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Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica,

I-00133 Roma, Italy

H.R. Jauslin
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Abstract

We consider a class of Hamiltonians with three degrees of freedom that can

be mapped into quasi-periodically driven pendulums. The purpose of this

paper is to determine the threshold of the break-up of an invariant torus with

a specific frequency vector. We apply two techniques : the frequency map

analysis and renormalization-group methods. The renormalization transfor-

mation acting on a Hamiltonian is a canonical change of coordinates which is

a combination of a partial elimination of the irrelevant modes of the Hamil-

tonian and a rescaling of phase space around the considered torus. We give

numerical evidence that the critical coupling at which the renormalization

transformation starts to diverge is the same as the value given by the fre-
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quency map analysis for the break-up of the invariant torus. Furthermore, we

obtain by these methods numerical values of the threshold of the break-up of

the last invariant torus.
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I. INTRODUCTION

For Hamiltonian systems, the persistence of invariant tori influences the global proper-

ties of the dynamics. The study of the break-up of invariant tori is thus an important issue

to understand the onset of chaos. For two degrees of freedom, there are several numerical

methods to determine the threshold of the break-up of invariant tori : for instance, Greene’s

criterion [1], obstruction method [2], converse KAM [3,4], frequency map analysis [5–8], or

renormalization-group methods [9–11].

In this article, we propose to compute this threshold for a one-parameter family of Hamilto-

nians with three degrees of freedom and for a specific frequency vector, by two techniques :

by frequency map analysis and by renormalization. The frequency map analysis is valid

for any dimensions, and has been applied to systems with a large number of degrees of

freedom [5]. The set-up of renormalization-group transformations is also possible for any

dimensions in the framework of Ref. [12], but only systems with two degrees of freedom have

been investigated numerically.

We describe the renormalization-group transformation and we implement it numerically for

the spiral mean torus. The result is that the value of the critical coupling given by the

renormalization coincides up to numerical precision with the threshold of the break-up of

the spiral mean torus (of dimension 3) given by frequency map analysis.The two methods we

compare are completely independent, both conceptually and in their practical realizations.

The frequency map analysis is based on the analysis of trajectories, while the renormaliza-

tion is based on a criterion of convergence of a sequence of canonical transformations.

We conjecture, on the basis of this numerical result, that the renormalization-group trans-

formation converges up to the critical surface (the set of Hamiltonians where the torus of

the given frequency is critical, i.e. at the threshold of its break-up), at least in a region of

the critical surface of the Hamiltonian space where critical couplings are small enough (in

order that the elimination procedure is well-defined [13]).
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We consider a class of Hamiltonians with three degrees of freedom written in terms of

actions A = (A1, A2, A3) ∈ R
3 and angles ϕ = (ϕ1, ϕ2, ϕ3) ∈ T

3 (the 3-dimensional torus

parametrized, e.g., by [0, 2π]3)

Hε(A,ϕ) = H0(A) + εV (ϕ), (1.1)

where ε denotes the coupling parameter. In this article, we consider the particular class of

models for which the integrable part H0 is given by

H0(A) = ω0 ·A+
1

2
(Ω ·A)2, (1.2)

where ω0 is the frequency vector of the considered invariant torus, and Ω is another constant

vector non-parallel to ω0. We suppose that ω0 is incommensurate, i.e. there is no nonzero

integer vector ν such that ω0 · ν = 0.

Since the quantity ω⊥
0 · ϕ is conserved (where ω⊥

0 denotes a vector orthogonal to Ω and to

ω0), we remark that this model (1.1)-(1.2) is intermediate between two and three degrees of

freedom; in appropriate coordinates it can be interpreted as one degree of freedom driven

by two periodic forces with incommensurate frequencies. In particular, invariant tori in this

intermediate model act as barriers in phase space (limiting the diffusion of trajectories) in a

similar way as for two degrees of freedom Hamiltonian systems. We analyze in this article the

break-up of invariant tori with spiral mean frequencies for this particular types of models.

The method is however applicable to the case of full three degrees of freedom [12,19].

We are interested in the stability of the torus with frequency vector ω0. For the unperturbed

HamiltonianH0, this torus is located atA = 0. Kolmogorov-Arnold-Moser (KAM) theorems

were proven for Hamiltonians (1.1) provided that ω0 satisfies a Diophantine condition [14].

