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Abstract: A Cardan joint with manufacturing errors is usually modeled as an RCCC linkage. This first part, after

a brief review of dual numbers, summarizes the main equation for the kinematic and static analysis of an RCCC

linkage.
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1. INTRODUCTION

Cardan joints are common devices for transmitting the motion between misaligned intersecting axes. Although

mainly applied in automotive applications, their capability of easy mounting, of resisting high loads and commercial

availability makes them also an attractive solution, as a substitute of spherical pairs, in parallel robots.

At the book level, the most relevant sources of informations on the Cardan joint are the monograph authored

by F. Duditza [1] and the handbook edited by E.R. Wagner [2]. The book of Duditza, originally published in 1966

and translated in many languages, contains the description of different mathematical models for kinematic, dynamic,

vibrational and stress analysis of polycardan mechanisms.

Although the structure of the Cardan joint has been known for centuries, only in modern times a complete

dynamic analysis has been presented in a series of papers authored by F. Freudenstein and his coworkers [3, 4, 5, 9].

Purpose of this paper is to report the main equations for kinematic, static, dynamic and mechanical efficiency

analysis of a Cardan joint subjected to manufacturing tolerances.

The paper is splitted in two parts. The first part deals with kinematics and statics of the Cardan joint. The second

part discuss dynamic analysis and mechanical efficiency analysis. For completeness, the first part includes also a

brief explanation of dual numbers algebra.

The modeling of manufacturing errors in Cardan joints is introduced by considering a kinematically equivalent

RCCC mechanism. In the first part of the paper a kinematic and static analysis of the RCCC mechanism by means

of the dual numbers algebra is preliminarly carried out. Then, the effects of friction are included. For this purpose,

the following hypotheses are herein adopted:

- Coulomb friction;

- absence of stiction;

- negligible inertia forces;

- absence of backlash in the kinematic pairs;

- rigid bodies.

2. NOMENCLATURE

- ai : minimum distance between zi and zi+1 axes;

- Fix,Fiy,Fiz joint forces cartesian components at the ith joint;

- Fix,Fiy,Fiz joint forces at the ith joint;

- xiyizi: moving cartesian system attached to the ith body, as in the Denavit-Hartenberg convention;

-
[
J

(ik)
C(i)

]
: Matrix of inertia of body i expressed in C− xikyik zik reference components.
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Figure 1: Denavit-Hartenberg parameters

- si : relative linear displacement of the links measured according to the Denavit-Hartenberg convention (see

Figure 1);

- αi angle between zi and zi+1 axes;

- ε dual unity
(
ε2 = 0

)

- ωi: angular velocity of the ith body, measured in the cartesian system o− xiyizi;

- θi : relative angular displacement of the links measured according to the Denavit-Hartenberg convention (see

Figure 1);

- thêdenote dual quantities;

- Dots denote differentiation w.r.t. time.

3. BBRIEF REVIEW OF DUAL NUMBER ALGEBRA

Dual numbers have been introduced by W. Clifford in 1873. A classical work dedicated to dual numbers has been

authored by E. Study [6]. Modern reference works are due to R. Beyer [7], F.M Dimentberg [8] and I.S. Fischer [9].

One of the first applications of dual numbers to kinematic analysis of spatial mechanisms has been presented by F.M

Dimentberg (1952) and J. Denavit [10] (1953).

A dual number â is defined by the sum

â = a + εa0 (1)

where by definition ε 6= 0 and ε2 = 0. The real numbers a e a0 are, respectively, the real and dual components. In

pure dual number a = 0.

The parameter p of a dual number is the ratio p = a
a0

.

3.1 Algebra of dual numbers

For the dual numbers the basic algebraic operations are defined as follows:

Sum and subtraction

â± b̂ = (a±b)+ ε(a0 ±b0) . (2)

Product

â b̂ = (a + εa0) (b + εb0) = ab + ε(ab0 + a0b) (3)

Division
â

b̂
=

a + εa0

b + εb0
=

a

b
+ ε

a0b−ab0

b2
. (4)

From this expression is clear that the division by a pure dual number is not defined.

