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ABSTRACT A model describing the role of transversal and longitudinal diffusion of cGMP and Ca21 in signaling in the rod
outer segment of vertebrates is developed. Utilizing a novel notion of surface-volume reaction and the mathematical theories of
homogenization and concentrated capacity, the diffusion of cGMP and Ca21 in the interdiscal spaces is shown to be reducible
to a one-parameter family of diffusion processes taking place on a single rod cross section; whereas the diffusion in the outer
shell is shown to be reducible to a diffusion on a cylindrical surface. Moreover, the exterior flux of the former serves as a source
term for the latter, alleviating the assumption of a well-stirred cytosol. A previous model of visual transduction that assumes
a well-stirred rod outer segment cytosol (and thus contains no spatial information) can be recovered from this model by
imposing a ‘‘bulk’’ assumption. The model shows that upon activation of a single rhodopsin, cGMP changes are local, and
exhibit both a longitudinal and a transversal component. Consequently, membrane current is also highly localized. The spatial
spread of the single photon response along the longitudinal axis of the outer segment is predicted to be 3–5 mm, consistent with
experimental data. This approach represents a tool to analyze pointwise signaling dynamics without requiring averaging over
the entire cell by global Michaelis-Menten kinetics.

INTRODUCTION

Diffusion of the second messengers cGMP (cyclic-guano-

sine monophosphate) and Ca21 mediates phototransduction

in rod outer segments. This process occurs within the thin

layers between the membranous discs (transversal diffusion)

and the equally thin outer shell along the plasma membrane

(longitudinal diffusion). An open issue is to understand the

physical role of the transversal diffusion (Dumke et al., 1994;

Lamb et al., 1981; Olson and Pugh, 1993) and of the longi-

tudinal diffusion (Gray-Keller et al., 1999; Lamb et al., 1981;

Olson and Pugh, 1993). More importantly, no description

exists in the literature of how these two mutually per-

pendicular diffusions communicate and interact.

First, the physics of the diffusion of the second mes-

sengers is in need of a deeper understanding; for example the

very same notion of ‘‘transversal’’ and ‘‘longitudinal’’ dif-

fusions are not well defined. Diffusion within the interdiscal

spaces is important because these are the only physical

spaces through which cGMP can be depleted by phospho-

diesterase (PDE) localized on the faces of the discs. Dif-

fusion along the outer shell is equally important because

there is a spread of depletion of cGMP to a distance of

several discs (Gray-Keller et al., 1999; Matthews, 1986) and

because this is the region where the channels and transporters

reside and Ca21 enters.

Second, to our knowledge, no pointwise, predictive model

exists for the cascade. Such a pointwise model would have to

describe the current of the cGMP-gated channels as

a function of position on the lateral boundary of the rod in

terms of the number of photons hitting the rod. Because the

current and [cGMP] are directly linked, this would require

the calculation of [cGMP] as a function of space and time.

Thus the biophysical issue of understanding the diffusion

process and the issue of creating a pointwise model are

intertwined.

Researchers have long recognized the importance of

diffusion of the second messenger in the cytosol and its

space-time dependence (for a recent discussion see Leskov

et al. (2000), and in particular Fig. 6 A). Some have gen-

erated a mathematical model for the radial diffusion within

a single interdiscal space, neglecting the longitudinal

diffusion (Dumke et al., 1994). Others have taken into

account only the diffusion along the axis of the rod, neglecting

space variables in the interdiscal space (Gray-Keller et al.,

1999). Although others have attempted to account for both

(Lamb et al., 1981; Olson and Pugh, 1993), they do not pro-

vide a description of the mechanism by which interdiscal and

outer shell diffusions interact.

To address the complex nature of the two physical

processes, the mathematical theories of homogenization and

concentrated capacity are utilized. The homogenization

theory was introduced to understand the properties of com-

posite materials with fine periodic structures (Bensoussan

et al., 1978; Cioranescu and Saint-Jean-Paulin, 1998; Oleinik

et al., 1992). The periodic distribution of discs in the rod

outer segment can be regarded as one such composite system.

Ideally, the number of discs is thought of as increasing to

infinity whereas their mutual distance tends to zero. The

theory of concentrated capacity originated from investigating

thermal and elastic responses of thin, surface-like materials
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(Andreucci, 1990; Ciarlet and Lods, 1996; Magenes, 1998;

Motygin et al., 2000). The outer shell is one such thin layer.

These two theories, which in the existing literature appear

separately, here occur simultaneously and call for novel

mathematical approaches (Andreucci et al., 2002, 2003). The

combination of these theories in conjunction with basic

biophysical principles, such as mass action, Hill’s law, and

Michaelis-Menten dynamics allows for elucidation of the

interaction between transversal and longitudinal diffusion of

the second messengers involved in signaling in the rod outer

segment. An equation is derived describing directly how

these diffusions interact. Without the assumption of a well-

stirred cytosol, a description of the spatial spread of

excitation is obtained.

BACKGROUND

The phototransduction cascade

The outer segment of a rod photoreceptor in vertebrates is

a right cylinder of height H and radius R 1 seo, housing

a longitudinal stack of no equispaced parallel cylinders,

called discs, each of radius R, and width eo, and mutually

separated by a distance neo (Figs. 1 and 2). Each disc is made

up of two functionally independent layers of lipidic mem-

brane where proteins are embedded, such as rhodopsin (Rh),

the light receptor, G-protein (G), also called transducin, and

cGMP phosphodiesterase (PDE), the effector. These mem-

brane-associated proteins can diffuse on the face of the disc

where they are located. The plasma membrane of the rod

contains cGMP-gated channels. In absence of light, these

channels are open and allow a positive influx of sodium and

calcium (Ca21) ions. The space within the rod, and not

occupied by the discs, is filled with fluid cytosol, in which

cGMP and Ca21 diffuse.

Assume a photon hits a molecule of rhodopsin, located on

one of the discs, say for example Cjo (Fig. 2). The rhodopsin

becomes activated (denoted by R*), by absorbing a photon

of light and in turn activates any G-protein it interacts with.

Each of the activated G-proteins, G*, is capable of activating

one catalytic subunit of PDE on the disc Cjo ; by binding to it

upon contact. The bound pair so generated is denoted by

PDE*. This cascade takes place only on the disc Cjo . The

next cascade, involving cGMP and Ca21, takes place in the

cytosol.

Active PDE* hydrolyzes cGMP in the cytosol, thereby

lowering its concentration. The decrease of concentration of

the cGMP causes closure of some of the cGMP-gated

channels of the plasma membrane, resulting in a lowering of

the influx of positive ions, and thus a lowering of the local

current across the outer membrane. Because of the Na1/K1/

Ca21 exchanger that continues to remove Ca21 from the

cytosol, there is a decrease in the calcium concentration,

which in turn results in an increase in cGMP production by

stimulation of Ca21-inhibited guanylyl cyclase, and thus

a consequent reopening of the channels. The same decreased

Ca21 closes the cycle by causing disactivation of rhodopsin

through stimulation of rhodopsin kinase. Rhodopsin ceases

activating new G-protein. Thus PDE* decays to basal,

ending depletion of cGMP.

This cascade is well known and it is supported by a sizable

amount of published experimental data (e.g., Wald, 1968;

Stryer, 1987; Liebman et al., 1987; Schnapf and Baylor,

1987; Pugh and Lamb, 2000; Burns and Baylor, 2001). Its

formal mathematical description, however, is less developed.

Here we have used a novel mathematical formulation of the

excitation phase, which allows us to take into account the

complex geometry of the rod outer segment and the diffusion

of both second messengers through it.

The geometry of the rod outer segment

Let e denote a parameter in the range (0, eo] and let n be

a positive integer larger or equal to no. Denote by DR1se

a disc, and of radius R1 se, where R, s, e and H are positive

numbers. Let Ve and V be the cylinders, of height H and

cross sections the disc DR1se and DR respectively. The

cylinder V is included in Ve, is coaxial with it, and it is

formally obtained from Ve by setting e ¼ 0. The outer shell

Se is the gap between these cylinders. Coordinates �xx ¼ ðx; yÞ
and ð�xx; zÞ are introduced as in Fig. 1.

The cylinder V houses a longitudinal stack of n parallel,

equispaced cylinders Cj, j ¼ 1, 2, . . ., n, coaxial with V and

with cross section a disc DR of radius R. They are thin in the

sense that their height e � H:
The Cj are equally spaced, i.e., the upper face of Cj has

distance ne from the lower face of Cj11, where n is a positive

number. The first C1 has distance ð1=2Þne from the lower

face of the rod Ve and the last Cn has distance ð1=2Þne from

the upper face of the rod. The indicated geometry implies

that,

ne ¼ H

11 n
:

Also the volume fraction of the union of the Cj with

respect to V is

total volume occupied by all theCj

volume of V
¼ 1

11 n
¼def
uo: (1)

The upper and lower faces of the cylinders Cj are denoted

by F6
j ; whereas Lj denotes their lateral surface (Fig. 2). The

spaces between two contiguous cylinders Cj and Cj11 and

within V are the interdiscal spaces. We label them by Ij, j ¼
0, 1, 2, . . ., n by defining Io as the space between the lower

face {z¼ 0} of V and the lower face of C1 and In as the space

between the upper face {z ¼ H} of V and the upper face of

Cn. The disc hit by the photon on one of its faces is called the

activated disc and is denoted by Cjo for some 1 # jo # n. For

definiteness we assume that the photon hits Cjo on its lower
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face F�
jo
: The interdiscal space Ijo�1 adjacent to the lower face

of Cjo is called the activated interdiscal space.

