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a b s t r a c t

We investigate collisions of solids which can fracture. Equations of motion and constitutive laws provide
a predictive theory. Assuming the collision as instantaneous, the equations of motion are derived from
the principle of virtual work introducing new interior forces which describe the very large stresses and
the very large contact forces resulting from the kinematic incompatibilities. They are interior volume
percussion stresses and interior surface percussions both on the unknown fractures and on the colliding
surface. In order to approximate these equations, we assume solids are damageable. In this point of view,
it results that velocity is continuous with respect to space but its strain rate is very large in a thin region
where the material is completely damaged, so approximating a fracture. When the velocity before
collision is very large, the damaged zone may be large accounting for parts of the solid completely
transformed into powder. The constitutive laws result from dissipative functions satisfying the second
law of thermodynamics and able to model the fracturation phenomenon at the macroscopic engineering
level. Representative numerical examples confirm that the model accounts for the fracturation quali-
tative properties.

� 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Collisions and fractures of solids are important engineering
issues, for instance, fragmentation of solids by blasting, by colli-
sions, . (Fourney, 1993; Romero, 2003). Besides, the demand for
impact resistant design of structures crosses a wide spectrum.

The present work deals with collisions of deformable and
damageable solids. In particular, we investigate the appearance of
fractures due to impact phenomena. Collisions are phenomenona
which occur in a very short period of time, involving large impul-
sive forces in the bodies. We limit the investigation of this problem
at the engineering macroscopic level and derive a model by dis-
continuum mechanics theory (Frémond, 2007). We suppose that
collision events are very short if compared with the duration of the
other phenomena. Thus, we assume the collisions are instanta-
neous according to Frémond (2002, 2007). A collision is charac-
terized by a time discontinuity of the velocity field: there is
a smooth velocity before collision U

!�
and the velocity U

!þ
after

collision. This collision theory applies to collision of either rigid or
deformable solids (Frémond, 2007), as well as of a solid colliding
with an incompressible fluid (Frémond et al., 2003).

As a consequence of the collision fractures may appear in the
solid. A fracture is characterized by a spatial discontinuity of the

velocity after collision U
!þ

. We are not interested in the evolution of
a fracture, but on its formation and this phenomenon is considered
as instantaneous. Hence, we introduce different dissipative
potentials as well as suitable unilateral conditions on fractures and
along the boundary.

The predictive theory is based on the principle of virtual work
giving the equations of motion and constitutive laws relating the
internal forces to pertinent quantities describing the evolution. The
constitutive laws introduce interior percussion stresses,1 and
percussions which result from the kinematic incompatibilities.
They are interior volume percussion stresses and interior surface
percussions both on the unknown’s fractures and on the colliding
surfaces. The constitutive laws are derived with dissipative poten-
tials which fulfill the second law of thermodynamics.

In order to solve numerically the resulting set of partial differ-
ential equations (reference is made to Bonetti and Frémond (2004b)
and Frémond (2007) for details), we assume solids are damageable
and that a damage quantity b has value 1 when the material is
undamaged and value 0when it is completely damaged.We suppose
that the damage quantity evolves rapidly in the collision: thus we
assume it is discontinuous with respect to time at collision time:
b� before collision and bþ after collision. In this point of view, we
may assume the velocity U

!þ
is continuous with respect to space but

* Corresponding author.
E-mail address: francesco.freddi@unipr.it (F. Freddi).

1 Percussions are intended here as the variation of stress state or forces occurring
during collision.
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its strain rate is very large in a layer where the damage quantity bþ is
almost zero, i.e., a fracture is approximated by a thin damaged zone
where bþx0 (damage field is 1 where the material is not fractured).
When the velocity before collision becomes very large, the damaged
zone may be large accounting for parts of the solid completely
transformed into powder where cohesion is totally lost.

The variational formulation of the equations of motion is dis-
cretized by the classical finite element technique. Moreover, kine-
matic constraints on the velocity field U

!
are introduced in order to

avoid overlapping phenomena along the contact surface and in the
volume damaged zones. Finally, the discrete solution is obtained as
a minimization of a nonconvex problem, reached through a specific
numerical strategy that couples gradient descent technique (Ciarlet
and Lions,1990; Snyman, 2005) and the Uzawa’smethod (Zulehner,
2002). This scheme permits to account for the duality variables
introduced by the constraints, for instance the impenetrability
condition.

Several numerical simulations are proposed. Their aim is to
demonstrate the capabilities of the predictive theory to describe
qualitatively different failure modes occurring at collision time.

