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Abstract

Let A1, . . . , AN be complex self-adjoint matrices and let ρ be a density matrix. The Robertson uncertainty
principle

det{Covρ(Ah, Aj )} � det

{
− i

2
Tr(ρ[Ah, Aj ])

}

gives a bound for the quantum generalized variance in terms of the commutators [Ah, Aj ]. The right side
matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case N = 2m + 1.

Let f be an arbitrary normalized symmetric operator monotone function and let 〈·, ·〉ρ,f be the associated
quantum Fisher information. We have conjectured the inequality

det{Covρ(Ah, Aj )} � det

{
f (0)

2
〈i[ρ, Ah], i[ρ, Aj ]〉ρ,f

}
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that gives a non-trivial bound for any N ∈ N using the commutators [ρ, Ah]. In the present paper the
conjecture is proved by mean of the Kubo–Ando mean inequality.
© 2007 Elsevier Inc. All rights reserved.

AMS classification: Primary 62B10, 94A17; Secondary 46L30, 46L60
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1. Introduction

Let Mn,sa :=Mn,sa(C) be the space of all n × n self-adjoint matrices (observables) and let D1
n

be the set of strictly positive density matrices (faithful states). Given A, B ∈ Mn,sa and ρ ∈ D1
n

define the (symmetrized) covariance as Covρ(A, B) :=1/2[Tr(ρAB) + Tr(ρBA)] − Tr(ρA) ·
Tr(ρB) and the variance as Varρ(A) :=Covρ(A, A). In this context the Heisenberg uncertainty
principle is the inequality

Varρ(A)Varρ(B) � 1

4
|Tr(ρ[A, B])|2. (1.1)

Schrödinger and Robertson improved this result to

Varρ(A)Varρ(B) − Covρ(A, B)2 � 1

4
|Tr(ρ[A, B])|2. (1.2)

Robertson himself realized that for N observables A1, . . . , AN one can prove the general result

det{Covρ(Ah, Aj )} � det

{
− i

2
Tr(ρ[Ah, Aj ])

}
(1.3)

(see [12,14,25–27]). The left hand side is known as the (quantum) generalized variance of the
random vector (A1, . . . , AN). Let us refer to the inequality (1.3) as the “standard” uncertainty
principle to distinguish it from other inequalities like the “entropic” uncertainty principle and
similar inequalities. It is difficult to overestimate the importance of the uncertainty principle in
quantum physics. Examples of recent references where inequality (1.3) plays a role are given by
[2,3,13,28–30].

It is worth to write the inequality (1.3) in a different way. Let (V , g(·, ·)) be a real inner-
product vector space and suppose that v1, . . . , vN ∈ V . The real N × N matrix G :={g(vh, vj )} is
positive semidefinite and one can define Volg(v1, . . . , vN) :=√det{g(vh, vj )}. If the inner product
depends on a further parameter in such a way that g(·, ·) = gρ(·, ·), we write Volg(v1, . . . , vN) =
Volgρ(v1, . . . , vN). With these definitions the inequality (1.3) takes the form

VolCov
ρ (A1, . . . , AN) �

{
0, N = 2m + 1,

det{− i
2 Tr(ρ[Ah, Aj ])} 1

2 , N = 2m,
(1.4)

since the matrix {− i
2 Tr(ρ[Ah, Aj ])} is antisymmetric. The above formulation clarifies that for

an odd number of observables the standard uncertainty principle states nothing more than the
classical property of non-negativeness of the generalized variance.

In order to search for an uncertainty principle which is not trivial for an odd number of
observables, one is naturally lead to consider the commutators [ρ, Ah] (to see this consider the
case N = 1).

LetFop be the family of symmetric normalized operator monotone functions. To each element
f ∈ Fop one may associate a ρ-depending scalar product 〈·, ·〉ρ,f on the self-adjoint (traceless)
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matrices, which is a quantum version of the Fisher information (see [22]). Let us denote by Volfρ
the associated volume. In the paper [5] we conjectured that, for any N ∈ N (this is one of the
main differences from (1.4)) and for arbitrary self-adjoint matrices A1, . . . , AN , one has

VolCov
ρ (A1, . . . , AN) �

(
f (0)

2

)N
2

Volfρ (i[ρ, A1], . . . , i[ρ, AN ]). (1.5)

We conjectured inequality (1.5) inspired by the cases N = 1, 2 which have been proved by
the joint efforts of a number of authors in several papers: Luo [17,18], Luo and Zhang [19–21];
Kosaki [15]; Yanagi et al. [31]; Hansen [11]; Gibilisco et al. [4,5,10]. We refer to [5] for more
detailed credit.

The main result of the present paper is the proof of inequality (1.5).
It is well known that the standard uncertainty principle is a consequence of the Cauchy–

Schwartz inequality. It is worth to note that the same role in (1.5) is played by the Kubo–Ando
inequality

2(A−1 + B−1)−1 � mf (A, B) � 1

2
(A + B)

that says that any operator mean is larger than the harmonic mean and smaller than the arithmetic
mean.

The scheme of the paper is as follows. In Section 2 we describe the preliminary notions of
operator monotone functions, matrix means and quantum Fisher information. In Section 3 we
discuss a correspondence between regular and non-regular operator monotone functions that is
needed in the sequel. In Section 4 we state our main result, namely the inequality (1.5); we also
state other two results concerning how the right side depends on f ∈ Fop and the conditions to
have equality in (1.5). In Sections 5, 6 7 we prove some auxiliary results. In Section 8 we prove
the main results. In Section 9 we compare the standard uncertainty principle with the inequality
(1.5).

