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Abstract

The behaviour of correlation functions of d = 1 interacting fermionic

systems is determined by a small number of critical indices. We prove

that one of them is exactly zero. As a consequence, the behavior of the

Fourier transform of the density-density correlation at zero momen-

tum is qualitatively unaffected by the interaction, contrary to what

happens at ±2p̃F , if p̃F is the Fermi momentum. The result is ob-

tained by implementing Ward identities in a Renormalization Group

approach.

1 Introduction and main results

1.1 Motivations and results

If a±x , x = −[L−1
2
], ..., [L

2
], is a set of fermionic creation and annihilation

operators, we consider the Hamiltonian

H =

[L
2
]

∑

x=−[L−1
2

]

{ 1

2
(a+x+1 − a+x )(a

−
x+1 − a−x )− µa+x a

−
x

+λ(a+x a
−
x − 1

2
)(a+x+1a

−
x+1 −

1

2
)
}

, (1)

describing a system of spinless fermions in d = 1 with chemical potential
µ, a nearest-neighbor interaction and periodic boundary conditions. The
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space-time density-density correlation function at temperature β−1 is given
by

ΩL,β(x) =< a+x a
−
x a

+
0 a

−
0 >L,β − < a+x a

−
x >L,β< a+0 a

−
0 >L,β, (2)

where x = (x, x0), a
±
x = eHx0a±x e

−Hx0 and < . >L,β= Tr[e−βH .]/Tr[e−βH ]
denotes the expectation in the grand canonical ensemble. We shall use also
the notation Ω(x) ≡ limL,β→∞ΩL,β(x).

If the fermions are non interacting (λ = 0), one can easily check that, if
|x| ≥ 1, cos pF = 1− µ, v0 = sin pF > 0,

Ω(x) = cos(2pFx)Ω
a
0(x) + Ωb0(x) + Ωc0(x),

Ωa0(x) =
1

2π2[x2 + (v0x0)2]
, (3)

Ωb0(x) =
1

2π2[x2 + (v0x0)2]

x20 − (x/v0)
2

x2 + (v0x0)2
,

|Ωc0(x)| ≤
1

1 + |x|2+ϑ ,

for some positive constant ϑ < 1.
The interaction has two main effects: the period of the oscillating term

cos(2pFx)Ω
a
0(x) changes and the large distance asymptotic decay is modified

by critical indices. It was indeed proved in [BM] by a Renormalization Group
analysis that, for λ small enough and |x| ≥ 1,

Ω(x) = cos(2p̃Fx)Ω
a(x) + Ωb(x) + Ωc(x),

Ωa(x) =
1 + λB1(x)

2π2[x2 + (v∗0x0)2]1+ηa
, (4)

Ωb(x) =
1

2π2[x2 + (v∗0x0)2]1+ηb

{x20 − (x/v∗0)
2

x2 + (v∗0x0)2
+ λB2(x)

}

,

|Bi(x)| ≤ C, |Ωc(x)| ≤ 1

1 + |x|2+ϑ ,

where C is a positive constant, ηa, ηb are critical indices expressed by con-
vergent series in λ, v∗0 = v0 + δ∗ and p̃F (λ, pF ) = pF + λf(λ, pF ) with δ

∗, f
analytic in λ and |δ∗| ≤ C|λ|, |f(λ, pF )| ≤ C; note that f(λ, π

2
) = 0, by

symmetry reasons.
By an explicit computation of the lowest order of the convergent series

for ηa one obtains that ηa = −a1λ+O(λ2), where a1 > 0 is a non vanishing
constant. The lowest order contributions to ηb are instead vanishing, in
agreement with the conjecture (see for instance [Sp]) that ηb is exactly zero.
The aim of this paper is to prove such conjecture.
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Theorem 1.1 There exists a positive constant λ0 such that, if |λ| ≤ λ0,
the density-density correlation function (2) can be written as in (4) with the
critical index ηb identically vanishing.

The vanishing of the critical index ηb has many interesting consequences.
For instance, see [BM], if λ = 0 the Fourier transform Ω̂(k) of Ω(x, 0) has
three cusps, at k = 0 and k = ±2pF , i.e. ∂kΩ(k) has a first order discontinuity
at k = 0 and k = ±2pF . The vanishing of ηb = 0 implies that Ω̂(k) has
still a cusp at k = 0 even if λ 6= 0; in fact it was proved in [BM] that, if
ηb = 0, the possible logarithmic singularity of ∂Ω̂(k) at k = 0 is changed by
a parity cancellation into a first order discontinuity with jump 1+O(λ); this
is remarkable because, generally, the qualitative behaviour close to critical
points is deeply changed by the interaction; for instance ∂kΩ̂(k) at k = ±2p̃F
in the λ 6= 0 case is continuous for λ < 0, while it diverges as |k− (±2p̃F )|2ηa
for λ > 0.

Note finally that the model (1) is equivalent to the XXZ spin-chain with
magnetic field h = µ − 1, as one can show by a Schwinger-Dyson transfor-
mation [LSM], with (2) representing the spin-spin correlation function along
the third axis. Moreover our proof that ηb = 0 could be easily extended to
a large class of models; for instance one can replace the nearest neighbor
interaction with a non nearest neighbor one, or the lattice with a continuum,
or to consider the anisotropic XY Z spin chain, see [BM]. We remember
finally that there are remarkable relations, based on exact solutions, between
properties of quantum spin chains and bidimensional classical statistical me-
chanics models; for instance the spin-spin correlation function of the XY Z
spin chain is believed to be equal to the correlation between two vertical
arrows in the same row in the eigth vertex model, see [B] and [JKM], if a
suitable identification of the parameters is done. Hence our results could be
relevant also for such problems. Another application is for models of vicinal
surfaces, see [Sp].

1.2 Remarks

In [BM] we derived a convergent expansion for the critical index ηb; each
order is obtained by summing up a certain numbers of terms, and ηb = 0
means that there is a cancellation at all orders between such terms. While
one can easily check from such expansion that this is the case at the second
order, to prove directly that such cancellation occurs at all orders looks to us
essentially impossible. We proceed instead in a different way and our proof
is conceptually divided in two main steps.
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For the first step we refer to [BM], where the proof that ηb = 0 is re-
duced to a special property (see (20) below) of the Schwinger functions of a
model (which we will call reference model), describing fermions with a linear
“relativistic” dispersion relation and allowed momenta restricted by infrared
and ultraviolet cut-offs. This result, which is resumed in Theorem 2.2 be-
low, gives further ground to the remarkable observation of Tomonaga [T],
according to which the model (1) is essentially equivalent, as far as the low
energy behaviour is considered, to a system of interacting massless relativistic
fermions.

In the second step we deduce such property of the reference model by us-
ing a suitable Ward identity, which is obtained through a local gauge trans-
formation. Usually in relativistic quantum field theory Ward identities are
relations between correlation functions; the Ward identity we find is instead
a relation between correlation functions and some other extra terms, which
we call ”correction” as they would be formally zero if the cut-offs were re-
moved. The extra terms do not vanish when the infrared cut-off is removed.
The property that we need is reduced to suitable bounds (see Theorems 2.1
and 2.3), proved by using convergent expansions for all terms appearing in
the Ward identity.

We conclude the introduction with a technical note. With respect to
previous applications of Wilsonian Renormalization Group to d = 1 inter-
acting fermionic theories, like [BG] or [BGPS], we are able here to rigorously
implement in this scheme the method of Ward identities (based on local
gauge transformations) to produce non trivial results. In the physical liter-
ature there are many claims on the vanishing of ηb, see for instance [DL],
[ES], [DM], and our results convert such ideas into a rigorous proof. Fi-
nally, note that there are many examples of QFT models in which Ward
Identities are implemented in a mathematical way, perturbatively (see for
instance [FHRW], [KK]) or non perturbatively (see for instance [BFS] or
[MSR]). However such works consider the application of Ward Identities to
relativistic QFT; hence corrections to formal exact Ward Identities are pos-
sibly found as a consequence of the cut-offs imposed to regularize the theory,
but they are vanishing when the cut-offs are removed. The main novelty
of our paper is that we try to implement the method of Ward identities in
the not relativistic model (1), where there is no reason why a Ward Identity
involving only correlation functions should be valid. The corrections are not
vanishing and the technical problem is to get for such terms bounds good
enough to prove that ηb = 0.
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2 Ward Identities

2.1 The reference model

The reference model is not Hamiltonian and is defined in terms of Grassmann
variables. Given the interval [0, L], the inverse temperature β and the (large)
integer N , we introduce in Λ = [0, L] × [0, β] a lattice ΛN , whose sites are
given by the space-time points x = (x, x0) = (na, n0a0), a = L/N , a0 = β/N ,
n, n0 = 0, 1, . . . , N − 1. We also consider the set D of space-time momenta
k = (k, k0), with k = 2π

L
(n+ 1

2
) and k0 =

2π
β
(n0 +

1
2
), n, n0 = 0, 1, . . . , N − 1.

With each k ∈ D we associate four Grassmanian variables ψ̂
[h,0]σ
k,ω , σ, ω ∈

{+,−}. The lattice ΛN is introduced only for technical reasons so that the
number of Grassmann variables is finite, and eventually the limit N → ∞
is taken (and it is trivial, see [BM], §2.1). If γ is a fixed number greater
than 1 and h is a negative integer, we define the function [Ch,0]

−1(k) as a
strictly positive smooth function acting as a cut-off for momenta |k| ≥ γ
(ultraviolet region) and |k| ≤ γh−1 (infrared region) and having value 1 in
the intermediate region γh ≤ |k| ≤ 1. The infrared cut-off γh is not fixed,
because we are interested in the dependence on h of the reference model. The
exact definition of [Ch,0]

−1(k) is the following one. We introduce a positive
function χ0 ∈ C∞(R+) such that

χ0(t) =
{

1 if 0 ≤ t ≤ 1 ,
0 if t ≥ γ0 , 1 < γ0 ≤ γ

(5)

and we define, for any integer j ≤ 0,

fj(k) = χ0(γ
−j|k|)− χ0(γ

−j+1|k|) . (6)

Then we define [Ch,0(k)]
−1 =

∑0
j=h fj(k). If D̃ = {k ∈ D : [Ch,0(k)]

−1 6= 0},
we define the functional integration

∫

Dψ[h,0] as the linear functional on the

Grassmann algebra generated by the variables ψ̂
[h,0]σ
k,ω , such that, given a

monomial Q(ψ̂) in the variables ψ̂
[h,0]σ
k,ω , its value is 0, except in the case

Q(ψ̂) =
∏

k∈D̃,ω=± ψ̂
[h,0]−
k,ω ψ̂

[h,0]+
k,ω , up to a permutation of the variables. In this

case the value of the functional is determined, by using the anticommuting
properties of the variables, by

∫

Dψ[h,0]Q(ψ̂) = 1 . We also define the
Grassmanian field on the lattice ΛN as

ψ[h,0]σ
x,ω =

1

Lβ

∑

k∈D
eiσkxψ̂

[h,0]σ
k,ω , x ∈ ΛN . (7)

Note that ψ[h,0]σ
x,ω is antiperiodic both in time and space variables.
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The Schwinger functions of the reference model are

S(x1, σ1, ω1; ...;xs, σs, ωs) =

∫

P (dψ[h,0])e−V (ψ[h,0])∏s
i=1 ψ

[h,0]σi
xi,ωi

∫

P (dψ[h,0])e−V (ψ[h,0])
, (8)

where
V (ψ[h,0]) = λ

∫

dx ψ
[h,0]+
x,+ ψ

[h,0]−
x,+ ψ

[h,0]+
x,− ψ

[h,0]−
x,− , (9)

∫

dx is a shorthand for “a a0
∑

x∈ΛN
” and

P (dψ[h,0]) = N−1Dψ[h,0] · (10)

· exp






− 1

Lβ

∑

ω=±1

∑

k∈D̃
Ch,0(k)(−ik0 + ωk)ψ̂

[h,0]+
k,ω ψ̂

[h,0]−
k,ω







,

with N =
∏

k∈D̃[(Lβ)
−2(−k20 − k2)Ch,0(k)

2].

We also define the connected Schwinger functions as the functional deriva-
tives of the Generating functional

W(φ, J) = log
∫

P (dψ)e
−V (ψ)+

∑

ω

∫

dx

[

Jx,ωψ
[h,0]+
x,ω ψ

[h,0]−
x,ω +φ+x,ωψ

[h,0]−
x,ω +ψ

[h,0]+
x,ω φ−x,ω

]

(11)
with respect to the external field variables φσx,ω and Jx,ω, x ∈ ΛN , ω = ±1.
The variables φσx,ω are antiperiodic in x0 and x and anticommuting with

themselves and ψ[h,0]σ
x,ω , while the variables Jx,ω are periodic and commuting

with themselves and all the other variables. We shall need in particular the
following connected Schwinger functions:

G2,1
ω (x;y, z) =

∂

∂Jx,ω

∂2

∂φ+
y,ω∂φ

−
z,ω

W(φ, J)|φ=J=0 , (12)

G2
ω(y, z) =

∂2

∂φ+
y,ω∂φ

−
z,ω

W(φ, J)|φ=J=0 . (13)

They will be pictorially represented as in Fig. 1.
We also need the Fourier transforms of G2,1

ω and G2
ω, defined by

G2
ω(x,y) =

1

(Lβ)

∑

k

e−ik(x−y)Ĝ2
ω(k) , (14)

G2,1
ω (x;y, z) =

1

(Lβ)2
∑

k,p

eipxe−ikyei(k−p)zĜ2,1
ω (p,k) , (15)

In §3 we prove the following bounds for the reference model with cut-off
γh, which has to be of course larger than min{π/L, π/β} (otherwise the set
D is empty).
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G2,1
ω

x

y z
ω ω

ω ω

G2
ω

z

y

ω

ω

Figure 1: Graphical representation of the connected Schwinger functions G2,1
ω

and G2
ω.