This geometrical description is done in terms of the

parameter e ranging in the interval (0, eo]. The actual physical

width of the discs Cj is eo and their actual number is no. Thus

the geometrical description of the actual physical rod outer

segment is obtained from this by taking for e ¼ eo and for

n¼ no. Such a description is motivated by the idea of regard-

ing eo as a parameter e that will be let go to zero.

THEORY

Diffusion of cGMP and Ca21 within the cytosol

Ca21 and cGMP diffuse in the cytosol, within the rod outer

segment (ROS). This is the domain obtained from the

cylinder Veo
from which the internal discs Cj have been

removed. In Fig. 2 it corresponds to the white area that is left

in the cylinder Veo
when the discs are removed. This domain

consists of the outer shell Seo
; which is a thin cylindrical

layer, and the union of the parallel, transversal thin layers of

the interdiscal spaces. We denote it by eVeo
. Because withineVeo

there are no volume sources for either cGMP or Ca21,

@½cGMP�
@t

� DcG=
2½cGMP� ¼ 0

@½Ca
21 �

@t
� DCa=

2½Ca
21 � ¼ 0

in eVeo
(2)

where t is time, =2 is the Laplacian operator in the space

variables ð�xx; zÞ; and DcG, DCa are the respective free

diffusivity constants in the cytosol.

The system (Eq. 2) is complemented with source terms

supported on the lateral boundary of the rod and the faces F6
j

FIGURE 1 Geometrical description of the ROS and its

outer shell.

FIGURE 2 Geometry of the ROS and its discs.
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of the discs Cj. These sources, positive or negative, are due

to volume-to-surface first-order reactions. Postponing the

discussion of these sources, here we indicate how we intend

to interpret the diffusion phenomenon in the cytosol. One

might study the system (Eq. 2) in the structured layered

geometry of eVeo
by regarding such a domain as macro-

scopic. However eVeo
consists of layers, transversal or cylin-

drical, whose thickness is of three orders of magnitude less

with respect to the dimensions of the rod outer segment. In

situations such as these, the homogenization theory seeks to

extract physical information from the system by letting the

thickness of the layers go to zero, without altering the total

relative volume available for diffusion. In practical terms the

parameter eo is replaced with a parameter e 2 (0, eo]. Such

a parameter e is then sent to zero. Because e is the thickness

of the new fictitious discs, their number n must increase to

infinity to keep constant the volume available for diffusion.

From Eq. 1 and the geometry of the rod outer segment, the

limit is carried out so that,

ne ¼ noeo ¼
H

11 n
¼ Huo: (3)

In such a limiting process we impose that although the

activated disc Cjo changes its width as e ! 0, its lower face,

which is the face where the photon hits, remains fixed.

Diffusion starts at time t ¼ 0 from a steady state, i.e., with

[cGMP](0) and [Ca21](0) constant in the space variables and

given by their dark values [cGMP]dark and [Ca21]dark.

Boundary source terms for [cGMP]

We will model the activation phase of an idealized experi-

ment by which a single photon hits a disc Cjo on the lower

face, at coordinate zo along the axis of the rod.

Production or depletion of molecules of cGMP occurs

through binding phenomena on the lower and upper faces F6
j

of each of the cylinders Cj. Precisely, cGMP is depleted as it

binds to dark-activated phosphodiesterase, at a rate,

k½PDE�
s
½cGMP�; k¼ catalyticrateof dark-activated PDE:

Here [PDE]s is defined as the surface concentration of

PDE, uniformly distributed on the total area of the faces of

the discs Cj. Precisely denoting by no the number of discs and

by NAV Avogadro’s number,

½PDE�
s
¼ total number of PDE molecules in the rod

2nopR
2
NAV

¼ 1

2
neo

total number of PDE molecules in the rod

nopneoR
2
NAV

¼ 1

2
neo

total number of PDE molecules in the rod

ðvolume of all interdiscal spacesÞ3NAV

¼ 1

2
neo½PDE�;

where [PDE] is the volumic concentration of PDE regarded

as uniformly distributed in the rod. This is the quantity

actually being experimentally measured under the assump-

tion of well stirred. Thus,

frate of depletion of cGMP on the facesF
6

j due to PDEg

¼ 1

2
neok½PDE�½cGMP�: (4)

Guanylyl cyclase (GC), which is bound to the faces of the

discs Cj, synthesizes cGMP. Molecules of guanosine

triphosphate bind guanylyl cyclase to generate cGMP. Such

activity is modulated by Ca21, which is bound to guanylyl

cyclase-activating protein (GCAP). As the concentration of

Ca21 decreases, GCAP is released and is free to bind to

guanylyl cyclase and to activate it. Diffusion of GCAP is

assumed to be negligible, so that molecules of GCAP are

essentially still within eVeo
: Thus only those near the faces of

the cylinders Cj and in contact with the GC affect the

process. The rate of conversion of guanosine triphosphate

into cGMP in terms of [Ca21] is given by an experimental

Hill-type relation,

frate of production of cGMP on the faces of the cylindersCjg

¼ kGC½GC�
s

11 ð½Ca
21 �=bÞm ;

where m is a positive parameter, kGC is the catalytic rate of

guanylyl cyclase, [GC]s is the surface density of GC,

uniformly distributed on the total area of the faces of the

discs Cj, and b is the Ca21 concentration that achieves half of

the maximum rate. Proceeding as before [GC]s ¼ neo[GC]/

2, where [GC] is the measured volumic concentration of GC

regarded as uniformly distributed in the rod. Setting a ¼
kGC[GC], such a rate of production takes the form,

frate of production of cGMP on the faces of the cylindersCjg

¼ 1

2
neo

a

11 ð½Ca
21 �=bÞm ; (5)

where ð1=2Þneoa; is the maximum rate of production of

cGMP, corresponding to absence of Ca21. Let Cjo be the disc

hit by the photon on one of its faces, say for example the

lower one, and let ½PDE��sð�xx; tÞ be the resulting, pointwise

surface density of activated phosphodiesterase. Then assum-

ing full activation of PDE,

frate of depletion of cGMP on the lower face of Cjo
;

due to PDE
�g ¼ k

�½PDE
��

s
½cGMP�; (6)

where k* is the catalytic rate of the light-activated PDE.

Combining these various contributions (Eqs. 4–6), the

physical flux of [cGMP] on the faces F6
j of the discs Cj, takes

the form
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7DcG

@½cGMP�
@z

jF6j

¼ 1

2
neo �k½PDE�½cGMP�1 a

11 ð½Ca
21 �=bÞm

� �
� dzo

k
�½PDE

��
s
½cGMP�; (7)

where

dzo
¼ 1 if z ¼ zoðthe z-coordinate of F

�
jo
Þ;

0 otherwise:

�
[cGMP] does not penetrate the lateral part Lj of the boundary

of the cylinders Cj, and does not outflow the boundary @Veo

of the rod. Therefore [cGMP] has zero physical flux on each

of the Lj, on the lateral boundary and on the top (z ¼ H) and

bottom (z ¼ 0) of the rod outer segment.

Boundary source terms for [Ca21]

Calcium does not penetrate the discs Cj carrying the rho-

dopsin, so that its flux across the boundary of each Cj is zero.

Calcium does not outflow the bottom (z¼ 0) and the top (z¼
H) of the outer segment.

Calcium ions are lost through the lateral boundary of the

rod, by electrogenic exchange and are gained by their influx,

through the cGMP-activated channels.

The pointwise current density Jex across the boundary of

the rod (charge flux), due to electrogenic exchange, is

modeled by the Michaelis-Menten type relation,

Jex ¼
jex;sat

Srod

½Ca
21 �

½Ca
21 �1Kex

: (8)

Here Srod is the surface area of the lateral boundary of the

rod, jex;sat is the maximal, or saturation current as [Ca21] !
‘, and Kex is the half-maximal constant. The pointwise

current density JcG carried by the cGMP-activated channels,

across the boundary of the rod, is given by the Hill’s type

law,

JcG ¼ jmax

Srod

½cGMP�k

½cGMP�k 1K
k

cG

; (9)

where jmax is the maximal current as [cGMP] ! ‘, KcGMP is

the half-maximal constant and k is a positive parameter. Let

n denote the unit normal to the lateral boundary of the rod,

pointing outside the rod. Then, the total pointwise flux of

Ca21 across such a surface is given by,

�DCa=½Ca
21 � � n ¼ h Jex �

1

2
fCaJcG

� �
; (10)

where h is a positive parameter, and fCa is a dimensionless

number in (0, 1) (see Table 1 footnote). In this formula the

product fCaJcG is the portion of the flux of current JcG carried

by Ca21. The fluxes in Eqs. 4–10 contain no recovery

mechanisms; accordingly the model is currently valid for the

activation phase only.