2. Operator monotone functions, matrix means and quantum Fisher information

Let Mn :=Mn(C) (resp. Mn,sa :=Mn,sa(C)) be the set of all n × n complex matrices (resp. all
n × n self-adjoint matrices). We shall denote general matrices by X, Y, . . . while letters A, B, . . .

will be used for self-adjoint matrices, endowed with the Hilbert–Schmidt scalar product 〈A, B〉 =
Tr(A∗B). The adjoint of a matrix X is denoted by X† while the adjoint of a superoperator
T : (Mn, 〈·, ·〉) → (Mn, 〈·, ·〉) is denoted by T ∗. Let Dn be the set of strictly positive elements of
Mn and D1

n ⊂ Dn be the set of strictly positive density matrices, namely D1
n = {ρ ∈ Mn|Trρ =

1, ρ > 0}. If it is not otherwise specified, from now on we shall treat the case of faithful states,
namely ρ > 0.

A function f : (0, +∞) → R is said operator monotone (increasing) if, for any n ∈ N, and A,
B ∈ Mn such that 0 � A � B, the inequalities 0 � f (A) � f (B) hold. An operator monotone
function is said symmetric if f (x) = xf (x−1) and normalized if f (1) = 1.

Definition 2.1. Fop is the class of functions f : (0, +∞) → (0, +∞) such that

(i) f (1) = 1,
(ii) tf (t−1) = f (t),

(iii) f is operator monotone.
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Example 2.1. Examples of elements of Fop are given by the following list:

fRLD(x) := 2x

x + 1
, fWY(x) :=

(
1 + √

x

2

)2

,

fSLD(x) := 1 + x

2
, fWYD(β)(x) :=β(1 − β)

(x − 1)2

(xβ − 1)(x1−β − 1)
, β ∈

(
0,

1

2

)
.

We now report Kubo–Ando theory of matrix means (see [16]) as exposed in [24].

Definition 2.2. A mean for pairs of positive matrices is a function m : Dn × Dn → Dn such
that

(i) m(A, A) = A,
(ii) m(A, B) = m(B, A),

(iii) A < B �⇒ A < m(A, B) < B,
(iv) A < A′, B < B ′ �⇒ m(A, B) < m(A′, B ′),
(v) m is continuous,

(vi) Cm(A, B)C∗ � m(CAC∗, CBC∗), for every C ∈ Mn.

Property (vi) is known as the transformer inequality. We denote by Mop the set of matrix
means. The fundamental result, due to Kubo and Ando, is the following.

Theorem 2.1. There exists a bijection between Mop and Fop given by the formula

mf (A, B) :=A
1
2 f (A− 1

2 BA− 1
2 )A

1
2 .

Example 2.2. The arithmetic, geometric and harmonic (matrix) means are given respectively by

A∇B := 1

2
(A + B),

A#B :=A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 ,

A!B :=2(A−1 + B−1)−1.

They correspond respectively to the operator monotone functions x+1
2 ,

√
x, 2x

x+1 .

Kubo and Ando [16] proved that, among matrix means, arithmetic is the largest while harmonic
is the smallest.

Proposition 2.2. For any f ∈ Fop one has

2(A−1 + B−1)−1 � mf (A, B) � 1

2
(A + B),

which is equivalent to

2x

1 + x
� f (x) � 1 + x

2
∀x > 0.
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In what follows, if N is a differentiable manifold we denote by TρN the tangent space to
N at the point ρ ∈ N. Recall that there exists a natural identification of TρD

1
n with the space of

self-adjoint traceless matrices; namely, for any ρ ∈ D1
n

TρD
1
n = {A ∈ Mn|A = A∗, Tr(A) = 0}.

A Markov morphism is a completely positive and trace preserving operator T : Mn → Mm.
A monotone metric is a family of Riemannian metrics g = {gn} on {D1

n}, n ∈ N, such that

gm
T (ρ)(T X, T X) � gn

ρ(X, X)

holds for every Markov morphism T : Mn → Mm, for every ρ ∈ D1
n and for every X ∈ TρD

1
n.

Usually monotone metrics are normalized in such a way that [A, ρ] = 0 implies gρ(A, A) =
Tr(ρ−1A2). A monotone metric is also said a quantum Fisher information (QFI) because of
Chentsov uniqueness theorem for commutative monotone metrics (see [1]).

Define Lρ(A) :=ρA, and Rρ(A) :=Aρ, and observe that they are commuting positive super-
operators on Mn,sa . For any f ∈ Fop one can define the positive superoperator mf (Lρ, Rρ).
Now we can state the fundamental theorem about monotone metrics.

Theorem 2.3 (see [22]). There exists a bijective correspondence between monotone metrics (quan-
tum Fisher informations) on D1

n and normalized symmetric operator monotone functions f ∈
Fop. This correspondence is given by the formula

〈A, B〉ρ,f :=Tr(A · mf (Lρ, Rρ)−1(B)).

The metrics associated with the functions fβ are very important in information geometry and
are related to Wigner–Yanase–Dyson information (see for example [6–9] and references therein).