Theorem 2.1 There exists a positive constant λ0, independent of h, such
that, if |λ| ≤ λ0, there exist two positive functions of λ, Z

(2)
h and Zh, and

a positive constant C, independent of h, so that, uniformly in N,L, β large
enough, if k̄ ∈ D is such that γh ≤ |k̄| ≤ γh+1

Ĝ2,1
ω (2k̄,−k̄) = − Z

(2)
h

Z2
hDω(k̄)2

[1 +O(λ2)] , (16)

Ĝ2
ω(k̄) =

1

ZhDω(k̄)
[1 +O(λ2)] , (17)

Cλ2|h| ≤ logZ
(2)
h ≤ 2Cλ2|h| , C|h|λ2 ≤ logZh ≤ 2Cλ2|h| (18)

with Dω(k) = −ik0 + ωk. Moreover

lim
h→−∞

log
Z

(2)
h−1

Z
(2)
h

= η2(λ) , lim
h→−∞

log
Zh−1

Zh
= η(λ) , (19)

with η(λ) = a2λ
2 + O(λ3), and η2(λ) = a2λ

2 + O(λ3) where a2 is a positive
constant.

The connection between the model (1) and the reference model is given
by the following theorem, which is proved in [BM] , even if it is not explicitly
formulated. To be more precise, in §5.5 of [BM] we show that the condition
(20), equivalent to eq. (5.35) of [BM], implies the bound (5.38) of [BM],
which is equivalent to say that ηb = 0.

Theorem 2.2 Under the same assumptions of Theorem 2.1, there exists a
constant C such that, if for all negative integer h the functions Zh, Z

(1)
h in

(16), (17) verify

Cλ2 ≤ |Z
(2)
h

Zh
− 1| ≤ 2Cλ2 , (20)
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then in(4) ηb(λ) = 0.

Hence by Theorem 2.2 the proof of ηb = 0 is reduced to the verification of
(20), to which the rest of this paper is devoted. Note that (20) is equivalent,
by (18), to η(λ)− η2(λ) = 0 (in Theorem 2.1 it is only claimed that η(λ)−
η2(λ) = O(λ3)).

2.2 Ward identities for the reference model

We have so far reduced the proof that ηb = 0 in the model (1) to the verifi-
cation of (20) in the reference model. This result will be achieved by using
an identity relating Ĝ2

ω to Ĝ2,1, obtained by performing a local gauge trans-
formation, together with equations (16), (17).

In order to derive such identity, we find convenient to introduce a cut-off
function [Cε

h,0(k)]
−1, where ε is a small positive parameter and limε→0+[C

ε
h,0(k)]

−1 =
Ch,0(k)]

−1. The functions [Cε
h,0(k)]

−1 and [Ch,0(k)]
−1 are equivalent as far

as the scaling properties of the theory are concerned but the support of
[Cε

h,0(k)]
−1 is the set D instead of D̃. The definition (10) of the reference

model is easily extended to the case in which the cut-off is [Cε
h,0(k)]

−1 in-
stead of [Ch,0(k)]

−1, by substituting in the r.h.s. of (10), as well as in the
definition of the integration

∫

Dψ[h,0], the set D̃ with D. A reason why we
find this convenient is that a technically important role in the following is
played by the gauge invariance of the integration

∫

Dψ[h,0], a property which
is lost if the Grassmann algebra is restricted to the variables ψ̂k,ω with k ∈ D̃.

The exact definition of [Cε
h,0(k)]

−1 is the following one. Given a positive
ε << 1, we define

χεh,0(k) = [Cε
h,0(k)]

−1 =
0
∑

j=h

f εj (k) , (21)

where f εj (k) = fj(k), if h+ 1 ≤ j ≤ −1, while f ε0 (k) and f
ε
h(k) are obtained

by slightly modifying f0(k) and fh(k) in the following way. f ε0 (k) is a C∞

function of |k|, such that limε→0 f
ε
0 = f0, f

ε
0 (k) = f0(k) for γ−1 ≤ |k| ≤ 1,

f ε0 (k) > 0 for |k| ≥ 1 and, if |k| ≥ γ, 0 < f ε0 (k) ≤ εe−|k|. Analogously,
f εh(k) is a C∞ function of |k|, such that limε→0 f

ε
h = fh, f

ε
h(k) = fh(k) for

γh ≤ |k| ≤ γh+1, f εh(k) > 0, if 0 < |k| ≤ γh, and if 0 < |k| ≤ γh−1,
0 < f εh(k) ≤ ε exp(−|k|−1).

Hence, we first study the case ε > 0, for which a Ward identity can
be easily obtained, relating the Schwinger functions of interest for us, for
which the limit ε→ 0 is trivial, and a “correction term”, which is apparently
singular as ε → 0. However we prove that this term can be written as a
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|k|

1

γhγh−1 γ1

Figure 2: The cutoff functions [Cε
h,0(k)]

−1 (dashed line) and [Ch,0(k)]
−1 (solid

line).

suitable expansion, whose contributions admit “good” bounds uniformly in
ε, as well in N,L, β, and have a well defined limit as ε→ 0.

By writing ψσx,ω in place of ψ[h,0]σ
x,ω for simplicity, we can write

P (dψ) = N−1Dψ exp
[

−
∫

dx ψ+
x,ωD

[h,0]
ω ψ−

x,ω

]

, (22)

where

D[h,0]
ω ψσx,ω =

1

Lβ

∑

k

eiσkxCε
h,0(k)(iσk0 − ωσk)ψ̂σk,ω . (23)

By performing the gauge transformation

ψσx,ω̄ → eiσαx,ω̄ψσx,ω̄ , ψσx,−ω̄ → ψσx,−ω̄ (24)

and by using the invariance of
∫

Dψ after such transformation, we can rewrite
the r.h.s. of (11) as

W(φ, J) = log
∫

P (dψ) exp
{

−
∫

dx ψ+
x,ω̄

(

eiαx,ω̄D
[h,0]
ω̄ e−iαx,ω̄ −D

[h,0]
ω̄

)

ψ−
x,ω̄

}

·

· exp
{

− V (ψ) +
∫

dx[
∑

ω

Jx,ωψ
+
x,ωψ

−
x,ω + (25)

+e−iαx,ω̄φ+
x,ω̄ψ

−
x,ω̄ + eiαx,ω̄ψ+

x,ω̄φ
−
x,ω̄ + φ+

x,−ω̄ψ
−
x,−ω̄ + ψ+

x,−ω̄φ
−
x,−ω̄]

}

,

Since
∑

x∈ΛN
ψ+
x,ω̄[D

[h,0]
ω̄ αx,ω̄ψ

−
x,ω̄] = −∑x∈ΛN

[D
[h,0]
ω̄ ψ+

x,ω̄]αx,ω̄ψ
−
x,ω̄ and W(φ, J)

is independent of αx,ω̄, differentiating both sides of (25) with respect to αx,ω̄

and by putting αx,ω̄ = 0, we get

0 =
1

Z(φ, J)

∫

P (dψ)[Dω̄(ψ
+
x,ω̄ψ

−
x,ω̄) + δTx,ω̄ − φ+

x,ω̄ψ
−
x,ω̄ + ψ+

x,ω̄φ
−
x,ω̄] ·

· exp
{

− V (ψ) +
∑

ω

∫

dx[Jx,ωψ
+
x,ωψ

−
x,ω + φ+

x,ωψ
−
x,ω + ψ+

x,ωφ
−
x,ω]

}

, (26)
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where Z(φ, J) = exp{W(φ, J)}, Dω is defined as D[h,0]
ω , see (23), with 1 in

place of Cε
h,0(k), so that, if Dω(p) = −ip0 + ωp

Dω(ψ
+
x,ωψ

−
x,ω) =

1

(Lβ)2
∑

p,k

Dω(p)e
−ipxψ̂+

k,ωψ̂
−
k−p,ω . (27)

where p = (p, p0) is summed over momenta of the form (2πn/L, 2πm/β),
with n,m integers Moreover

δTx,ω =
1

(Lβ)2
∑

k+ 6=k−

ei(k
+−k−)xCε(k+,k−)ψ̂+

k+,ωψ̂
−
k−,ω , (28)

Cε(k+,k−) = [Cε
h,0(k

−)− 1]Dω(k
−)− [Cε

h,0(k
+)− 1]Dω(k

+) , (29)

By differentiating the r.h.s. of (26) with respect to φ+
y,ω̄ and φ−

z,ω̄ and then
setting the external fields equal to 0, we obtain, in terms of the Fourier
transform

−DωG
2,1
ω (x;y, z) = δ(x−y)G2

ω(x, z)−δ(x−z)G2
ω(y,x)+∆2,1

ω (x;y, z) , (30)

where
∆2,1
ω (x;y, z) =< ψ−

y,ω;ψ
+
z,ω; δTx,ω >

T . (31)

If A1, . . . , An are functions of the field, we are using the symbol

< A1; . . . ;An >
T=

∂n

∂λ1...∂λn
log

∫

P (dψ)e−V (ψ)+
∑n

i=1
λiAi

∣

∣

∣

λ=0
. (32)

It is convenient to express the Ward identity (30) in terms of the Fourier
transforms of the connected Schwinger functions; ∆̂2,1

ω (p,k) is defined in a
similar way to Ĝ2,1

ω (p,k). In terms of the Fourier transform (30) can be
written (see Fig. 3) as

Dω(p)Ĝ
2,1
ω (p,k) = Ĝ2

ω(k− p)− Ĝ2
ω(k) + ∆̂2,1

ω (p,k) , (33)

If p 6= 0, (33) can be written in the form

G2,1
ω (p,k) =

G2
ω(k− p)−G2

ω(k)

Dω(p)
+ Ĥ2,1

ω (k,p) , (34)

where Ĥ2,1
ω (k,p) is the Fourier transform, defined in agreement with (15), of

H2,1
ω (x;y, z) =

∂

∂Jx,ω

∂2

∂φ+
y,ω∂φ

−
z,ω

W∆(φ, J)|φ=J=0 , (35)
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Ĝ2,1
ω

Dω(p)

k q

p = k− q

=
Ĝ2
ω

q

q

− Ĝ2
ω

k

k

+ ∆̂2,1
ω

k q

p

Figure 3: Graphical representation of the identity (33).

with

W∆(φ, J) = log
∫

P (dψ)e−V (ψ)+
∑

ω

∫

dx[Jx,ωTx,ω+φ
+
x,ωψ

−
x,ω+ψ

+
x,ωφ

−
x,ω ] , (36)

Tx,ω =
1

(Lβ)2
∑

k+ 6=k−

ei(k
+−k−)x Cε(k+,k−)

Dω(k+ − k−)
ψ̂+
k+,ωψ̂

−
k−,ω . (37)

Equation (34) is our Ward identity; it involves not only correlation func-
tions but also the term Ĥ2,1

ω (k,p), which we can call the correction term as
it would be formally zero in absence of cut-offs. Note that the definition (35)
of the correction term H2,1

ω is similar to the definition (12) of G2,1
ω , but the

two quantities have very different properties. In fact H2,1
ω can be obtained by

substituting ψ+
x,ωψ

−
x,ω in (11) with Tx,ω, given by (37), which looks as a very

singular term as ε → 0. We are nevertheless able to express also Ĥ2,1
ω (k,p)

by a convergent expansion, and we can prove in §4 the following bound.

Theorem 2.3 There exists a positive constant λ0, independent of h, such
that, if |λ| ≤ λ0, then, uniformly in ε small enough and N,L, β large enough

Cγ−2hλ2
Z

(2)
h

(Zh)2
≤ |Ĥ2,1

ω (2k̄,−k̄)| ≤ 2Cγ−2hλ2
Z

(2)
h

(Zh)2
. (38)

Moreover, limε→0 Ĥ
2,1
ω does exist.

The above result (it was already claimed in [BM] referring for the proof
to the present paper) says that Ĥ2,1

ω behaves, as h → −∞, exactly as
Ĝ2,1
ω (2k̄,−k̄), but its bound has an extra λ2 factor. This is just what we

need; if we insert (16), (17) and (38) in (33), we obtain (20) and hence, by
Theorem 2.1 and 2.2, ηb = 0.
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2.3 Remarks

In the physical literature Ward identities for interacting d = 1 fermions with
cut-offs are usually derived by various formal arguments, see for example
[DL], [ES], [MD], [S]. All arguments are essentially equivalent to expanding
Ĝ2
ω and Ĝ2,1

ω in Feynman graphs and then ”forget” the cut-off function. In
fact, if we neglect the cut-offs, the propagator is simply Dω(k)

−1 and the
“identity” G2,1

ω (p,k) = [G2
ω(k−p)−G2

ω(k)]/D(p), from which ηb = 0 follows,
is derived by the following obvious identity

Dω(p)
−1[Dω(k)

−1 −Dω(k + p)−1] = Dω(k+ p)−1Dω(k)
−1 , (39)

By taking consistently into account the cut-off function one gets, instead of
(39), the identity

ĝω(k)− ĝω(k+ p)

Dω(p)
= ĝω(k)ĝω(k+ p) + ĝω(k)ĝω(k + p)

Cε(k,k + p)

D(p)
, (40)

which allows in principle to check directly equation (34) at any order (very
easily at order 0, which coincides with (34)). Our analysis shows then that
one can still derive from the Ward identities the vanishing of ηb in a rigorous
way, by taking into account the presence of cut-offs. This however seems not
true for other consequences of Ward identities for the model (1) claimed in
the literature, see [BM1].