Homogenizing and concentrating

Our goal is to understand what the pointwise problem

introduced in Eqs. 2–10 looks like for small eo, and what

TABLE 1 Parameters for the salamander

Symbol Units Published ranges Simulation

amax mM s�1 40–50 50

amin mM s�1 1 1

BCa – ;44 45

BcG – 2 2

[cGMP]dark mM 2–4 2.81

[Ca21]dark mM 0.4–0.7 0.55

D* mm2 s�1 – 5

DCa mm2 s�1 15 15

DcG mm2 s�1 50–196 150

eo mm 0.01–0.014 0.014

h mol C�1 – 23310�8

fCa – 0.1–0.2 0.17

H mm 20–28 22.4

jex;sat pA 17–20 17

jmax pA 70–7000 7000

k mM�1 s�1 – 0.042

k* mM�1 s�1 – 110

kcat/KM mM�1 s�1 440 440

kE s�1 0.625 0.625

kR s�1 2.91 2.91

Kcyc mM 0.10–0.23 0.135

KcG mM 13–32 32

Kex mM 1.5, 1.6 1.5

k – 2 2

mcyc – 2–3 2

n – – 1

nRE s�1 220 275

½PDE� mM 23.8 23.8

R mm 5.5 5.5

s – – 1.071

The geometrical parameters R, H, eo, s, n are taken from Pugh and Lamb

(1993). The parameters amin, amax, Kcyc, mcyc, appearing in Eq. 21 as the

cyclase mediated rate of production of cGMP, are in Nikonov et al. (2000)

and in Lamb and Pugh (1993). The value of mcyc is also in Koutalos and

Yau (1996). The dark values [cGMP]dark and [Ca21]dark are taken from

Nikonov et al. (2000) and Pugh and Lamb (2000). These references have

also provided ranges for the values of the parameters jex;sat, jmax, Kex, KcG,

k, fCa, h, a, entering in the current densities Jex and JcG defined in Eqs. 8

and 9 and in the flux (Eq. 10). The constant h has the form h ¼ (BCaF)�1,

where F ¼ 96,500 Cmol�1 is the Faraday constant and BCa is a dimen-

sionless number that takes into account calcium buffering effects within the

cytosol. In Nikonov et al. (2000), the parameter KcG is given to be itself

a function of [Ca21], with range 13–32 mM as [Ca21] ranges over [0, ‘).

The calcium diffusivity DCa is taken from Nakatani et al. (2002), whereas

the range of values of the cGMP diffusivity DcG is in Koutalos et al. (1995)

and Olson and Pugh (1993). In the discussion we will motivate the choice

of D*. The parameters kE, kR, nRE appear in Eqs. 23a and 23b as a

mechanism of activation of a single disc by a lumped model and are in

Nikonov et al. 2000. The catalytic constant k* is of the form (kcat/2 KMBcG)

as in Nikonov et al. (2000) (see formula A8). The values of the catalytic

constants k and k* (no background light is assumed) are in Nikonov et al.

(2000), Stryer (1991), and Gray-Keller et al. (1999). The last two references

contain also the value of [PDE] assumed as constant.
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kind of information one might derive out of this limit.

Roughly speaking one rewrites the pointwise problem in

Eqs. 2–10 with eo replaced by e and then lets e ! 0. This is

the role of the homogenization theory (Ciarlet and Lods,

1996; Oleinik et al. 1992; Bensoussan et al., 1978; Cio-

ranescu and Saint-Jean-Paulin, 1998). We denote by [cGMP]e
and [Ca21]e the labeled solutions of the diffusion problems

(Eqs. 2–10), for 0 \ e # eo. We call these the e-approxi-

mating problems.

The diffusivity and capacity coefficients in Eq. 2, in the

outer shell and in the activated interdiscal space Ijo�1 are,

roughly speaking, multiplied by eo/e to compensate for

a shrinkage of the domain of the same order. This is the role

of concentrated capacity (Andreucci, 1990; Ciarlet and Lods,

1996; Magenes, 1998). The precise mathematical imple-

mentation of this idea is in Andreucci et al. (2002, 2003) (see

also Supplementary Material, Appendix A, § A2 and § A3).

Here we discuss what the limiting [cGMP] and [Ca21]

look like and the equations they satisfy.

As e ! 0 the layered domain eVe tends formally to the

cylinder V and the activated interdiscal spaces tend to

the disc DR 3 fzog: Likewise the outer shell Se tends to the

surface S ¼ fj�xxj ¼ Rg3 ð0;HÞ: The functions [cGMP]e(x, t)
and [Ca21]e(x, t) generate three pairs of limiting functions,

each representing [cGMP] and [Ca21] in different parts of

the rod outer segment. Precisely:

½cGMP�; ½Ca
21 � defined inV and called the interior limit

½cGMP�o; ½Ca
21 �o defined inDR 3 fzog and called the limit

on the activated level zo

½cGMP�s; ½Ca
21 �s defined inS and called the limit in the

outer shell:

The interior limits [cGMP] and [Ca21] are defined on

a volumic domain and their physical dimensions remain

unchanged. Although the last two limits are defined on

surfaces, they keep their physical dimensions in mM. To

make this point precise, consider for example the limit

[cGMP]s in the limiting outer shell S. Describe the approxi-

mating outer shell Se in terms of cylindrical coordinates,

r 2 ðR;R1seÞ; u 2 ð0; 2p�; z 2 ð0;HÞ;

and express [cGMP]e in terms of these coordinates. It can be

shown that [cGMP]s is a function of (u, z, t) defined as the

limit, as e ! 0, of the radial integral average of [cGMP]e in

the approximating outer shell Se, i.e., (see Supplementary

Material, Appendix A, § A3),

½cGMP�
s
ðu; z; tÞ ¼ lim

e!0

1

se

ðR1se

R

½cGMP�eðr; u; z; tÞdr:

This formula implies that [cGMP]s, although defined on

the surface (0, 2p] 3 (0, H), keeps its physical dimensions in

mM, because it is the limit of integral averages of volume

densities. The factor 1/e in this limiting formula, arises form

the rescaling of the capacity and diffusivity coefficients in

the outer shell, as part of the process of concentrated capa-

city. Similar considerations apply to ½cGMP�oð�xx; tÞ: (see

Supplementary Material, Appendix A § A3).

We next give the equations satisfied by these limiting

quantities, each in its own geometric portion of the rod outer

segment. More importantly we elucidate how these seem-

ingly separate diffusion processes interact with each other.

To gain in simplicity we do this for the equations satisfied

by the limiting [cGMP]. The analogs for [Ca21] are in

Supplementary Material, Appendix A, § A3, where justifi-

cations and proofs are provided.

The limiting equations will contain in various forms the

forcing terms generated by Eq. 7. To simplify the symbolism

we will set,

Fð�xx; z; tÞ ¼def
k½PDE�½cGMP� � ab

m

b
m
1 ½Ca

21 �m
;

Foð�xx; tÞ ¼
def
k½PDE�½cGMP�o �

ab
m

b
m
1 ½Ca

21 �mo
;

F�ð�xx; tÞ ¼
def 1

neo

k
�½PDE

��
s
½cGMP�o: (11)

In these expressions [cGMP] and [Ca21] are the interior

limits of [cGMP]e and [Ca21]e and [cGMP]o and [Ca21]o are

the limits at the activated level zo.

Form of the interior limit of [cGMP]

The interior homogenized limit is computed by a local

average in each of the interdiscal spaces Ij. Such an average

takes into account the boundary conditions in Eq. 7. The net

result is that the interior limiting [cGMP] satisfies the

equation,

@

@t
½cGMP� � DcG=

2

ðx;yÞ½cGMP� ¼ �F inV: (12)

Here =2
ðx;yÞ is the Laplace diffusion operator acting only on

the transversal variables �xx ¼ ðx; yÞ; i.e., formally,

=
2

ðx;yÞ ¼
@

2

@x
2 1

@
2

@y
2 :

Because ½cGMP�ð�xx; z; tÞ is a function of the transversal

variables �xx ¼ ðx; yÞ and the longitudinal variable z, these can

be regarded as diffusion processes, parameterized with z 2
(0, H), taking place on the disc fj�xxj\Rg: Thus the volumic

diffusion in Eq. 2 in the layered structure of the rod, is

transformed into a family of two-dimensional diffusions.

Also, the homogenized limit transforms the boundary fluxes

in Eq. 7 into volumic source terms holding in V.

Form of the limiting [cGMP]o at the special level zo

The limiting [cGMP]o on the activated level zo is also

computed by averaging Eq. 2 over the interdiscal space
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adjacent to the activated disc Cjo ; and by letting its thickness

go to zero. The limiting [cGMP]o satisfies the equation

(Andreucci et al., 2003; also see Supplementary Material,

Appendix A, § A3),

@

@t
½cGMP�

o
� DcG=

2

ðx;yÞ½cGMP�
o
¼ �Fo � F�; (13)

on the activated limiting disc DR 3 {zo}. Thus, also at the

activated level zo, the volumic diffusion in Eq. 2 is

transformed into a two-dimensional diffusion on the layer

DR 3 {zo} and the fluxes in Eq. 7 are transformed into

sources defined in the interior of the same disc and keeping

the same form. Note that in this case the limit equation

contains also the term F* due to activated PDE.