This theorem shows the existence of the torus with frequency vector ω0 for a sufficiently small

and smooth perturbation εV . The invariant torus is a small deformation of the unperturbed

one. The existence of the torus outside the perturbative regime is still an open question even

if efforts have been made to increase lower bounds for specific models (for a two dimensional

model, see Ref. [15,16]). Conversely, for sufficiently large values of the coupling parameter,
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it has been shown that the torus does no longer exist [3,4]. The aim of this paper is to

determine εc such that Hε has a smooth invariant torus of the given frequency for |ε| < εc,

and does not have this invariant torus for |ε| > εc.

The invariant torus we study (named the spiral mean torus) has the frequency vector

ω0 = (σ2, σ, 1),

where σ is the spiral mean, i.e. the real root of σ3 = σ + 1 (σ ≈ 1.3247). From some of its

properties, σ plays a similar role as the golden mean in the two degrees of freedom case [17].

The analogy comes from the fact that one can generate rational approximants by iterating a

single unimodular matrix N . In what follows, we call resonance an element of the sequence

{νk = Nk−1ν1, k ≥ 1} where ν1 = (1, 0, 0) and

N =













0 0 1

1 0 0

0 1 −1













.

The word resonance refers to the fact that the small denominators ω0 · νk appearing in

the perturbation series or in the KAM iteration, tend to zero geometrically as k increases

(ω0 ·νk = σ3−k → 0 as k → ∞). We notice that ω0 is an eigenvector of Ñ , where Ñ denotes

the transposed matrix of N . One can prove [12] that ω0 satisfies a Diophantine condition

of the form :

|ω0 · ν| > c|ν|−2,

where |ν| = (|ν1|2 + |ν2|2 + |ν3|2)1/2, and c ≈ 0.6.

II. RENORMALIZATION-GROUP TRANSFORMATION

The renormalization transformations are defined for a fixed frequency vector ω0, and

contain a partial elimination of the irrelevant modes (the non-resonant part) of the pertur-

bation, and a rescaling of phase space. The elimination of irrelevant modes is performed

by iterating a change of coordinates as in KAM theory. We remark that other perturbative
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techniques can be used instead, leading to similar results. The rescaling of phase space

combines a shift of the resonances, a rescaling of time, and a rescaling of the actions. The

aim is to change the scale of the actions to a smaller one (and a longer time scale). This

renormalization can be thought as a microscope in phase space. The non-resonant modes

are the ones which affect the motion at short time scales, and can be dealt with averaging

methods. We define the non-resonant modes to be the ones that satisfy the inequality

|ω0 · ν| >
1√
2
|ω0||ν|. (2.1)

This set of modes, denoted I−, is the interior of a cone around the ω0-direction in the space

of 3-dimensional vectors, with angle π/4. We define the resonant modes as the Fourier

modes which do not satisfy the condition (2.1), i.e. this set, denoted I+, is the complement

of I− in Z
3. Since νk does not satisfy Eq. (2.1) for k ≥ 1, I+ contains the resonances

that produce small denominators in the perturbation series or in the KAM theory. The

“frequency cut-off” (between resonant and non-resonant modes) restricts the Fourier modes

that can be eliminated in one renormalization step, without running into small denominator

problems (the non-resonant modes). As it is common with cut-offs, there is not a single

“natural” choice. More generally, other choices in the splitting of {eiν·ϕ} into resonant and

non-resonant modes should lead to the same results provided, e.g., that the ratio |ν|/|ω0 ·ν|

is bounded on I−, and that the shift of the resonances contracts non-zero vectors ν in I+

and maps them into I− after a finite number of iterations of the transformation [12,11].

The transformation, acting on a Hamiltonian H of the form

H(A,ϕ) = H0(A) + V (Ω ·A,ϕ), (2.2)

where H0 is given by Eq. (1.2), combines four steps:

(1) We shift the resonances νk+1 7→ νk: We require that the new angles ϕ′ satisfy

cos(νk+1 · ϕ) = cos(νk · ϕ′),
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for k ≥ 1. This is performed by the linear canonical transformation

(A,ϕ) 7→ (N−1A, Ñϕ).

Since N is an integer matrix with determinant one, this transformation preserves the T
3-

structure of the angles. We notice that the resonance ν1 is changed into ν0 = (0, 1, 1) which

satisfies the condition (2.1), i.e. it is a non-resonant mode : Some of the resonant modes are

turned into non-resonant ones by this linear transformation.