2. The direct approach

At collision time, the predictive theory is based on the principle
of virtual work giving the equations of motion and constitutive laws
relating the internal forces to pertinent quantities describing the
evolution. The equations of motion introduce interior percussion
stresses, and percussions which result from the kinematic incom-
patibilities. They are interior volume percussion stresses and inte-
rior surface percussions both on the unknown’s fractures and on
the colliding surfaces.2

For the sake of simplicity, let us consider a deformable solid U
colliding a rigid fixed obstacle on vU1. Due to the kinematic incom-
patibilities very large interior forces appearwithin the solid, along the
contact surface and on the unknown fracture surfaces. We consider
the duration of the collision is very short, i.e., the time for the veloc-
ities to adapt to the presence of the obstacle is extremely short. Thus
we assume the collision as instantaneous (time t is fixed).

Very large interior forces become percussion stresses S and
percussions R

!
. The percussions and percussion stresses can be

thought as time concentrated quantities which define an atomic
measure (a Dirac measure) intervening only at collision times. The
different terms in the expression of the virtual work are linear
functions of the virtual velocities. They involve the percussions and
percussion stresses.

The systemwe consider at collision time is made of a solid U and
an immobile obstacle vU1 which are in contact.

The system interior virtual work we choose is a linear function
of the virtual strain rate and reads

T intðV
!Þ ¼ �

Z
U=G

P
: E
�
V
!þ

þV
!�

2

�
dU

�
Z
vU1

R
!
$

 
V
!þ

þ V
!�

2

!
dGþ

Z
G

R
!
$

(
V
!þ

þ V
!�

2

)
dG;ð1Þ

where EðV!Þ ¼ Vsym V
!

is the classical symmetric strain rate tensor,

V
!þ

and V
!�

are virtual velocity fields. The fracture G is oriented:

thus we consider a “left” part ðV!lÞ and a “right” part ðV!rÞ of the
velocity field. So, the spatial velocity discontinuity i.e., the fracture

velocity of deformation, is denoted by fV!g ¼ V
!

r � V
!

l.
Because we assume the obstacle to be immobile, velocity V

!
on

contact surface vU1 is the gap velocity, i.e., the system deformation
velocity on vU1.

The densities with respect to the Dirac measure are percussion
stress tensors and interaction percussions between the solid and
the obstacle as well as percussions between fracture surfaces.
Percussions are generalized interior forces which appear when
collisions occur. They are, as said earlier, usual interior forces
concentrated in a very short period of time.

The virtual work of the acceleration forces is

T accðV
!Þ ¼

Z
U

r½U!�$
 
V
!þ

þ V
!�

2

!
dU; (2)

where r is the solid density and ½U!� ¼ U
!þ

� U
!�

is the velocity
discontinuity in the collision and r½U!� is the collision inertial
percussion. Let us note that the actual work of the acceleration
forces is equal to the variation of the kinetic energy during collision.

2.1. The equations of motion

The principle of virtual work (Frémond, 2007)

c V
!
; T accðV

!Þ ¼ T intðV
!Þ;

gives the following equations of motion

r
�
U
!þ

� U
!��

¼ divS; in U=G;

fSg$N! ¼ 0;S$N
! ¼ � R

!
; onG;

S$N
! ¼ � R

!
; on vU1;

S$N
! ¼ 0; on vU=vU1:

(3)

where vector N
!

represents either the normal vector to fracture G
directed from the left toward the right or the outward normal
vector to domain U.

2.2. The constitutive laws

The constitutive laws are defined with dissipation functions:
volume dissipation function F, fracture dissipation function Fs and
contact dissipation function F1. The dissipative functions are

F

 
E

 
U
!þ

þU
!�

2

!!
¼k0

�����E
 
U
!þ

þU
!�

2

!�����þk1

�����E
 
U
!þ

þU
!�

2

!�����
2

;

Fs

 (
U
!þ

þU
!�

2

)!
¼

ffiffiffi
2

p
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�����
(
U
!þ

þU
!�

2

)�����
vuut þk3

�����
(
U
!þ

þU
!�

2

)�����
þIþ

 (
U
!þ

þU
!�

2

)
$N
!
!
;

where N
!

is the normal vector to the fracture and

F1

 
U
!þ

þ U
!�

2
;
U
!�

2

!
¼ I�

�
U
!þ

$N
!�

;

2 It is usual to derive the equation of motion through the principle of virtual
power (Frémond, 2002). This principle can be used when all the quantities have
densities with respect to the Lebesgue measure. When they have densities with
respect to the atomic measure, as in the present situation, the principle of virtual
power is advantageously replaced by the principle of virtual work. The principle of
virtual work we use here, is not to be confused with the principle of virtual power
where the velocities are understood as small displacements.
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differently here N
!