Note also that, as ε→ 0, [Cε
h,0(k)]

−1 becomes a compact support function,
so Cε(k,k + p) becomes singular. However the singularity at ε = 0 of the
function Cε(k,k + p) in the second addend of the r.h.s. in (40) is of course
compensated by the cut-off functions appearing in the propagators. Hence
one could “in principle” derive (34) directly using a compact support cut-
off (i.e. using [Ch,0]

−1 instead of [Cε
h,0]

−1), for instance by a Feynman graph
analysis using (40) at ε = 0, but such derivation would be surely much more
lengthy.

3 Renormalization Group analysis

3.1 The effective potentials and the beta function

The results in Theorem 2.1 and 2.3 can be derived by expressing Ĝ2
ω, Ĝ

2,1
ω

and Ĥ2,1
ω by a suitable multiscale expansion based on Renormalization group

ideas. In the following sections we will prove (16),(17),(38), referring to [BM]
for the proof of many technical lemmas we will need.
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We begin our analysis, for clarity reason, by studying the ”free energy”

of the model, which is the simplest quantity which can be studied by our
method; it is defined by

EL,β = − 1

Lβ
log

∫

P (dψ[h,0])e−V (ψ[h,0]) . (41)

The functional integration in (41) can be performed iteratively by a slight
modification of the procedure described (for instance) in sec.(2.5)-(2.8) of
[BM]. We prove by induction that, for any negative integer j, there are a
constant Ej , a positive function Z̃j(k) and a functional V(j) such that

∫

P (dψ[h,0])e−V (ψ[h,0]) =
∫

PZ̃j ,Cε
h,j
(dψ[h,j]) e−V(j)(

√
Zjψ[h,j])−LβEj , (42)

with V(j)(0) = 0, Zj = maxk Z̃j(k),

PZ̃j ,Cε
h,j
(dψ[h,j]) =

∏

k:Cε
h,j

(k)>0

∏

ω=±1

dψ̂
[h,j])+
k,ω dψ̂

[h,j]−
k,ω

Nj(k)
·

· exp






− 1

Lβ

∑

k

Cε
h,j(k)Z̃j(k)

∑

ω±1

ψ̂[h,j]+
ω Dω(k)ψ̂

[h,j]−
k,ω







, (43)

Cε
h,j(k)

−1 =
j
∑

r=h

f εr (k) ≡ χh,j(k) (44)

and Nj(k) = (Lβ)−1Cε
h,j(k)Z̃j(k)[−k20 − k2]1/2. Finally, V(j) which can be

written as

V(j)(ψ) =
∞
∑

n=1

1

(Lβ)2n
∑

k1,...,k2n
ω1,...,ω2n

2n
∏

i=1

ψ̂σiki,ωi
Ŵ

(j)
2n,ω(k1, ...,k2n−1)δ

(

2n
∑

i=1

σiki

)

,

(45)
where σi = + for i = 1, . . . , n, σi = − for i = n + 1, . . . , 2n and ω =
(ω1, . . . , ω2n).

Equation (42) is in fact true for j = 0, with

Z̃0(k) = 1, E0 = 0, V(0)(ψ) = V (ψ) . (46)

Assume then that it is true for j and we show that it holds also for j − 1.
First of all, we split V(j) as LV(j) + RV(j), where R = 1 − L and L,

the localization operator, is a linear operator on functions of the form (45),

defined in the following way by its action on the kernels Ŵ
(j)
2n,ω.
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1. If 2n = 4, then

LŴ (j)
4,ω(k1,k2,k3) = Ŵ

(j)
4,ω(k̄++, k̄++, k̄++) , (47)

where we used the definition

k̄ηη′ =

(

η
π

L
, η′

π

β

)

, η, η′ = ± . (48)

Note that LŴ (j)
4,ω(k1,k2,k3) = 0, if

∑4
i=1 ωi 6= 0, by simple symmetry

considerations.

2. If 2n = 2 (in this case there is a non zero contribution only if ω1 = ω2)

LŴ (j)
2,ω(k) =

1

4

∑

η,η′=±1

Ŵ
(j)
2,ω(k̄ηη′)

{

1 + η
L

π
+ η′

β

π
k0

}

. (49)

In order to better understand this definition, note that, if L = β = ∞,

LŴ (j)
2,ω(k) = Ŵ

(j)
2,ω(0) + k

∂Ŵ
(j)
2,ω

∂k
(0) + k0

∂Ŵ
(j)
2,ω

∂k0
(0) . (50)

3. In all other cases

LŴ (j)
2n,ω(k1, . . . ,k2n−1) = 0 . (51)

The above definitions are such that L2 = L, a property which plays an
important role in the analysis of [BM]. Moreover

LV(j)(ψ[h,j]) = zjF
[h,j]
ζ + ajF

[h,j]
α + ljF

[h,j]
λ , (52)

where zj , aj and lj are real numbers and

F [h,j]
α =

∑

ω

ω

(Lβ)

∑

k:Cε
h,j

(k)>0

kψ̂
[h,j]+
k,ω ψ̂

[h,j]−
k,ω =

=
∑

ω

iω
∫

Λ
dxψ[h,j]+

x,ω ∂xψ
[h,j]−
x,ω , (53)

F
[h,j]
ζ =

∑

ω

1

(Lβ)

∑

k:Cε
h,j

(k)>0

(−ik0)ψ̂[h,j]+
k,ω ψ̂

[h,j]−
k′,ω =

= −
∑

ω

∫

Λ
dxψ[h,j]+

x,ω ∂0ψ
[h,j]−
x,ω , (54)

F
[h,j]
λ =

1

(Lβ)4
∑

k1,...,k4:

Cε
h,j

(ki)>0

ψ̂
[h,j]+
k1,+

ψ̂
[h,j]−
k2,+

ψ̂
[h,j]+
k3,− ψ̂

[h,j]−
k4,− δ(k1 − k2 + k3 − k4) =

=
∫

Λ
dxψ

[h,j]+
x,+ ψ

[h,j]−
x,+ ψ

[h,j]+
x,− ψ

[h,j]−
x,− . (55)
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∂x and ∂0 are discrete derivatives defined so that the second equality in (53)
and (54) is satisfied; if N = ∞ they are simply the partial derivative with
respect to x and x0. Note that LV(0) = V(0), hence l0 = λ, a0 = z0 = 0.
There is no local term proportional to

∑

k ψ̂
[h,j]+
k,ω ψ̂

[h,j]−
k,ω , because of the parity

properties of the propagator.
We now renormalize PZ̃j ,Cε

h,j
(dψ[h,j]), by adding to it part of the quadratic

part of the r.h.s. of (52). We get

∫

PZ̃j ,Cε
h,j
(dψ[h,j]) e−V(j)(

√
Zjψ

[h,j]) =

= e−Lβtj
∫

PZ̃j−1,Cε
h,j
(dψ[h,j]) e−Ṽ(j)(

√
Zjψ[h,j]) , (56)

where
Z̃j−1(k) = Zj(k)[1 + χεh,j(k)zj ] , (57)

Ṽ(j)(
√

Zjψ
[h,j]) = V(j)(

√

Zjψ
[h,j])− zjZj[F

[h,j]
ζ + F [h,j]

α ] , (58)

and the factor exp(−Lβtj) in (56) takes into account the different normal-
ization of the two functional integrals.

If j > h, the r.h.s of (56) can be written as

e−Lβtj
∫

PZ̃j−1,Cε
h,j−1

(dψ[h,j−1])
∫

PZj−1,f̃
−1
j
(dψ(j)) e−Ṽ(j)(

√
Zj [ψ

[h,j−1]+ψ(j)]) ,

(59)
where PZj−1,f̃

−1
j
(dψ(j)) is the integration with propagator

ĝ(j)ω (k) =
1

Zj−1

f̃j(k)

Dω(k)
, (60)

with f̃j(k) = f εj (k)Zj−1[Z̃j−1(k)]
−1. It is Z̃j−1(k) = Z0 +

∑0
i=j Ziziχ

ε
h,i(k)

and, if j > h and fj(k) 6= 0, then Z̃j−1(k) = Zj + Zjzj [f
ε
j−1(k) + f εi (k)], so

that the propagators for j > h do not depend of the infrared cut-off and we
have

f̃j(k) = f εj (k)
Zj(1 + zj)

Zj + Zjzj [f εi−1(k) + f εi (k)]
≤ f εj (k)(1 + zj) . (61)

This equation also implies that ĝ(j)ω (k) is of size Z−1
j−1γ

−j .
All the dependence on the infrared cut-off is restricted to the integration

of the field of scale h, whose propagator (see (56) with j = h) is

ĝ(h)(k) =
f εh(k)

Z̃h−1(k)Dω(k)
=

f εh(k)

Dω(k)

1

Z0 +
∑0
i=h Ziziχ

ε
h,i(k)

. (62)
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The latter propagator ĝ(h)(k) depends strongly on k near the cut-off; in fact,
if fh(k) 6= 0 but fh+1(k) = 0, then

ĝ(h)(k) =
f εh(k)

Dω(k)

1

Z0 + (Zh−1 − Z0)f
ε
h(k)

. (63)

However, ĝ(j)(k) is of size Z−1
j−1γ

−j even for j = h, because

Zh−1f
ε
h(k)

Z0 + (Zh−1 − Z0)f
ε
h(k)

≤ 2 . (64)

We now rescale the field so that

Ṽ(j)(
√

Zjψ
[h,j]) = V̂(j)(

√

Zj−1ψ
[h,j]) ; (65)

it follows that
LV̂(j)(ψ[h,j]) = δjF

[h,j]
α + λjF

[h,j]
λ , (66)

where

δj =
Zj
Zj−1

(aj − zj) , λj =

(

Zj
Zj−1

)2

lj . (67)

We call the pairs ~vj = (δj , λj) the running coupling constants on scale j. A
simple perturbative calculation shows that λ−1 = λ + O(λ2), a−1 = O(λ2),
z−1 = O(λ2).

Finally

e−V(j−1)(
√
Zj−1ψ[h,j−1])−LβẼj =

∫

PZj−1,f̃
−1
j
(dψ(j)) e−V̂(j)(

√
Zj−1[ψ[h,j−1]+ψ(j)]) ,

(68)

and V(j−1)(
√

Zj−1ψ
[h,j−1]) is of the form (45); moreover it satisfies the identity

(42), with Ej−1 = Ej + tj + Ẽj . This completes the iterative step.
We finally define

e−LβẼh =
∫

PZh,f̃
−1
h
(dψ(h)) e−V̂(h)(

√
Zhψ

(h)) , (69)

so that

EL,β = Eh =
−1
∑

j=h

Ẽj +
−1
∑

j=h+1

tj . (70)

Note that the above procedure allows us to write, in particular, the run-
ning coupling constants ~vj , 0 < j ≤ h, in terms of ~vj′, 0 ≥ j′ ≥ j + 1:

~vj = ~β(~vj+1, . . . , ~v0) , ~v0 = (λ, 0) . (71)
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The function ~β(~vj+1, ..., ~v0) is called the Beta function. The fact that it is
well defined, for small values of λ, in the limit L, β → ∞, is a highly non
trivial result, see [BG, BGPS, BoM1, BM].

Finally note that Zh represents the wave function renormalization of the
fermionic field, δj the renormalization of its velocity and λj is the effective
coupling of the theory at scale j.

3.2 The tree expansion

One can write the effective potential on scale j, if h ≤ j < 0, as a sum of
terms, which is in fact a finite sum for finite values of N,L, β. Each term of
this expansion is associated with a tree in the following way.

r v0

v

j j + 1 hv −1 0 +1

Figure 4: Example of a tree.

1. Let us consider the family of all trees which can be constructed by
joining a point r, the root, with an ordered set of n ≥ 1 points, the
endpoints of the unlabeled tree (see Fig. 4), so that r is not a branching
point. n will be called the order of the unlabeled tree and the branching
points will be called the non trivial vertices. The unlabeled trees are
partially ordered from the root to the endpoints in the natural way; we
shall use the symbol < to denote the partial order.

Two unlabeled trees are identified if they can be superposed by a suit-
able continuous deformation, so that the endpoints with the same index
coincide. It is then easy to see that the number of unlabeled trees with
n end-points is bounded by 4n.
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We shall consider also labeled trees (which we shall call simply trees in
the following); they are defined by associating certain labels with the
unlabeled trees, as explained in the following items.

2. We associate a label j ≤ 0 with the root and we denote Tj,n the corre-
sponding set of labeled trees with n endpoints. Moreover, we introduce
a family of vertical lines, labeled by an an integer taking values in [j, 1],
and we represent any tree τ ∈ Tj,n so that, if v is an endpoint or a non
trivial vertex, it is contained in a vertical line with index hv > h, to be
called the scale of v, while the root is on the line with index j. There
is the constraint that, if v is an endpoint, hv > j + 1.