This step changes the frequency ω0 into Ñω0 = σ−1ω0 (since ω0 is an eigenvector of Ñ by

construction), and the vector Ω into ÑΩ. In order to keep a unit norm, we define the image

of Ω by

Ω′ =
ÑΩ

‖ÑΩ‖
. (2.3)

(2) We rescale the energy (or equivalently time) by a factor σ (i.e. we multiply the

Hamiltonian by σ), in order to keep the frequency fixed at ω0.

(3) We rescale the actions :

H ′(A,ϕ) = λH

(

A

λ
,ϕ

)

,

such that the mean-value of the coefficient of the quadratic term in H ′ is equal to (Ω′ ·A)2/2.

This normalization condition is essential for the convergence of the transformation. After

Steps 1, 2 and 3, the Hamiltonian expressed in the new variables is

H ′(A,ϕ) = λσH

(

1

λ
NA, Ñ−1ϕ

)

. (2.4)

For H given by Eq. (2.2), this expression becomes

H ′(A,ϕ) = ω0 ·A+
σ

2λ
‖ÑΩ‖2(Ω′ ·A)2 + λσV

(

‖ÑΩ‖
λ

Ω′ ·A, Ñ−1ϕ

)

. (2.5)

Thus the choice of the rescaling in the actions (Step 3) is

λ = σ‖ÑΩ‖2(1 + 2〈V (2)〉), (2.6)
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where 〈V (2)〉 denotes the coefficient of the mean-value of the quadratic part, in the repre-

sentation :

V (Ω′ ·A,ϕ) =
∑

j

V (j)(ϕ)(Ω′ ·A)j.

(4) We perform a near-identity canonical transformation UH that eliminates completely

the non-resonant part of the perturbation in H ′. This transformation satisfies the following

equation :

I
− (H ′ ◦ UH) = 0, (2.7)

where I− denotes the projection operator on the non-resonant modes acting on a Hamiltonian

H as

I
−H(A,ϕ) =

∑

ν∈I−

Hν(A)eiν·ϕ. (2.8)

Equation (2.7) is solved by a Newton method. We iterate a change of coordinates as in KAM

theory that reduces the non-resonant modes of the perturbation from ε to ε2. One step of

the elimination is performed by a Lie transformation US : (A,ϕ) 7→ (A′,ϕ′), generated by

a function S(A,ϕ). The expression of a Hamiltonian H in the new coordinates is given by

H ◦ US = exp(Ŝ)H ≡ H + {S,H}+ 1

2!
{S, {S,H}}+ · · · , (2.9)

where { , } is the Poisson bracket between two scalar functions of the actions and angles:

{f, g} =
∂f

∂ϕ
· ∂g

∂A
− ∂f

∂A
· ∂g
∂ϕ

, (2.10)

and the operator Ŝ is defined as ŜH ≡ {S,H}. The generating function S is chosen such

that the order ε of the non-resonant part of the perturbation vanishes. We construct re-

cursively a series of Hamiltonians Hn, starting with H1 = H ′, such that the limit H∞ is

canonically conjugate with H ′ but does not contain non-resonant modes, i.e. I−H∞ = 0.

One step of this elimination procedure, Hn 7→ Hn+1, is done by applying a change of coor-

dinates Un such that the order of the non-resonant modes of Hn+1 = Hn ◦ Un is ε2n, where

εn denotes the order of the non-resonant modes of Hn. At the n-th step, the order of the

non-resonant modes of Hn is ε2
n−1

0 , where ε0 is the order of the non-resonant modes of H ′. If
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this procedure converges, it defines a canonical transformation UH = U1 ◦ U2 ◦ · · · ◦ Un ◦ · · · ,

such that the final Hamiltonian H∞ = H ′ ◦ UH does not contain any non-resonant mode.

The specific implementation of one step of this elimination procedure will be described more

explicitly in the next sections. We will discuss two versions of this transformation : The

first one is a renormalization for Hamiltonians in power series in the actions, and the second

one is a slightly different version which eliminates only the non-resonant modes of the con-

stant and linear part in the actions of the rescaled Hamiltonian H ′, and which allows us to

define a renormalization within a space of quadratic Hamiltonians in the actions, following

Thirring’s approach of the KAM theorem [18].