An ordinary function f (x̂) of dual argument x̂ = x + εx0, is decomposed into a real and dual part by the formula

f (x̂) = f (x0)+ ε
d f (x0)

dx0
. (5)

A dual angle is defined by the expression

θ̂ = θ+ εs , (6)

where, with reference to two skew lines, θ is the minimum angle between the lines and s the minimum distance.

Table 3.1 summarizes the definition of most common functions of dual numbers.
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Table 1: Definition of noteworthy dual functions d̂ = x + εy

√
d̂ =

√
x + ε

y

2
√

x
asind̂ = asinx + ε

y√
1− x2

ed̂ = ex (1 + εy) acosd̂ = acosx− ε
y√

1− x2

loged̂ = logex + ε
y
x atan d̂ = atanx + ε

y

1+x2

log10d̂ =
loged̂
loge10

sinh d̂ = sinhx + εycoshx

d̂
d̂2

1 = x
x2
1 + ε

(
y1x2x

x2−1
1 + y2x

x2
1 loge x1

)
cosh d̂ = coshx + εysinhx

sin d̂ = sinx + εycosx asinh d̂ = asinhx + ε
y√

x2 + 1
cos d̂ = cosx− εysinx acosh d̂ = acoshx− ε

y√
x2 −1

tan d̂ = tanx + ε
y

cos2 x
atanh d̂ = atanhx + ε

y

1− x2

All trigonometric identities, such as cos2 θ̂+ sin2
θ̂ = 1, remain valid.

The dual function of a dual variable is defined as follows

ŷ(x̂) = f (x,x0)+ ε f0 (x,x0) , (7)

where f (x,x0) e f0 (x,x0) are real functions of real variables x and x0. In order ŷ be analytic, the functions f and f0

must satisfy the conditions
∂ f
∂x0

= 0 and
∂ f
∂x

= ∂ f0
∂x0

.

3.2 Dual vectors

Over the ring D of the dual numbers a three dimensional dual vector space is defined. Two vectors ~F and ~M of a

dual vector

F̂ = ~F + ε~M , (8)

have both origin at the origin of the Cartesian coordinate system. Dual vector are conventionally denoted with capital

letters (e.g. F̂).

3.3 Software tools

There are different software choices to implement formulas using directly the dual formalism. The language Ch1,

developed by H. Cheng [13] is the best tool for numerical computations involving dual numbers. C and Fortran

90 users may take advantage of the type procedures written by I.S. Fischer [9] and E.D. Fasse [12]. Maple V

worksheets with procedures for the algebraic handling of dual quantitis in symbolic form are reported in the thesis

of G. Alba Perez [14].

4. Kinematic analysis of the RCCC linkage

4.1 Position analysis

Let us denote with

θ̂i = θi + εsi , α̂i = αi + εai , (9)

the dual numbers which define, respectively, the relative position between adjacent links and the geometry of the ith

link.

With reference to Figure 1, the transform matrix from coordinate system oi+1 − xi+1yi+1zi+1 to oi − xiyizi, in

terms of such numbers is given by2

[
Â
]i

i+1
=




cθ̂i −cα̂isθ̂i sα̂isθ̂i

sθ̂i cα̂icθ̂i −sα̂icθ̂i

0 sα̂i cα̂i



 . (10)

The closure condition for the RCCC mechanism shown in Figure 2 is expressed by the matrix product

[
Â
]1

2

[
Â
]2

3

[
Â
]3

4

[
Â
]1

4
= [I] , (11)

1The software is freely avalable for academic use from www.softintegration.com.
2c = cos and s = sin
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where [I] is the identity matrix. The above equation can be rewritten in the form
[
Â
]2

3

[
Â
]3

4
=

[
ÂT

]1

2

[
ÂT

]1

4
.