represents the outward normal vector to domain
U. For simplicity, we used these symbols to denote the length of
a vector

j x!j ¼ ffiffiffiffiffiffiffiffi
xixi

p
; (4)

and the norm of a symmetric tensor A

kAk ¼
ffiffiffiffiffiffiffiffiffiffiffi
AijAij

q
¼

ffiffiffiffiffiffi
A2

q
: (5)

The ks are positive material constants. Volume dissipative
function is a pseudo-potential of dissipation (Moreau, 1970;
Halphen and Son, 1975). It insures a classical behaviour outside
the fracture. Fracture dissipation function is not a pseudo-potential
of dissipation. It implies that the behaviour is not progressive:
a small collision does not produce a small fracture and a large
collision does not produce a large fracture. On the contrary a small
collision does not produce a fracture and a large collision produces
a fracture. There is a threshold in the behaviour which results from

function
ffiffiffi
2

p
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðU!

þ
þ U
!�

Þ=2gj
q

.
There is a competition between smooth strain rate measured by

k0kEððU
!þ

þ U
!�

Þ=2Þk and nonsmooth strain rate measured by

ffiffiffi
2

p
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfðU!

þ
þ U
!�

Þ=2gj
q

. Thus if k2 is large compared to k0 it is
difficult to have fractures and if it is small, fractures appear easily.
Thus parameter k2 is a threshold for fractures to appear. Moreover,
the latter function avoids the appearance of too many fractures
characterized by small velocity discontinuities (square root func-
tion, with property

ffiffiffiffiffiffiffiffiffiffiffi
aþ b

p
�

ffiffiffi
a

p
þ

ffiffiffi
b

p
, forbids a fracture with

amplitude a þ b to be replaced by two small fractures with
amplitudes a and b).

The functions I�, Iþ are the indicator functions of ]�N, 0] ¼ R
�,

(I�(g) ¼ 0, if g � 0 and I�(g) ¼ þN, if g > 0), and of [0, N[ ¼ R
þ,

(Iþ(g) ¼ 0, if g � 0 and Iþ(g) ¼ þN, if g < 0), (see Moreau, 2003)
respectively. Indicator function Iþ takes into account the non-
interpenetration condition along the fracturen
U
!þo

$N
!� 0: (6)

Function F1 introduces the non-interpenetration condition on
contact surface vU1. Function Fs is split in a convex part, Fs

c and
a differentiable nonconvex part, Fs

nc. Its generalized derivative is
the sum of the sub-differential of the convex part and of the
extended derivative of the nonconvex part

vFs

 (
U
!þ

þ U
!�

2

)!
¼ vFnc

s

v
n�

U
!þ

þ U
!��.

2
o
 (

U
!þ

þ U
!�

2

)!

þ vFc
s

 (
U
!þ

þ U
!�

2

)!
:

The constitutive laws are

S˛vF

 
E

 
U
!þ

þ U
!�

2

!!
; (7)

� R
!
˛vFs

 (
U
!þ

þ U
!�

2

)!
; on G; R

!
˛vI�

�
U
!þ

$N
!�

; on vU1; (8)

Fig. 1. Bar falling onto three rigid supports. The length of the bar is L ¼ 4000 mm and
ratio L/h ¼ 20 and l/h ¼ 0.8 have been assumed. The other parameters have the
following value: m ¼ 5$e2 MPa, l ¼ 1$e2 MPa, ls ¼ 1$e2 MPa/mm r ¼ 3$e � 5 N/mm3 or
3$e � 6 N/mm3, p ¼ 0.5, q ¼ 1.01, c ¼ 1$e3 MPa s, k ¼ 0.1 MPa mm2, w ¼ 2$e3 MPa.

Fig. 2. Damage in a heavy bar falling at different velocities. The blue zone is not damaged. The thin red zones are damaged. They account for fractures. When the falling velocity is
very large, the damaged zones become completely fragmented domains. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article).
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with

vFsðX
!Þ ¼ vFnc

s

vX
! ðX!Þ þ vFc

sðX
!Þ

¼

( 
k2ffiffiffi

2
p

ffiffiffiffiffiffiffiffi��X!��q þ k3

�
X
!��X!��; if jX!j > 0;

R
3; if X

! ¼ 0:

Let us note that when discontinuity fðU!
þ
þ U
!�

Þ=2g is null,
percussion R

!
may assume any value, this value being given by

relationship (3), R
! ¼ �S$N

!
. In this situation, there is no fracture

and the volume constitutive law (7) is valid and conveys the
mechanical information. Fracture constitutive law (8) is also valid
but conveys no mechanical information.