The tree will intersect in general the vertical lines in set of points
different from the root, the endpoints and the non trivial vertices; these
points will be called trivial vertices. The set of the vertices of τ will
be the union of the endpoints, the trivial vertices and the non trivial
vertices. Note that, if v1 and v2 are two vertices and v1 < v2, then
hv1 < hv2 .

Moreover, there is only one vertex immediately following the root,
which will be denoted v0 and can not be an endpoint; its scale is j+1.

3. With each endpoint v of scale hv we associate one of the two local
terms contributing to LV̂(hv)(ψ[h,hv−1]) in the r.h.s. of (66) and one
space-time point xv. We shall say that the endpoint is of type δ or λ,
with an obvious correspondence with the two terms. Note that there
is no endpoint of type δ, if hv = +1.

Given a vertex v, which is not an endpoint, xv will denote the family
of all space-time points associated with one of the endpoints following
v.

Moreover, we impose the constraint that, if v is an endpoint, hv =
hv′ + 1, if v′ is the non trivial vertex immediately preceding v.

4. If v is not an endpoint, the cluster Lv with frequency hv is the set
of endpoints following the vertex v; if v is an endpoint, it is itself a
(trivial) cluster. The tree provides an organization of endpoints into a
hierarchy of clusters.

5. We introduce a field label f to distinguish the field variables appearing
in the terms associated with the endpoints as in item 3); the set of field
labels associated with the endpoint v will be called Iv. Analogously, if
v is not an endpoint, we shall call Iv the set of field labels associated
with the endpoints following the vertex v; x(f), σ(f) and ω(f) will
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denote the space-time point, the σ index and the ω index, respectively,
of the field variable with label f .

6. If the endpoint v is of type δ, one of the field variables belonging to Iv
carries also a derivative. In (53) this derivative acts on the field ψ−, but

we could also choose a representation of F
[h,j]
ζ such that the derivative

acts on the field ψ+. Which representation is used depends on detailed
properties of the different terms associated with the tree, which are
discussed in [BM], see Remark after eq. 3.40 there. Once this choice is
done, we can associate an integer m(f) ∈ {0, 1} to each field label f ,
denoting the order of the derivative acting on the corresponding field
variable.

7. We associate with any vertex v of the tree a subset Pv of Iv, the exter-
nal fields of v. These subsets must satisfy various constraints. First of
all, if v is not an endpoint and v1, . . . , vsv are the sv vertices immedi-
ately following it, then Pv ⊂ ∪iPvi ; if v is an endpoint, Pv = Iv. We
shall denote Qvi the intersection of Pv and Pvi; this definition implies
that Pv = ∪iQvi . The subsets Pvi\Qvi , whose union will be made, by
definition, of the internal fields of v, have to be non empty, if sv > 1,
that is if v is a non trivial vertex.

Given τ ∈ Tj,n, there are many possible choices of the subsets Pv,
v ∈ τ , compatible with the previous constraints; let us call P one of this
choices. Given P, we consider the family GP of all connected Feynman
graphs, such that, for any v ∈ τ , the internal fields of v are paired
by propagators of scale hv, so that the following condition is satisfied:
for any v ∈ τ , the subgraph built by the propagators associated with
all vertices v′ ≥ v is connected. The sets Pv have, in this picture, the
role of the external legs of the subgraph associated with v. The graphs
belonging to GP will be called compatible with P and we shall denote
Pτ the family of all choices of P such that GP is not empty.

As explained in detail in §3.2 of [BM], we can write, if h ≤ j ≤ −1,

V(j)(
√

Zjψ
[h,j]) + LβẼj+1 = (72)

=
∞
∑

n=1

∑

τ∈Tj,n

∑

P∈Pτ

√

Zj
|Pv0 |

∫

dxv0ψ̃
[h,j](Pv0)K

(j+1)
τ,P (xv0) ,

where
ψ̃[h,j](Pv) =

∏

f∈Pv

ψ
[h,j]σ(f)
x(f),ω(f) (73)
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and K
(j+1)
τ,P (xv0) is a suitable function, which is obtained by summing the

values of all the Feynman graphs compatible with P, see item 7) above, and
applying iteratively in the vertices of the tree, different from the endpoints
and v0, the R-operation, starting from the vertices with higher scale. Note
that there is no derivative acting on the fields with label f ∈ Pv0 , even if the
field is associated with the endpoint of type δ; this result is achieved by using
the freedom discussed in item 6) about the choice of the field with m(f) = 1.

In a similar way we get

Ẽh =
∞
∑

n=1

∑

τ∈Th−1,n

∑

P∈Pτ :Pv0=∅
K

(h)
τ,P(xv0) . (74)

3.3 The main bound

In order to control, uniformly in L and β, the various sums in (72), one has
to exploit in a careful way the R operation acting on the vertices of the tree,
as explained in full detail in [BM], §3. The result of this analysis, which
applies essentially unchanged to the model studied in this paper, is a general
bound which has a simple dimensional interpretation.

Let us see what happens if we erase the R operation in all the vertices of
the tree. In this case one gets the dimensional bound

∫

dxv0 |K(j+1)
τ,P (xv0)| ≤ Lβ (Cε̄)nγ−j(−2+|Pv0 |/2) ·

·
∏

v not e.p

(
Zhv
Zhv−1

)
|Pv |
2 γ−(−2+

|Pv |
2

) , (75)

where C is a suitable constant and ε̄ = maxj+1≤j′≤0 |~vj′|. Note that the
good dependence on n derives from the anticommuting properties of the
field variables.

The bound (75) allows us to associate a factor γ2−|Pv|/2 with any trivial or
non trivial vertex of the tree. This would allow us to control the sums over
the scale labels and Pτ , provided |Pv| were larger than 4 in all vertices, which
is however not true. The effect of the R operation is to improve the bound,
so that there is a factor less than 1 associated even with the vertices where
|Pv| is equal to 2 or 4. In order to explain how this works, we need a more
detailed discussion of the R operation. We shall do that below by using the
simpler expressions that one obtains in the (formal) limit L = β = ∞; this
is sufficient to explain the essential points and makes clearer the notation.

1) If 2n = 4, by (47) (with L = β = ∞),

L
∫

dxW (x)
4
∏

i=1

ψ[h,j]σi
xi,ωi

=
∫

dxW (x)
4
∏

i=1

ψ[h,j]σi
x4,ωi

] , (76)
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where x = (x1, . . . ,x4) andW (x) is the Fourier transform of Ŵ
(j)
4,ω(k1,k2,k3).

Note that W (x) is translation invariant; hence ψ[h,j]σi
x4,ωi

in the r.h.s. of (76)

can be substituted with ψ[h,j]σi
xk ,ωi

, k = 1, 2, 3 and we have four equivalent
representations of the localization operation, which differ by the choice of
the localization point.

If the localization point is chosen as in (76), we have

R
∫

dxW (x)
4
∏

i=1

ψ[h,j]σi
xi,ωi

=
∫

dxW (x)

[

4
∏

i=1

ψ[h,j]σi
xi,ωi

−
4
∏

i=1

ψ[h,j]σi
x4,ωi

]

=

=
∫

dxW (x)
[

ψ[h,j]σ1
x1,ω1

ψ[h,j]σ2
x2,ω2

D1[h,j]σ3
x3,x4,ω3

ψ[h,j]σ4
x4,ω4

+ (77)

+ψ[h,j]σ1
x1,ω1

D1[h,j]σ2
x2,x4,ω2

ψ[h,j]σ3
x4,ω3

ψ[h,j]σ4
x4,ω4

+D1[h,j]σ1
x1,x4,ω1

ψ[h,j]σ2
x4,ω2

ψ[h,j]σ3
x4,ω3

ψ[h,j]σ4
x4,ω4

]

,

where (again if L = β = ∞)

D1[h,j]σ
y,x,ω = ψ[h,j]σ

y,ω − ψ[h,j]σ
x,ω . (78)

The field D1[h,j]σ
y,x,ω is dimensionally equivalent to the product of |y − x|

and the derivative of the field, so that the bound of its contraction with
another field variable on a scale j′ < j will produce a “gain” γ−(j−j′) with
respect to the contraction of ψ[h,j]σ

y,ω . On the other hand, each term in the

r.h.s. of (77) differs from the term which R acts on mainly because one ψ[h,j]

field is substituted with a D1[h,j] field and some of the other ψ[h,j] fields are
“translated” in the localization point. All three terms share the property
that the field whose x coordinate is equal to the localization point is not
affected by the action of R.

2) If 2n = 2, by (50),

R
∫

dx1dx2W (x1 − x2)ψ
[h,j]+
x1,ω

ψ[h,j]−
x2,ω

= (79)

=
∫

dx1dx2W (x1 − x2)ψ
[h,j]+
x1,ω D2[h,j]−

x2,x1,ω =
∫

dx1dx2W (x1 − x2)D
2[h,j]+
x1,x2,ωψ

[h,j]−
x2,ω ,

where W (x) is the Fourier transform of Ŵ
(j)
2,ω,ω(k) and

D2[h,j]σ
y,x,ω = ψ[h,j]σ

y,ω − ψ[h,j]σ
x,ω − (y − x) · ∇ψ[h,j]σ

x,ω . (80)

As in item 1) above, we define the localization point as the x coordinate
of the field which is left unchanged by L or R. We are free to choose it equal
to x1 or x2. Hence the effect of R can be described as the replacement of a
ψ[h,j]σ field with a D2[h,j]σ field, with a gain in the bounds of a factor γ−2(j−j′).
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By suitably using the definition of the R, it is shown in §3 of [BM] that

RV(j)(
√

Zjψ
[h,j]) = (81)

=
∞
∑

n=1

∑

τ∈Tj,n

∑

P∈Pτ

∑

α∈Aτ,P

√

Zj
|Pv0 |

∫

dxv0Dαψ̃
[h,j](Pv0)K

(j+1)
τ,P,α (xv0) ,

where Aτ,P labels a finite set of different terms, of counting power Cn, and,
for any α ∈ Aτ,P, Dα denotes an operator dimensionally equivalent to a
derivative of order mα. The important property of (81) is that, see eq. 3.110
of [BM],

∫

dxv0 |K(j+1)
τ,P,α (xv0)| ≤ Lβ (Cε̄)nγ−j(−2+|Pv0 |/2+mα) ·

·
∏

v not e.p

(
Zhv
Zhv−1

)|Pv|/2γ−[−2+|Pv|/2+z(Pv)] , (82)

where mα ≥ z(Pv0) and

z(Pv) =







1 if |Pv| = 4 ,
2 if |Pv| = 2 ,
0 otherwise.

(83)

We now consider the action of L on V(j)(
√

Zjψ
[h,j]). We get an expansion

similar to (81), that we can write in the form

LV (j)(τ,
√

Zjψ
[h,j]) =

∞
∑

n=1

∑

τ∈Tj,n
[zj(τ)ZjF

[h,j]
ζ + aj(τ)ZjF

[h,j]
α + lj(τ)Z

2
jF

[h,j]
λ ] ,

(84)
where (in the limit L = β = ∞)

zj(τ) =
1

Lβ

∑

P∈Pτ ,α∈Aτ,P
Pv0=(f1,f2),ω(f1)=ω(f2)=+1

∫

dxv0 [x(f2)− x(f1)]K
(j+1)
τ,P,α (xv0) ,

aj(τ) =
1

Lβ

∑

P∈Pτ ,α∈Aτ,P
Pv0=(f1,f2),ω(f1)=ω(f2)=+1

∫

dxv0 [x(f2)− x(f1)]K
(j+1)
τ,P,α (xv0) ,

lj(τ) =
1

Lβ

∑

P∈Pτ ,α∈Aτ,P
|Pv0 |=4,σ=(+,−,+,−),ω=(+1,−1,−1,+1)

∫

dxv0K
(j+1)
τ,P,α (xv0) . (85)

The constants zj , aj and lj, which characterize the local part of the ef-
fective potential, can be obtained from (85) by summing over n ≥ 1 and
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τ ∈ Tj,n. Finally, the constant Ẽj+1 appearing in the l.h.s. of (72) can be
written in the form Ẽj+1 =

∑∞
n=1

∑

τ∈Tj,n Ẽj+1(τ), with

Ẽj+1(τ) =
1

Lβ

∑

P∈Pτ ,α
Pv0=∅

∫

dxv0K
(j)
τ,P,α(xv0) . (86)

All the kernels appearing in (85) and (86) satisfy the bound (82), with
mα = 0

Note that, by the remark preceding (62), the effective potential is inde-
pendent of the infrared cut-off for j > h. This means in particular that, if
we add a superscript (h) to keep track of the infrared cut-off, ~v

(h)
j = ~v−∞

j for
j > h. On the other hand, in previous papers (see [BGPS], [GS], [BoM1],
[BM]) it was shown, by using several properties of the exact solution of the
Luttinger model (see [ML], [BGM]), that λ−∞

j = λ+O(λ2) and δ−∞
j = O(λ2).

Moreover, since λh− λ−∞
h = (λh− λ

(h)
h+1)− (λ−∞

h − λ−∞
h+1), the previous result

implies that λh = λ−∞
h + O(λ2), since, by (82) and (85), both λh − λ

(h)
h+1

and λ−∞
h − λ−∞

h+1 are of order λ2. We can resume this results in the following
Theorem.

