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Let µ be a probability measure on R
d with finite moments of all orders. Then we

can define the creation operator a+(j), the annihilation operator a−(j), and the
neutral operator a0(j) for each coordinate 1 ≤ j ≤ d. We use the neutral operators

a0(i) and the commutators [a−(j), a+(k)] to characterize polynomially symmet-
ric, polynomially factorizable, and moment-equal probability measures. We also
present some results for probability measures on the real line with finite support,
infinite support, and compact support.

1. Creation, annihilation, and neutral operators

Let µ be a probability measure on R
d with finite moments of all orders,

namely, for any nonnegative integers i1, i2, . . . , id,

∫

Rd

|xi1
1 xi2

2 · · ·xid

d | dµ(x) < ∞,

1
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where x = (x1, x2, . . . , xd) ∈ R
d. Let F0 = R and for n ≥ 1 let Fn be the

vector space of all polynomials in x1, x2, . . . , xd of degree ≤ n. Then we

have the inclusion chain

F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ L2(µ).

Next, define G0 = R and for n ≥ 1 define Gn to be the orthogonal

complement of Fn−1 in Fn. Then the spaces Gn, n ≥ 0, are orthogonal.

Define a real Hilbert space H by

H =
∞

⊕

n=0

Gn (orthogonal direct sum).

For each n ≥ 0, let Pn denote the orthogonal projection of H onto Gn.

Let Xj , 1 ≤ j ≤ d, be the multiplication operator by xj . Accardi and

Nahni5 have recently observed that for any 1 ≤ j ≤ d and n ≥ 0

XjGn ⊥ Gk, ∀ k 6= n − 1, n, n + 1,

where G−1 = {0} by convention. Then they used this fact to obtain the

following fundamental recursion equality

XjPn = Pn+1XjPn + PnXjPn + Pn−1XjPn, n ≥ 0, (1)

where P−1 = 0 by convention. When d = 1, this equality reduces to the

well-known recursion formula

xPn(x) = Pn+1(x) + αnPn(x) + ωnPn−1(x), (2)

where Pn(x)’s are orthogonal polynomials with respect to µ, Pn(x) is a

polynomial of degree n with leading coefficient 1, and {αn, ωn}’s are the

Jacobi-Szegö parameters of µ.

Now, for each n ≥ 0 and 1 ≤ j ≤ d, define three operators by

D+
n (j) = Pn+1XjPn : Gn −→ Gn+1,

D−

n (j) = Pn−1XjPn : Gn −→ Gn−1,

D0
n(j) = PnXjPn : Gn −→ Gn.

Using these operators, we can define for each 1 ≤ j ≤ d three densely

defined linear operators a+(j), a−(j), and a0(j) from H into itself by

a+(j)|Gn
= D+

n (j), n ≥ 0,

a−(j)|Gn
= D−

n (j), n ≥ 0,

a0(j)|Gn
= D0

n(j), n ≥ 0.
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The operators a+(j), a−(j), and a0(j) are called creation, annihilation,

and neutral operators, respectively. The collection

{H, a+(j), a−(j), a0(j) | 1 ≤ j ≤ d}

is called the interacting Fock space of the probability measure µ.

For convenience, we will use the term “CAN operators” to call the

creation, annihilation, and neutral operators. By using the multiplication

and CAN operators, we can rewrite the fundamental recursion equality in

Equation (1) as the equality in the next theorem.

Theorem 1.1. For each 1 ≤ j ≤ d, the following equality holds

Xj = a+(j) + a−(j) + a0(j). (3)

We can use the equality in Equation (3) to extend the Accardi-Bożejko

unitarity theorem1 to the multi-dimensional case. In this paper we will

present some results to answer the following question.

Question: What properties of µ are determined by the associated CAN

operators?

2. Polynomially symmetric measures

Definition 2.1. A probability measure µ on R
d is said to be polynomially

symmetric if
∫

Rd

xi1
1 xi2

2 · · ·xid

d dµ(x) = 0

for all nonnegative integers i1, i2, . . . id with i1 + i2 + · · ·+ id being an odd

integer.

