.29)
' (M)n (" ) (" ) (1 [ S
22 + (v320)? (c%lv)h,)2
Note that, if r > 0 and a € R
[r* — 1] <|alogr| (r* +r7%) ; (6.30)
Hence, by using (6.6), (6.8), (6.25) and (1.15), we get
- 5 | Js] Cn
Q -0 < . 6.31
9 () = 0] < A (6.31)
In the same way, one can show that
5 5 |[Js]  Cn
Q -0 < = 6.32
92(x) = ()] < 1 AT (632
Let us now define
* 2 1 * *
Q7 (x) 59c(z/vg,T0)gc(— /vy, o) , (6.33)

T &+ (ggz0)2]™ (ug)
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1

Q5(x) = ) > ge(wz/vg, m0)ge(wa/vg, o) , (6.34)
0 w==+1
where
ge(x) = # / dkeikx% , (6.35)

Xo(k) being a smooth function of k, which is equal to 1, if |k| < ¢o, and equal to 0, if
|k| > ~to (see §2.3 for the definition of tg).

It is easy to check that Q% (x), i = 1,2, is obtained from Q;(x) by making in the L, 3 = oo
expression of the propagators gifl,(x), which are evaluated from (2.92), if h* < h < 0, and

(2.121), if h = h*, the following substitutions:

on-1(k') =0, fr(K') = fa(K) . (6.36)
Hence, by using also the remark that, by (2.116) and (4.54), |o4/7"| < Cy=(P=h")/2 it is
easy to show that

Cn

197 (%) - i (%)] < X[

Hiv, (AJx]) [Nt (AJx]) + (AJx]) /2 o (Al))] - (6.37)

In a similar way, one can show also that

Cn

|25 (x) — Q2(x)| < e

Hiv, (Afx]) [ X Hv, (AJ]) + (AJx)) /2 o (AlD)] . (6.39)

Moreover, by an explicit calculation, one finds that, if |x| > 1,

xo — 1T

WF(X) , (6.39)

9c(x) =

where F(x) is a smooth function of x, satisfying the bound

Cn

Fx)-1| < ——.
IFG) =11 < T b

(6.40)

The bounds (6.31) and (6.32), the similar bounds satisfied by |Q%?(x) — Qy(x)| and
|28 (x) — Q2 (x)| and the equations (6.37)-(6.40) allow to prove very easily (1.21) and (1.22).

6.4 We still have to prove the statements in items d) and e) of Theorem 1.5. By using
(1.14), (6.18) and (6.19), we see that

600 = Y

1.
§QS"I(k +20pr, ko) + 51,0(k + 20pp, ko)} +

o=11 (6.41)
FO3(K) + 8a(K) + 007 (K)
where we used the definitions
0 1\ 2 0 2)\ 2

VA VA

s10(x) = D (Z—) ), mx) = (Z—> s2(1)(x) (6.42)
h—h* h h—h* h

50 (x) = Q% (x) — 8(x) . (6.43)
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Since any graph contributing to the expansion of 2%%(x — y) has only two propagators
of scale < 0 connected to x or y, Q3’“(k) has support on a set of value of k such that
|k| < 2+to < 7; hence we can calculate %4 (k) by thinking Q3%(x) as a function on R?. Let
us suppose that |k| > 0 and |k| > |k|/2; then

Q> (k) = / dxe**0%9(x) = % / dx [e™* — 1] 9,0%(x) , (6.44)

since 0%%(x), by (1.17), is a smooth function of fast decrease as |x| — oo. If |k| < |k|/2, it
has to be true that |ko| > |k|/2 and we write a similar identity, with kg in place of k and

Oz, in place of 9,. In both case we can write, by using (1.17),

- C dx |x|
(k)| < — 7+0/ dx —————— . 6.45

| ( )| — |k| x| K|~ 1+ |X|3+2n1 x| <[k|-1 Xl T |X|3+2n1 ( )
A even better bound can be proved for |51 ,(k)|, 0 = £1, by using (5.48). Hence, uniformly
for u — 0, |Q3%(K)| + |31., (k)| < C|k| ! for [k| > 1 and