Form of the limiting [cGMP]s in the outer shell

The limiting [cGMP]s(u, z, t) on S is a function of the angular

variable u 2 [0, 2p), of the longitudinal variable z 2 (0, H)

and of time. Outside the activated level zo it must equal the

interior limit ½cGMP�ð�xx; z; tÞ when this is computed on S. For

consistency, on the activated level zo it must equal the

limiting [cGMP]o when this is computed on S. Therefore,

½cGMP�sðu; z; tÞ ¼ ½cGMP�ð�xx; z; tÞjj�xxj¼R for all z 6¼ zo;

½cGMP�sðu; zo; tÞ ¼ ½cGMP�oð�xx; tÞjj�xxj¼R: (14)

Moreover, the interior limit [cGMP] and the limit

[cGMP]o on the activated level zo are linked to the limit

[cGMP]s in a more essential way. Describe the limiting

cylinder V in cylindrical coordinates (r, u, z). Then the

fluxes of [cGMP] and [cGMP]o on S are given by

�DcG

@

@r
½cGMP� j�xxj¼R; �DcG

@

@r
½cGMP�o

���� ����
j�xxj¼R

:

Denote by =2
S the Laplace-Beltrami diffusion operator on

S, i.e., formally

=
2

S ¼
1

R
2

@
2

@u
2 1

@
2

@z
2 :

Then these fluxes and the limiting [cGMP]s(u, z, t) on the

outer shell, satisfy the surface-diffusion equation,

@

@t
½cGMP�s �DcG=

2

S½cGMP�s ¼�ð1�uoÞDcG

seo

@

@r
½cGMP�jj�xxj¼R

�dzo

nDcG

s

@

@r
½cGMP�

o
jj�xxj¼R;

(15)

in S. Here dzo is the Dirac delta function on S with mass on

the level zo. Thus, the diffusion of [cGMP]s on the limiting

outer shell S is forced by the exterior fluxes on S, of the in-

terior limit [cGMP] and the limit [cGMP]o on the activated zo.

This is the biophysical law by which the homogenized-

concentrated limiting diffusions interact with each other.

Although it is somewhat intuitive that [cGMP] coming from

the transversal interstices should provide the driving force

for the movement of the [cGMP] on the longitudinal sur-

face S, Eqs. 14 and 15 provide a precise law by which this

occurs. In particular they contain a precise combination of

the original geometric parameters uo, eo, s, n. This com-

bination of geometric parameters expresses the balance of

mass between [cGMP]s on S and the outflow through S of the

interior [cGMP]. Multiplying Eq. 15 by seo, the left-hand

side represents the pointwise space-time variation of

seo[cGMP]s. The latter quantity can be regarded as a surface

density of cGMP concentrated on S, starting from the

original shell Seo
of thickness seo. The factor (1 � uo) on the

right-hand side signifies that only a fraction of (1 � uo) of S
is exposed to the outflow of the homogenized interior limit of

[cGMP]. This is the same fraction of surface exposed to

inflow/outflow of cGMP from the interdiscal spaces into the

outer shell Seo
in the original, nonhomogenized configuration

of the rod outer segment.

An integral version of Eqs. 11–15

The form of Eqs. 14 and 15 precisely describes the inter-

action between the interior and the boundary diffusion of the

second messengers cGMP and Ca21. However, from a

mathematical point of view, Eqs. 11–15 must be interpreted

in a suitable weak sense (Andreucci et al., 2003 and

Suppplementary Material, Appendix A, § A4). Here we give

an integrated form of Eqs. 11–15, which is a particular case

of such a weak formulation.

Far from being an artificial construct, such a rigorous

mathematical interpretation has dense physical consequen-

ces that will be brought to light in the next section. Its main

feature is that it combines the geometrical properties of the

various compartments. This permits one to specialize it

under various simplifying assumptions such as transverse or

global well-stirred cytosol.

One of the outcomes of such an integral form is that Eqs.

11–15 contain, as a particular case, the known well-stirred

theories (either in the transversal variables (x, y) or in all space

variables). In addition, even in the well-stirred assumption,

they represent a significant improvement with respect to the

existing theories in that they distinguish the diffusion of

the second messengers outside the activation site zo from the

diffusion on the activated level zo. This is the content of the

next mathematical derivations from Eqs. 11–15.

Integrate Eq. 12 over the disc DR 3 {z} at the generic

level z. Applying the Gauss-Green theorem,ð
@DR3fzg

DcG

@

@r
½cGMP�d‘¼

ð ð
DR3fzg

@

@t
½cGMP�1F

� �
dxdy;

where d‘ is the line measure on the circle fj�xxj ¼ Rg: An

entirely similar operation on Eq. 13 yields,
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ð
@DR3fzog

DcG

@

@r
½cGMP�od‘

¼
ð ð

DR3fzog

@

@t
½cGMP�o1Fo1F�

� �
dxdy:

Next integrate Eq. 15 on @DR 3 {z} for a generic level z 2
(0, H), to obtainð

@DR3fzg

@

@t
½cGMP�s �DcG

@
2

@z
2 ½cGMP�s

� �
d‘

¼�ð1�uoÞ
seo

ð
@DR3fzg

DcG

@

@r
½cGMP�d‘

�dzo

n

s

ð
@DR3fzog

DcG

@

@r
½cGMP�

o
d‘:

In performing such an integration we have taken into

account that the angular part of the Laplace-Beltrami op-

erator does not give any contribution because [cGMP](u, z, t)
is a periodic function of u. The last two integrals are

substituted from the previous two formulae, thereby eli-

minating the explicit calculation of the flux of [cGMP] across

S. Regrouping the resulting terms we arrive at

This is a particular case of the notion of ‘‘weak

formulation’’ for the problem (Eqs. 11–15). A more general

weak formulation is in Andreucci et al. (2002, 2003) (see

also Supplementary Material, Appendix A, § A4).

Cytosol well stirred in the transversal
variables (x, y)

Assume the cytosol is well stirred in the transversal variables

(x, y). Thus, the rod outer segment is ideally lumped on its

axis and transversal diffusion effects are immaterial. Such an

assumption is suggested by the idea that the system diffuses

with infinite speed on each transversal cross section and

thereby responds with an instantaneous transversal equili-

bration. Although not rigorous on physical and mathematical

grounds, such an assumption here is made in the sense that

errors originating from it are neglected.

The analysis below will permit one to compare our model

to the existing ones based on the assumption of well stirred.

If [cGMP] and [Ca21] are regarded as lumped on the axis

of the rod, they depend only on z and t, and are independent

of (x, y). Because there is no dependence on the (x, y)

variables, by Eq. 14

½cGMP�ðz; tÞ¼ ½cGMP�sðz; tÞ and

½cGMP�oðtÞ¼ ½cGMP�sðzo; tÞ:

We insert this information into the formula (Eq. 16) and

compute the resulting integrals, to obtain,

fseo2pR1ð1�uoÞpR2g @
@t
½cGMP�

�seo2pRDcG

@
2

@z
2 ½cGMP�

¼�ð1�uoÞpR2
F�dzo

neopR
2 @

@t
½cGMP�o1Fo1F�

� �
:

Set,

fA ¼
seo2pR

pR
2 ; fV ¼

ð1�uoÞpR2
H1seo2pRH

pR
2
H

:

These two parameters have a geometric and physical

significance. Specifically, up to higher-order corrections, fA
is the fraction of the cross-sectional area of the outer segment

that is available for longitudinal diffusion, and fV is the

fraction of the total outer segment volume occupied by the

cytosol (Lamb et al., 1981; Olson and Pugh, 1993). Then,

dividing by fV the previous equation takes the more concise

form,

@

@t
½cGMP�� fA

fV
DcG

@
2

@z
2 ½cGMP�

¼� 1� fA
fV

� �
F�dzo

neo

fV

@

@t
½cGMP�o1Fo1F�

� �
: (17)

This is the law of diffusion of [cGMP] under the

assumption that the cytosol is well stirred in the transversal

variables. A key feature is that it distinguishes between

diffusion outside the activated level zo and diffusion at zo by

the action of the Dirac delta function dzo
: If z is different than

the activated level zo, Eq. 17 implies,

@

@t
½cGMP�� fA

fV
DcG

@
2

@z
2 ½cGMP�¼� 1� fA

fV

� �
F;ðz 6¼ zoÞ:

(18)

Equation 18 is formally similar to a model proposed by

Gray-Keller et al. (1999). In that work, however, the term F*

due to activation is distributed along the longitudinal

variable z. To elucidate the effect of the activation site zo,

@

@t
seo

ð
@DR3fzg

½cGMP�sd‘1 ð1 � uoÞ
ð ð

DR3fzg
½cGMP� dx dy

� �
� seo

@
2

@z
2

ð
@DR3fzg

DcG½cGMP�sd‘1 ð1 � uoÞ
ð ð

DR3fzg
Fdx dy

¼ �dzo
neo

ð ð
DR3fzog

@

@t
½cGMP�o dx dy1

ð ð
DR3fzog

ðFo 1F�Þ dx dy
� �

: (16)
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one has to compute Eq. 17 for z ¼ zo. In view of the Dirac

delta function dzo
; computation of Eq. 17 for z ¼ zo can be

done only in the sense of distributions (DiBenedetto, 2002,

Chap. VII). For example, we might integrate in dz over

a small interval (zo � a, zo 1 a) about zo, where 0 \ a � H:
Letting a ! 0, we obtain a relation expressing the con-

servation of mass of [cGMP] across the activated level zo.

Globally well-stirred cytosol

Regard now the rod as a homogeneous bag of cytosol, and

[cGMP], [Ca21], [PDE], [PDE*], as lumped quantities

depending only on time. Thus, in particular [cGMP] ¼
[cGMP]o ¼ [cGMP]s and similarly for [Ca21]. Rewrite Eq.