3. The function f̃ and its properties

For f ∈ Fop define f (0) := limx→0 f (x). The condition f (0) �= 0 is relevant because it is a
necessary and sufficient condition for the existence of the so-called radial extension of a monotone
metric to pure states (see [23]). Following [11] we say that a function f ∈ Fop is regular iff
f (0) �= 0. The corresponding operator mean, associated QFI, etc. are said regular too.

Definition 3.1. We introduce the sets

Fr
op :={f ∈ Fop|f (0) /= 0}, Fn

op :={f ∈ Fop|f (0) = 0}.

Trivially one has Fop = Fr
op∪̇Fn

op.

Proposition 3.1 [4]. For f ∈ Fr
op and x > 0 set

f̃ (x) := 1

2

[
(x + 1) − (x − 1)2 f (0)

f (x)

]
.

Then f̃ ∈ Fn
op.

By the very definition one has the following result (see Proposition 5.3 in [4]).
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Proposition 3.2. Let f ∈ Fr
op. The following three conditions are equivalent:

(1) f̃ � g̃;
(2) m

f̃
� mg̃;

(3) f (0)
f (t)

� g(0)
g(t)

∀t > 0.

Let us give some more definitions.

Definition 3.2. Suppose that ρ ∈ D1
n is fixed. Define X0 :=X − Tr(ρX)I .

Definition 3.3. For A1, A2 ∈ Mn,sa and ρ ∈ D1
n define covariance and variance as

Covρ(A1, A2) := 1

2
[Tr(ρA1A2) + Tr(ρA2A1)] − Tr(ρA1) · Tr(ρA2)

= 1

2
[Tr(ρ(A1)0(A2)0) + Tr(ρ(A2)0(A1)0)] = Re{Tr(ρ(A1)0(A2)0)},

(3.1)

Varρ(A) :=Covρ(A, A) = Tr(ρA2) − Tr(ρA)2 = Tr(ρA2
0).

Suppose, now, that A1, A2 ∈ Mn,sa , ρ ∈ D1
n and f ∈ Fr

op. The fundamental result for our
present purpose is given by Proposition 6.3 in [4], which is stated as follows.

Theorem 3.3
f (0)

2
〈i[ρ, A1], i[ρ, A2]〉ρ,f = Covρ(A1, A2) − Tr(m

f̃
(Lρ, Rρ)((A1)0)(A2)0).

As a consequence of both the spectral theorem and Theorem 3.3 one has the following relations.

Proposition 3.4 [4]. Let {ϕi} be a complete orthonormal base composed of eigenvectors of ρ,

and {λi} the corresponding eigenvalues. To self-adjoint matrices A1, A2 we associate matrices
Aj = Aj (ρ), j = 1, 2, whose entries are given by A

j
kl :=〈(Aj )0ϕk|ϕl〉.

We have the following identities.

Covρ(A1, A2) = Re{Tr(ρ(A1)0(A2)0)} = 1

2

∑
k,l

(λk + λl)Re{A1
klA

2
lk}

f (0)

2
〈i[ρ, A1], i[ρ, A2]〉ρ,f = 1

2

∑
k,l

(λk + λl)Re{A1
klA

2
lk}

−
∑
k,l

m
f̃
(λi, λj )Re{A1

klA
2
lk}.

We also need the following result (Corollary 11.2 in [4]).

Proposition 3.5. On pure states

Tr(m
f̃
(Lρ, Rρ)((A1)0)(A2)0) = 0.
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4. Volume theorems for quantum Fisher informations

Given a matrix A = {Akl}, we denote its determinant by det(A) = det{Akl}. Let (V , g(·, ·))
be a real inner-product vector space. By 〈u, v〉 we denote the standard scalar product for vectors
u, v ∈ RN . One has

Proposition 4.1. Let v1, . . . , vN ∈ V . The real N × N matrix G :={g(vh, vj )} is positive semi-
definite and therefore det{g(vh, vj )} � 0.

Motivated by the case (V , g(·, ·)) = (RN, 〈·, ·〉) one can give the following definition.

Definition 4.1

Volg(v1, . . . , vN) :=
√

det{g(vh, vj )}.

Remark 4.1

(i) Obviously,

Volg(v1, . . . , vN) � 0,

where the equality holds if and only if v1, . . . , vN ∈ V are linearly dependent.
(ii) If the inner product depends on a further parameter so that g(·, ·) = gρ(·, ·), we write

Volgρ(v1, . . . , vN) = Volg(v1, . . . , vN).
(iii) In the case of a probability space (V , gρ(·, ·)) = (L2

R(�,G, ρ), Covρ(·, ·)) the number
VolCov

ρ (A1, . . . , AN)2 is known as the generalized variance of the random vector
(A1, . . . , AN).

In what follows we move to the noncommutative case. Here A1, . . . AN are self-adjoint matri-
ces, ρ is a (faithful) density matrix and g(·, ·) = Covρ(·, ·) has been defined in (3.1). By Volfρ we
denote the volume associated to the quantum Fisher information 〈·, ·〉ρ,f given by the (regular)
normalized symmetric operator monotone function f .

Definition 4.2. The function

If
ρ (A) := f (0)

2
Volfρ (i[ρ, A]) = f (0)

2
〈i[ρ, A], i[ρ, A]〉ρ,f

is known as the metric adjusted skew information or f -information (see [4,11]).