1— [K|>m

1A3 ~
— 7(1 <
510 (k>|+|s1,a<k)|_c[1+ ok

} , 0<|k|<1. (6.46)

This bound is divergent for |k| — 0, if 7; < 0, that is if J3 < 0; however, if u # 0 and
k| < A, we easily get from (1.17) (with n = 0) the better bound

1,4 1 — A?m
|93 (K)| + |81, (k)| < C |1+ ————] . (6.47)
2 2171
In a similar way, by using (1.18), one can prove that
00| + [32(k)| < C L +log k7], 0< k| <1, (6.48)
|03 (k)| + |32(k)| < C [1+1og A . (6.49)

However, a more careful analysis of the Fourier transform of the leading contribution to
03b(x), given by Q3(x) (see (6.34)), which takes into account the oddness in the exchange
(z,20) — (zovE,x/vE), shows that |Q3(k)| < C. One can show that a similar bound is
satisfied by the Fourier transform of the terms contributing to 0 (x) and proportional to
on/y". Therefore, in the bounds (6.48) and (6.49), we can multiply by .J3 both log |k|™*
and log A~ L.

Let us now consider 6@3’C(k). By using (6.26), we see immediately that, uniformly in k
and u,

~ 3,c

1607 (k) — 5(k)| < C . (6.50)

The bounds (6.46)-(6.50), together with the positivity of the leading term in (1.21) and the

remark after (6.49), immediately imply all the claims in item d) of Theorem 1.5.

Let us now consider G(z) = Q3(z,0), z € Z. It is easy to see, by using the previous results
and the fact that also s; ,(x) and s3(x) are even functions of x, that G(z) can be written

in the form

G(z) = Z e?7PrrGy L (z) + Go(z) + 6G(2) , (6.51)

o=%1
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where G ,(x) and Ga(z) are the restrictions to Z of some even smooth functions on R,

satisfying, for any integers n, N > 0, the bounds

Cn,N

»G10(2)] < , 52
01Ol < e T+ ] (052
Cn N
"Go(z)| < ’ , 6.53
|0, G2(z)| < 1+ |22t [1 + (Alz])V] ( )
while 0G(z) satisfies the bound
16G(2)] < ¢ (6.54)
=L+ 2P+ (Af)NT '
with some ¥ > 0.
These properties immediately imply that, uniformly in k£ and u,
|G(k)| + 100G (k)| < C . (6.55)
Let us now consider 8y G1 (k) and note that, if |k| > 0,
. 1 ,
04Gr o () = —7 / dale™® — 110, [2G1 o (2)] =
1 ,
=7 da[e™ —1)8, [2G1 0 ()] - (6.56)
2>k~

1

_1 / o™ — 1 — ik2)0u[aGh o ()] |
k Jiai<ig|-1 ’

where we used the fact that 0,[zG1 »(z)] is an even function of z, since G, (z) is even, see
(5.45). Hence, if |k| > 1, |8kél’g(k)| < C|k|=1, while, if 0 < |k| < 1, uniformly in u,
|0kGh,0 (B)] < C[1+[E]*™] . (6.57)
In a similar way, we can prove that, uniformly in k£ and wu,
0kGa (k)| < C. (6.58)

The bound (6.57) is divergent for £ — 0, if J; < 0; however, if |u| > 0 and |k| < A, one
can get a better bound, by using the identity

G0 (k) = z/

le[>A—1

dae*[2Gy o (2)] +i / dafe™® —12G10(2)],  (6.59)

lz[<A—t

together with (6.52). One finds
10k G0 (k)| < C[1+ A?M] . (6.60)

The bounds (6.55), (6.58) and (6.60), together with the identity (6.51), imply (1.24). The
statements about the discontinuities of 8,G (k) at v = 0 and k = 0, +2pp follow from an
explicit calculation involving the leading contribution, obtained by putting A; (x) = Aa(x) =

0 in (1.21).
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7. Proof of the approximate Ward identity (5.35)

7.1 In this section we prove the relation (5.35) between the quantities Z}(LL) and Z,(lQ’L),
related to the approximate Luttinger model defined by (5.30) and (5.31).