17 in the integrated form,

d

dt

ðH

0

½cGMP�ðz; tÞdz� fA
fV
DcG

ðH

0

@
2

@z
2 ½cGMP�ðz; tÞdz

¼� 1� fA
fV

� �ðH

0

Fðz; tÞdz�neo

fV

@

@t
½cGMP�1Fo1F�

� �
:

(17)9

Then we may set to zero the term involving the z-deri-

vative and compute the remaining integrals to get,

11
neo

HfV

� �
d

dt
½cGMP�¼� 1� fA

fV
1

neo

HfV

� �
F� neo

HfV
F� :

Now fV is of the order of one and eo is of three orders of

magnitude smaller than H and R. Therefore,

11
neo

HfV

� �
� 1; 1� fA

fV
1

neo

HfV

� �
� 1:

From the expression of fV and the form (Eq. 11) of F*,

neo

HfV
F� �

pR
2

Vcyto

k
�½PDE

��
s
½cGMP�;

where Vcyto is the volume of the outer rod segment available

for diffusion. Therefore, the assumption of well stirred in all

the space variables yields, up to higher-order corrections, the

dynamic equation,

d

dt
½cGMP�¼�F�pR

2

Vcyto

k
�½PDE

��
s
½cGMP�; (19)

where F is defined in the first of Eq. 11. A similar analysis for

calcium gives,

d

dt
½Ca

21 �¼h
2pRH

Vcyto

1

2
h fCaJcG �Jex

� �
; (20)

where the various parameters are the ones occurring in the

flux condition (Eqs. 8–10) and discussed there. These

formulae coincide with Nikonov et al. (2000) (A3 and A4;

p. 39), upon identifying the various parameters. This is

a validating point of our model as it fits the experimental data

at least as well as Nikonov’s model does.

Flexibility of the model

In Eqs. 12–19 and throughout the development of the theory,

the functions F, Fo, F* are those defined in Eq. 11. Although

this has been done for notational simplicity, nowhere in the

arguments does the specific form in Eq. 11 enter, in the

calculation of the homogenized-concentrated limit (Eqs. 12–

19). Thus, such a limit is independent of the form (Eq. 11) of

F, Fo, F*, provided these are bounded smooth functions of

[cGMP] and [Ca21].

These functions originated from modeling the production

and depletion mechanisms of [cGMP] on the faces F6
j of the

discs. Variants or refinements of these mechanisms might be

incorporated into these functions and would produce the very

same homogenized-concentrated limit (Eqs. 12–19) with the

newly redefined forms of F, Fo, F*. This affords considerable

flexibility to the model.

As an example, consider the rate of production of [cGMP]

due to membrane-bound guanylyl cyclase GC, leading to Eq.

5. The mechanism we have adopted is that proposed by Forti

et al. (1989) and Gray-Keller et al. (1999). A refinement of

such a mechanism is in Nikonov et al. (2000), although in

a volumic well-stirred form. When interpreted as a boundary

flux it reads,

frateof productionof cGMPonthefacesof thecylindersCjg

¼ kGC;min1
kGC;max �kGC;min

11ð½Ca
21 �=KcycÞmcyc

� �
½GC�

s
;

where mcyc is a Hill’s exponent, Kcyc is a positive parameter,

and [GC]s is the surface density of GC, regarded as

uniformly distributed on the total area of the faces of the

discs Cj. Because GC is inhibited by Ca21 its maximum

catalytic rate kGC,max occurs for [Ca21] ! 0 and its minimum

catalytic rate kGC,min occurs theoretically as [Ca21] ! ‘.

Surface bound GC is converted into volumic [GC], by the

same surface-volume mechanism leading to Eq. 5. Setting,

amax ¼ kGC;max½GC�; amin ¼ kGC;min½GC�;

the cyclase mediated rate of production of cGMP takes the

form,

frateof productionof cGMPonthefacesof thecylindersCjg

¼ 1

2
neo amin1

amax �amin

11ð½Ca
21 �=KcycÞmcyc

� �
:

This contributes to the total flux of [cGMP] in the faces F6
j

of the discs. The factor ð1=2Þneo accounts for the surface-

volume interpretation. A similar form of the rate of

production of cGMP due to cyclase is in Nikonov et al.

(2000), where, however, such a term is volumic and offers no

spatial resolution. In that work, the value of amax is reported

as 50 mM s�1 whereas (amin/amax) ¼ 0.02. Thus amin is
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about two orders of magnitude smaller than amax. If amin is

neglected by setting it to be zero, the previous rate of

production reduces to Eq. 5 with amax ¼ a and Kcyc ¼ b.

Starting with this new rate of production, the function F and

Fo in Eq. 11 are modified into

F
new¼def

k½PDE�½cGMP�� amin1
amax �amin

11ð½Ca
21 �=KcycÞmcyc

� �
;

F
new

o
¼def
k½PDE�½cGMP�o � amin1

amax �amin

11ð½Ca
21 �o=KcycÞmcyc

� �
:

(21)

These reduce to Eq. 11 if amin ¼ 0. The function F* in Eq.

11 remains unchanged.

Multiple photon activation

To gain in simplicity, the theory has been developed to

model a single-photon response. Multiple-photon responses

are easily treated as follows. Assume N � no discs are

activated at the levels zo,1, zo,2, . . ., zo,N. The very same

theory applies and the resulting equations remain the same in

nature with the following variants. The function Fð�xx; tÞ
remains defined as in Eq. 11. Each of the activated discs now

generates its own forcing terms Fo,‘ and F*,‘ defined as in Eq.

11 each at the level zo,‘. Precisely,

Fo;‘ð�xx; tÞ ¼def
k½PDE�½cGMP�o;‘�

ab
m

b
m
1 ½Ca

21 �mo;‘

 !
;

F�;‘ð�xx; tÞ ¼def 1

neo

k
�½PDE

��
s;‘½cGMP�o;‘

‘¼1;2; . . . ;N:

In these expressions [cGMP]o,‘ and [Ca21]o,‘ are the limits

of the approximating [cGMP]e and [Ca21]e on the activated

level zo,‘. Also [PDE*]s,‘ is the surface density (in mmol/

mm2) of [PDE*] on the disc DR 3 {zo,‘}.

Equation 12 remains unaltered. Equation 13 is replaced by

N equations of exactly the same form as Eq. 13, each represent-

ing the limiting [cGMP] on its own activated disc. Precisely,

@

@t
½cGMP�o;‘�DcG=

2

ðx;yÞ½cGMP�o;‘
¼�Fo;‘�F�;‘ ‘¼ 1;2; . . . ;N; (13Þ9

each on its own activated limiting disc DR 3 {zo,‘}. All the

terms of Eq. 15 remain the same except the last, which now

has to account for the presence of N activated ‘‘levels’’ and

takes the form,

@

@t
½cGMP�s �DcG=

2

S½cGMP�s

¼�ð1�uoÞDcG

seo

@

@r
½cGMP�

���
j�xxj¼R

�+
N

‘¼1

dzo;‘

n

s
DcG

@

@r
½cGMP�o;‘

���
j�xxj¼R

(15Þ9

in S. Here dzo
,‘ are the Dirac delta functions on S with masses

on the levels zo,‘.

If several photoisomerizations occur on the same disc at

level zo,‘ this is accounted for in the form of the function F*,‘

defined in Eq. 119 for its own level zo,‘.

If the rate of generation of [cGMP] due to cyclase is

modeled by Eq. 21, and several isomerizations occur on

more than one disc, then Eq. 119 is modified accordingly.

Thus, the model encompasses a large spectrum of experi-

mental settings.

NUMERICAL SIMULATIONS

The strength of the homogenized model (Eqs. 11–15) is in its

spatio-temporal resolution. The numerical simulations pre-

sented below build on this feature. The main results are

a suppression of total dark current, in close agreement with

the experimental data (0.5–1.5%; F. Rieke, unpublished) and

the phenomenon of local spread of excitation along the axis

of the rod outer segment (Baylor et al., 1979a, b; Lamb et al.,

1981; Gray-Keller et al., 1999; Matthews, 1986). Let JcG and

Jex be defined as in Eqs. 8 and 9 and set

Jtotðz;u; tÞ¼ JcGðz;u; tÞ1Jexðz;u; tÞ; Jdark ¼ JcGjt¼01Jexjt¼0:

(22aÞ

As z ranges over (0, H) and u ranges over [0, 2p), the

variables (z, u) range over the lateral surface S of the rod

outer segment. When computed at t ¼ 0 both [cGMP] and

[Ca21] are constant and corresponding to their dark values.

Consequently Jdark is also a constant. The plots below show

relative currents and their deviation from the dark state, i.e.,

Jrelðz;u; tÞ¼
Jtotðz;u; tÞ

Jdark

; JintðtÞ¼
1

Srod

ð
S

Jrelðz;u; tÞdS; (22b)

where dS is the surface measure on S. A set of simulation

parameters for the salamander have been collected from

a large cross section of the literature and numerically tested

for consistency in Khanal et al. (2002) and are reproduced in

the Table 1 parameters.