It has been proven in Ref. [12] that, for a sufficiently small non-resonant part of the per-

turbation, the transformation UH is a well-defined canonical transformation such that a

Hamiltonian expressed in these new coordinates does not have non-resonant modes. The

domain of definition of UH has been extended to some non-perturbative domain in Ref. [13].

Concerning the quadratic case, we lack at this moment a theoretical background to prove

an analogous theorem. The convergence of the elimination procedure in both cases outside

the perturbative regime (ε small) is observed numerically.

In summary, the renormalization-group transformations we define act as follows : First,

some of the resonant modes of the perturbation are turned into non-resonant modes by a

frequency shift and a rescaling. Then, a KAM-type iteration eliminates these non-resonant

modes, while slightly changing the resonant modes.

A. Renormalization scheme for Hamiltonians in power series in the actions

We define in this section, one step of the elimination of the non-resonant modes of the

rescaled Hamiltonian H ′. The renormalization transformation acts on the following family

of Hamiltonians

H(A,ϕ) = ω0 ·A+
∞
∑

j=0

V (j)(ϕ)(Ω ·A)j , (2.11)
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with 〈V (0)〉 = 0. We suppose that 〈V (2)〉 is nonzero (in order to have a twist direction in the

actions). The approximations involved in this transformation are of two types : we truncate

the Fourier series of the functions V (j), i.e. we approximate a scalar function f of the angles

by

f [≤L](ϕ) =
∑

ν∈CL

fνe
iν·ϕ, (2.12)

where CL = {ν = (ν1, ν2, ν3) ∈ Z
3 |maxi |νi| ≤ L}, and we also neglect all the terms of order

O
(

(Ω ·A)J+1
)

that are produced by the transformation.

One step of the elimination procedure H 7→ H̃ = H ◦ US is constructed as follows : We

consider that V (j) depends on a small parameter ε, such that I−V (j) is of order ε. We define

H0, the integrable part of H as

H0(A) = ω0 ·A+ 〈V (2)〉(Ω ·A)2, (2.13)

and the perturbation ofH0 is denoted V ′ = H−H0 = V−〈V (2)〉(Ω·A)2. In order to eliminate

the non-resonant modes of f (j) to the first order in ε, we perform a Lie transformation

US : (A,ϕ) 7→ (A′,ϕ′) generated by a function S of order ε and of the form

S(A,ϕ) = i

J
∑

j=0

Y (j)(ϕ)(Ω ·A)j + aΩ · ϕ. (2.14)

The first terms of H̃ are H0+V ′+ {S,H0}+ {S, V ′}+O(ε2). The function S is determined

by imposing that the order ε vanishes :

I
−{S,H0}+ I

−V ′ + I
−{S, I+V ′} = 0. (2.15)

This condition determines the non-resonant modes of S. For the resonant ones, we choose

I
+S = 0. Thus we notice that the mean value of {S, I+V ′} is zero. The constant a eliminates

the linear term in the (Ω ·A)-variable, 〈V (1)〉, by requiring that 〈{S,H0}〉+ 〈V (1)〉Ω ·A = 0:

a = − 〈V (1)〉
2Ω2〈V (2)〉 . (2.16)

We solve Eq. (2.15) by a Newton method with an initial condition which satisfies I−{S,H0}+

I
−V = 0, since I

+V ′ is expected in general to be small. Then we compute H̃ = H ◦ US
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by calculating recursively the Poisson brackets ŜkH = ŜŜk−1H , for k ≥ 1. Denoting

Hk = ŜkH , H̃ becomes

H̃ =

∞
∑

k=0

Hk

k!
. (2.17)

B. Thirring’s scheme for quadratic Hamiltonians

We consider the following family of quadratic Hamiltonians in the actions and described

by three scalar functions of the angles

H(A,ϕ) = ω0 ·A+m(ϕ)(Ω ·A)2 + g(ϕ)Ω ·A+ f(ϕ), (2.18)

The KAM transformations are constructed such that the iteration stays within the space of

Hamiltonians quadratic in the actions [18]. In order to prove the existence of a torus with

frequency vector ω0 for Hamiltonian systems described by Eq. (2.18), it is not necessary

to eliminate m, but only g and f (the main point is that the torus with frequency vector

ω0 is located at A = 0 for any H with f = g = 0, even if H is not globally integrable).