First of all, we move from the interaction to the free measure (4.30) the term pro-
portional to 6(()L) and we redefine correspondingly the interaction. This can be realized
by slightly changing the free measure normalization (which has no effect on the problem
we are studying), by putting 5((]L) = 0 in (4.31) and by substituting, in (4.30), v§ with
vo(k') = v + 5(()L)C0_1(k’). However, since Cy ' (k') = 1 on all scales h < 0, Zf(LQ’L) and Zf(LL)
may be modified only by a factor VCP‘(()L)‘, if we substitute To(k') with 09 = 70(0). It follows

that it is sufficient to prove the bound (5.35) for the corresponding free measure

A0 (0~
(L) (o (S0 = TKw KW
powen= TGS
k':C k’)>0"" +1
(7.1)
onf B T T (- e
w=+1 05 (k') >0
by using as interaction the function
VO =3 [ xS T r2)
L.p

Let us consider, instead of the free measure (7.1), the corresponding measure with infrared

cutoff on scale h, h < 0, given by

d¢[h ,0] +d¢ [h 0]
p(L.h) (d¢[h,0]) _ H H NL i) _ .

k':.C h (kr)>0w +1

(7.3)
- exp{ —— Z Z Cho(K') (= iko + wok') iy, pLb S)H 1[32]_ ;

w==%1 1y, oy (k’)>0

where C,;(l) = Zgzh fr-
We will find convenient to write the above integration in terms of the space-time field

variables; if we put

d’(/)][(’} o]+dd)[h 0]—

Dylh-0l = H H —NL o , (7.4)
K:Cp (k) >0 w=+1
we can rewrite (7.3) as
pL. h)(dw[h 0] )= Dylh-0] exp Z / dx 1/}[h 0] +D[h 0]¢[h ,0]— ] (7.5)
where
DIOlyph0le — Li Z XK xXCy oK) (ioko — wotok!) [h?j ) (7.6)

k':C; ¢ (k')>0

97



DLh’O] has to be thought as a “regularization” of the linear differential operator

D, = — 4+ iwvg—

Let us now introduce the external field variables ¢ ,, x € Tr g, w = £1, antiperiodic in

X,w?

zo and z and anticommuting with themselves and 1/)[ Ol , and let us define
U(9) = ~log [ PN @@plh)e V0o (79)
If we perform the gauge transformation
YT — el (7.9)

and we define (e="*¢)7 , = e~ *=¢7 ,, we get

U(¢) = —log / PEM) (dy 0 exp{ — VI (0 4 i) —

' (7.10)
_ Z/dx o+ zaxD([Jh,O]efwcx _ D‘[Uh,()])w)[:é?]f} _

Since U(¢) is independent of a, the functional derivative of the r.h.s. of (7.10) w.r.t. ax is
equal to O for any x € Ty, 3. Hence, we find the following identity:

ou 1 (L) (qph:0]
e PR (gl Oy o=V =g (7,11
S | bheggzs * pas bt gy [ PN @ e ()
where
Z(¢) = /P(L””(dz/}”"o])e’v(“(‘”[h’o]”’) : (7.12)
_ ,(/)[h70]+[ [h70],¢}[h,0} ] [ [h 0],¢J[h0 ],¢[h 01— —
Ciox AR 0] 7.13
- Ze PG Chg(p +K)Du(p +K) ~ Cro DN, (1)
Dw(k) = —ikg + wiok . (714)

Moreover, the sum over p and k in (7.13) is restricted to the momenta of the form p =
(2mn/L,27m/pB) and k = (2x(n+1/2)/L,2n(m+1/2)/3), with n and m integers, such that
Ipl, |pol;s |kol, |k| are all smaller or equal to 7 and satisfy the constraints C};(l](p +k) >0,
Cpo(k) > 0.