Numerical simulations take also into account the equa-

tions for Ca21 (in their weak form, Andreucci et al., 2002,

2003; see also Supplementary Material, Appendix A, § A4)

Although simulations could be done for a number of

modeling combinations, as indicated previously, we assume

at this point that a single rhodopsin is activated on a disc at

level zo. In Eqs. 11–15, we take the forcing terms F and Fo as

the Fnew and Fnew
o defined in Eq. 21. This way all the terms in

Eqs. 11–15 are well identified except the form of the function

[PDE*]s on the activated level zo, which enters in the forcing

term F* of Eq. 11. In the simulations, such a function has

been taken two different ways. We call the first ‘‘diffused

activation’’ and the second ‘‘pointwise activation’’ (see

below).
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Diffused activation on a single disc by a
lumped/bulk model

The function [PDE*]s depends only on time, and if

activation occurs on a single disc, [PDE*]s ¼ E*/NAVpR
2,

where E* is the number of activated effectors. Initially E*(0)

¼ 0. Consider the case when a single rhodopsin is activated,

and remains active along the numerical simulation. Then

following Nikonov et al. (2000), (see formula (A2) in

this reference), activation of the effector starts and conti-

nues (at least for the activation phase) by the differential

equation,

d

dt
E� ¼ nRE �kEE

�
;E�ð0Þ¼ 0; (23a)

whose solution is

E
�ðtÞ¼ nRE

kE

ð1�e
�kEtÞ: (23b)

Here nRE is the rate of activation of the effector for a single

rhodopsin and kE is the rate of inactivation of E*. The values

of these parameters are reported in the previous table. Such

an activation mechanism as proposed in Nikonov et al.

(2000), assumes a well-stirred environment. We are assum-

ing that PDE* is uniformly distributed on the activated disc

at level zo. However, only the input [PDE*]s, on the

activated disc DR 3 {zo}, is taken to be well stirred in

the transversal variable of the disc. Starting from this input,

the evolution process involves all the spatio-temporal

variables and delivers pointwise information on [cGMP],

[Ca21] and the resulting current. Starting from t ¼ 0 the

number E* of effectors grows as in Eq. 23b but remain

confined on a fixed disc, which, in the simulation, is taken at

the middle level of the rod outer segment. Depletion of

[cGMP] occurs on the rod as a function of position and time.

Current is generated on the boundary of the rod as a function

of position and time. Because the process is radially

symmetric the current depends only on the variable z along

the longitudinal axis of the rod. All simulations are run for

1.2 s with a time-step integration of 10 ms.

As a way of comparing the space-resolved, homogenized

model with existing well-stirred ones, we have also

generated numerical simulations for: a), the lumped/bulk

model as arising in Eqs. 19 and 20; b), the model well stirred

in the transversal variables (x, y) as appearing in Eq. 17 with

the companion equation for calcium. Activation occurs at the

level zo.

In all cases, the PDE activation mechanism is the one

described in Eq. 23b. A result of the numerical simulations is

that current suppression is less the more space resolved the

model is (Fig. 3). This is due to the damping effect of the

diffusion mechanism. In a well-stirred model all the

molecules of cGMP in the rod are regarded as contributing

instantaneously to the closing of the channels, thereby

generating a larger current suppression.

Fig. 5 plots the single-photon current suppression for the

activation mechanism (Eq. 23). Panel A shows the response

for a ROS well stirred in the transversal variables, whereas

panel B refers to a fully space-time resolved ROS with the

homogenized model. In either case there is radial symmetry

and Jrel(z, t) depends only upon the longitudinal variable z.
The response (1 � Jrel(z, t)) are plotted as functions of z,
along the longitudinal axis of the rod, at t¼ 0.2, 0.4, 0.6, 0.8,

1.2 s.

Activation by a two-dimensional diffusion process
originating from a point source

The model is capable of delivering spatio-temporal in-

formation originating from a nonconstant distribution of

FIGURE 3 Activation by a single R* with [PDE*] given

by the lumped/bulk model (Eqs. 23a and 23b). History of

the relative integrated current Jint. After 800 ms, dark

current suppression is ;1.54% for a well-stirred ROS,

;1.34% for ROS well stirred in the transversal variables,

and ;0.94% for a fully space-resolved model. Thus, the

more space resolved is the model, the less is the current

suppression. The three lowest curves represent current

suppression for the homogenized model activated by

a punctual source as in Eq. 24. The three activation sites

are in Fig. 4. Current suppression is dramatically de-

pendent on the activation site.
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[PDE*]s on the activated disc DR 3 {zo}. To underscore this

point, we have assumed that:

1. E* is zero at time t ¼ 0 when activation starts.

2. Activation of the effector E starts at time t ¼ 0 by a single

R* and it continues for all the duration of the simulation.

3. The activating rhodopsin is localized at a fixed point (xo,

yo) on the disc DR 3 {zo}. Therefore its action is that of

a Dirac point-mass dðxo;yoÞ:
4. The resulting molecules of E* diffuse on the disc DR 3

{zo} and are depleted by a decay term of the type kEE*.

Such a depletion term has been inserted to keep the

model consistent with Eq. 23a above.

Thus, the surface density of molecules P* ¼ [PDE*]sNAV

is a solution of,

@

@t
P

� �D�=
2

ðx;yÞP
�
1kEP

� ¼ nREdðxo ;yoÞ inDR3fzog;

D�
@

@r
P

� ¼ 0 on@DR3fzog;
P�ðx;y;0Þ¼ 0 for t¼ 0:

8>>><>>>:
(24)

Integrating this over DR 3 {zo} gives precisely Eq. 23a
for the variable

E�ðtÞ¼
ðð

DR3fzog
P�ðx;y; tÞdxdy:

In this sense Eq. 24 can be regarded as a space-resolved

version of Eq. 23a. By varying the position of (xo, yo) on

DR 3 {zo} one can trace numerically the spatio-temporal

dependence of the response.

Simulations have been run for three different activation

sites (locations where the photon hits). The first is at the

center of the disc; the second is half-way between the center

and the rim (in polar coordinates (r, u) such a site is

r ¼ ð1=2ÞR and u ¼ ð1=2Þp; see Fig. 4); the third is exactly

at the rim of the disc (r ¼ R and u ¼ ð1=2Þp). In either case

the current, as a function of the longitudinal variable z and

time t, has been recorded at three angular locations on the

boundary of the rod. As indicated in Fig. 4 at u ¼ �ð1=2Þp
(the farthest point on the disc, from the activation site),

u ¼ ð1=2Þp (the closest point on the surface of the rod to the

activation site), and u ¼ 0 (at some intermediate distance

from activation).

Fig. 5 C reports current suppression for the fully space-

time resolved ROS with homogenized model, with activation

mechanism given by Eq. 24. The activating point source is

placed at the center of the disc DR 3 {zo} so that the

response is radial. Relative current suppression (1 � Jrel(z, t))
is plotted along the axis of the rod for the times t ¼ 0.2, 0.4,

0.6, 0.8, 1.2 s.

In Figs. 6 and 7, the activation mechanism is that of Eq.

24, for the fully space-time resolved ROS with homogenized

model. In Fig. 6 the activating point source is placed half-

way between the center and the rim of the disc DR 3 {zo}. In

each of the panels the relative current suppression (1 � Jrel(z,
u, t)) is plotted, as a function of z at three different sites on the

lateral boundary of the ROS. Precisely at u¼ p/2 in panel A;

at u¼ 0 in panel B and at u¼� p/2 in panel C. In each of the

panels, the responses are plotted at the same times. In Fig. 7

the activating point source is placed exactly at the rim of the

disc DR 3 {zo}. In each of the panels the relative current

suppression (1 � Jrel(z, u, t)) is plotted, as a function of z at

the same three different sites on the lateral boundary of the

ROS as in the previous figure and at the same times.

Comparing Figs. 5–7 shows the influence of the activation

site on the dynamics of the system response. For example,

when activation occurs at r¼ R, the relative variation in total

current is largest and fastest near the activation site as

indicated in Fig. 7. Local responses depend dramatically on

the activation sites when recorded near it (Figs. 6 C and 7 C)

and less dramatically if recorded far away from the activation

sites (Figs. 6 C and 7 C).

On the spread of activation

Current suppression depends on the recording site (z, u)

along the lateral boundary of the ROS. Let zo be the level of

the activated disc. At each fixed time t and angle u 2 (0, 2p],

current suppression is highest at zo, decreases symmetrically,

away from zo and it becomes ‘‘negligible’’ sufficiently away

from zo. That interval about zo, along the longitudinal axis of

the ROS, where the current suppression is ‘‘not negligible’’

defines, roughly speaking, the interval of spread of the

response in the activation phase. We have attempted to

quantify the notion of ‘‘spread’’ by setting,

sprðu; tÞ¼ 2jze � zoj where Jdark �Jtotðze;u; tÞ¼ 1%Jdark;

(25)

where Jdark and Jtot are defined in Eqs. 22a and 22b. Thus, for

fixed u and t, the spread of excitation is the width of the

FIGURE 4 Transversal cross section of the rod outer segment at the level

zo of the disc where activation occurs. Activations are simulated at 0, at

ð1=2ÞR and u ¼ ð1=2Þp; and on the boundary of the rod at R and u ¼
ð1=2Þp:
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largest interval, about zo, along the longitudinal direction of

the rod, where the response is not\1% of the peak response.

A further discussion on the notion of spread is in

Supplementary Material, Appendix B, § B1.

A pictorial notion of spread is in Figs. 5–7. In Fig. 5 the

spread depends only on z as all three panels reflect radially

symmetric solutions. In Figs. 6 and 7 the spread depends on

the recording sites through the angle u.