Note that if µ is a symmetric measure with finite moments of all orders,

then it is polynomially symmetric. But the converse is not true. Consider

the function

θ(x) = e−(ln x)2 sin(2π lnx), x > 0. (4)

It is well-known that
∫

∞

0

xnθ(x) dx = 0, ∀n = 0, 1, 2, . . . (5)
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Define a function

f(x) =















c θ+(x), if x > 0,

0, if x = 0,

c θ−(−x), if x < 0,

where θ+ and θ− are the positive and negative parts of θ, respectively, and

the constant c is chosen such that
∫

∞

−∞
f(x) dx = 1. By using Equation (5)

one can easily check that the probability measure

dµ(x) = f(x) dx

is polynomially symmetric. Obviously, µ is not symmetric.

The next theorem has been proved in our paper2.

Theorem 2.1. A probability measure µ on R
d with finite moments of

all orders is polynomially symmetric if and only if a0(j) = 0 for all

j = 1, 2, . . . , d.

3. Polynomially factorizable measures

Definition 3.1. A probability measure µ on R
d is said to be polynomially

factorizable if
∫

Rd

xi1
1 xi2

2 · · ·xid

d dµ(x) =

∫

Rd

xi1
1 dµ(x)

∫

Rd

xi2
2 dµ(x) · · ·

∫

Rd

xid

d dµ(x)

for all nonnegative integers i1, i2, . . . id.

Obviously, if µ is a product measure with finite moments of all orders,

then it is polynomially factorizable. However, the converse is not true.

Consider two modified functions of the function θ in Equation (4):

θ1(x) = e−(ln x)2
[

1 + sin(2π lnx)
]

, x > 0,

θ2(x) = e−(ln x)2
[

1 − sin(2π lnx)
]

, x > 0.

Define a function g(x, y) on R
2 by

g(x, y) =







k
[

θ1(x) sin2 y + θ2(x) cos2 y
]

e−y, if x > 0, y > 0,

0, elsewhere,

where the constant k is chosen so that
∫

R2 g(x, y) dxdy = 1. Then the

probability measure

dµ(x, y) = g(x, y) dxdy
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can be shown to be polynomially factorizable, but not a product measure.

The next theorem follows from Theorem 4.10 in our paper2.

Theorem 3.1. A probability measure µ on R
d with finite moments of

all orders is polynomially factorizable if and only if for any i 6= j,

the operators in {a+(i), a−(i), a0(i)} commute with the operators in

{a+(j), a−(j), a0(j)}.

4. Probability measures by means of the CAN operators

Let µ be a probability measure on R
d with finite moments of all orders. We

have the associated CAN operators a+(j), a−(j), and a0(j). Define a d× 1

matrix A0
µ and a d × d matrix A−,+

µ by

A0
µ =















a0(1)

a0(2)
...

a0(d)















,

A−,+
µ =

(

[

a−(j), a+(k)
]

)d

j,k=1

=













[

a−(1), a+(1)
]

· · ·
[

a−(1), a+(d)
]

...
. . .

...
[

a−(d), a+(1)
]

· · ·
[

a−(d), a+(d)
]













,

where [a, b] = ab − ba, the commutator of a and b.

Definition 4.1. Two probability measures µ and ν with finite moments of

all orders are said to be moment-equal if
∫

Rd

m(x) dµ(x) =

∫

Rd

m(x) dν(x)

for all monomial functions m(x).

The next two theorems have been proved in our paper3.

Theorem 4.1. Two probability measures µ and ν on R
d with finite

moments of all orders are moment-equal if and only if A0
µ = A0

ν and

A−,+
µ = A−,+

ν .
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Theorem 4.2. A probability measure µ on R
d with finite moments of all

orders is the standard Gaussian measure on R
d if and only if A0

µ = 0d and

A−,+
µ = Id, namely, a0(i) = 0 for all 1 ≤ i ≤ d and

[

a−(j), a+(k)
]

= δj,kI

for all 1 ≤ j, k ≤ d.

The above discussion leads to the following problem for specifying a

probability measure µ in terms of the matrices A0
µ and A−,+

µ .