Note that (7.13) can be rewritten as

Tyw = Do [Tl 4 6Ty (7.15)

where

_ e iPX [h0]+

: {[Chp p+ k) —1]Du(p + k) — [Cho(k) — 1]D, (k) 15

(7.16)
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It follows that, if Cj, o is substituted with 1, that is if we consider the formal theory without
any ultraviolet and infrared cutoff, Tx ., = D, [’QZJ[h O+ Lho? }7] and we would get the usual
Ward identities. As we shall see, the presence of the cutoffs make the analysis a bit more
involved and adds some corrections to the Ward identities, which however, for Ay small

enough, can be controlled by the same type of multiscale analysis, that we used in §5.

7.2 Let us introduce a new external field Jx, x € Ty, g, periodic in 2y and = and commuting

with the fields ¢ and ¥!"9? and let us consider the functional
(¢ J) _ log/P(L ,h) d?/J[h ,0] ) (L)("/)[h 0]+¢ +f dxJx E ¢[h s w[h = . (717)

We also define the functions

> 9*
Yho(Xx—y)=—— U == W(,J , 7.18
X =) = g @], =7 T VO, (7.18)
¥
Fh,w(XaY;Z) = ﬁmv\/((@ J)|¢:J:0 . (7.19)

These functions have here the role of the self-emergy and the verter part in the usual
treatment of the Ward identities. However, they do not coincide with them, because the
corresponding Feynman graphs expansions are not restricted to the one particle irreducible
graphs. However, their Fourier transforms at zero external momenta, which are the in-
teresting quantities in the limit L,3 — oo, are the same; in fact, because of the support
properties of the fermion fields, the propagators vanish at zero momentum, hence the one
particle reducible graphs give no contribution at that quantities.

In the language of this paper, if we did not perform any free measure regularization,
h,w(x —y) would coincide with the kernel of the contribution to the effective potential on

scale h — 1 with two external fields, that is the function W (h—1)

o(+,- ), (ww) Of equation (3.3).

Analogously, 1 + 'y, ,(x;y,2z) would coincide with the kernel Bi?Q’(27_)7(w7w) of equation
(5.6).
Note that
553, = 3 a3, (7.20)

where 'y, o, o (x;y,2) is defined as in (7.17), by substituting Jx > ¥x.. o+ ,[(’f;?]_ with Jy
1/}[h,—0]+ qp[hLO]__

If we derive the Lh.s. of (7.11) with respect to ¢, and to ¢, and we put ¢ = 0, we get

0=—0x—-y)Ehw(x—2)+0(x—2)Zu(y —x)— (7.21)

o2V v oV [h,0]+ [h 0]— T
1/)[h 01+ 1/)[h 0]— aw[h0+ 3¢[h0 ’ Z [ o(Uns ¥xa )+ 0Txa| >,

where < -;- > denotes the truncated expectation w.r.t. the measure Z(0)~! PR (dq?:0])
e,v(L)(w[hyol)
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By using the definitions (7.18) and (7.19), equation (7.21) can be rewritten as

0=—-0x—y)Zho(x—2)+d(x—2)Zru(y —x)—

7.22
- Z Dx,dzrh,w,dz (X; Y, Z) - Ah,w (X; Y, Z) 3 ( )
where
0*v ov. oV
A ,w(x;yyz) =< - — — :| N (5Tx’g_, >T . (723)
" R T Z

In terms of the Fourier transforms, defined so that, in agreement with (3.2) and (5.9),

1 . ~
Tho(x—y) = ] Z e KRy, L (k) (7.24)
k
1 ) . .
Fh,w,&) (X; Y, Z) = 7T A2 Z ezp(x—z)e—zk(y—z)l—\h’w’& (p7 k) 3 (725)
(LAY 2
1 . . R
Ah,w (X; y, Z) = 2 Z ezp(X7z)eizk(yiz)Ah,w (pa k) s (726)
(LAY 2
(7.22) can be written as
0 = 2h,o.) (k - P) - i:h,w (k) - Z(_Zp(] + ajﬁop)f‘h,w,&) (p7 k) + Ah,o.) (pa k) . (727)
Let us now define
- 1 . o
2 =1=7 3 Thal@y k), (7.28)
n,m' ==x1
- 7 ,ﬂ “ _
Zn=1+7 > —Sh (k) (7.29)
n.n'==£1

where p,y is defined as in (5.11) and k,, .y as in (2.73).
If we put in (7.27) p = p, and k = k,,,y, multiply both sides by (in'3)/(27) and sum

over 1,1, we get

Zn =29 +62¥ (7.30)
where . ~
> 1 Apw (P s k)
57 _ = h, i i/ L/ 7.31
W= ,Z,ﬂ “iro (7.31)
mnn =