The mechanical aspects of collisions have an important influ-
ence on thermal behavior but the thermal aspects have a limited
influence on the mechanical behavior. Thus it is reasonable to
assume the temperature does not intervene in the mechanical
equations. Following Frémond (2007), the thermal equations
involving the dissipated work may be solved to get temperature Tþ

after collision.

2.3. The direct problem

It may be proved that there are velocities after collision which
minimize a functional

inffFðV!ÞjV!˛SBDðUÞ; V! ¼ 0 outside vU1g; (9)

over the set SBD(U) of the special bonded deformation velocities
(those functions are smoothoutside the fractures anddiscontinuous
on the fractures) (Ambrosio et al., 2000; Ambrosio et al., 1997;
Attouch et al., 2004; Braides, 1998). The functional FðV!Þ is

FðV!Þ ¼
Z

U=G

X
�
E
�
V
!þ U

!���
dUþ

Z
G

Xs

�n
V
!þ U

!�o�
dG

þ
Z
vU1

X1ðV
!ÞdGþ

Z
U

r

2
ðV!Þ2�rV

!
$U
!�

dU;

where functions X, Xs and X1 are defined according functions F, Fs

and F1

X
�
E
�
V
!þ U

!���
¼ k0

���E�V!þ U
!�����þ k1

2

���E�V!þ U
!�����2;

Xs

�n
V
!þ U

!�o�
¼ 2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���nV!þ U
!�o���r

þ k3
���nV!þ U

!�o���
þIþ

�n
V
!þ U

!�o
$N
!�

;

X1ðV
!Þ ¼ I�ðV

!
$N
!Þ:

This problem has been analyzed in Bonetti and Frémond
(2004b). It was proved that problem (9) has solutions which give
both the fractures (which are a priori unknown) and the velocities.
Besides, in Bonetti and Frémond (2004a) a 1 � D example is
analyzed and closed form solutions are described.

3. The regularized approach

Numerical solution of the previous problem presents a major
difficulty due to the unknownpositions of fracture surfacesGwhich
are freediscontinuities. So,weproposea regularized approach in the
context of fracture damage mechanics. In particular, we introduce
a spatial damage variable b˛ [0,1] that approximately describes the
zone where the material is fractured. In fact, b ¼ 1 represents the
soundmaterial while b¼ 0 is equivalent to the completed damaged
state. The main idea, firstly proposed in Frémond (1987) and
Frémond and Nedjar (1996), is based on adaptation of the principle
of virtual work. In particular, we assume that damage results from
microscopic motions, and includes thework of these motions in the
principle of virtual work. This contribution is assumed to depend on
the rate of damage and on the rate of the damage gradient. This last
term is introduced to account for the local interaction of the damage
at a material point on the damage of its neighborhood. So, the
internal virtual work (1) is replace by

T intðV
!
;bÞ ¼�

Z
U

S :E

 
V
!þ

þ V
!�

2

!
dU�

Z
vU1

R
!
$

 
V
!þ

þ V
!�

2

!
dG

�
Z
U

fB½b�þ H
!
$gr a!d½b�gdU; ð10Þ

Fig. 3. Heavy bar: velocity field U
!þ

after the collision for U� ¼ 1.5625 m/s. The bar is broken into five pieces which do not bounce on the obstacles.

0 1 2 3 4

x

-0.4

-0.2

0

0.2

0.4

ux

y=0.03 m
y=0.17 m

y

x

Fig. 4. Heavy bar: horizontal velocity Ux
þ along two straight horizontal lines located at

different positions for U� ¼ 1.5625 m/s. The vertical distances y are measured from the
bottom of the beamwith thickness h ¼ 0.2 m. The strong discontinuities in the velocity
values outlined the fractures while the remaining pieces of the solids undergo a nearly
rigid body motions. Note the null velocity of the central piece on the central obstacle.

Fig. 5. Heavy bar: divergence of the velocity vector after the collision forU�¼ 1.5625m/s.
The opening fractures are represented by zone with high values of divU

!þ
.
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being [b]¼ bþ � b�, where V
!þ

, V
!�

and bþ, b� are virtual velocities.
The first and the second terms have already been introduced and
are related to the mechanical action and reactions. The third and
fourth terms are unusual: B is a mechanical work, in particular the
internal damage work which is responsible for the evolution of the
damage during the collision and H

!
is a flux vector responsible for

the interaction of the damage at a point on the damage on its
neighborhood.

3.1. The equations of motion

The principle of virtual work

c V
!
; b T accðV

!Þ ¼ T intðV
!
; bÞ; (11)

gives two sets of equations of motion. By choosing convenient
virtual velocity, we get

r½U!� ¼ divS; in U;

S$N
! ¼ � R

!
; on vU1;

S$N
! ¼ 0; on vU=vU1;

(12)

and

divH
!� B ¼ 0; in U;

H
!
$N
! ¼ 0; on vU;

(13)

where N
!

is the outward normal to U. The equations (12) and (13)
account for macroscopic and microscopic effects.