Let N ∈ N, f ∈ Fr
op, ρ ∈ D1

n and A1, . . . , AN ∈ Mn,sa be arbitrary. We shall prove in Section
8 the following results.

Theorem 4.2

VolCov
ρ (A1, . . . , AN) �

(
f (0)

2

)N
2

Volfρ (i[ρ, A1], . . . , i[ρ, AN ]). (4.1)

Theorem 4.3. The above inequality is an equality if and only if A10, . . . , AN 0 are linearly depen-
dent.
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Theorem 4.4. Fix N ∈ N, ρ ∈ D1
n and A1, . . . , AN ∈ Mn,sa. Define for f ∈ Fr

op

V (f ) :=
(

f (0)

2

)N
2

Volfρ (i[ρ, A1], . . . , i[ρ, AN ]).
Then, for any f, g ∈ Fr

op

f̃ � g̃ �⇒ V (f ) � V (g).

Remark 4.2. The inequality

det{Covρ(Ah, Aj )} � det
{

Covρ(Ah, Aj ) − Tr(m
f̃
(Lρ, Rρ)((Ah)0)(Aj )0)

}
also makes sense for not-faithful states, which is true by continuity as a consequence of Theorem
8.1.

Because of Proposition 3.5 one has (by an obvious extension of the definition) the following
result.

Proposition 4.5. If ρ is a pure state, then for any N ∈ N, f ∈ Fr
op, A1, . . . , AN ∈ Mn,sa one

has

VolCov
ρ (A1, . . . , AN) =

(
f (0)

2

)N
2

Volfρ (i[ρ, A1], . . . , i[ρ, AN ]).

5. Some combinatorics

The following simple combinatorial results are needed in order to prove the main results. For
the sequel, set n :={1, . . . , n} and denote by SN the symmetric group of order N . Furthermore,
given z ∈ C, we shall introduce the operator

Ck(z) :=
{

Re(z) if k = 0,

Im(z) if k = 1.

Given a finite set X ⊂ N and N ∈ N+, for any tensor {Qk
j } one has

N∏
j=1

∑
k∈X

Qk
j =

∑
u∈XN

N∏
j=1

Q
u(j)
j . (5.1)

Therefore, taking X = {0, 1} and Qk
j = Ck(zj )C

k(wj ), one gets the following result.

Lemma 5.1. If zj , wj ∈ C then

N∏
j=1

⎛
⎝ ∑

k∈{0,1}
Ck(zj )C

k(wj )

⎞
⎠ =

∑
u∈{0,1}N

⎛
⎝ N∏

j=1

Cu(j)(zj )C
u(j)(wj )

⎞
⎠ .

Indeed, with similar arguments (5.1) can be generalized to a tensor {Qj
kl}, so that one obtains

the following lemma.
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Lemma 5.2. For a finite set X ⊂ N and N ∈ N+ one has

N∏
j=1

⎛
⎝∑

k,l∈X

Q
j
kl

⎞
⎠ =

∑
α,β∈XN

⎛
⎝ N∏

j=1

Q
j

α(j)β(j)

⎞
⎠ .

For finite X, consider a bijection g : X → X. For any function r : X → R one has∑
x∈X

r(x) =
∑
x∈X

r(g(x)). (5.2)

From this result, one obtains the following proposition.

Proposition 5.3. Let X be a finite set and let G be a group of bijections g : X → X. For any
function r : X → R one has

∑
x∈X

r(x) = 1

�(G)

∑
x∈X

∑
g∈G

r(g(x)).

Now consider X :={0, 1}N which can be identified with the power set of N . If u ∈ {0, 1}N ,
each permutation σ ∈ SN can be seen as a bijection σ : X → X defining σ(u) :=u ◦ σ . Therefore,
from (5.2) we get the following lemma.

Lemma 5.4. For any function r : {0, 1}N → R and for any σ ∈ SN one has∑
u∈{0,1}N

r(u) =
∑

u∈{0,1}N
r(σ (u)).

6. The function H

Let R+ := (0, +∞) and x = (x1, . . . , xN), y = (y1, . . . , yN) ∈ RN+ . In the sequel, we need to
study the following function.

Definition 6.1. For any f ∈ Fr
op,set

Hf (x, y) :=
N∏

j=1

xj + yj

2
−

N∏
j=1

(
xj + yj

2
− m

f̃
(xj , yj )

)
.

Proposition 6.1. For any F ∈ Fr
op, x, y ∈ RN+ ,

Hf (x, y) > 0.

Proof. Since for any x, y ∈ RN+ ,

0 < m
f̃
(xj , yj ) � xj + yj

2
, j = 1, . . . , N,

we have
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N∏
j=1

(
xj + yj

2
− m

f̃
(xj , yj )

)
<

N∏
j=1

xj + yj

2
,

so that we obtain the result. �

Proposition 6.2

f̃ � g̃

⇓
Hf (x, y) � Hg(x, y) ∀x, y ∈ RN+ .

Proof. Since for any x, y > 0

x + y

2
− m

f̃
(x, y) = (x − y)2

2y
· f (0)

f
(

x
y

) , (6.1)

we have

Hf (x, y) =
N∏

j=1

xj + yj

2
−

N∏
j=1

⎛
⎝ (xj − yj )

2

2yj

· f (0)

f
(

xj

yj

) ,
⎞
⎠ .