7.3 The considerations preceding (7.21) suggest that Zy, and Z,(f) are “almost equal” to

the quantities Z ,(lL) and Z £2’L), related to the full approximate Luttinger model and defined
analogously to Z; and Z 22) for the original model, on the base of a multiscale analysis. In
order to clarify this point, we consider the measure P(E:0) (dyplh:01)e=V " 40" whare
(<M is fixed and has the same role of the external field ¢ in (7.17), and define E;_; and

V=1 (p(<M)) | the one step effective potential on scale h — 1, so that V=1 (0) = 0 and

e VTS LB — /P(L’h)(dq/)[h’o})e*V(L)(#)[h‘O]Jﬂ#Kh)) ' (7.32)
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We want to calculate this quantity, by extending to it the definitions of effective potentials
and running couplings, given in §2 for the original model.

We start from the scale 0 with potential V' (0 (1[0 (<h)y = 17 (L) (4[m-0] 4 4(<h)) and we
introduce, in analogy to the procedure described in §2.5, for each h such that h < h < 0,
two constants Z;, E; and an effective potential V' (B) (4, 4h(<h)) 0 that Z, =1, Ej =0 and

eV LBE Ly _ /PZ;“C}LE(ddj[h’m)e,v’(ﬁ)(Md,[h‘m’w«h)),];;_l ’ (7.33)
where PZ;—,’C;LJL (dz/)[h’i‘]) is obtained from the analogous definition (2.66), by putting o (k')
=0, E(k") = ©psin k', and by substituting C”Zl with C”:% = Zzzh fr. Moreover, we suppose
that the localization procedure is applied also to the field /(<) even if it does appear in the
integration measure and, therefore, can not be involved in the free measure renormalization.

We want to compare these effective potentials with the potentials yh) (1/)(5’~‘)), related to
the approximate Luttinger model without any infrared cutoff and defined following again
the procedure described in §2. We shall use for the various objects related to this model
the same notation of §2, while the corresponding objects of the model with infrared cutoff
will be distinguished with a superscript . The definitions are such that V() ((0) =
V(O ([h0] (<0)) 7o =1 and

0 <0 i _p(h) — o (Sh)y_ _
/szco(dl/J(SO))e_v( N(VZop'SD) Z/Pzﬁ7cﬁ(d1/)(§h))€ VW (/Z S - LBE;, (7.34)

Note that the single scale propagators involved in the calculation of yh) (\/Z;lz/)(f"‘)) and
Vb (, /Z;l@b[h’h],z/)(d)), that is those with scale A > h + 1, may differ only if Z; # Z! or
2y, # 27 This immediately follows from the observation that, if h +1 < h < 0, the identity
(2.90) is satisfied even if we substitute in (2.89) Cj, with C), ;. This implies, in particular,
since zg = 2z = 0, that (see (2.110) and (2.107))

V(70 g <) = VD [/Z (gl 4 <)) (7.35)

with 2/, =Z 1=1,and that z 1 =2' ;, 6 1 =8, A1 =N 1,2, =7 ,.