Theorem 3.1 There is a constant ε0, such that, if |λ| ≤ ε0, then, uniformly
in the infrared cut-off,

λj = λ+O(λ2) , δj = O(λ2) , h ≤ j ≤ −1 . (87)

3.4 The expansion for the Schwinger functions

The procedure described in sections (3.1)-(3.3) can be generalized to get an
expansion for the connected Schwinger functions of the model, in particular
those defined by (12) and (13). The main difference with respect to the “free
energy” case is that the external fields Jx,ω and φx,ω have to be taken into
account.

We start from the generating function (11) and we perform iteratively
the integration of the ψ variables, to be defined iteratively in the following
way. After the fields ψ(0), ...ψ(j+1) have been integrated, we can write

eW(φ,J) = e−LβEj

∫

PZ̃j ,Cε
h,j
(dψ[h,j])e−V(j)(

√
Zjψ

[h,j])+B(j)(
√
Zjψ

[h,j],φ,J) , (88)

where B(j)(
√

Zjψ, φ, J) denotes the sum over the terms containing at least
one φ or J field; we shall write it in the form

B(j)(
√

Zjψ, φ, J) = B(j)
φ (

√

Zjψ) + B(j)
J (

√

Zjψ) +W
(j)
R (

√

Zjψ, φ, J) , (89)
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where B(j)
φ (ψ) and B(j)

J (ψ) denote the sums over all the terms containing
only one φ or J field, respectively. For j = 0, the comparison with (11)

shows that W
(0)
R = 0, B(0)

φ (ψ) =
∑

ω

∫

dx[φ+
x,ωψ

−
x,ω + ψ+

x,ωφ
−
x,ω] and B(0)

J (ψ) =
∑

ω

∫

dxJx,ωψ
+
x,ωψ

−
x,ω.

In order to control the expansion of the connected Schwinger functions, we

have to extend the definition of the localization operation L to B(j)(
√

Zjψ, φ, J).

First of all, we put LW (j)
R = W

(j)
R . Let us now consider B(j)

φ (
√

Zjψ); we want
to show that, by a suitable choice of the localization procedure, it can be
written in the form

B(j)
φ (

√

Zjψ) =
∑

ω

0
∑

i=j+1

∫

dxdy
[

φ+
x,ωg

Q,(i)
ω (x− y)

∂

∂ψ+
yω

V(j)(
√

Zjψ) +

+
∂

∂ψ−
y,ω

V(j)(
√

Zjψ)g
Q,(i)
ω (y− x)φ−

x,ω

]

+ (90)

+
1

√

Zj

1

Lβ

∑

ω,k

[

(
√

Zjψ̂
+
k,ω)Q̂

(j+1)
ω (k)φ̂−

k,ω + φ̂+
k,ωQ̂

(j+1)
ω (k)(

√

Zjψ̂
−
k,ω)

]

,

where
ĝQ,(i)ω (k) = ĝ(i)ω (k)Q̂(i)

ω (k) (91)

and Q(j)
ω (k) is defined inductively by the relations

Q̂(j)
ω (k) = Q̂(j+1)

ω (k)− zjZjDω(k)
0
∑

i=j+1

ĝQ,(i)ω (k) , Q̂(0)
ω (k) = 1 . (92)

In fact, the terms in the first two lines of (90) have a simple interpretation
in terms of Feynman graphs; they are obtained by taking all the graphs
contributing to V(j)(

√
Zhψ) and, given a single graph, by adding a new space-

time-point x associated with a term φxψx and contracting the correspondent
ψ field with one of the external fields of the graph through a propagator
∑0
i=j+1 g

Q,(i)
ω (x − y). Hence, it is very easy to see that (90) is satisfied for

j = −1. The fact that it is valid for any j follows from our choice to localize

B(j)
φ (

√

Zjψ) by the following procedure: first of all we substitute in the r.h.s.

of (90) V(j) with LV(j)+RV(j), LV(j) being defined by (52); then we extract
from LV(j) the terms proportional to zj , as in (58), which are absorbed in
the terms in the third line of (90). Finally we rescale the field ψ by (65) and
perform the integration of the scale j field. It is then easy to check that (90)
is satisfied for j = j̄ + 1, if it is satisfied for j = j̄, together with (92).

Note that fj(k) = 0 for |k| < γj−1 or |k| > γj+1, so that

fh1(k)fh2(k) = 0 if |h1 − h2| > 1 . (93)
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It follows that, if ĝ(j)ω (k) 6= 0, by using also (62) and (92),

Q̂(j)
ω (k) = 1− zjf

ε
j+1(k)

Zj

Z̃j(k)
. (94)

Hence, the propagator ĝQ,(i)ω (k) is equivalent to ĝ(i)ω (k), as concerns the di-
mensional bounds.

Finally let us consider B(j)
J (

√

Zjψ). It is easy to see that the field J is
equivalent, from the point of view of dimensional considerations, to two ψ
fields. Hence, the only terms which need a regularization are those of second
order in ψ, which are indeed marginal. We shall use for them the definition

B(j,2)
J (

√

Zjψ) =
∑

ω,ω̃

∫

dxdydzBω,ω̃(x,y, z)Jx,ω(
√

Zjψ
+
y,ω̃)(

√

Zjψ
−
z,ω̃) =

=
1

(Lβ)2
∑

ω,ω̃,k,p

B̂ω,ω̃(p,k)Ĵ(p)(
√

Zjψ̂
+
p+k,ω̃)(

√

Zjψ̂
−
k,ω̃) . (95)

We write

B(j,2)
J (

√

Zjψ) = LB(j,2)
J (

√

Zjψ) +RB(j,2)
J (

√

Zjψ) , (96)

where L is defined through its action on B̂ω(p,k) in the following way:

LB̂ω,ω̃(p,k) =
1

4

∑

η,η′=±1

B̂ω,ω̃(p̄η′ , k̄η,η′) , (97)

where k̄η,η′ is defined as in (48) and p̄η′ = (0, 2πη′/β). In the L = β = ∞ it

reduces simply to LB̂ω,ω̃(p,k) = B̂ω,ω̃(0, 0).
This definition apparently implies that we have to introduce two new

renormalization constants. However, this is not the case. One can show
that, in the L = β = ∞ limit

B̂ω,−ω(0, 0) = 0 , (98)

by using the symmetry property of the propagators

ĝ(j)ω (k) = −iωĝ(j)ω (k∗) , k = (k, k0), k∗ = (−k0, k) . (99)

In fact, the contribution of order n in ε̄ to Bω,−ω(p,k) can be written as
a sum of connected Feynman graphs obtained by contracting 2n + 2 fields
of type ω and 2n − 2 fields of type −ω, so that, by (99), Bω,−ω(p,k) =
(−iω)n+1(iω)n−1Bω,−ω(p∗,k∗) = −Bω,−ω(p∗,k∗), which implies (98).
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If L and β are finite, the identity (98) is not true anymore, but the cor-
rections do not give rise to any divergence, as j → ∞, and go to zero, for any
fixed j, as L, β → ∞. In fact it is not hard to see, by comparing LB̂ω,ω̃(p,k)
with its limit as L, β → ∞ and using the properties of the multiscale expan-
sion described above, that the corrections are of order γ−j max{L−1, β−1}, as
one can guess by dimensional arguments. In other words, one can say that
LB̂ω,−ω behaves as an irrelevant term (hence no renormalization constant is
associated to it).

The previous considerations imply that we can write

LB(j,2)
J (

√

Zjψ) =
∑

ω

Z
(2)
j

Zj

∫

dxJx,ω(
√

Zjψ
+
x,ω)(

√

Zjψ
−
x,ω) , (100)

which defines a new renormalization constant Z
(2)
j , the density renormaliza-

tion. It is easy to see, by proceeding as in §3.3, that RB(j,2)
J (

√

Zjψ) can be

written as a sum of terms of the form (95), with one of the fields ψ replaced
by a field D1 (see (78)). This allows us to improve the bounds in the usual
way, see §3.3. The definition of R is extended to all the other contributions

to B(j)
J (

√

Zjψ) as the identity.
At the end of the iterative integration procedure, we get

W(ϕ, J) = −LβEL,β +
∑

mφ+nJ≥1

S
(h)

2mφ,nJ (φ, J) . (101)

We can expand the functional S
(h)

2mφ,nJ (φ, J) and the various terms in the
r.h.s. of (89) in terms of trees, as we did for the effective potential, by
suitably modifying the definitions given in §3.2.

1. First of all, we have to add two new types of endpoints, to be called of
type φ and J ; the first one is associated with the terms in the third line
of (90), the second one with the terms in the r.h.s. of (100). They will
be sometimes called special endpoints; as for the other endpoints, the
scale of a special endpoint v̄ is hv+1, if hv is the scale of the non trivial
vertex immediately preceding v̄. Given v ∈ τ , we shall call nφv and
nJv the number of endpoints of type φ and J belonging to the cluster
Lv, defined as in item 4) of §3.3, while nv will denote the number of
endpoints of type λ or δ, to be called normal. Analogously, given τ ,
we shall call nφτ and nJτ the number of endpoint of type φ and J , while
nτ will denote the number of normal endpoints. Finally, Tj,n,nφ,nJ will
denote the set of trees with n normal endpoints, nφ endpoints of type
φ and nJ endpoints of type J .
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2. The definition of the sets Pv (of the external fields in the vertex v) is
modified, in the sense that the set Pv includes both the field variables
of type ψ which are not yet contracted in the vertex v, to be called
normal external fields, and those which belong to an endpoint normal
or of type J and are contracted with a field variable belonging to an
endpoint of type φ through a propagator gQ,(hv), to be called special
external fields of v.

3. As explained above, we regularize the terms linear in φ by extracting
from the effective potential, in the r.h.s. of (90), its local part, defined
by (52). This implies that one of the ψ variables contracted in the prop-
agator linked to the φ variable is treated as an external field variable,
see item 2) above. However, in order to exploit the regularizing effect
of the R operation on the terms with 2 or 4 external fields (see remark
after (78)), we have to be sure that the field variable which “acquires
a derivative” is not yet contracted on the vertex scale. This can be
realized by choosing the localization point as the space-time point of
the special external field, that is the field which is contracted with the
ψ field of the type φ endpoint.

It is easy to see that

S
(h)

2mφ,nJ (φ, J) =
∞
∑

n=0

−1
∑

j0=h−1

∑

ω

∑

τ∈T
j0,n,2mφ,nJ

∑

P∈Pτ :|Pv0 |=2mφ

∫

dx
2mφ
∏

i=1

φσixi,ωi

nJ
∏

r=1

Jx
2mφ+r

,ω
2mφ+r

S2mφ,nJ ,τ,ω(x) , (102)

where ω = ω = ω = ω = {ω1, . . . , ω2mφ+nJ}, x = {x1, . . . ,x2mφ+nJ} and
σi = + if i is odd, σi = − if i is even.

The Schwinger functions are simply related to the kernels of the func-
tionals S

(h)

2mφ,nJ (φ, J) and (102) allows us to get an expansion for them. For

example, G2
ω(x1,x2) is equal to the sum over the terms in the r.h.s. of (102)

with mφ = 1, nJ = 0 and ω = (ω, ω), while G2,1
ω (x;y, z) is obtained by se-

lecting the terms with mφ = 1, nJ = 1 and ω = (ω, ω, ω). Hence, a bound for
the Fourier transform of the Schwinger functions can be obtained by using
the dimensional bound

∫

dx |S2mφ,nJ ,τ,ω(x)| ≤ Lβ (Cε̄)nγ−j0(−2+mφ+nJ)
2mφ
∏

i=1

γ−hi

(Zhi)
1/2

·

·
nJ
∏

r=1

Z
(2)

h̄r

Zh̄r

∏

v not e.p

(
Zhv
Zhv−1

)|Pv|/2γ−dv , (103)
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where hi is the scale of the propagator linking the i-th endpoint of type φ to
the tree, h̄r is the scale of the r-th endpoint of type J and

dv = −2 + |Pv|/2 + nJv + z̃(Pv) , (104)

with

z̃(Pv) =







z(Pv) if nφv ≤ 1 , nJv = 0 ,
1 if nφv = 0 , nJv = 1 , |Pv| = 2 ,
0 otherwise

(105)

The bound (103) can be easily obtained by the same arguments leading
to the bound (82), by taking into account the remarks in items 1)-3) above.
Essentially one has to modify the bound (82) in the following way.

a) Insert a factor γ−hi(Zhi)
−1/2 for each endpoint of type φ; this factor

bounds the product of the propagator linking the i-th endpoint of type
φ to the tree and the (Zhi)

1/2 renormalization constant of the corre-
sponding special external field variable. We use here (60), (61) and
(64).

b) Insert a factor Z
(2)

h̄r
/Zh̄r for each endpoint of type J .

c) Substitute the “regularization index” zv with z̃v, to take into account that
the R operation is trivial in all the vertices with nφv + nJv > 1.

d) Insert a factor γn
J
v for each non trivial vertex v, to take into account that

any J variable is dimensionally equivalent to two ψ external fields,
so that the dimension of any vertex v increases by one unit for any
endpoint of type J belonging to the cluster Lv.

The bound (103) is sufficient to get a bound for the Schwinger functions
Fourier transforms, because, by translation invariance, the Fourier transform
of S2mφ,nJ ,τ,ω(x) is bounded by (Lβ)−1

∫

dx|S2mφ,nJ ,τ,ω(x)|. We only have
to sum over τ the r.h.s. of (103) (without the Lβ factor), by using the
techniques described in detail in §5 of [BM]. The main point is to control
the sums over the sets Pv and the scale indices hv, for fixed values of the
external propagators scale indices hi, which are determined up to one unit
by the external momenta. Hence, if all the “vertex dimensions” dv were
greater than 0, one would get a dimensional bound of the type

(Cε̄)n̄
h̄
∑

j0=h

γ−j0(−2+mφ+nJ )
2mφ
∏

i=1

γ−hi

(Zhi)
1/2

nJ
∏

r=1

Z
(2)

h̄r

Zh̄r
, (106)
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where n̄ is the minimal order in λ of the graphs contributing to the Schwinger
function and h̄ is an upper bound on the scale of the tree lower vertex v0,
which depends on the external momenta.