Because of Proposition 3.2 we have

f̃ � g̃ ⇒ f (0)

f (t)
� g(0)

g(t)
> 0 ∀t > 0;

hence, we obtain

Hf (x, y) � Hg(x, y) ∀x, y ∈ RN+
by elementary computations. �

Corollary 6.3. For any f ∈ Fop,

0 < HSLD(x, y) � Hf (x, y) � 1

2N

N∏
j=1

(xj + yj ) ∀x, y ∈ RN+ .

Define

C :=nN = {(x1, . . . , xN) : xi ∈ {1, . . . n}, i = 1, . . . , N}.

Definition 6.2. Fix (λ1, . . . , λn) ∈ Rn+. Given α, β ∈ C = nN , let H
f
α,β :=Hf (λα, λβ), where

λα := (λα1 , . . . , λαN
), λβ := (λβ1 , . . . , λβN

).

Proposition 6.4. For all σ ∈ SN one has

H
f

α(σ),β(σ ) = H
f
α,β .

Proof. It is left to the reader. �
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7. The function K

In order to prove the main result of this paper, we introduce some notations. Let {ϕi} be a com-
plete orthonormal basis composed of eigenvectors of ρ, and {λi} the corresponding eigenvalues.
As in Proposition 3.4, set

A
j
kl :=〈(Aj )0ϕk|ϕl〉, j = 1, . . . , N; k, l = 1, . . . , n.

Note that Aj
kl = A

j
lk , since the Aj ’s are self-adjoint; namely

Re{Aj
kl} = Re{Aj

lk}, Im{Aj
kl} = −Im{Aj

lk}.
Since

Re{zw} = Re{z}Re{w} − Im{z}Im{w},
we obtain the following lemma.

Lemma 7.1

Re{Aj
klA

m
lk} = Re{Aj

kl}Re{Am
kl} + Im{Aj

kl}Im{Am
kl}.

If α, β ∈ C = nN and σ ∈ SN we define a N × N matrix Bασ ,βσ setting

(Bασ ,βσ )hj :=Re{Ah
ασ(h),βσ(h)

A
j
βσ(h),ασ(h)

}, h, j = 1, . . . , N; ασ(h), βσ(h) = 1, . . . , n.

When σ :=I is the identity in SN , we shall simply denote by Ah
α,β , h = 1, . . . N , and Bα,β

the corresponding matrices.

Definition 7.1

Kα,β :=Kα,β(ρ; A1, . . . , AN) :=
∑

σ∈SN

det(Bασ ,βσ ).

Definition 7.2. If u ∈ {0, 1}N and α, β ∈ C = nN we define an N × N matrix D(u; α, β) setting

{D(u; α, β)hj } :={Cu(j)Ah
αj βj

}, h, j = 1, . . . , N.

Proposition 7.2. We have

Kα,β =
∑

u∈{0,1}N
det(D(u; α, β))2 � 0.

Proof. Applying: Lemmas 7.1, 5.1 and 5.4 to the function

r(u) = rσ,τ (u) :=
N∏

j=1

Cu(j)A
j
ασ(j),βσ(j)

Cu(j)A
τ(j)
ασ(j),βσ(j)

,

we get

Kα,β =
∑

σ∈SN

det Bασ ,βσ
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=
∑

σ∈SN

∑
τ∈SN

sgnτ

N∏
j=1

(Bασ ,βσ )j,τ (j)

=
∑

σ∈SN

∑
τ∈SN

sgnτ

N∏
j=1

Re
{
A

j
ασ(j),βσ(j)

A
τ(j)
βσ(j),ασ(j)

}

=
∑

σ∈SN

∑
τ∈SN

sgnτ

N∏
j=1

(
ReAj

ασ(j),βσ(j)
ReAτ(j)

ασ(j),βσ(j)
+ImA

j
ασ(j),βσ(j)

ImA
τ(j)
ασ(j),βσ(j)

)

=
∑

σ∈SN

∑
τ∈SN

sgnτ

N∏
j=1

⎛
⎝ ∑

u∈{0,1}
CuA

j
ασ(j),βσ(j)

· CuA
τ(j)
ασ(j),βσ(j)

⎞
⎠

=
∑

σ∈SN

∑
τ∈SN

sgnτ
∑

u∈{0,1}N

N∏
j=1

Cu(j)A
j
ασ(j),βσ(j)

Cu(j)A
τ(j)
ασ(j),βσ(j)

=
∑

σ∈SN

∑
τ∈SN

sgnτ
∑

u∈{0,1}N

N∏
j=1

Cu(σ(j))A
j
ασ(j),βσ(j)

Cu(σ(j))A
τ(j)
ασ(j),βσ(j)

.