Let us now compare the effective potentials on scale —2. The fact that the free measure
in (7.33) does not depend on the fields with scale less than h implies that the free measure
renormalization does not use all the local part of VY= proportional to z_;. Therefore, the
analogous of the potential V(= \/— (=) for the model with infrared cutoff has to be
defined so that (see (2.107))

VN (2l ¢<<h> YZoa @+ g

+ z_ 1Z—1 Z /dX - [h _IH— 1/)x,<wh_+,(/})((7<wh)+ qu/):[(}f&)_l]_ +
) ) ( )] (7.36)
+z2Z.0 ) /dx P DT
w==%1
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It follows, by using also the remark on the single scale propagators following (7.34), that
V' (=2 (JZ =2 4p(<h)) | calculated through the analogous of (2.110), can be obtained
from V(=2[/Z_5 (4l =2 4 4)(<P))] by adding some new terms. First of all, there is the term

in the third line of (7.36), which is independent of the integration variables, and the two
l]a'

1/)[h 7217 in place of 1/)

terms in the second line with Moreover, in the Feynman graph
expansion, we have to add the graphs which are obtained by inserting, in the external lines
of a graph contributing to V(=2 one or more vertices corresponding to the two terms in the
second line of (7.36). These new terms are not irrelevant, if the number of external lines is 2
or 4; hence one could worry about the need of new running couplings in order to regularize
the expansion. However, because of the support properties of the propagators, these new
terms do not give any contribution to the local part (which is calculated by putting equal
to 1},77,7, the external momenta, hence also the momenta of the internal line propagators of
the insertions in the external lines), so that the only running couplings to consider are those
related with V(=2 and their values are the same, that is z_o = 2’ o, d_o = 8", A_s = A,
Z' s =27_3.

By iterating the previous considerations, it is easy to show that, if h < h < —2, one can
calculate V’(i‘)(\/Z_;l@ZJ[h’m, (<M) by adding to VM [,/Z; (4" Rl 4 h(<h))] some new terms.
First of all, there are the local terms of the form of that in the second and the third line of
(7.36), with 1/),[(%;1}0 in place of 1/),[2;,_1]’7 and z; Z;, h < h < —1in place of z_1Z_1. Moreover,
in the Feynman graph expansion, we have to add the graphs, which are obtained by inserting,
in the external lines of a graph contributing to V(il), one or more vertices corresponding to

terms similar to those in the second line of (7.36), with w[h M7 in place of 1/),[2;,_1]’7 and 23 25,

h <h < —1in place of z_1Z_,. Finally
EV’(’—L)( / -1/,[’1’?11 <My = cy(ﬁ)[ /Zilw[h’m + <M+

Z aZn 3 [ dx [ (Duold ) uleh ol (Duule )] +

h+1 w==+1 (737)
+ Z Wl Y /dx YL+ D Sh
h=h+1 w==£1

and all the running couplings as well as the renormalization constants, are the same as
those defined through V(") (,/Z P <h)
Equations (7.33) and (7.37) also imply that

£v(h_1)(1/) (<h) ) Ly "(h—1) (,(/)(<h))+

£ az Y [ax s D 2 Y [ xS DL

h=h-+1 w==+1 w==%1

(7.38)

where V' ("=1 (4(<h)) is obtained from V=1 (4(<h)) “almost” as before. We still have to

add some new graphs with suitable insertions on the external lines, which do not affect the
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local part, but we also have to change the propagators of scale h, since the function f,’l(k’),
calculated as fj(k'), see (2.90), with C,:}L = f» in place of C, !, is different from fy, (k')
The definition (7.29) of Z;, and the definition of £, together with (7.38), imply that

-1
Zn=14 > zZy+2,Zn = Zn(1+2,) . (7.39)
h=h+1
Since Zf(LL) = Zp and |z;] < C|\o]?, if Ao is small enough, as one can show by using the
arguments of §4, we get the bound
@ -1

A

< Ol - (7.40)

A similar argument can be used for Z}(f’L), by using the results of §5, and we get the

similar bound

72
% — 1| < C|Xo] - (7.41)
Zy
We will prove in §7.4 that
62, < 22l (7.42)
so that we finally get
A
| (2,L) - ]-| S C¥|AU| 3 (743)
Zy

implying (5.35).