3.2. The constitutive laws

In our problem we assume that the velocity U
!�

, supposed for
the sake of simplicity to be a rigid body velocity, and the damage
b� before the collision are assigned and let the unknowns be the
velocity U

!þ
and the damage bþ after the collision. The constitutive

laws, which have to satisfy the second law of thermodynamics, for
the mechanical and damage interior forces are defined by three
functions: the volume free energy J, the volume dissipative
function F and along the contact surface with the obstacle pseudo-
potential of dissipation Fs. We have to choose them in such a way
that bþ is zero in thin layers and 1 elsewhere and that the strain rate
is very large in the thin layer and almost zero elsewhere.We choose
the volume free energy as

Jð3; b; gradbÞ ¼ wð1� bÞ þ k
2
ðgradbÞ2þb

2
3C3þ IðbÞ: (14)

The volume dissipative function is addressed as follows

F

 
E

 
U
!þ

þ U
!�

2

!
; ½b�; grad½b�

!
¼ c

2
½b�2þm

q

�
b� þ ½b�

2

�
�����E
 
U
!þ

þ U
!�

2

!�����
q

þ l

r

�����E
 
U
!þ

þ U
!�

2

!�����
r

þ I�ð½b�Þ

þ Iþ

 
div

 
U
!þ

þ U
!�

2

!!
: ð15Þ

The contact surface with the obstacle pseudo-potential of
dissipation is

Fs

 
U
!þ

þ U
!�

2

!
¼ ls

 
U
!þ

þ U
!�

2

!2

þI�
�
Uþ
N

�
; (16)

where UN ¼ U
!
$N
!

is the normal velocity.
Quantity w is the cohesion of the material, C is the classical

elasticity tensor, 3 the deformation tensor which does not change
during collision and k is the damage coefficient which quantifies
the influence of the damage at a point onto the damage of its
neighborhood. The extension parameter k controls the size of the
transition zone between sound material and damaged material. If k
is large, damage is diffuse and spread in the whole domain.
Contrarily, if k is small, the damage is concentrated in thin zones
which may represent fractures. The values of k can be measured
with structure experiments, but not with sample experiments
where the state quantities are homogeneous.

The parameters c, l, m, ls characterize the microscopic and
macroscopic dissipations. The exponents r ˛ ]0, 1[ and q ˛ [1, 2]
indicate the nature of the behaviour of the constitutive law: convex
or concave. In particular, the convex term involving the strain rate E
consists of the visco-plastic Norton-HoffeFriaa (Friaa, 1979),
potentialwhich approximates the perfect plastic potential as q tends
to one. Moreover, the effect of the concave termwith power r lower
than 1 is to avoid having many regions with small discontinuities
and to have the strain rates very large in thin damaged zones.

The function I is the indicator function of the intervals [0, 1],
(I(g) ¼ 0, if 0 � g � 1 and I(g) ¼ þN, if g ; [0, 1]). The indicator
functions I, I�, Iþ take care of the internal constraints on the damage
variable and on the velocity field.

b˛½0;1�; ½b� � 0; Uþ
N � 0; on vU1; div

 
U
!þ

þ U
!�

2

!
� 0 in U:

(17)

The first internal constraint results from the definition of
damage. The second constraint means that the solid cannot mend
during the collision. The other constraints are related to the
velocity field and take into account impenetrability conditions: the
first one is on the obstacle contact surface and the last one,
following an idea of Jean Jacques Moreau (1966b), replaces the
impenetrability condition on the fractures by a volume nonover-
lapping condition. This relationship results from mass balance

relationships divU
!�

¼ 0 and divU
!þ

¼ 0 in the nonfractured
domain (assuming the density to be constant) and from impene-

trability condition (6), fU!
þ
g$N!� 0.

Fig. 6. Heavy bar: velocity U
!þ

after the collision for U� ¼ 3.125 m/s. The bar is broken into seven pieces.