However, it is not true that, given τ , dv > 0 for all non trivial v ∈ τ ; in
fact dv = 0, if |Pv| = 2 and nφv = nJv = 1 or nφv = 2, nJv = 0. This implies that
the sum over the scale indices of some special paths on the tree can produce
a result different from the “trivial one”, leading to (106). Hence, in order to
get the right bound, one has to analyze case by case the constraints on the
endpoint scale indices, related with the support properties of the single scale
propagators and the fact that the φ and J momenta are fixed.

The result of this analysis, rather difficult to describe in general, will be
given only for the bound of the connected Schwinger functions appearing in
Theorem 2.1. Moreover, we shall use the expansion (102) also to extract
some “dominant terms” and get an improved bound on the rest, as we shall
see below.

3.5 Proof of Theorem 2.1

The bounds (18) and the equations (19) are proved in [BM], Theorem 4.9;
so it remains to prove (16) and (17).

By using (102), we can write, for any k

Ĝ(2)
ω (k) =

0
∑

j=h

ĝQ,(j)ω (k) +
∞
∑

n=1

−1
∑

j0=h−1

∑

τ∈Tj0,n,2,0
|Pv0 |=2

Ĝ2,τ (k) , (107)

where G2,τ = S2,0,τ,,τ,{ω,ω}. The choice of k̄ implies that, given τ , the scale

of the external propagators has to be equal to h or h+ 1, hence Ĝ2,τ can be
different from 0 only if the index j0 in the r.h.s. of (107) (which is also the
scale index of v0, the lower tree vertex) takes the value h or h + 1. In this
case, by using the bound (103) and translation invariance, we get, by using
also the fact that Zj/Zj−1 < 1 (see [BM], Theorem 4.9) and Theorem 3.1,

|Ĝ2,τ (k̄)| ≤
1

Lβ

∫

dx1dx2|G2,τ (x1 − x2)| ≤ (Cε̄)nγ−hZ−1
h

∏

v

γ−dv . (108)

The previous considerations also imply that the only vertices of τ with dv = 0
have scale h or h+1, so that there is no problem in performing the sum over
the scale indices in the r.h.s. of (107). Moreover, by symmetry reasons,
G2,τ = 0 if nτ = 1; hence the sum over all the trees with n ≥ 1 can be
bounded by (Cε̄)2γ−hZ−1

h . Finally, the terms of order 0 in the r.h.s. of (107)
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sum up to

1

Zh

f̃h+1(k̄) + f̃h(k̄)

Dω(k̄)
[1 +O(ε̄2] =

1

ZhDω(k̄)
[1 +O(ε̄2] , (109)

which easily implies (16).
We finally prove (17). By using (102), we can write, if p = k̄1 − k̄2 and

k = k̄2,

Ĝ(2,1)
ω (p,k) =

∞
∑

n=0

−1
∑

j0=h−1

∑

τ∈Tj0,n,2,1
|Pv0 |=2

Ĝ2,1,τ (p,k) , (110)

where G2,1,τ = S2,1,τ,,τ,{ω,ω,ω}.
The condition on k̄1 and k̄2 implies that, for any τ , the only vertices with

dv = 0 have scale h or h + 1. Hence, the sum over the trees with n normal
endpoints of |Ĝ2,1,τ (p,k)| satisfies, by (103), the dimensional bound

∑

τ :nτ=n

|Ĝ2,1,τ (p,k)| ≤ (Cε̄)n
γ−2h

Zh

Z
(2)
h

Zh
. (111)

Moreover, by symmetry reasons, Ĝ2,1,τ (p,k) = 0, if nτ = 1, and

∑

τ :nτ=0

Ĝ2,1,τ (p,k) =
Z

(2)
h

Zh
Zh

1

ZhDω(k̄1)

1

ZhDω(k̄2)
[1 +O(ε̄2] , (112)

since f̃h+1(k̄i) + f̃h(k̄i) = 1. Hence, we get (17).

4 The expansion for H2,1
ω

4.1 Preliminary remark

In this section we have to find an expansion for correction term H2,1
ω . The

definition of H2,1
ω as a derivative of a functional integral, see (35-37), is ap-

parently very similar to the expression for G2,1
ω given by (11-12). In fact, the

definition (11) of the generating function W(φ, J) differs from the definition
(36) of W∆(φ, J) only because ψ+

x,ωψ
−
x,ω is replaced by Tx,ω. However, such

difference is not trivial at all, because of the singularity of C(k,k + p), as
ε → 0, and of D−1(p) at p = 0. Nevertheless, we are still able to prove the
bound (29), which differs from the analogous bound for Ĝ2,1 by an extra λ2

factor.
In order to get this result, we will define a multiscale expansion similar

to the previous ones, so getting a few terms of a new kind, for which the L
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operation must be defined in a proper way. Correspondingly new renormal-
ization constants will appear, which we can prove are strictly related to Z

(2)
h ,

what is crucial to get (29).

4.2 Properties of Tx,ω

We begin our analysis by studying the quantity

∆(i,j)
ω (k+,k−) =

C(k+,k−)

Dω(p)
g̃(i)ω (k+)g̃(j)ω (k−) =

=
1

Zi−1Zj−1

1

Dω(p)

{

f̃ εi (k
+)

Dω(k+)

[ f̃ εj (k
−)

χεh,0(k
−)

− f̃ εj (k
−)
]

− (113)

− f̃ εj (k
−)

Dω(k−)

[ f̃ εi (k
+)

χεh,0(k
+)

− f̃ εi (k
+)
]

}

,

where p = k+ − k−. The above quantity appears in the expansion for Ĥ2,1

when both the fields of Tx,ω are contracted. Note first that

∆(i,j)
ω (k+,k−) = 0 , if 0 > i, j > h , (114)

since χεh,0(k
±) = 1, if h < i, j < 0. We will see that this property plays a

crucial role; it says that, contrary to what happens for G2,1, at least one of
the two fermionic lines connected to J must have scale 0 or h.

In the the cases in which ∆(i,j)
ω (k+,k−) is not identically equal to 0, since

∆(i,j)
ω (k+,k−) = ∆(j,i)

ω (k−,k+), we can restrict the analysis to the case i ≥ j.

1) If i = j = 0, by using (21), it is easy to see that the r.h.s. of (113) has a
well defined limit as ε→ 0, given by

∆(0,0)
ω (k+,k−) =

1

Dω(p)

[

f0(k
+)

Dω(k+)
u0(k

−)− f0(k
−)

Dω(k−)
u0(k

+)

]

, (115)

where u0(k) is a C
∞ function such that

u0(k) =
{

0 if |k| ≤ 1
1− f0(k) if 1 ≤ |k| . (116)

We want to show that

∆(0,0)
ω (k+,k−) =

p

Dω(p)
S(0)
ω (k+,k−) =

p0S
(0)
ω,0(k

+,k−) + pS
(0)
ω,1(k

+,k−)

Dω(p)
,

(117)
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where S
(0)
ω,i(k

+,k−) are smooth functions such that

|∂m+

k+ ∂
m−

k− S
(0)
ω,i(k

+,k−)| ≤ Cm++m− , (118)

if ∂mk denotes a generic derivative of order m with respect to the variables k
and Cm is a suitable constant, depending on m.

The proof of (117) is trivial if p is bounded away from 0, for example
|p| ≥ 1/2. It is sufficient to remark that ∆(0,0)

ω (k+,k−), by the compact

support properties of f0(k), is a smooth function and put S
(0)
ω,0 = −i∆(0,0)

ω ,

S
(0)
ω,1 = ω∆(0,0)

ω . If |p| ≤ 1/2, we can use the identity

∆(0,0)
ω (k+,k−) = − f0(k

+)u0(k
+)

Dω(k+)Dω(k−)
+ (119)

+
p

Dω(p)

∫ 1

0
dt

k+ − tp

|k+ − tp|

[

f ′
0(k

+ − tp)
u0(k

+)

Dω(k−)
− u′0(k

+ − tp)
f0(k

+)

Dω(k+)

]

,

from which (118) follows.

2) If i = 0 and h ≤ j < 0, we get

∆(0,j)
ω (k+,k−) = − 1

Zj−1

f̃j(k
−)u0(k+)

Dω(p)Dω(k−)
+ δj,h

1

Z̃h−1(k−)

f0(k
+)uh(k

−)

Dω(p)Dω(k+)
,

(120)
where

uh(k) =

{

0 if |k| ≥ γh

1− fh(k) if |k| ≤ γh
. (121)

If j < −1, the first term in the r.h.s. of (120) vanishes for |p| ≤ 1−γ−1, since
u0(k

+) 6= 0 implies that |k+| ≥ 1, so that |k−| = |k+ − p| ≥ 1− (1− γ−1) =
γ−1 and, as a consequence, f̃j(k

−) = 0. Analogously, the second term in the
r.h.s. of (120) vanishes for |p| ≤ 1− γ−1 − γh, since f0(k

+) 6= 0 implies that
|k+| ≥ 1 − γ−1, so that |k−| ≥ γh and, as a consequence, uh(k

−) = 0. On
the other hand, if j = −1, because f̃−1(k)u0(k) = 0, we can write

u0(k
+)f̃−1(k

−) = −u0(k+) p
∫ 1

0
dt

k+ − tp

|k+ − tp| f̃
′
−1(k

+ − tp) . (122)

It follows that
∆(0,j)
ω (k+,k−) =

p

Dω(p)
S(j)
ω (k+,k−) , (123)

where S
(j)
ω,i(k

+,k−) are smooth functions such that

|∂m0

k+ ∂
mj

k−S
(j)
ω,i(k

+,k−)| ≤ Cm0+mj

γ−j(1+mj)

Z̃j−1(k−)
, h ≤ j < 0 . (124)
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3) If i = j = h we get

∆(h,h)
ω (k+,k−) =

1

Dω(p)

1

Z̃h−1(k+)Z̃h−1(k−)
·

·
[

fh(k
+)uh(k

−)

Dω(k+)
− uh(k

+)fh(k
−)

Dω(k−)

]

. (125)

Since this expression can appear only at the last integration step, it is not
involved in any regularization procedure. Hence we only need its size for
values of p of order γh or larger. It is easy to see that

|∆(h,h)
ω (k+,k−)| ≤ C

M

γ−2h

Z̃h−1(k+)Z̃h−1(k−)
, if |p| ≥Mγh . (126)

4) If j = h < i < −1, we get

∆(i,h)
ω (k+,k−) =

1

Z̃h−1(k−)Zi−1

f̃i(k
+)uh(k

−)

Dω(p)Dω(k+)
, (127)

which satisfies the bound

|∆(i,h)
ω (k+,k−)| ≤ C

M

γ−h−i

Z̃h−1(k−)Zi−1

, if |p| ≥Mγh . (128)

4.3 The multiscale expansion of the correction term

We are now ready to begin the description of the iterative integration proce-
dure. As in §3.4, we can write

eW∆(φ,J) = e−LβEj

∫

PZ̃j ,Cε
h,j
(dψ[h,j])e−V(j)(

√
Zjψ[h,j])+K(j)(

√
Zjψ[h,j],φ,J) , (129)

where K(j)(
√

Zjψ, φ, J) denotes the sum over the terms containing at least
one φ or J field; we shall write it in the form

K(j)(
√

Zjψ, φ, J) = B(j)
φ (

√

Zjψ) +K
(j)
J (

√

Zjψ) + W̃
(j)
R (

√

Zjψ, φ, J) , (130)

where B(j)
φ (ψ) and K

(j)
J (ψ) denote the sums over the terms containing only

one φ or J field, respectively. Note that B(j)
φ (ψ) it is the same function

appearing in (89) and the action of L on it is defined exactly as before.

As in §3.4, the only terms contributing to K
(j)
J (

√

Zjψ), for which the
localization has to be defined different from the identity, are those of sec-
ond order in ψ, which behave as marginal terms; we shall denote their sum
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K
(j,2)
J (

√

Zjψ). For j = 0, K
(0,2)
J (

√
Z0ψ) = K

(0)
J (

√
Z0ψ) =

∑

ω

∫

dxJx,ωT
[h,0]
x,ω

and we define the L operation on it as the identity, that is

LK(0,2)
J (

√

Z0ψ
[h,0]) = K

(0,2)
J (

√

Z0ψ
[h,0]) . (131)

Let us now analyze the structure of K
(−1,2)
J (

√
Z−1ψ

[h,−1]), as it appears
after integrating the ψ(0) field and rescaling ψ[h,−1]. We have

K
(−1,2)
J (ψ) =

1

Z−1

∑

ω

∫

dxJx,ω
{

Tx,ω +

∑

ω̃

∫

dydz[F
(−1)
2,ω,ω̃(x,y, z) + δω,ω̃F

(−1)
1,ω (x,y, z)]ψ+

y,ω̃ψ
−
z,ω̃

}

. (132)

F
(−1)
2,ω,ω̃ denotes the sum over all Feynman graphs built by contracting both ψ

fields of Tx,ω (on scale 0) and by choosing equal to ω̃ = ±1 the ω-index of

the two external ψ fields. F
(−1)
1,ω represents the sum over the graphs build by

leaving external one of these ψ fields of Tx,ω. See Fig. (5), where the J field
and the external ψ fields are represented as dashed lines and the small circle
represents the non local kernel of Tx,ω.