The elimination of f and g can be achieved with canonical transformations with generating

functions that are linear in the action variables, and thus map the family of Hamiltonians

(2.18) into itself. This is very convenient numerically, as one only works with three scalar

functions m, g and f . The only approximation involved in the numerical implementation

of the transformation is a truncation of the Fourier series of these functions, according to

Eq. (2.12).

In this section, we describe one step of the elimination of the non-resonant modes H 7→

H̃ = H ◦ US. We assume that g and f depend on a (small) parameter ε, in such a way that

I
−g and I

−f are of order ε. The idea is to eliminate the non-resonant modes of g and f to

first order in ε, at the expense of adding terms that are of order O(ε) in the resonant modes

and of order O(ε2) in the non-resonant modes. This is performed by a Lie transformation

US : (A,ϕ) 7→ (A′,ϕ′) generated by a function S of order ε linear in the action variables,

of the form

S(A,ϕ) = Y (ϕ)Ω ·A+ Z(ϕ) + aΩ · ϕ , (2.19)
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characterized by two scalar functions Y , Z, and a constant a. The expression of the Hamil-

tonian in the new variables is obtained by Eq. (2.9). A consequence of the linearity of S in

A is that the Hamiltonian H̃ is again quadratic in the actions, and of the form

H̃(A,ϕ) = ω0 ·A+ m̃(ϕ)(Ω ·A)2 + g̃(ϕ)Ω ·A+ f̃(ϕ). (2.20)

This can be seen by this simple argument : Given a quadratic function in the (Ω·A)-variable

and a linear function S, then ŜH is again quadratic in the (Ω ·A)-variable. The derivatives

∂H/∂A and ∂S/∂ϕ are linear in the (Ω·A)-variable, and ∂H/∂ϕ is quadratic, while ∂S/∂A

is constant in this variable. Therefore, ŜH given by Eq. (2.10) is quadratic. Consequently,

iterating this argument, exp(Ŝ)H is also quadratic. We notice that the vector Ω remains

unchanged during each step of the elimination.

The functions Y , Z, and the constant a are chosen in such a way that I−g̃ and I
−f̃ vanish to

order ε. The constant a corresponds to a translation in the actions, which has the purpose

of eliminating the mean value of the linear term in the (Ω ·A)-variable. Then we express

H̃ by calculating recursively the Poisson brackets ŜkH = ŜŜk−1H , for k ≥ 1, like in the

previous section.

We notice that for some purposes it is more convenient to eliminate also the non-resonant

part of m, together with the one of g and f (see the remarks in Refs [12,11]). But such

elimination procedure generates arbitrary orders in the Ω ·A-variable and this leads to the

first version of the transformation. The advantage we have to work with this second version of

the elimination procedure is that the Hamiltonians (2.18) are described by only three scalar

functions of the angles. Thus it is numerically more efficient since the renormalization map

is of lower dimension. Concerning the renormalization transformation for Hamiltonians in

power series in the actions, we truncate the Fourier series of each scalar function of the angles

with a cut-off parameter L, and the Taylor series with a cut-off parameter J . For fixed L and

J , the dimension of the renormalization map is equal to (J+1)(2L+1)3+2. Concerning the

renormalization defined for quadratic Hamiltonians, the renormalization map is of dimension

3(2L+ 1)3 + 2.
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Remark : Another advantage to work the Thirring’s version of the renormalization is that it

can be generalized more easily to non-degenerate Hamiltonians H(A,ϕ) = H0(A)+V (A,ϕ)

with Rank ∂2H0/∂A
2 ≥ 1. (see Ref. [19]).

III. DETERMINATION OF THE CRITICAL COUPLING

We consider the following quasi-periodically driven pendulum model :

H =
1

2
p2 − p+ ε (cos x+ cos(x+ ν1t) + cos(x+ ν2t)) , (3.1)

with the frequencies ν1 = σ + 1 and ν2 = σ2 + 1. This model can be mapped into the

following degenerate Hamiltonian system with three degrees of freedom :

Hε(A,ϕ) = ω0 ·A+
1

2
(Ω ·A)2 + εf(ϕ) , (3.2)

where Ω = (1, 1,−1) and the perturbation f is given by

f(ϕ) = cosϕ1 + cosϕ2 + cosϕ3, (3.3)