Hence, since for any E = {Ejk} and σ ∈ SN , sgnσ · det{Eσ(j)k} = det(E), one has

Kα,β =
∑

σ∈SN

det Bασ ,βσ

=
∑

u∈{0,1}N

∑
σ∈SN

∑
τ∈SN

sgnτ

N∏
j=1

Cu(σ(j))A
j
ασ(j),βσ(j)

N∏
h=1

Cu(σ(h))A
τ(h)
ασ(h),βσ(h)

=
∑

u∈{0,1}N

∑
σ∈SN

sgnσ

N∏
j=1

Cu(σ(j))A
j
ασ(j),βσ(j)

sgnσ
∑
τ∈SN

sgnτ

N∏
h=1

Cu(σ(h))A
τ(h)
ασ(h),βσ(h)

=
∑

u∈{0,1}N

⎛
⎝∑

σ∈SN

sgnσ

N∏
j=1

Cu(σ(j))A
j
ασ(j),βσ(j)

⎞
⎠(sgnσ det

{
Cu(σ(h))A

j
ασ(h),βσ(h)

})

=
∑

u∈{0,1}N
det
{
Cu(j)Ah

αj ,βj

}
det
{
Cu(h)A

j
αh,βh

}

=
∑

u∈{0,1}N

(
det
{
Cu(j)Ah

αj ,βj

})2

=
∑

u∈{0,1}N
det(D(u; α, β))2. �
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Lemma 7.3. If A1, . . .AN ∈ Mn,sa are linearly independent then there exist α, β ∈ C and u ∈
{0, 1}N such that

det(D(u; α, β)) = det{Cu(j)Ah
αj ,βj

} /= 0.

Proof. Note that the independence hypothesis implies N � dimR(Mn,sa) = n2. Therefore the
N × n2 matrix⎛

⎜⎜⎝
A1

11 · · · A1
1n A1

21 · · · A1
2n · · · A1

n1 · · · A1
nn

A2
11 · · · A2

1n A2
21 · · · A2

2n · · · A2
n1 · · · A2

nn

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
AN

11 · · · AN
1n AN

21 · · · AN
2n · · · AN

n1 · · · AN
nn

⎞
⎟⎟⎠

has rank N because it has N independent rows. This means that there exist N columns that are
linearly independent, which is, in turn, equivalent to say that there exists α, β ∈ C such that the
matrix⎛

⎜⎜⎝
A1

α1β1
A1

α2β2
· · · A1

αNβN

A2
α1β1

A2
α2β2

· · · A2
αNβN· · · · · · · · · · · ·

AN
α1β1

AN
α2β2

· · · AN
αNβN

⎞
⎟⎟⎠

has rank N . This implies that the N × 2N matrix⎛
⎜⎜⎝

ReA1
α1β1

ImA1
α1β1

ReA1
α2β2

ImA1
α2β2

· · · ReA1
αNβN

ImA1
αNβN

ReA2
α1β1

ImA2
α1β1

ReA2
α2β2

ImA2
α2β2

· · · ReA2
αNβN

ImA2
αNβN· · · · · · · · · · · · · · · · · · · · ·

ReAN
α1β1

ImAN
α1β1

ReAN
α2β2

ImAN
α2β2

· · · ReAN
αNβN

ImAN
αNβN

⎞
⎟⎟⎠

has rank N , so that this matrix must have also N independent columns. This last assertion is
equivalent to the desired conclusion. �

Corollary 7.4. If (A1)0, . . . , (AN)0 ∈ Mn,sa are linear independent then there exist α, β ∈ C
and u ∈ {0, 1}N such that

det(D(u; α, β)) = det{Cu(j)Ah
αj ,βj

} /= 0.

Proof. By definition of Aj , j = 1, . . . , N , the hypothesis of linear independence of

(A1)0, . . . , (AN)0

implies the linear independence of

A1, . . .AN.

Hence, by Lemma 7.3 there exist α, β ∈ C and u ∈ {0, 1}N such that

det(D(u; α, β)) = det{Cu(j)Ah
αj ,βj

} /= 0. �

8. Proof of the main results

Theorem 8.1. Let N ∈ N, f ∈ Fr
op, ρ ∈ D1

n and A1, . . . , AN ∈ Mn,sa be arbitrary. Then

VolCov
ρ (A1, . . . , AN) �

(
f (0)

2

)N
2

Volfρ (i[ρ, A1], . . . , i[ρ, AN ]).
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Proof. Theorem 8.1 is equivalent to the following inequality:

det{Covρ(Ah, Aj )} � det

{
f (0)

2
〈i[ρ, Ah], i[ρ, Aj ]〉ρ,f

}
.

If ρ and A1, . . . , AN are fixed we set

F(f ) :=det{Covρ(Ah, Aj )} − det

{
f (0)

2
〈i[ρ, Ah], i[ρ, Aj ]〉ρ,f

}
.

Because of Theorem 3.3 one has

F(f ) = det{Covρ(Ah, Aj )} − det
{

Covρ(Ah, Aj ) − Tr(m
f̃
(Lρ, Rρ)((Ah)0)(Aj )0)

}
,

so that Theorem 8.1 is equivalent to

F(f ) � 0.

From Proposition 3.4, we have

Covρ(Ah, Aj ) = Re{Tr(ρ(Ah)0(Aj )0} = 1

2

∑
k,l

(λk + λl)Re{Ah
klA

j
lk}

f (0)

2
〈i[ρ, Ah], i[ρ, Aj ]〉ρ,f = 1

2

∑
k,l

(λk + λl)Re{Ah
klA

j
lk} −

∑
k,l

m
f̃
(λk, λl)Re{Ah

klA
j
lk}.

and therefore one has

F(f ) =
∑

σ∈SN

sgnσ

⎡
⎣ N∏

j=1

Covρ(Aj , Aσ(j)) −
N∏

j=1

f (0)

2
〈i[ρ, Aj ], i[ρ, Aσ(j)]〉ρ,f

⎤
⎦

=
∑

σ∈SN

sgnσξσ ,

where

ξσ =
N∏

j=1

n∑
k,l=1

λk + λl

2
Re{Aj

klA
σ(j)
lk }−

N∏
j=1

n∑
k,l=1

[
λk + λl

2
− m

f̃
(λk, λl)

]
Re{Aj

klA
σ(j)
lk }.