Carrying out the matrix products and equating the elements on the same rows and columns one obtains [9]:

d̂ sin θ̂4 + êcos θ̂4 + f̂ = 0 , (12)

where

d̂ = sα̂1sα̂3sθ̂1 , ê = −sα̂3

(
cα̂1sα̂4 + sα̂1cα̂4cθ̂1

)
, f̂ = −cα̂2 + cα̂3

(
cα̂1cα̂4 − sα̂1sα̂4cθ̂1

)
, (13)

and

sθ̂2 =
sθ̂1

(
cα̂3sα̂4 + sα̂3cα̂4cθ̂4

)
+ sα̂3cθ̂1sθ̂4

sα̂2
, cθ̂2 =

cα̂1cα̂2 − cα̂3cα̂4 + sα̂3sα̂4cθ̂4

sα̂1sα̂2
, (14)

sθ̂3 =
sα̂1

(
sθ̂1cθ̂4 + cα̂4cθ̂1sθ̂4

)
+ cα̂1sα̂4sθ̂4

sα̂2
, cθ̂3 =

sα̂1sα̂4cθ̂1 + cα̂2cα̂3 − cα̂1cα̂4

sα̂2sα̂3
. (15)

Thus, the dual angles θ̂2, θ̂3 and θ̂4 are computed as follows 3:

θ̂4 = 2tan−1
−d̂±

√
d̂ 2 + ê 2 − f̂ 2

f̂ − ê
, θ̂2 = ATAN2

(
sin θ̂2,cos θ̂2

)
, θ̂3 = ATAN2

(
sin θ̂3,cos θ̂3

)
. (16)
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Figure 2: The RCCC kinematically equivalent linkage

4.2 Velocity analysis of RCCC mechanism

Let

v̂i = θ̇i + εṡi , (17)

(i = 1,2,3,4) be the dual relatve speeds in reference joints.

In terms of dual vectors, such velocities are expressed as

{
V̂C1(1,4)

}(1)
=

{
0 0 v̂1

}T
,

{
V̂C2(2,1)

}(2)
=

{
0 0 v̂2

}T
, (18a)

{
V̂C3(3,2)

}(3)
=

{
0 0 v̂3

}T
,

{
V̂C4(4,3)

}(4)
=

{
0 0 v̂4

}T
. (18b)

The absolute dual speed of body 2, referred to point C2 and with components expressed in coordinate system

o2 − x2y2z2 is obtained as the sum of two dual relative velocity vectors

{
V̂C2(2,4)

}(2)
=

{
V̂C2(2,1)

}(2)
+

{
V̂C2(1,4)

}(2)
=

{
V̂C2(2,1)

}(2)
+

[
Â

]2

1

{
V̂C1(1,4)

}(1)
. (19)

3ATAN2 functions with dual numbers as arguments can be computed by means of the procedure presented in the Appendix of reference [15].
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Similarly, the absolute dual speed of link 2, referred to point C3 and expressed in coordinate system 3, is

{
V̂C3(2,4)

}(3)
=

{
V̂C3(2,3)

}(3)
+

{
v̂C3(3,4)

}(3)
= −

{
V̂C3(3,2)

}(3)
−

[
Â
]3

4

{
V̂C4(4,3)

}(4)
. (20)

Between such velocities the following relation hold

{
V̂C3(2,4)

}(3)
=

[
Â
]3

2

{
V̂C2(2,4)

}(2)
(21)

From (21), taking into account (18), (19), (20), follows the system




0 0 sα̂3sθ̂3

sα̂2 0 −sα̂3cθ̂3

cα̂2 1 cα̂3










v̂2

v̂3

v̂4




 =






−v̂1sα̂1sθ̂2

−v̂1

(
cα̂1sα̂2 + sα̂1cα̂2cθ̂2

)

−v̂1

(
cα̂1cα̂2 − sα̂1sα̂2cθ̂2

)





, (22)

whose solution is

v̂2 = −





(
cα̂1sα̂2 + sα̂1cα̂2cθ̂2

)
sθ̂3 + sα̂1sθ̂2cθ̂3

sα̂2sθ̂3



 v̂1 , (23)

v̂3 =





(
sα̂2cα̂3 + cα̂2sα̂3sθ̂3

)
sθ̂2 + sα̂3sθ̂3cθ̂3

sα̂2sα̂3sθ̂3



sα̂1v̂1 , (24)

v̂4 = − sα̂1sθ̂2

sα̂3sθ̂3

v̂1 . (25)

Static analysis of the RCCC linkage

Let us denote with the dual numbers

F̂x j = Fx j + εMx j , (26)

F̂y j = Fy j + εMy j , (27)

F̂z j = Fz j + εMz j , (28)

for j = 1,2,3,4, the joint forces.