This can be seen by considering the three angles ϕ′
1 = x, ϕ′

2 = ν1t mod 2π, and ϕ′
3 =

ν2t mod 2π. The Hamiltonian (3.1) becomes :

H =
1

2
A

′2
1 − A′

1 + ν1A
′
2 + ν2A

′
3 + ε (cosϕ′

1 + cos(ϕ′
1 + ϕ′

2) + cos(ϕ′
1 + ϕ′

3)) , (3.4)

where we added ν1A
′
2+ν2A

′
2 to the Hamiltonian in order to satisfy the equations of motion for

the new variables ϕ′
2 and ϕ′

3. The linear canonical transformation (A′,ϕ′) = (MA, M̃−1ϕ)

with

M =













1 1 −1

0 1 0

1 0 0













,

maps Hamiltonian (3.4) into Hamiltonian (3.2).
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A. Torus with frequency vector ω0

We are looking at the break-up of the invariant torus with frequency vector ω0 which is

located at Ω ·A = 0 for Hamiltonian (3.2) with ε = 0. We notice that this torus is located at

p = 0 for Hamiltonian (3.1) and its frequency is equal to −1. The three main resonances (of

order ε) are located at p = 1, p = −σ, and p = −σ2, and thus the torus is located in between

the resonances p = −σ and p = 1. We first discuss two rough estimates of the critical cou-

pling obtained by some drastic simplifications : (a) Applying Chirikov’s criterion [20] gives

the following approximate value for the critical coupling εc ≈ (σ + 1)2/16 ≈ 0.3377. (b) If

we neglect the term cos(x+ ν2t) (i.e. the resonance located at p = −σ2) in the perturbation

of Eq. (3.1), we can apply the renormalization procedure described in Ref. [21] for Hamil-

tonians with two degrees of freedom since neglecting the mode cos(x+ ν2t) is equivalent to

neglecting the terms in A′
3, ϕ

′
3, i.e. (σ

2 + 1)A′
3 and cos(ϕ′

1 + ϕ′
3) in the Hamiltonian (3.4).

This method gives εc ≈ 0.1048 for the threshold of the break-up of the invariant torus with

frequency vector ω0 = (−1, σ+1) (this value of εc is confirmed by frequency map analysis).

Using the complete renormalization procedure described in the preceding sections, we obtain

the following result : For the Hamiltonian (3.2), we fix the cut-off parameters L and J of

the renormalization transformation, and we take successively larger couplings ε in order to

determine whether the renormalization transformation R converges to an integrable Hamil-

tonian, or whether it diverges. By a bisection procedure, we determine the critical coupling

εc(L, J) such that as n tends to +∞ :

RnHε → H0 for |ε| < εc,

RnHε → ∞ for |ε| > εc.

Table 1 gives the values of εc as a function of L and J computed by the two renormalization

transformations. We notice that the values εc(L, J) converge to εc ≈ 0.0886 as L and J

grow.
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B. Frequency Map Analysis

Frequency Map Analysis [5–8] allows to study the destruction of KAM tori by looking at

the regularity of the frequency map defined from the action like variables to the numerically

determined frequencies. In the present case (3.1), the frequency map is very simple as the

system is equivalent to a one degree of freedom system with a quasiperiodic perturbation

[8]. The angle variable x can then be fixed to x = 0, and we are left to a one dimensional

map F : R −→ R, p0 −→ ν, where ν is determined numerically from the output of the

numerical integration of (p(t), x(t)) over a time interval of length T , starting with initial

conditions (p(0), x(0)) = (p0, 0) [8]. On the set of KAM tori F is regular, or more precisely,

it can be extended to a smooth function. Thus, when F appears to be non regular, this is

an indication that all tori are destroyed in the corresponding interval. This allows to obtain

a global vision of the dynamics of the system, as illustrated by figure 1, where ν = F (p0) is

plotted versus p0 for ε = 0.09 and ε = 0.12, and for p0 ∈ [−2.5, 2.5] for a moderate precision

(T = 1000). It seems clear on these figures that in the region between the two resonances

ν = −1 − σ2 and ν = 0, there are no tori left for ε = 0.12, while many of them remain in

the region ν ∈ [−1, 0] for ε = 0.09.