Fig. 7. Heavy bar: divergence of the velocity vector after the collision for U� ¼ 3.125.
The opening fractures are represented by zone with high values of divU

!þ
.
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The previous functions give the following set of constitutive laws

X
¼ l

�����E
 
U
!þ

þ U
!�

2

!�����
r�2

E

 
U
!þ

þ U
!�

2

!
þ m

 
b� þ bþ

2

!
�����E
 
U
!þ

þ U
!�

2

!�����
q�2

E

 
U
!þ

þ U
!�

2

!
� pI; ð18Þ

B˛�wþ 1
2
3C3þ vI

�
bþ
�
þ c½b� þ m

2q

�����E
 
U
!þ

þ U
!�

2

!�����
q

þ vI�ð½b�Þ; (19)

H
! ¼ k gr a!dbþ ; (20)

R
!
˛ls
�
U
!þ

þ U
!��

þ vI�
�
Uþ
N

�
N
!
; (21)

where

�p˛vIþ

 
div

 
U
!þ

þ U
!�

2

!!
: (22)

The sub-differential sets vIþ and vI� of the indicator functions of
the positive and negative numbers R

þ and R
� are defined as:

vIþ(0)¼R
�, vIþ(g)¼ 0 for g> 0 and vIþ(g)¼ ø for g< 0, vI�(0)¼R

þ,
vI�(g)¼ 0 forg< 0 and vI�(g)¼ ø forg> 0. The quantity vI�ðUþ

N ÞN
!

is
the impenetrability percussion reaction. It is active only if the other

interactions are not sufficient for the solid and the obstacle not to
interpenetrate, i.e., when the normal velocity after the collision is 0.
The quantity �p is the internal impenetrability pressure. This reac-
tion prevents the volume overlapping. From the numerical simula-
tions proposed in Section 4 clearly outcomes that�p is active only in
the fractured zones in compression or in the fragmented3 regions,
avoiding interpenetration. In fact, the undamaged portions of the
solid after collision have nearly rigid body velocity, in agreement
with the rigid-plastic component of the constitutive law.

Let us note that the second law of thermodynamics equivalent
to the following inequality is satisfied for all admissible values of r
and q (Frémond, 2007)

X
: E

 
U
!þ

þ U
!�

2

!
þ B½b� þ H

!
$gr a!d½b� � ½J� � m

 
b� þ bþ

2

!
�����E
 
U
!þ

þ U
!�

2

!�����
q

þ l

�����E
 
U
!þ

þ U
!�

2

!�����
r

�w½b� þ c½b�2

þ m

2q
½b�
�����E
 
U
!þ

þ U
!�

2

!�����
q

þ vI�ð½b�Þ½b� þ vI
�
bþ
�
½b�

þ k gr a!dbþ$ g!rad½b� � 0: ð23Þ

Fig. 8. Damage in a light bar falling at different velocities (The damage scale depends on the velocity). The blue zone is not damaged. The thin red zones are damaged. They account
for fractures. When the falling velocity is very large, the damaged zones become completely fragmented domains. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article).

Fig. 9. Light bar: velocity U
!þ

after the collision for U� ¼ 6.25 m/s. The bar is broken into four pieces which bounce on the obstacles.

3 The difference between fractured and fragmented states consists in the fact that
in the first case cracks are thin and well separated while in the second case the
rupture is completely diffused and well defined cracks cannot be appreciated.
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3.3. A simplified problem: the equation
The principle of virtual work and a proper use of the constitutive

laws lead to two sets of equations and permit to compute the
velocity and damage of the body after the collision depending on
the incoming velocity and the damage state before the collision.

For simplicity, we assume the body undamaged before the
collision, that its velocity is a rigid body velocity and that it is not
deformed before collision.

b� ¼ 1; E
�
U
!��

¼ 0; 3 ¼ 0 : (24)

Moreover, assuming (24) it results

vI
�
bþ
�

þ vI �
�
bþ � 1

�
¼ vI

�
bþ
�
: (25)

So, the equations needed to find U
!þ

and bþ are

rU
!þ

� div
P�

U
!þ�

¼ rU
!�

; in U; (26)

X
$N
!þ ls

�
U
!þ

þ U
!��

þ vIþ
�
Uþ
N

�
N
!
H0; on vU1; (27)

X
$N
! ¼ 0; on vU=vU1; (28)

cbþ � kDbþ þ vI
�
bþ
�
Hwþ c� m

2q

�����E
 
U
!þ

2

!�����
q

; in U; (29)

vbþ

vN
¼ 0; on vU: (30)

4. Numerical examples

In this section three numerical experiments are presented.
Velocity U

!�
is given and velocity U

!þ
is computed. Note that there

is no time step because collision is instantaneous. Let us emphasize
that we do not try to compare our results with those of actual
experiments (even if the last example shows that the theory
describes at the qualitative level an actual experiment) but wewant
to illustrate the capability of the proposed model to describe the
different failure modes.