The spread corresponding to the model with ROS well

stirred in the transversal variables (Fig. 5 A) is larger than the

one corresponding to the homogenized model (Fig. 5 B), for

the same activation (Eq. 23). For larger times the spread tends

to become uniform irrespective of the models and activation.

This seems to suggest that the diffusion equations involved in

the phenomenon have an intrinsic length, connected to the

spread of activation in some fashion. This was suggested by

Gray-Keller et al, 1999. We are unclear at this stage on the

precise mathematical formulation of this notion.

Fig. 8 below represents a numerical comparison of

‘‘spread’’ for five models and it takes into account the

dependence of the longitudinal variable z and the angular

variable u. In all cases the spread is measured at time t ¼
200 ms.

The horizontal axis reports the angles u 2 [0, 2p] and the

vertical axis reports the longitudinal variable z with zo

denoting the level of the activated disc. By ideally folding

the horizontal segment [0, 2p] into a circle, one may regard

these curves as drawn on the lateral surface of the ROS.

The curve marked in bold describes the process as

activated by the mechanism (Eq. 24) with activation site on

the rim of the disc DR 3 {zo} for u ¼ ð1=2Þp: The length of

the vertical segment included by this curve is the spread of

the response at that particular location u on the lateral

boundary of the ROS. Varying u and keeping z ¼ zo fixed,

means moving away from the activation site, while

remaining on the boundary of the activated disc. The same

indicated procedure provides the values for the spread at

different values of u. The picture shows that the farther from

the activation site, the lower the spread. For each model, the

curves drawn are, so to speak, curves of ‘‘iso-suppression’’.

This terminology is suggested by the definition (Eq. 25) of

‘‘spread’’ in terms of dark current suppression. Along them

the current suppression is constant and equal to 1% of the

dark current.

These simulations dramatically show the dependence of

the spread on u for those cases where activation is off

the center of DR 3 {zo}. In all cases the activated area is

considerably smaller than the total lateral surface of the ROS.

The spread of the response is markedly different in the

various models, and it can, in general, be evidenced only by

means of a pointwise model.

DISCUSSION

Longitudinal and transversal diffusion
in the cytosol

The control of signal transduction in cells occurs by precise,

highly regulated localization of key enzymes in subcompart-

ments in cells. Michaelis-Menten kinetics assume a well-

stirred aqueous environment, and current approaches to

modeling signal transduction pathways employ ordinary

differential equations (Bhalla and Iyengar, 1999; Nikonov

et al., 2000; Pugh and Lamb, 2000; Heinrich et al., 2002;

Elowitz and Leibler, 2000). These methods do not seem to

address the precisely regulated signal transduction processes

FIGURE 5 Plots of 1 � Jrel(z, t) at

times 0.2, 0.4, 0.6, 0.8, 1.2 s. (A, B)

Activation by Eqs. 23a and 23b. (A)

Model with ROS well stirred in the

transversal variables; spr(0.6 s) ¼
3.28 mm; spr(1.2 s) ¼ 4.78 mm. (B)

Homogenized model with disc DR 3

{zo} activated; spr(0.6 s) ¼ 3.21 mm;

spr(1.2 s) ¼ 4.58 mm. (C) Activation

by the diffusion process (Eq. 24). Homogenized model with activation site at the center of the disc DR 3 {zo}; spr(0.6 s) ¼ 2.66 mm; spr(1.2 s) ¼ 4.01 mm.

Common to these panels is that they exhibit radially symmetric solutions and therefore there is no dependence on the angular variable u. Both dark current

suppression and spread decrease for higher space resolution of the model.

FIGURE 6 Activation by a point

source and the diffusion process (Eq.

24). Activation site (point source) at

ð1=2ÞR and u ¼ ð1=2Þp: (A) Plots of

1 � Jrelðz;�ð1=2Þp; tÞ; sprð�ð1=2Þp;
0:6 sÞ ¼ 2:70mm; sprð�ð1=2Þp;
1:2 sÞ ¼ 4:13mm: (B) Plots of 1 �
Jrel(z, 0, t); spr(0, 0.6 s) ¼ 2.86 mm;

spr(0, 1.2 s) ¼ 4.17 mm. (C) Plots of

1 � Jrelðz; ð1=2Þp; tÞ; values of spr

ðð1=2Þp; 0:6 sÞ ¼ 3:02mm; sprðð1=
2Þp; 1:2 sÞ ¼ 4:21mm:
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emanating from these highly localized structures, sometimes

called ‘‘signalsomes’’ (Pawson and Scott, 1997). Both in-

vertebrate (Shieh and Niemeyer, 1995) and vertebrate

(Korschen et al., 1999; Schwarzer et al., 2000; Poetsch

et al., 2001) photoreceptors may also contain local signaling

complexes.

The second messengers [cGMP] and [Ca21], far from

being bulk quantities, are pointwise functions of space and

time. An examination of the geometry of the rod outer

segment and the corresponding geometric parameters in

the Table 1 parameters, reveals that the thickness of the

interstices between the discs and the thickness of the outer

shell are three order of magnitude smaller than the dimension

of the rod. This suggests looking at the diffusion of [cGMP]

and [Ca21] at a scale that bridges between these two scales.

The original domain eVeo
available for diffusion, consists

of transversal and longitudinal thin layers, but it is three-

dimensional. Therefore, the only meaningful notion of

diffusion is that of volumic, pointwise, direction-indepen-

dent balance of mass (Fick’s law) as indicated in Eq. 2. In

particular eVeo
does not distinguish between ‘‘transversal’’

and ‘‘longitudinal’’ diffusion and these notions, in the

context of eVeo
are not well defined.

As e ! 0 the domain eVeo
tends to the cylinder V. We

define ‘‘transversal diffusion’’ as the limiting diffusion of

cGMP and Ca21 on such a limiting domain as indicated by

Eq. 12. The outer shell Se tends to the surface S. The limiting

‘‘boundary diffusion’’ of cGMP and Ca21 on S is described

by Eq. 15 and involves the longitudinal variable z 2 (0, H)

along the axis of the rod, and the angular variable u 2 (0,

2p]. Such a diffusion is ‘‘longitudinal’’ if it is independent of

the angular variable u. This occurs for example for radially

symmetric solutions, or under the assumption that the

cytosol is well stirred in the transversal variables (x, y).

Thus, the homogenized-concentrated limit in Eqs. 11–15

provides a logical, rigorous notion of ‘‘longitudinal’’ and

‘‘transversal’’ diffusion.

Volume-surface reactions

A novel feature of our model is that phenomena such as

PDE*-cGMP interactions, which physically occur on the

surface of the discs, are correctly modeled as flux sources

located on the discs Cj. Similarly, the evolution of [Ca21] is

effected by influx through cGMP-gated channels, and as

such is described by source terms supported on the lateral

FIGURE 7 Activation by a point

source and the diffusion process (Eq.

24). Activation site (point source) at R

and u ¼ ð1=2Þp: (A) Plots of 1 � Jrel

ðz;�ð1=2Þp; tÞ; sprð�ð1=2Þp; 0:6 sÞ
¼ 2:94mm; sprð�ð1=2Þp; 1:2 sÞ ¼
4:31mm: (B) Plots of 1 � Jrel(z, 0, t);

spr(0, 0.6 s) ¼ 3.10 mm; spr(0, 1.2 s) ¼
4.37 mm. (C) Plots of 1 � Jrelðz; ð1=2Þ
p; tÞ; sprðð1=2Þp; 0:6 sÞ ¼ 3:32mm;

sprðð1=2Þp; 1:2 sÞ ¼ 4:44 mm:

FIGURE 8 Curves ‘‘iso-suppression’’ at time t ¼ 200

ms, for the five models (1) ROS well stirred in the

transversal variables and activation, at the level zo, by Eqs.

23a and 23b. (2) Homogenized model with activated disc

at level zo. Activation mechanism is Eqs. 23a and 23b. (3)

Homogenized model with point-mass activation by the

mechanism (Eq. 24). The activated point is on the disc DR

3 {zo}. (3i) Activation at the center of DR 3 {zo}. (3ii)

Activation at r ¼ ð1=2ÞR on DR 3 {zo}. (3iii) Activation

at the rim r ¼ R of DR 3 {zo}.
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boundary of the rod. In the existing literature, analogous

source terms are accounted for as volumic quantities, against

their actual physical location. This touches on the more

general issue concerning the interaction of an enzyme bound

to a membrane with a substrate distributed in the cytosol.

In the arguments leading to the formula (Eq. 4), the

reaction at a fixed point �xx lying on one of the faces of the

disc Cj is meant as occurring in an infinitesimal volume

contiguous to �xx: Regarding now �xx as variable on F6
j ; the

function ½PDE�sð�xx; tÞ is defined on the faces F6
j as a surface

density. In the formula (Eq. 4), the function ½cGMP�ð�xx; z; tÞ;
although defined in the domain eVeo

as a volume density, is

meant as computed on the faces F6
j in the sense of the traces

(DiBenedetto, 2002, Chapter IX).

Production or depletion rates are measured in mol of the

substrate, per unit surface and per unit time. These inter-

pretations are mathematically natural and permit one to give

(Eq. 4) the correct dimensions of a flux. Similar consid-

erations hold for the remaining volume-surface reactions

regarding [Ca21], [cGMP] and [PDE*]s.