In order to have a more detailed view, for the destruction of the tori with frequency

ν = −1, we have extended the time interval to T = 500000, and reduced very much the

stepsize in p0 (figure 2). With these settings, it appears clearly that the torus with frequency

ν = −1 is destroyed for ε = 0.0895 (b), while the behavior of the frequency map appears

to be very regular for ε = 0.089 (a). It should be noted that the frequency map analysis

provides a criterion for the destruction of tori. The fact that the frequency curve appears

to be irregular provides an evidence that the tori are destroyed, but when the curve is

regular, a higher accuracy (which means a longer time span T ) could reveal the destruction

of additional tori.

For ε = 0.0895, all tori in the vicinity of ν = −1 are destroyed, which is in agreement

with the value εc ≈ 0.0886 found with the renormalization technique, as this is the largest
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value of ε for which the renormalization converges.

C. Last KAM torus

It appears clearly in figure 1 that the torus with frequency ν = −1 is not the last torus

to be destroyed in the interval of frequencies [−1−σ2, 0], and that many tori still survive for

ε > 0.0895. We thus have searched for the value of the parameter ε for which the last torus

disappears. This is done by increasing the value of the parameter ε until all tori disappear.

In this procedure, at each stage we identify the resonant islands and chaotic regions, and

then decrease the stepsize in p0. This allows one to obtain very refined details as one gets

close to the critical value of ε.

The frequencies of the last invariant torus can be investigated by frequency map analysis.

This method gives a critical threshold at about εc ≈ 0.11 (see Fig. 3). For Hamiltonian (3.1),

the last invariant torus is located between the resonances p = 1 and p = −σ at p0 ≈

0.354. The corresponding frequencies for the last three-dimensional torus for the family of

Hamiltonians (3.2) are p0 + σ2, p0 + σ and 1− p0.

A nearby invariant torus has the frequencies (σ + 2)(1 − p0), (σ−2 + 2)(1 − p0) and

1 − p0. The critical coupling for the break-up of this invariant torus can be computed by

the renormalization transformation defined in Sec. II, mainly by defining first a unimodular

transformation that maps the frequencies of the torus into the frequencies σ2, σ and 1 (the

perturbation is then different from Eq. (3.3)). The renormalization gives εc ≈ 0.11.

If we neglect the resonance located at p = −σ2, renormalization methods and frequency map

analysis show that there are two last KAM tori, one located at p ≈ 0.112 and the other one

at p ≈ −0.436, with a critical threshold of εc ≈ 0.149. Thus the effect of the third resonance

at p = −σ2 is to destabilize the motion in the region between p = 1 and p = −σ closer to

p = −σ (since the third resonance is closer to p = −σ). Consequently the last KAM torus

is located nearer p = 1 than in the system without the third resonance, and the value of the

threshold of global stochasticity (break-up of the last KAM surface) is smaller.
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TABLES

RG1 RG2

L J=2 J=3 J=4 J=5 J=6

2 0.089230 0.090104 0.089924 0.089936 0.08988 0.089114

3 0.087744 0.088466 0.088438 0.088379 0.088326 0.088673

4 0.087672 0.088392 0.088283 0.088194 0.088238 0.088645

5 0.087667 0.088384 0.088234 0.088184 0.088224 0.088649

6 0.087666 0.088384 0.088237 0.088186 0.088226 0.088646

15 - - - - - 0.088644

TABLE I. Critical coupling εc as a function of the cut-off parameters L and J , computed with

the transformation RG1 defined in Sec. IIA, and with the transformation RG2 defined in Sec. II B.
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-4

-3

-2

-1

0

1

2

-4

-3

-2

-1

0

1

2

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

(a) (b)

p0 p0

ν


FIG. 1. Frequency map of the Hamiltonian with parameter ε = 0.09 (a) and ε = 0.12 (b). The

dotted lines correspond to ν = 0,−1,−1− σ,−1− σ2. T = 1000.
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FIG. 2. Frequency map of the Hamiltonian with parameter ε = 0.089 (a) and ε = 0.0895 (b).

ν+1 is plotted versus (p0−p00)×1010, where p00 = −3.3307×10−4. The dotted lines corresponds

to ν = −1. T = 500000.
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FIG. 3. Determination of the last KAM tori for the Hamiltonian (3.1). For each selected value

of the parameter ε, the set of frequencies ν for which tori are not destroyed is plotted versus ε.

The critical value of ε for which no tori will survive is thus εc ≈ 0.11.
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