Problem: Let V be the vector space of all polynomials on R
d. Let ai

and aj,k be linear operators on V for 1 ≤ i, j, k ≤ d. Find conditions on

{ai}d
i=1 and {aj,k}d

j,k=1 so that there exists a probability measure µ on R
d

satisfying ai = a0(i) and aj,k =
[

a−(j), a+(k)
]

for all 1 ≤ i, j, k ≤ d.

In the next section we will give some results on the solution to the above

problem for the case when d = 1.

5. Probability measures on the real line

Let µ be a probability measure on R with finite moments of all orders. Let

V be the vector space of all polynomials in x and let Vn be its subspace

consisting of all polynomials of degree ≤ n.

Let Fn = Vn/∼. Here the equivalence relation ∼ is given by µ-almost

everywhere, namely, f ∼ g if f = g holds µ-a.e.

Assumption. In this section all linear operators T : V → V are assumed

to satisfy the condition that T (Vn) ⊂ Vn for all n ≥ 0, namely, all subspaces

Vn, n ≥ 0, are invariant under T .

5.1. Probability measures on R with finite support

Observe that if a probability measure µ on R is supported by m distinct

points, then

Fj = Vj , j = 0, 1, 2, . . . ,m − 1,

Fj = Vm−1, j = m,m + 1, . . . .

The following theorem can be easily verified.

Theorem 5.1. Suppose µ is a probability measure on R supported by m

distinct points. Then the following equalities hold:

(1) Tr
(

a0
µ

∣

∣

Vk

)

= Tr
(

a0
µ

∣

∣

Vm−1

)

for all k ≥ m − 1.

(2) Tr
( [

a−

µ , a+
µ

] ∣

∣

Vk

)

= 0 for all k ≥ m − 1.
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Definition 5.1. Two linear operators S and T from V into itself are called

trace equivalent on V , denoted by S
t∼ T on V , if

Tr
(

S |Vk

)

= Tr
(

T |Vk

)

, ∀ k ≥ 0.

They are called trace equivalent on Vn, denoted by S
t∼ T on Vn, if

Tr
(

S |Vk

)

= Tr
(

T |Vk

)

, ∀ 0 ≤ k ≤ n.

The next theorem is from our paper3. It characterizes those measures

supported by finitely many points in R in terms of the CAN operators.

Theorem 5.2. Let m ≥ 1 be a fixed integer. Let a0 and a−,+ be two linear

operators from Vm−1 into itself. Then there exists a probability measure µ

on R supported by m distinct points such that a0 t∼ a0
µ and a−,+ t∼

[

a−

µ , a+
µ

]

on Vm−1 if and only if the following conditions hold:

(1) The spaces Vk, 0 ≤ k ≤ m − 2, are invariant under a0 and a−,+.

(2) Tr
(

a−,+
∣

∣

Vk

)

> 0 for all 0 ≤ k ≤ m − 2.

(3) Tr
(

a−,+
∣

∣

Vm−1

)

= 0.

5.2. Probability measures on R with infinite support

Let µ be a probability measure on R with infinite support, namely, the

support of µ contains infinitely many points. In this case, we have

Fn = Vn, ∀n ≥ 0.

The next theorem has been proved in our paper3.

Theorem 5.3. Let a0 and a−,+ be two linear operators from V into it-

self. Then there exists a probability measure µ on R with infinite support

such that a0 t∼ a0
µ and a−,+ t∼

[

a−

µ , a+
µ

]

on V if and only if the following

conditions hold:

(1) The spaces Vn, n ≥ 0, are invariant under a0 and a−,+.

(2) Tr
(

a−,+
∣

∣

Vn

)

> 0 for all n ≥ 0.

Let Ξ denote the set of all trace equivalent classes of ordered pairs

(a0, a−,+) of linear operators from V into itself satisfying either one of the

following conditions (a) and (b):

(a) Tr
(

a−,+
∣

∣

Vn

)

> 0, ∀n ≥ 0.
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(b) There exists m such that

(1) Tr
(

a0
∣

∣

Vk

)

= Tr
(

a0
∣

∣

Vm−1

)

, ∀ k ≥ m − 1,

(2) Tr
(

a−,+
∣

∣

Vk

)

> 0, ∀ 0 ≤ k ≤ m − 2,

(3) Tr
(

a−,+
∣

∣

Vk

)

= 0, ∀ k ≥ m − 1.