From Definition 6.2 and applying Proposition 5.2 to the case X = n we get

ξσ =
N∏

j=1

n∑
k,l=1

λk + λl

2
Re
{
Aj

kl
Aσ(j)

lk

}
−

N∏
j=1

n∑
k,l=1

[
λk + λl

2
− m

f̃
(λk, λl)

]
Re
{
Aj

kl
Aσ(j)

lk

}

=
∑

α,β∈C

⎧⎨
⎩

N∏
j=1

λαj + λβj

2
Re{Aj

αj βj
Aσ(j)

βj αj
} −

N∏
j=1

[
λαj + λβj

2
− m

f̃
(λαj , λβj

)

]

× Re{Aj
αj βj

Aσ(i)
βj αj

}
⎫⎬
⎭

=
∑

α,β∈C

⎧⎨
⎩

N∏
j=1

λαj + λβj

2

N∏
j=1

Re{Aj
αj βj

Aσ(j)
βj αj

} −
N∏

j=1

[
λαj + λβj

2
− m

f̃
(λαj , λβj

)

]
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×
N∏

j=1

Re{Aj
αj βj

Aσ(j)
βj αj

}
⎫⎬
⎭

=
∑

α,β∈C

⎡
⎣ N∏

j=1

λαj + λβj

2
−

N∏
j=1

(
λαj + λβj

2
− m

f̃
(λαj , λβj

)

)⎤
⎦ N∏

j=1

Re
{
Aj

αj βj
Aσ(j)

βj αj

}

=
∑

α,β∈C
Hα,β

N∏
j=1

Re
{
Aj

αj βj
Aσ(j)

βj αj

}
.

Hence, applying Proposition 5.3 to the case G = SN , X = C × C and r(x) := r(α, β) :=
H

f
α,β det Bα,β and Proposition 6.4 we get

F(f ) =
∑

σ∈SN

sgnσ
∑

α,β∈C
H

f
α,β

N∏
i=1

Re
{
Ai

αiβi
A

σ(i)
βiαi

}

=
∑

α,β∈C
H

f
α,β

∑
σ∈SN

sgnσ

N∏
i=1

Re
{
Ai

αiβi
A

σ(i)
βiαi

}

=
∑

α,β∈C
H

f
α,β det Bα,β

= 1

N !
∑

α,β∈C
H

f
α,β

∑
σ∈SN

det Bασ ,βσ

= 1

N !
∑

α,β∈C
H

f
α,βKα,β .

By Corollary 6.3, H
f
α,β is strictly positive; on the other hand, Proposition 7.2 ensures the

nonnegativity of Kα,β , so that we obtain the result. �

Theorem 8.2. LetN ∈ N,f ∈ Fr
op, ρ ∈ D1

n andA1, . . . , AN ∈ Mn,sa be arbitrary.The inequal-
ity

VolCov
ρ (A1, . . . , AN) �

(
f (0)

2

)N
2

Volfρ (i[ρ, A1], . . . , i[ρ, AN ])
is an equality if and only if (A1)0, . . . , (AN)0 are linearly dependent.

Proof. Since

Covρ(A1, A2) = Tr(ρ(A1)0(A2)0) = Covρ((A1)0, (A2)0),

we have that

Covρ(A1, A2) = Covρ((A1)0, (A2)0).

From this it follows

VolCov
ρ (A1, . . . , AN) = VolCov

ρ ((A1)0, . . . , (AN)0).

Therefore, if (A1)0, . . . , (AN)0 are linearly dependent then
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0 = VolCov
ρ ((A1)0, . . . , (AN)0) = VolCov

ρ (A1, . . . , AN)

�
(

f (0)

2

)N
2

Volfρ (i[ρ, A1], . . . , i[ρ, AN ]) � 0

and we are done.
Conversely, suppose that (A1)0, . . . (AN)0 are not linear dependent; then we want to show

that F(f ) > 0. Since for any α, β ∈ C, Hα,β is strictly positive and Kα,β is nonnegative, this is
equivalent to prove that Kα,β is not null for some α, β ∈ C. Because of Proposition 7.2, this is,
in turn, equivalent to show that det(Cu(j)Ai

αj ,βj
) is not null for some α, β ∈ C and u ∈ {0, 1}N .

This is a consequence of Corollary 7.4. �

Theorem 8.3. Define

V (f ) :=
(

f (0)

2

)N
2

Volfρ (i[ρ, A1], . . . , i[ρ, AN ]).

Then

f̃ � g̃ �⇒ V (f ) � V (g).

Proof. Because of Proposition 6.1 and Proposition 6.2, one has that

f̃ � g̃ �⇒ 0 < H
f
α,β � H

f
α,β .

Since Kα,β � 0 does not depend on f and

F(f ) = 1

N !
∑

α,β∈C
H

f
α,βKα,β

we get that

0 � F(f ) � F(g).

By definition of F , we obtain the thesis. �

9. Relation with the standard uncertainty principle

In this section we prove that the inequality (1.5) cannot be seen as a refinement of the Robertson
uncertainty principle and viceversa.