After collision the material may present three different states:
not fractured, fractured and fragmented. In details, the not frac-
tured region is represented by the undamaged zone (b ¼ 1), the
fractured state presents completed damaged materials with an

opening mode (i.e., divU
!þ

> 0) or in compression regime (i.e.,
divU

!þ
¼ 0) while the fragmented regions are diffused damaged

zones mainly due to very high strain rate.
The discrete solutions, obtained via finite element method,

involve the resolution of a non-linear nonconvex minimization
problem. The solution is obtained by an iterative calculation with
a sequence of decreasing parameter q/ 1 starting from a quadratic
convex term (q¼ 2). Specially, the calculation can be stopped at any
iterative step and restarted from the previous solution evenwith an
updated parameter q. This technique demonstrates to considerably
speed up numerical convergence. Kinematical constraints are
introduced by duality via thewell known technique of the Lagrange
multipliers. An ad-hoc iterative Uzawa algorithm has been devel-
oped for the resolution of the resulting saddle point problem due to
the constraint inequalities.

Moreover, we restrict our attention to the case of 2-dimensional
problems in plane strain condition of a single deformable body
coming in contact with a rigid, fixed obstacle. The discretization is
composed by quadrilateral finite element characterized by linear
displacement and constant pressure inside the element, i.e., the so
called Q1eP0 finite element (Braides and Fortin, 1991; Arnold et al.,
2002) We also report a mesh sensitivity analysis in order to prove
mesh objectivity of the predictive theory and of the numerical
strategy adopted.

4.1. Falling bar

We consider the case of a slender rectangular bar colliding three
rigid supports. Prior the collision, the bar is assumed to be undam-
aged (b�¼ 1) and falls with a rigid body vertical descending velocity
(see Fig. 1). The predictive theory gives the velocity and the damage
after collision, U

!þ
ð x!Þ and bþð x!Þ, depending on falling velocity U

!�
.

Two representative cases havebeen analyzed: all the parameters are
fixed except the density of the material thus a heavy material and
a lightmaterial, having the same resistance, havebeen considered (a
ratio between the material densities equal to 10 has been adopted).

Fig. 10. Light bar: divergence of the velocity vector after the collision for U� ¼ 6.25 m/
s. The opening fractures are represented by zone with high values of divU

!þ
.

Fig. 12. Light bar: divergence of the velocity vector after the collision for U� ¼ 12.5 m/s.
The fractures are represented by zone with high values of divU

!þ
.

Fig. 11. Light bar: velocity U
!þ

after the collision for U� ¼ 12.5 m/s. The bar is broken into four pieces.

Fig. 13. Heavy bar: damage field for three meshes after the collision for U� ¼ 5 m/s.
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Fig. 2 shows the damage field b for different incoming velocities
for the case of the heavy material. Fig. 2 clearly outcomes that the
failure process can be classified with three states depending on the
amount of imparted energy proportional to ðU!

�
Þ2: not fractured,

fractured and fragmented states with rather sharp transitions in
between. For a value of U� smaller than 1 m/s, no fracture appears
in the solid. For 1.5625 � U� � 3.125 m/s well defined fractures
appear in the solids. It may be noted that the fractured portions of
solid in compression are larger than those in traction. Intermediate
incoming velocity value 6.25 � U� � 12.5 m/s outlines the

coexistence of the fractured and fragmented states. In fact, if frag-
mented regions appear after collision above the rigid supports, well
defined fractures are still present inside the solid. Differently, high
values of the impact velocity do not allow for the creation of well
defined fractures and only fragmentation due to the large percus-
sion transmitted between the solid and the rigid obstacles is
present. It is important to note that the fragmented parts of the
solids do not change significantly passing from U� ¼ 25 m/s to
U� ¼ 50 m/s even if the kinetic energy becomes four times higher.

Fig. 14. Damage field bþ and divergence of the velocity field divU
!þ

after collision. The adopted parameters have the following value: m ¼ 8.e1 MPa, l ¼ 1.e1 MPa, ls ¼ 2.e3 MPa/mm,
3.e � 6 N/mm3, p ¼ 0.5, q ¼ 1.01, c ¼ 1.e3 MPa s, k ¼ 0.1 MPa mm2, w ¼ 1.e1 MPa.

Fig. 15. Horizontal and vertical components Ux
þ and Uy

þ of the velocity field after collision. A zoom of the horizontal component at the top of the disk is shown in Fig. 16.

Fig. 16. Zoom of the horizontal component at the top of the disk.
Fig. 17. Precision impact testing system proposed in Zineddin and Krauthammer
(2007).
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In Fig. 3 the velocity field U
!þ

is reported for the case
U� ¼ 1.5625 m/s. The bar is broken into five pieces after the colli-
sion. A central block stops above the central obstacle while
instantaneous rigid rotations in the other block are induced by
fracture creations.