K
(−1,2)
J = + + +

p

k+

k−

ω

ω

k̃+
ω

ω

k+

k−

ω̃

ω̃

ω

ω

ω

ω

ω

ω

Figure 5: Graphical representation of equation (132).

It is easy to see that the Fourier transform of F
(−1)
2,ω,ω̃ can be written, if

we choose the momenta k+ and k− of the ψ external fields as independent
variables, as

F̂
(−1)
2,ω,ω̃(k

+,k−) =
p

Dω(p)

∫

dk̃+Sω(k̃
+, k̃+ − p)G

(−1)
ω,ω̃ (k̃+,k+,k−) , (133)

where S(k+,k−) is given by (117), p = k+ − k− and G
(−1)
ω,ω̃ (k̃+,k+,k−) is

of the form G
(−1)
ω,ω̃ (k̃+,k+,k−) = G0(k̃

+,k+,k−) +G1(k
+)G2(k

−)δ(k̃+ −k+),
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where G0 represents a suitable sum over connected graphs with four external
lines, while G1 and G2 represent suitable sums over connected graphs with
two external lines. Note that all these three functions can be written, at order
n of perturbation theory, as sums of Cn terms, each term being represented
as a truncated expectation of ψ monomials, which can then be expanded as a
sum over tree graphs of suitable determinants, thanks to the anticommuting
properties of the Grassmanian variables [Le], hence the argument in [BM] to
avoid bad factorials in the bounds can be used.

G
(−1)
ω,ω̃ has special symmetry properties, which it is very important to

exploit. Consider first the case ω = ω̃; then each term contributing to G(−1)
ω,ω

is obtained by taking n interaction terms (each having two ψ fields of type
ω and two of type −ω) and by building a graph with four external lines, two
of type ω and two of type ω̃. It follows that n ≥ 2 and that in the graph
there are (2n − 4)/2 propagators of type ω and (2n)/2 propagators of type
−ω. By using the symmetry property of the propagators (99), one gets

G(−1)
ω,ω (k̃+,k+,k−) = −G(−1)

ω,ω (k̃+∗,k+∗,k−∗) . (134)

In a similar way, one can check that

G
(−1)
ω,−ω(k̃

+,k+,k−) = G
(−1)
ω,−ω(k̃

+∗,k+∗,k−∗) , (135)

p · Sω(k+,k−) = −iωp∗ · Sω(k+∗,k−∗) . (136)

(133), (134), (135) and (136) imply that

F̂
(−1)
2,ω,ω̃(k

+,k−) =
1

Dω(p)
[p0Â

(−1)
ω,ω̃,0(k

+,k−) + pÂ
(−1)
ω,ω̃,1(k

+,k−)] , (137)

where Â
(−1)
ω,ω̃,i(k

+,k−) are smooth functions verifying the condition

Â
(−1)
ω,ω̃,1(k

+,k−) = iω̃Â
(−1)
ω,ω̃,0(k

+∗,k−∗) . (138)

It follows that, if we define (in the L = β = ∞ limit, see the discussion after
(97))

LF̂ (−1)
2,ω,ω̃(k

+,k−) =
1

Dω(p)
[p0Â

(−1)
ω,ω̃,0(0, 0) + pÂ

(−1)
ω,ω̃,1(0, 0)] , (139)

then
LF̂ (−1)

2,ω,ω(k
+,k−) = Z

(3,+)
−1 , (140)

LF̂ (−1)
2,ω,−ω(k

+,k−) = Z
(3,−)
−1

D−ω(p)

Dω(p)
, (141)
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where Z
(3,+)
−1 = iÂ

(−1)
ω,ω,0(0, 0) and Z

(3,−)
−1 = iÂ

(−1)
ω,−ω,0(0, 0) are constants, which

one can easily show to be real.
The action of L on F−1

2,ω,ω̃ was given above in momentum space; it is
however very easy to write it in coordinate space. The support properties
of the external propagator imply that |p| ≤ γ + γh, hence |p| ≤ γ2, if γh

is small enough, as we shall suppose (to simplify the notation). Then we
can freely multiply ∆(i,j)

ω (k+,k−) by χ0(γ
−2|k+ −k−|). Hence, in space-time

coordinates, the contribution to K
(−1,2)
J (ψ) containing F

(−1)
2,ω,ω̃ can be written,

by using the representation (137) as

1

Z−1

∑

ω,ω̃

∫

dxJx,ω

∫

dx′Vω(x− x′)
∫

dydzA
(−1)
ω,ω̃ (x′,y, z)ψ+

y,ω̃ψ
−
z,ω̃ , (142)

where

Vω(x) =
∫

dp

(2π)2

√

χ0(γ−2|p|)eipx p

Dω(p)
,

A
(−1)
ω,ω̃ (x′,y, z) =

∫

dk+dk−

(2π)4

√

χ0(γ−2|k+ − k−|) · (143)

·eik+(x′−y)−ik−(x′−z)Â
(−1)
ω,ω̃ (k+,k−) .

It follows that the operation L can be described as the localization of the
ψ fields in the point x′ and that the corresponding R operation produces
a term with ψ+

y,ω̃ψ
−
z,ω̃ − ψ+

x′,ω̃ψ
−
x′,ω̃ in place of ψ+

y,ω̃ψ
−
z,ω̃. We can then apply

the argument following (78) to explain the regularization effect of R, since

Â
(−1)
ω,ω̃,i(k

+,k−) are smooth functions.

If λ is small enough, the size of Z
(3,+)
−1 and Z

(3,−)
−1 is determined by the

contributions of lower order in their expansions in power of λ. It is easy to
see that Z

(3,+)
−1 is of order λ2 and that there is only one graph of that order

different from zero in its expansion, that on the left of Fig. 6, while Z
(3,−)
−1 is

of order λ and the only corresponding first order graph is represented on the
right of the picture.

By an explicit calculation, one can check that the contributions to Z
(3,+)
−1

and Z
(3,−)
−1 of the two graphs are different from zero. Hence

Z
(3,+)
−1 = −c+λ2 < 0 , Z

(3,−)
−1 =

λ

4π
. (144)

We now consider the contribution to F
(−1)
1,ω (x,y, z) associated with the

third term in Fig. 5. Its Fourier transform can be written as

F̂
(−1,+)
1,ω (k+,k−) =

[Cε
h,0(k

−)− 1]Dω(k
−)ĝ(0)ω (k+)− u0(k

+)

Dω(p)
G(2)
ω (k+) , (145)
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ω

ω

−ω
−ω

−ω

−ω
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ω

Figure 6: Terms of lower order contributing to Z
(3,+)
−1 and Z

(3,−)
−1 .

where G(2)
ω (k+) represents the sum over the connected Feynman graphs with

propagator g(0) and two external lines. Since, by symmetry reasons, G(2)
ω (0) =

0, the simplest way to regularize F
(−1,+)
1,ω is to define

RF̂ (−1,+)
1,ω (k+,k−) =

[Cε
h,0(k

−)− 1]Dω(k
−)ĝ(0)ω (k+)− u0(k

+)

Dω(p)
·

·[G(2)
ω (k+)−G(2)

ω (0)] , (146)

whose corresponding local part is vanishing. In other words the dimensional
gain is here obtained without the introduction of a renormalization constant.
Note that there is a simple description of this operation in terms of a local-
ization operation on the ψ fields, as in the remark following (141). A similar

procedure can be defined for the contribution to F
(−1)
1,ω (x,y, z) associated

with the fourth term in Fig. (5).
We can summarize the previous discussion by defining

LK(−1,2)
J (ψ) =

∑

ω

∫

dx
{

Jx,ω





Tx,ω
Z−1

+
Z

(3,+)
−1

Z−1
ψ+
x,ωψ

−
x,ω



+

Z
(3,−)
−1

Z−1
J (−)
x,ωψ

+
x,−ωψ

−
x,−ω

}

, (147)

where J (−)
x,ω is the Fourier transform of

Ĵ (−)
p,ω = Ĵp,ω

D−ω(p)

Dω(p)
. (148)

Equation (147) implies that the integration of the scale j = −1 has to
take into account two new local terms, to be called of type Z+ and of type
Z−, similar to those introduced in §3.4 to analyze the Schwinger functions,
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see (100). There is however an important difference in the term of type Z−,
related with the fact that, in this term, we have absorbed in the external J
field a bounded but not smooth function of p, in order to avoid that it is
involved in the regularization operations.

We can now describe the general step, by defining the action of L on
K

(j,2)
J (ψ), which can be written, if j < −1, after rescaling ψ[h,j], as

K
(j,2)
J (ψ) =

1

Zj

∑

ω

∫

dx
{

Jx,ωTx,ω +
∑

ω̃

∫

dydz
[

Jx,ωF
(j)
Z+,ω,ω̃(x,y, z) +

+ J (−)
x,ωF

(j)
Z−,ω,ω̃(x,y, z) + Jx,ωF

(j)
2,ω,ω̃(x,y, z) + (149)

+ δω,ω̃Jx,ωF
(j)
1,ω(x,y, z)

]

ψ+
y,ω̃ψ

−
z,ω̃

}

,

where F
(j)
Z±,ω,ω̃ represents the sum over all graphs with one vertex of type

Z± and two ψ external fields of type ω̃, build by using propagators of scale
i ∈ [j+1,−1], F

(j)
2,ω,ω̃ is the sum over the same kind of graphs with one vertex

Tx,ω, whose ψ fields are both contracted and F
(j)
1,ω is the sum over the graphs

with one vertex Tx,ω, such that one of its ψ fields is external.
It is important to stress that, thanks to the identity (114), given a graph

contributing to F
(j)
2,ω,ω̃, at least one among the ψ fields belonging to Tx,ω is

contracted on scale 0, so that we can write

F̂
(j)
2,ω,ω̃(k

+,k−) =
p

Dω(p)

0
∑

i=j

∫

dk̃+S̃(i)
ω (k̃+, k̃+ − p)G

(i)
ω,ω̃(k̃

+,k+,k−) , (150)

where S̃(i)(k+,k−) is given by (117) for i = 0 and (123) for i < 0, if no
derivative acts on S(i)(k+,k−) as a consequence of the regularization on a
scale r such that j < r ≤ i, otherwise it is given by a suitable derivative
of S(i)(k+,k−). Moreover, G

(i)
ω,ω̃(k̃

+,k+,k−) is a suitable smooth function,

which can be expressed as a sum over products of propagators g̃(i
′), i′ ∈

[j + 1, 0], or their derivatives, integrated over suitable loop variables. Hence
we can extend to the case j < −1 the definition of L given for j = −1, for
what concerns its action on all terms in the r.h.s. of (149) except F

(j)
Z+,ω,ω̃

and F
(j)
Z−,ω,ω̃, for which we put (for L = β = ∞, see otherwise the discussion

after (99))

LF̂ (j)
Z±,ω,ω̃(k

+,k−) = F̂
(j)
Z±,ω,ω̃(0, 0) . (151)

Note that S̃(i)(k+,k−) is a smooth function, by our definition of RF̂ (j)
1,ω,

which generalizes (146). And, by the same argument leading to (98), we have

F̂
(j)
Z+,ω,−ω(0, 0) = F̂

(j)
Z−,ω,ω(0, 0) = 0 . (152)
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It follows that we can write

LK(j,2)
J (ψ) =

∑

ω

∫

dx
{

Jx,ω





Tx,ω
Zj

+
Z

(3,+)
j

Zj
ψ+
x,ωψ

−
x,ω



+

Z
(3,−)
j

Zj
J (−)
x,ωψ

+
x,−ωψ

−
x,−ω

}

, (153)

which defines the new renormalization constants Z
(3,+)
j and Z

(3,−)
j , for j ∈

[h,−1].

4.4 The bounds

The previous considerations allow to define a tree expansion for H2,1
ω , similar

to that used for G2,1
ω in §3 and described in §3.4 after (103). The only

important difference is that we have now three different special endpoints
associated with the field J , corresponding to the three different terms in the
r.h.s. of (153); we shall call these endpoints of type J and subtype T , Z+ and
Z−, respectively.