Imposing the static equilibrium of the links one obtains4:

F̂x1 =
cθ̂1sα̂2cθ̂2 − sα̂2sθ̂2cα̂1sθ̂1

sα̂1sα̂2sθ̂2

F̂z1 +
sα̂2sθ̂1sθ̂2 − cθ̂1cθ̂2cα̂1sα̂2 − cθ̂1cα̂2sα̂1

sα̂1sα̂2sθ̂2

F̂z2 +
cθ̂1

sα̂2sθ̂2

F̂z3 (29)

F̂y1 =
cθ̂1sθ̂2cα̂1sα̂2 + sθ̂1sα̂2cθ̂2

sα̂1sα̂2sθ̂2

F̂z1 −
sθ̂1sα̂2cθ̂2cα̂1 + sα̂1sθ̂1cα̂2 + sα̂2sθ̂2cθ̂1

sα̂1sα̂2sθ̂2

F̂z2 +
sθ̂1

sα̂2sθ̂2

F̂z3 (30)

F̂x2 =
sα̂2cθ̂2

sα̂1sα̂2sθ̂2

F̂z1 −
sα̂1cα̂2 + sα̂2cθ̂2cα̂1

sα̂1sα̂2sθ̂2

F̂z2 +
F̂z3

sα̂2sθ̂2

(31)

F̂y2 =
F̂k1

sα̂1
− cα̂1

sα̂1
F̂z2 (32)

F̂x3 =
sα̂2

sα̂1sα̂2sθ̂2

F̂z1 −
sα̂1cθ̂2cα̂2 + sα̂2cα̂1

sα̂1sα̂2sθ̂2

F̂z2 +
cθ̂2

sα̂2sθ̂2

F̂z3 (33)

F̂y3 =
F̂z2

sα̂2
− cα̂2

sα̂2
F̂z3 (34)

4The authors found that many of the algebraic expressions for the static force analysis of the RCCC linkage presented in [9] have some

misprints. For this reason, all the equations have been deduced again and reported (hopefully) correct in this paper.
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F̂x4 =
cθ̂3

sα̂1sθ̂2

F̂z1 −
cθ̂3cθ̂2sα̂1cα̂2 + cθ̂3sα̂2cα̂1 − sθ̂3sα̂1sθ̂2

sα̂1sα̂2sθ̂2

F̂z2 −
sθ̂3sθ̂2cα̂2 − cθ̂3cθ̂2

sα̂2sθ̂2

F̂z3 (35)

F̂y4 =− sα̂2cα̂3sθ̂3

sα̂1sα̂2sθ̂2

F̂z1 +
cα̂3sθ̂3cθ̂2sα̂1cα̂2 + cα̂3sθ̂3sα̂2cα̂1 + cα̂3cθ̂3sα̂1sθ̂2

sα̂1sα̂2sθ̂2

F̂z2

− cα̂3sθ̂3cθ̂2 + cα̂3cθ̂3sθ̂2cα̂2 − sα̂3sα̂2sθ̂2

sα̂2sθ̂2

F̂z3 (36)

F̂z4 =
sα̂3sθ̂3

sα̂1sθ̂2

F̂z1 −
cθ̂2sθ̂3sα̂1cα̂2sα̂3 + sθ̂2cθ̂3sα̂1sα̂3 + sθ̂3cα̂1sα̂2sα̂3

sα̂1sα̂2sθ̂2

F̂z2

+
cθ̂2sθ̂3sα̂3 + sθ̂2cθ̂3cα̂2sα̂3 + sθ̂2sα̂2cα̂3

sα̂2sθ̂2

F̂z3 (37)

In the frictionless RCCC linkage the following equalities hold: Fz2 = Fz3 = Fz4 = 0, Mz2 = Mz3=0.
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