Theorem 9.1 (Hadamard inequality). If H ∈ MN,sa is positive semidifinite then

det(H) �
N∏

j=1

hjj .

Particular cases of the theorem below have been proved by Kosaki (N = 2, f = fWYD(β); see
[15]), Yanagi–Furuichi–Kuriyama (N = 2, f = fWY; see [31]) and Gibilisco–Imparato–Isola
(N = 2, f arbitrary; see [4]).
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Theorem 9.2. Let f ∈ Fr
op. The inequality

det

{
f (0)

2
〈i[ρ, Ah], i[ρ, Aj ]〉ρ,f

}
� det

{
− i

2
Tr(ρ[Ah, Aj ])

}

is (in general ) false for any N = 2m.

Proof. Let n = N = 2m. By the Hadamard inequality it is enough to find A1, . . . , AN ∈ MN,sa

and a state ρ ∈ D1
N such that

N∏
j=1

If
ρ (Aj ) < det

{
− i

2
Tr(ρ[Ah, Aj ])

}
. (9.1)

Let ρ :=diag(λ1, . . . , λN), where λ1 < λ2 < . . . < λN . The aim is to construct A1, . . . AN that
are block-diagonal matrices, each matrix consisting of exactly one non-null block equal to a 2 × 2
Pauli matrix.

More precisely, given h = 2q + 1, where q = 0, . . . N − 1, define the Hermitian matrices Ah

and Ah+1 such that (Ah)hh+1 = i = (A∗
h)h+1h, (Ah+1)hh+1 = 1 = (Ah+1)h+1h and (Ah)kl =

(Ah+1)kl = 0 elsewhere.
Since the state ρ is diagonal and Ah are null diagonal matrices, Ah ≡ Ah, where (Ah)kl =

〈(Ah)0φk, φl〉 is defined as in Proposition 3.4. Therefore, say, if h is odd one obtains from Prop-
osition 3.4

If
ρ (Ah) = 1

2

∑
k,l

(λk + λl)|Ah
kl |2 −

∑
k,l

m
f̃
(λk, λl)|Ah

kl |2

= λh + λh+1 − 2m
f̃
(λh, λh+1)

= If
ρ (Ah+1).

Suppose now that h is odd and h < k. We have

Tr(ρ[Ah, Ak]) =
∑
j,l,m

ρjl((Ah)lm(Ak)mj − (Ak)lm(Ah)mj )

=
∑
j,m

λj ((Ah)jm(Ak)mj − (Ak)jm(Ah)mj )

=
∑
j,m

λj ((Ah)jm(Ak)mj − (Ak)jm(Ah)mj )

= 2i(λh − λh+1)δ
h+1
k ,

where δk+1
h denotes the Kronecker delta function. Since Tr(ρ[Ah, Ak]) = −Tr(ρ[Ak, Ah]),

{
− i

2
Tr(ρ[Ah, Aj ])

}
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 λ1 − λ2 0 · · · 0
λ2 − λ1 0 λ2 − λ3 · · · 0

0 λ3 − λ2 0 · · · 0
· · · · · · · · · · · · · · ·
0 · · · · · · 0 λN−1 − λN

0 0 · · · λN − λN−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

so that
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det

{
− i

2
Tr(ρ[Ah, Aj ])

}
=

∏
h<N,h=2q+1

(λh+1 − λh)
2.

Finally, since for any f ∈ Fr
op the function m

f̃
(·, ·) is a mean, one has λh < m

f̃
(λh, λh+1) <

λh+1. This implies, for any odd h,

If
ρ (Ah) = If

ρ (Ah+1) = λh + λh+1 − 2m
f̃
(λh, λh+1) < λh+1 − λh,

so that one can get (9.1) by taking the product over all h. �

Theorem 9.3. Let f ∈ Fr
op. The inequality

det

{
f (0)

2
〈i[ρ, Ah], i[ρ, Aj ]〉ρ,f

}
� det

{
− i

2
Tr(ρ[Ah, Aj ])

}

is (in general) false for any N = 2m.

Proof. It suffices to find selfadjoint matrices A1, . . . AN which are pairwise commuting but not
commuting with a given state ρ and such that [ρ, A1], . . . [ρ, AN ] are linearly independent.

Consider a state of the form ρ = diag(λ1, . . . , λn) where the eigenvalues λi are all distinct.
Let A1, . . . AN ∈ Mn,sa(R) be N linearly independent symmetric real matrices such that

(Aj )kk = 0 for any j = 1, . . . N and k = 1, . . . , n. Note that the linear independence ofA1, . . . AN

implies the condition n(n − 1)/2 � N .
Obviously, [Aj , Am] = 0 for any j, m = 1, . . . N , while a direct computation shows that

([ρ, Aj ])kl =
n∑

h=1

ρkh(Aj )hl −
n∑

h=1

(Aj )khρhl

= (Aj )kl(λk − λl)

Observe that also [ρ, A1] . . . [ρ, AN ] are linearly independent. Suppose, in fact, that there
exists a vector α ∈ RN such that

N∑
j=1

αj [ρ, Aj ] ≡ 0,

that is, for any k, l = 1, . . . n

0 =
N∑

j=1

αj ([ρ, Aj ])kl = (λk − λl)

N∑
j=1

αj (Aj )kl .

This implies that
∑

j αj (Aj )kl = 0, and hence α ≡ 0, because of the linear independence of
A1, . . . , AN . �
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