There is of course a tree expansion also for the renormalization constants
Z

(3,+)
j and Z

(3,−)
j , involving trees with root at scale j−1, one endpoint of type

J , |Pv0 | = 2 and the operation L acting on v0. One can show in the usual
way that, given a tree τ with n normal endpoints and the special endpoint
of subtype Z± and scale i + 1, its contribution Z(3,±)

τ to Z
(3,±)
j satisfies the

bound

|Z(3,±)
τ | ≤ (Cε̄)n|Z(3,±)

i |
∏

v∈τ
γ−dv , with dv ≥ 1, ∀v ∈ τ . (154)

A similar bound is satisfied if the special endpoint is of subtype T , without the
|Z(3,±)

i | factor. However, in this case, the scale index of the special endpoint
has to be equal to 1, because of the properties of the function ∆(i,j)

ω described
in §4.2. Therefore there is a path C in the tree connecting the special endpoint
with v0 and we can extract from

∏

v∈τ γ
−dv a small factor γ1/2 for each v ∈ C,

without loosing the summability properties of the bound; hence we write

|Z(3,±)
τ | ≤ (Cε̄)nγj/2

∏

v∈C
γ−(dv− 1

2
)
∏

v∈τ\C
γ−dv , with dv ≥ 1, ∀v ∈ τ . (155)

Another important property, following from (151) and (152), is that
Z(3,+)
τ = 0, if the special endpoint is of subtype Z−, and viceversa. Hence we

can write, if j ∈ [h+ 1,−1],

Z
(3,±)
j−1 = Z

(3,±)
j +

−1
∑

i=j

βj,iZ
(3,±)
i + β̃

(3,±)
j , (156)
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where βj,iZ
(3,±)
i is the sum over the contributions associated with trees whose

special endpoint is of subtype Z± and scale i + 1, while β̃
(3,±)
j is the sum

over the trees whose special endpoint is of subtype T . Note that βj,i is

equal for Z
(3,+)
j−1 and Z

(3,−)
j−1 , by the symmetry of the interaction (9) under the

transformation ω → −ω.
Let us now observe that the the trees contributing to β̃

(3,+)
j have at least

two normal endpoints, since it is not possible to build a graph contributing to
Z

(3,+)
j with only one endpoint of type λ and the local part of the graphs with

one endpoint of type δ is equal to zero. This last property is of course true
also for Z

(3,−)
j , but in this case it is possible to build a graph contributing

to it with one endpoint of type λ, see Fig. 6. However, the considerations
of §4.2, item 2), imply that this graph could give a contribution different

from zero to β̃
(3,−)
j only for j = −1, but also in this case a simple explicit

calculation implies that its value is zero.
By using (155) and the previous remark, one can easily show that

|β̃(3,±)
j | ≤ Cε̄2γj/2 . (157)

In a similar way one can prove that

|βj,i| ≤ Cε̄2γ−
i−j
2 . (158)

We want to compare the flow equation (156) with the flow equation of

the renormalization constant Z
(2)
j introduced in §3.4 to study the Schwinger

Functions, see (100). In this case the involved trees have one endpoint of
type J , which can have scale ≥ +1, while in the previous case the scale of
the special endpoints of subtype Z± was ≥ 0. However, if the scale of the
special endpoint is ≥ 0, the contribution of corresponding trees is equal to
βj,iZ

(2)
i , where βj,i is the same number appearing in (156). Hence we can

write, if j ∈ [h+ 1,−1],

Z
(2)
j−1 = Z

(2)
j +

−1
∑

i=j

βj,iZ
(2)
i + β̃

(2)
j , (159)

where βj,iZ
(2)
i is the sum over the contributions to Z

(2)
j associated with trees

whose special endpoint has scale i + 1 ≥ 0, while β̃
(2)
j is the sum over the

trees whose special endpoint has scale +1. By proceeding as in the proof of
(157), one can show that

|β̃(2)
j | ≤ Cε̄2γj/2 . (160)

As we shall see, the renormalization constants Z
(3,±)
j and Z

(2)
j are diver-

gent as j → −∞, but Z
(3,±)
j /Z

(2)
j is bounded and of order ε̄2, uniformly in

j.
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Lemma 4.1 If ε̄ ≤ 2|λ| and |λ| is small enough, there is a constant c0,
independent of j and h, such that

c0λ
2 ≤

∣

∣

∣

∣

∣

∣

Z
(3,+)
j

Z
(2)
j

∣

∣

∣

∣

∣

∣

≤ 2c0λ
2 , c0|λ| ≤

∣

∣

∣

∣

∣

∣

Z
(3,−)
j

Z
(2)
j

∣

∣

∣

∣

∣

∣

≤ 2c0|λ| , j ∈ [h,−1] . (161)

Proof - Let us consider first Z
(3,+)
j . In order to control its dependence on

j, we have to analyze in a different way the regions j ∈ [j0,−1] and j < j0,
with j0 chosen so that

γj0/2 = c1|λ|2 , (162)

for some constant c1. If j ≥ j0, we put Z
(3,+)
j = aj + bj , where aj is the

contribution of order λ2, while bj is the sum over the terms of order ≥ 3.
The analysis of §4.2 implies that aj is obtained by applying the L operation to
the graph in the left of Fig. (6), with the two propagators of type ω on scale
0 or −1 (by the remark after (121), the local part is zero, if this condition is
not satisfied) and the two propagators of type −ω on scale i ∈ [j + 1, 0]. By
an explicit calculation, we can show that

c2λ
2 ≤ −aj ≤ 2c2λ

2 , uniformly in j . (163)

On the other hand, if we extract from both sides of (156) the terms of order
ε̄2, we get

bj−1 = bj +
−1
∑

i=j

βj,iZ
(3,+)
i + β̄j , |β̄j| ≤ Cε̄3γj/2 , (164)

which allows very easily to prove the bound |bj | ≤ c3ε̄
3(1 + c2ε̄)|j|, for some

constant c3, as far as c3ε̄(1 + c2ε̄)|j| ≤ c2/2, a condition which is certainly
satisfied for j ≥ j0, if ε̄ is small enough, and allows also to prove, under the
further hypothesis ε̄ ≤ 2|λ|, that

c2
2
ε̄2 ≤ |Z(3,+)

j | ≤ 5c2
2
ε̄2 , j ∈ [j0,−1] . (165)

Moreover, by using (159), the fact that Z
(2)
0 = 1 and an explicit second order

calculation, one can show very easily by induction that there exists a positive
constant c4 such that

γc4ε̄
2 ≤ Z

(2)
j−1

Z
(2)
j

≤ γ2c4ε̄
2 ⇒ γc4ε̄

2|j| ≤ Z
(2)
j ≤ γ2c4ε̄

2|j| , j ∈ [h+ 1,−1] .

(166)
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(165) and (166) immediately imply the first of the bounds (161), if j ≥ j0
and |λ| ≥ ε̄/2 is so small that γCε̄j0 ≥ 1/2.

Let us now suppose that j < j0. Equation (156) can be rewritten in the
form

Z
(3,+)
j−1 = Z

(3,+)
j +

j0
∑

i=j

βj,iZ
(3,+)
i + β̄j , β̄j =

−1
∑

i=j0+1

βj,iZ
(3,+)
i + β̃3,+

j . (167)

By using (157), (158), (162) and (165), we get the bound

|β̄j| ≤ Cε̄4γ−(j0−j)/2 , (168)

which allows to prove by induction that there is a constant, which can of
course be chosen equal to the constant c4 of (166) if it is large enough, such
that, if j ∈ [h+ 1, j0],

γc4ε̄
2 ≤ Z

(3,+)
j−1

Z
(3,+)
j

≤ γ2c4ε̄
2 ⇒ c2

2
ε̄2γc4ε̄

2(j0−j) ≤ Z
(3,+)
j ≤ 5c2

2
ε̄2γ2c4ε̄

2(j0−j) .

(169)
We want now to show that, if r < j0, there exists a constant c5 such that

∣

∣

∣

∣

∣

∣

Z
(3,+)
r−1

Z
(3,+)
r

− Z
(2)
r−1

Z
(2)
r

∣

∣

∣

∣

∣

∣

≤ c5ε̄
2γ−(j0−r)/4 . (170)

Note that, by (159), (166), (167) and (169), if j < j0,

Z
(3,+)
j−1

Z
(3,+)
j

− Z
(2)
j−1

Z
(2)
j

=
j0
∑

i=j

βj,i





Z
(3,+)
i

Z
(3,+)
j

− Z
(2)
i

Z
(2)
j



+ ηj , (171)

with
|ηj| ≤ Cε̄2γ−(j0−j)/2 ≤ c5

2
ε̄2γ−(j0−j)/2 , (172)

if c5 is chosen large enough. Hence, the bound (170) follows immediately
from (171), if r = j0; let us suppose that it is satisfied for r ∈ [j + 1, j0],
j ≤ j0−1 and note that, if ε̄ is small enough, by the first of (166) and (169),

|Z(3,+)
r /Z

(3,+)
r−1 − Z(2)

r /Z
(2)
r−1| ≤ |Z(3,+)

r−1 /Z
(3,+)
r − Z

(2)
r−1/Z

(2)
r |, since γc4ε̄

2
> 1.

Hence, if i ∈ [j + 1, j0],
∣

∣

∣

∣

∣

∣

Z
(3,+)
i

Z
(3,+)
j

− Z
(2)
i

Z
(2)
j

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

i
∏

r=j+1

Z(3,±)
r

Z
(3,±)
r−1

−
i
∏

r=j+1

Z(2)
r

Z
(2)
r−1

∣

∣

∣

∣

∣

∣

≤ (173)

≤
i
∑

r=j+1

c5ε̄
2γ−(j0−r)/4γ−c4ε̄

2(i−j−1) ≤ c5c6ε̄
2(i− j)γ−(j0−i)/4 ,
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for some constant c6. This bound, together with (158), (171) and (172),
imply that there exists a constant c7 such that

∣

∣

∣

∣

∣

∣

Z
(3,+)
j−1

Z
(3,+)
j

− Z
(2)
j−1

Z
(2)
j

∣

∣

∣

∣

∣

∣

≤ c5ε̄
2γ−(j0−j)/4[

1

2
+ c7ε̄

2] , (174)

which implies (170) for r = j, if ε̄ is small enough.
By using (166), (169) and (170), we get, if i < j0

∣

∣

∣

∣

∣

∣

Z
(3,+)
i−1

Z
(2)
i−1

− Z
(3,+)
i

Z
(2)
i

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

Z
(3,+)
i−1

Z
(3,+)
i

− Z
(2)
i−1

Z
(2)
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Z
(3,+)
i

Z
(2)
i−1

∣

∣

∣

∣

∣

∣

≤

Cε̄4γ−(j0−i)/4+c4ε̄2(j0−i) ≤ Cε̄4γ−(j0−j)/8 , (175)

so that
∣

∣

∣

∣

∣

∣

Z
(3,+)
j

Z
(2)
j

− Z
(3,+)
j0

Z
(2)
j0

∣

∣

∣

∣

∣

∣

≤ Cε̄4
j0
∑

i=j+1

γ−(j0−j)/8 ≤ Cε̄4 , (176)

which implies (161) for Z
(3,+)
j /Z

(2)
j , if ε̄ ≤ 2|λ|.

The proof for Z
(3,−)
j /Z

(2)
j is very similar. However, one can avoid the

different treatment of the regions j ≥ j0 and j < j0, since β̃
(3,−)
j /Z

(3,−)
j is of

order ε̄, by the bound on the right of (143). This bound also justifies the
presence of ε̄ in place of ε̄2.

Lemma 4.2 If k̄1 = −k̄2 = k̄ and |k̄| = γh, then there exists a constant C
such that

Cγ−2hε̄
Z

(2)
h

(Zh)2
≤ |Ĥ2,1

ω (k̄1 − k̄2, k̄2)| ≤ 2Cγ−2hε̄
Z

(2)
h

(Zh)2
. (177)

Proof - As explained at the beginning of §4.4, Ĥ2,1
ω (p,k) admits an expan-

sion similar to that of Ĝ(2,1)
ω (p,k), see (110). The main difference is that the

special endpoint of type J can be of three different subtypes, so that it is
convenient to write

Ĥ2,1
ω (p,k) = Ĥ2,1

ω,Z+(p,k) + Ĥ2,1
ω,Z−(p,k) + Ĥ2,1

ω,T (p,k) , (178)

where Ĥ2,1
ω,Z± denotes the sum over the trees whose special endpoint is of

subtype Z±, while Ĥ2,1
ω,T is the sum over the trees whose special endpoint is

of subtype T .
Let us now suppose that p = k̄1 − k̄2 and k = k̄2, with |k̄| = γh. Then it

is obvious that the sum over the trees with n normal endpoints contributing
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to Ĥ2,1
ω,Z+(p,k) can be bounded as in the case of Ĝ(2,1)

ω (p,k), see (111), by

substituting Z
(2)
h with Z

(3,+)
h . A similar argument can be used for Ĥ2,1

ω,Z−(p,k),
but in this case one has to take into account the fact that the trivial trees
containing only one endpoint, the special one, does not contribute. Hence
we have

|Ĥ2,1
ω,Z+(k̄1 − k̄2, k̄2)|+ |Ĥ2,1

ω,Z−(k̄1 − k̄2, k̄2)| ≤ Cγ−2h |Z
(3,+)
h |+ ε̄|Z(3,−)

h |
(Zh)2

.

(179)
Let us now consider Ĥ2,1

ω,T . The analysis of the previous sections (in par-
ticular the bounds (126) and (128)) implies that a bound like (111) is still

valid for the sum over the trees with n normal endpoints, but now Z
(2)
h

has to be substituted with 1. Moreover, the contributions corresponding
to the trivial trees without normal endpoints are given by ∆(h,h)

ω (k̄1, k̄2) +
∆(h,h+1)
ω (k̄1, k̄2) + ∆(h+1,h)

ω (k̄1, k̄2), because of the support properties of the
propagators. However, by (125) and (127), this quantity is exactly equal to
0, so that

|Ĥ2,1
ω,T (k̄1 − k̄2, k̄2)| ≤ Cγ−2h ε̄

(Zh)2
. (180)

The bound (179) and (180), immediately imply the upper bound of Theo-
rem 2.3. The lower bound follows from the explicit calculation of the leading
contributions to Ĥ2,1

ω,Z+(p,k) and Ĥ2,1
ω,Z−(p,k), which are both of order λ2;

one has essentially to check that they do not cancel out.
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