This fact is shownby the representation of thehorizontal velocity
along two straight horizontal lines located at different positions
reported in Fig. 4. Strong discontinuities in the velocity behaviour
are localized in the fractured regions while the remaining pieces of
the solid undergo a nearly rigid body motions. Moreover, the frac-
tures in opening mode are outlined by the representation of the
divergence of the velocity field reported in Fig. 5.

Similar considerations may be done for the case of
U� ¼ 3.125 m/s reported in Figs. 6 and 7 except by the fact that the
bar breaks into seven pieces.

Fig. 8 represented the damage field b for different incoming
velocities for the case of the light material. In Figs. 9e12 the velocity
fields and divU

!þ
for two different values of falling velocity

U� ¼ 6.25, 12.5 m/s are reported. The main differences with respect
to the heavy material case can be summarized as follow:

� because of minor weight of the body, rebounds occur on the
obstacles. This a general property of collisions both theoretical
and experimental (Frémond, 2007);

� the central crack is completely different in this case: it is
induced by rebound of the central portion;

� for high velocity values the light body breaks in several parts
while the heavy material is cut into two elements.

4.1.1. Mesh objectivity
In this example we show the lack of mesh sensitivity of the

predictive theory. The case of the heavy bar falling at a velocity of
5 m/s is solved with different meshes to investigate whether or not
the solutions converge. The computations are carried out for three
structured meshes with different element sizes h, h=2 and h=4
starting from the initial value h ¼ 20 mm. The damage field eval-
uated for the three meshes is reported in Fig. 13 showing no mesh
sensitivity with regard to the global solution of the problem and
convergence to a solution is clearly represented. The velocity field
after collision presents negligible differences.

4.2. Falling annular disk

The proposed model has been applied to the ideal case of an
annular disk falling with a rigid vertical velocity and colliding with
a fixed rigid floor. The annular disk has been decomposed with

20,000 finite elements. Fig. 14 shows the damage field, the diver-
gence of the velocity field U

!þ
after the collision and the horizontal

and the vertical components of the velocity field. We only under-
line the fact that two failure zones appear in the ring after collision.
A first major fragmented zone is above the contact surface and
involves the entire thickness of the annulus (see Fig. 15) while in
the opposite part a well defined fracture is produced along the
vertical direction due to a small but conspicuous discontinuity of
the horizontal velocity field as outlined in Fig. 16.

4.3. Impact simulation

As a third example we reproduced qualitatively the impact tests
reported in Zineddin and Krauthammer (2007). They illustrated
different impact tests on reinforced concrete slabs with the
machine reported in Fig. 17. The aim of this example is to show the
capability of the proposed model to simulate actual experiments
even if we do not compare numerical results with experimental
evidences. First of all, we consider a simplified 2D example
composed of 18,000 finite elements. Left and right extremities are
clamped while the colliding mass is replaced by an external
percussion applied on the upper surface of the slab. Moreover, we
do not take into account the metallic reinforcements. Fig. 18 shows
the damage field, the divergence of the velocity field U

!þ
after the

collision and the horizontal and vertical components of the velocity
field. Different failures are outlined from the numerical result in
accordance with actual experiment. In fact, minor and major cracks
are evidenced by the map of the velocity field reported in Fig. 19.

5. Conclusions

In this predictive theory for collisions and fractures only
macroscopic quantities are involved. The equations of motion are
derived from the principle of virtual work where new interior
forces are introduce to describe the very large stresses and the very
large contact forces resulting from the cinematic incompatibilities.
The theory of collisions and fracture of solids outlined in this paper
is consistent from the mechanical point of view and has good
mathematical formulations to which adapted numerical methods
may be applied. In the adopted collision theory the position of solid
does not change but the velocity changes instantaneously. The
acceleration at collision time is the velocity discontinuity. The
constitutive lawswhich appear in this nonsmooth situation sum up
the very sophisticated and rapid phenomena which occur in
collision.

Fig. 18. Damage bþ and velocity field U
!þ

after collision. The adopted parameters have the following value: m ¼ 5.e2 MPa, l ¼ 1.e1 MPa, r ¼ 2.5ee5 N/mm3, p ¼ 0.5, q ¼ 1.01,
c ¼ 3.e3 MPa s, k ¼ 0.1 MPa mm2, w ¼ 1.e1 MPa.

Fig. 19. Horizontal and vertical components Ux
þ and Uy

þ of the velocity field after collision.
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Some numerical simulations have been performed via the
classical finite element method, concerning a solid colliding against
a rigid fixed obstacle or a clamped solid subjected to high velocity
impact. The numerical results outlined multiple failure modes. Let
us also stress that few parameters are involved, less than 9, to
predict at the engineering level complex solid fracturation.
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