Theorem 5.4. There is a one-to-one correspondence between the set Ξ and

the set of all probability measures on R with finite moments of all orders.

5.3. Probability measures on R with compact support

The Paley-Wiener type problem is to characterize probability measures

with compact support. We have the next theorem from our paper3.

Theorem 5.5. A probability measure µ on R with finite moments of all

orders has compact support if and only if the following two sequences of real

numbers are bounded:

(1) Tr
(

a0
µ

∣

∣

Fn

)

− Tr
(

a0
µ

∣

∣

Fn−1

)

, n ≥ 1.

(2) Tr
(

a−,+
µ

∣

∣

Fn

)

, n ≥ 1.

6. Classical measures on the real line

Let µ be a probability measure on R with finite moments of all orders.

We have the associated orthogonal polynomials {Pn} and the Jacobi-Szegö

parameters {αn, ωn} as given in Equation (2). The corresponding CAN

operators are given by

a+
µ Pn = Pn+1, a−

µ Pn = ωnPn−1, a0
µPn = αnPn, n ≥ 0,

where P−1 = 0 by convention. Therefore, the commutator a−,+
µ =

[

a−

µ , a+
µ

]

is given by

a−,+
µ Pn =







ω1P0, if n = 0,

(ωn+1 − ωn)Pn, if n ≥ 1.

Consider the following classical probability measures on the real line:

(1) Gaussian: dµ(x) =
1√
2π σ

e−
x
2

2σ2 dx, x ∈ R (σ > 0).

(2) Poisson: µ({k}) = e−λ λk

k!
, k = 0, 1, 2, . . . (λ > 0).
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(3) gamma: α > 0.

dµ(x) =
1

Γ(α)
xα−1e−x dx, x > 0.

(4) Pascal: r > 0, 0 < p < 1.

µ({k}) = pr

(−r

k

)

(−1)k(1 − p)k, k = 0, 1, 2, . . .

(5) uniform: dµ(x) =
1

2
dx, − 1 ≤ x ≤ 1.

(6) arcsine: dµ(x) =
1

π

1√
1 − x2

dx, − 1 < x < 1.

(7) semi-circle: dµ(x) =
2

π

√

1 − x2 dx, − 1 ≤ x ≤ 1.

(8) beta-type: β > −1/2, β 6= 0.

dµ(x) =
1√
π

Γ(β + 1)

Γ(β + 1
2 )

(1 − x2)β−1/2 dx, − 1 < x < 1.

For the above probability measures, the Jacobi-Szegö parameters are

given in the next table. By convention, ω0 = 1.

measure µ αn, n ≥ 0 ωn, n ≥ 1

Gaussian 0 σ2n

Poisson (λ + n) λn

gamma α + 2n n(α + n − 1)

Pascal
(2 − p)n + r(1 − p)

p

n(n + r − 1)(1 − p)

p2

uniform 0
n2

(2n + 1)(2n − 1)

arcsine 0











1

2
, if n = 1

1

4
, if n ≥ 2

semi-circle 0
1

4

beta-type 0
n(n − 1 + 2β)

4(n + β)(n − 1 + β)
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Furthermore, the operator a0
µ and the commutator a−,+

µ =
[

a−

µ , a+
µ

]

are

given in the following table.

measure µ a0
µPn, n ≥ 0 a−,+

µ Pn, n ≥ 0

Gaussian 0 σ2Pn

Poisson (λ + n)Pn λPn

gamma (α + 2n)Pn (α + 2n)Pn

Pascal
(2 − p)n + r(1 − p)

p
Pn

(2n + r)(1 − p)

p2
Pn

uniform 0 − 1

(2n + 3)(2n + 1)(2n − 1)
Pn

arcsine 0























1

2
P0, if n = 0

−1

4
P1, if n = 1

0, if n ≥ 2

semi-circle 0







1

4
P0, if n = 0

0, if n ≥ 1

beta-type 0
β2 − β

2(n + 1 + β)(n + β)(n − 1 + β)
Pn

It is interesting to compare the above table with Theorems 2.1, 5.1, 5.2,

5.3, and 5.5.
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