Remark (7.42) shows that the corrections to the ezact Ward identity Z}(LL) = Z,(lQ’L) could
diverge as h — —oo. This is not important in our proof, since we are only interested in
the ratio Z,(lL)/Zf(L?’L), which is near to 1, but suggests that it would be difficult to prove
the approximate Ward identity, by directly looking at the cancellations in presence of the

cutoffs.

7.4 In order to prove (7.42), we note that

[Cho(P +k) = 1]Du(p + k) — [Cho(k) —1]Dy(k) =

(7.44)
D (P)[Cho(® +k) = 1] + Cho(P + k) Do (k) Ch o (K)[C 5 (k) — Cp (0 + K)]
and that 1( ) 1( :
C k) — O (B + K
Cho(Py +k) h0 MU =
P (7.45)
[CrroX) = Cpg (P + k)] '
Cho(p +K) h,0 71,0 P ’
—1Pyo _
P=b,
Cho(P+k) =1+ [Cho(p+k) —1]. (7.46)
Hence, by using (7.16) and (7.23), we can write
A w I_) ’7R / A — i
b P Kyr) _ A;{Lm, B> Ky) (7.47)
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where

A (xsy,2) =< [G«pgng,w - 83; a?z:,w} : §5<1>Tx,@,n, >T (7.48)

with
80 Ty = Ol 01— 4 L O iplh0 =y 5[ 00 ey 01— (7.49)
ST = Y e a1 - O (7.50)

k:C;, 5 (k)>0

5 . Crlk) - C L P,y +K)] .
&/;“WH_L 3 e’k"Dw(k)Chp(k)[ nok) = Cio(Py + 1] [R0L+ - (7.51)

Xw,n' T Lp — iy k,w
0
k07 (k) >0 K

Note that there is no divergence, in the limit L, 3 — oo, associated with the fields §u701—

and 61" | even if the function Cj, (k) diverges on the boundary of the set {k : C,;(I)(k) >
0}. In fact, the integration of these fields on scale h, with h < h < 0, yields a factor f}fl(k)
proportional to f;(k) (see (2.90) and the considerations after (7.38)), and the functions
f7 (k) are non negative, if we suitably choose the function (2.30); therefore Cj (k) ffil (k) is
bounded.

Note also that, [C,;(l](k) - C;’(l)(f)n/ +k)]/ — ipyo is bounded, uniformly in §, and is equal
to 0, at least if |k| belongs to the interval [agy" + 27/8,a0 — 27/8] (see §12.3). However,
the interval where this function vanishes can contain the interval [agy", a], if the function
(2.30) is suitably chosen (by slightly broadening the regions where it has to be equal to 1 or
0) and 3 is large enough, which is not of course an important restriction (the real problem is
the uniformity of the bounds in the limit § — oo, and in any case the following arguments

could be easily generalized to cover the general case). Hence, it is easy to show that

C k)=l py +k B B
1-Cpolk) = no®) _iﬁ"jo(p” ):0, if f1(k)#0 h<h<0, (7.52)

so that we can write

Sl 0= = o0 + opl) gl = 6O st (7.53)
where the fields 6@[1,(( » and 51/)x .y are defined by substituting, in (7.50) and (7.51), [h 0}
with ")+
Let us now consider the functional
S (WD) _ / P (@l 0=V @SN F [ x T DT (7.54)

We can write for Sy, (1)(<").J) an expansion similar to that used in §5 to study the cor-
relation function of the original model. We introduce, for any A such that h < h < —1,
an effective potential AQ (¥, (<)), defined as in §7.3, and two functionals S (h+1) (),
B' (™ (1, (<M J), so that, by using the notation of §7.4,

eSha! (w<M.) e~ LBE;+S () /Pz%,chﬁ(d@[;[h,fz}) .

) i i ) (7.55)
e—V’(h)(\/zil)[h‘h],w(d))-i-l@l(h)(ﬁw[h’h]ﬂl)(“)J)_
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We introduce also the functionals S (®) (.J), V' (=1 (4(<P)) and B'(*=1) (4(<P) ), such that
S WS, ) = 8 (1) = V=D () 4 BBV, ) (7.56)

We can write for B’(h_l)(z/)(d‘), J) a representation similar to (5.6), with J in place of ¢
and ¢(<") in place of ¥)(<"). By (7.48)

A(l)

h,w,n’

(x3y,2) = Bl(; (Jlr), )o(w, w)(x Y, 2); (7.57)

hence, in order to prove (7.42), we have to study the flow of the local part of B”(ﬁ)(Z;:l/2

¢[h,ﬁ]’¢(<h)’J)_

To start with, let us consider B’(_l)(Zl:ll/Qz/)[h*l],¢(<h), J). By (7.53), the graphs con-
tributing to it may have an external line of type 8t or 6¢ only if that line is of scale h and
h < —1. Moreover, if the graph has an external line of this type and it is not trivial, that
is if it has more than one vertex, the corresponding local part, defined as in §5, is 0, even if
there are only two external lines, because of the support properties of the propagators, since
there is at least one internal line with momentum equal to one of the external momenta,
which are of order 8! for the local part. It follows that these graphs do not participate in
any manner to the flow of ,CB’(_I)(Z;?/QQ/)[}“_I],¢(<h), J), up to the scale h; therefore we
modify the definition of £, so that they are not included.

This modification of the definition of £ allows to study the flow of EBI(E)(Z’fl_lw[h’E],
(<P J) essentially as in §5, since, as we have explained in §7.3, the infrared cutoff has no

influence on the other local terms, except on the last scale, so that, if h < h < —1,

LB W ([ ZEg (<0 7y = B0 (\/Z (0P 4 (<), ) (7.58)

where B")(\/Zz1(<h) J) is the expression we should get in absence of infrared cutoff and

we used the fact, proved in §7.3, that Z,il = Z;. We can write

(3)

. Z
LBW(\/Z; (p(<P), T Z / dx S p Sl (7.59)
w==%1
The flow of Zi(13) can be studied, starting from the scale h = —1, as the flow of the

.. 2
renormalization constants Zi(l )

defined by (7.1) and (7.2), that is

related to the analogous of the functional (5.2) for the model

oS /P(L)(d¢(§o>)e—V(L)<¢‘5°))+Zw=i1fdex¢5§5)+¢§$“?)_ . (7.60)

Note that the values of Z(j) and Z(fl) are very different; in fact, the previous considerations
imply that
128 =1 <Ol - 128 < Cnol - (7.61)
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However, since the local part on scale —1 is of the same form and the contribution of the

3 or Z}%z) /Zi(j:1 is exponentially depressed, as h

(3)
non local terms on scale —1 to Z; /Zh+1

decreases, it is easy to show, by using the arguments of §4.4-64.7. that
Z(3) Z(Q)
728 =Zh_70) = Zh_[1 4 0(\)) 2] (7.62)

E) ! 2
z%) 7%

The integration of the fields of scale h can only change this identity by a factor [1+ O(Xo)],
hence (7.61) and (7.62) imply that

7(3)
h—1
< ClAo| - (7.63)
7(2)
h
If Agi()um, (x;y,z) were independent of ', 62,(12) would be exactly equal to Z,(f'_)l and (7.42)

would have been proved. Since this is true only in the limit § — oo, we have to bound

Agl ' (Pw, 17(77&7’) for each n,n'. This means that we have to bound even the Fourier trans-

"(h=1)
1,2,(+,—),(w,w)

see that we still get the bound (7.42), on the base of a simple dimensional argument (we skip

form at momenta of order 3! of RB (x;¥,2), see (7.57). However, it is easy to

the details, which should be by now obvious). In fact, if we consider a term contributing to
the expansion of RB;(’SI}F)’?)’(UJM(X; y,z) described in §5, whose external fields are affected
by the regularization so that some derivative acts on them, the corresponding bound differs

from the bound of a generic term contributing to L’Bll(; ?_il_)_) ( (x;y,2) in the following

w,w)

h

way. One has to add a factor v~ "+, for each “zero” produced by the regularization and,

at the same time, a factor 37! produced by the corresponding derivative on the external

h

momenta. Since 7'y~ < 1, we get the same result.
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