The same rate of production of cGMP as in the formula

(Eq. 5) is given in Forti et al. (1989) as a volumic source for

a well-stirred cytosol and in Gray-Keller et al. (1999), for an

environment well stirred in the transversal variables �xx: As

indicated, it actually is a boundary source to be prescribed as

a component of the flux of [cGMP] on each of the faces of

the cylinders Cj. For the salamander rod, a ¼ 13 mM s�1, b

¼ 87 nM and m ¼ 2.1 (Koutalos and Yau, 1996).

The formula (Eq. 6) is an approximate form of the

depletion rate,

frateof depletionof cGMPonthelower

faceofCjo
; duetoPDE

�g

¼ Kcat

2BcG

½cGMP�
KM1 ½cGMP� ½PDE

��
s
;

where Kcat is the catalytic turnover rate, measured in s�1 and

KM is a Michaelis constant. It is commonly accepted in the

literature to neglect the contribution of [cGMP] in the

denominator in favor of KM. This is justified because the

maximum value of [cGMP] is ;4 mM, whereas KM $ 40

mM (Lamb and Pugh, 1992). Such an approximation leads to

the form (Eq. 6) of the depletion rate, with

k
� ¼ 1

2BcG

Kcat

KM

:

A satisfactory full modeling of the function ½PDE��sð�xx; tÞ
for �xx ranging over the face F�

jo
hit by the photon, is a major

open problem. The rate of activation of the photoresponse

indeed depends on the surface diffusion of rhodopsin. A hemi-

zygous knockout of rhodopsin in transgenic mice leading to

a 50% reduction of protein crowding, was shown by Calvert

et al. (2001) to accelerate photoresponses by 1.7-fold.

The literature contains empirical attempts to describe such

a function (Lamb and Pugh, 1992; Nikonov et al., 2000;

Gray-Keller et al., 1999). We maintain that the function

½PDE��sð�xx; tÞ should emerge out of its own diffusion

process, based only on first principles, as follows:

1. A diffusion equation for the activated rhodopsin [R*]s,

on the face F�
jo

of the disc Cjo where light activation

occurs, is written. The initial data for such a diffusion

phenomenon would have to be a Dirac mass concentrated

at the point �xxo 2 F�
jo

where the photon acts.

2. Activated rhodopsin activates transducin. Activated

transducin (G*) diffuses within F�
jo
: A diffusion equation

for the unknown function ½G��sð�xx; tÞ is written. The

rhodopsin function ½R��sð�xx; tÞ in turn would serve as

a source term into a diffusion process of the activated

transducin. The initial data and the boundary flux for the

[G*]s would have to be zero.

3. The output of [G*]s binds to PDE producing PDE*. The

latter would have to satisfy Fick’s law, yielding a third

diffusion equation for the function ½PDE��sð�xx; tÞ: The

various source terms would have to be derived by

repeated application of the law of mass action.

Thus ½PDE��sð�xx; tÞ appears as a solution of a system of

diffusion partial differential equations arising from 1, 2, and

3 above and taking place on a disc face, coupled with the

system of diffusion partial differential equations (Eq. 2),

which take place in the cytosol. These two systems of

diffusion equations are quite different in nature in that one

takes place on a surface (the face F�
jo

) and the other is

volumic, taking place in eVeo
: Because of this, although the

modeling pattern is rather clear, its mathematical implemen-

tation is intricate.

The model is flexible enough to permit one to include, by

minor variants, the recovery phase, dark and light adaptation,

the effect of buffers and incisures, as well as a variety of

regulatory processes that impact on this cascade. These

issues are the object of ongoing investigations.

The goal of this first investigation is to explain the

theoretical mechanism of the mutual communication and

interaction between transversal and longitudinal diffusion of

the second messengers. It is remarkable that such a theoret-

ical mechanism is independent of the form of the function

½PDE��sð�xx; tÞ: (Eqs. 11–15).

The idea of ‘‘local modeling’’ also enters in the expression

(Eq. 10) for the flux of Ca21 across the outer shell. Because

the electrogenic exchange takes place through the Na1/

Ca21/K1 exchanger on the boundary of the rod, and it is

local in nature, the contribution of Jex is taken as a boundary

source. Similar considerations hold for the current density

JcG due to the cGMP-gated channels.

The homogenized-concentrated limit

The modeling ideas leading to the flux term (Eq. 7) generate

naturally a factor of eo on the distributed sources and the
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Dirac delta function on the activating sources. This provides

a natural framework for the mathematical calculation of the

homogenized-concentrated limit (Andreucci et al., 2002,

2003; see also Supplementary Material, Appendix A, §

A1–A3).

Conversely computing the homogenized limit would not

be possible if fluxes of [cGMP] were not distributed on the

boundary of the discs with the physically correct scaling

factor eo. Thus, the mathematical methods and the modeling

ideas are mutually complementary.

By the homogenization process, diffusion effects taking

place in the geometry of Fig. 1 are recast into diffusion

processes holding in simpler geometries while preserving the

key features of the original ones.

A descriptive summary of Eqs. 11–15 is:

1. The rod outer segment tends ideally to the cylinder V. As

far as the physics of diffusion is concerned, the discs

inside it disappear and the outer shell becomes the lateral

boundary of V, i.e., the surface S ¼ (0, 2p] 3 (0, H).

2. The diffusion of cGMP and Ca21 reduces to a one-

parameter family of diffusion equations holding on the

disc DR, parameterized with the axial variable z as it

ranges along the axis of the rod (0\ z\H). We call this

the ‘‘interior, transversal diffusion’’ (see Eq. 12).

3. The diffusion process taking place in the outer shell can

be concentrated to a surface evolution equation (by the

Laplace-Beltrami operator) on the limiting surface S. We

call this the ‘‘boundary diffusion’’ (see Eqs. 14 and 15).

4. The two diffusions interact with each other in two ways:

a), the exterior flux of the interior diffusion serves as

a source term for the boundary diffusion (see Eq. 15);

and b), the interior limits of [cGMP] and [Ca21], when

computed on S coincide with the corresponding values

diffusing on S (see Eq. 14).

On the speed of diffusion and
effective diffusivities

The classical ‘‘bulk/lumped’’ theories arise as a particular

case of our homogenized limit. Comparing our point of view

with the existing well-stirred theories, provides a logical

framework for the notions of ‘‘effective diffusivity’’ and

‘‘speed of diffusion’’ in the cytosol.

Equations 17 and 18 state that if the cytosol is well stirred

in the transversal variables (x, y), the cGMP lumped on the

axis of the rod, diffuses along z with diffusivity ( fA/fV)DcG.

This provides a mathematical validation of a result antici-

pated in Lamb et al. (1981) and Olson and Pugh (1993).

Similar relations could be derived for the diffusion of Ca21

‘‘well stirred’’ in the (x, y) variables.

The geometric values of R, H and seo for the salamander

give fA/fV � .012. Therefore, the number Dz ¼ ( fA/fV)DcG is

much smaller than DcG. Equivalently, the diffusivity in Eq.

17 is much less than the aqueous diffusivity coefficient DcG.

This has been taken as evidence that diffusion in the

interdiscal spaces is much faster than the longitudinal

diffusion. Actually, the diffusion in the interdiscal spaces

and that in the outer shell have the same diffusivity DcG, i.e.,

they occur with the same speed. However, an artificial

cytosol, well stirred in the (x, y) variables, permits a diffusion

only in the longitudinal variable z with diffusivity Dz. In this

sense Dz is an ‘‘effective’’ diffusivity. The literature contains

estimations of aqueous diffusivities (see Table 1).

The presence of incisures augments the relative area fA
available for longitudinal diffusion. Therefore, the experi-

mental value of Dz is expected to be larger ( fA/fV � .028 in

Olson and Pugh (1993)). However, the presence of incisures

renders less plausible the assumption of ‘‘well stirred’’ in the

transversal variables (x, y).

Numerical simulations and comparisons with data

The numerical simulations presented here use the table of

parameters of Khanal et al. (2002). The numerical approach,

however, is based on finite elements (Ciarlet, 1978) and

builds on the weak formulation (Eq. 16) and a more general

form of weak formulation as presented in Andreucci et al.

(2002, 2003) (see also Supplementary Material, Appendix A,

§ A4).

The three-dimensional model (Eqs. 2–10), as simulated in

Khanal et al. (2002), assumes that the photon falls exactly at

the center of the disc, thus generating radially symmetric

solutions. It also forces one to take into account explicitly the

contribution of all the discs in the rod. This augments the

computational complexity and the running time, and renders

unfeasible implementation of nonsymmetrical activations.

The homogenized version allows a free choice of the

discretization step in the axial direction, is relatively simple to

implement, has a considerably shorter running time, and

permits one to simulate phenomena of nonsymmetric activa-

tions.

All the simulations are in remarkable quantitative agree-

ment with the nonhomogenized numerical simulations of

Khanal et al. (2002). This last occurrence shows that the

homogenization is the correct way of modeling the pheno-

menon, by passing information across scales.

Our simulations are of two orders. First the pointwise

current is integrated over the lateral boundary of the rod

outer segment and suppression of dark current is computed.

The suppression of dark current, corresponding to a single-

photon response, as indicated in Fig. 3 is in close agreement

with the experimental data of F. Rieke (0.5–1.5% at 800 ms;

unpublished, personal communication; see also Vu et al.

(1997)). The Rieke measurements were in salamander. The

range of 2–5% present in the literature (Baylor et al., 1979a,

b; Lamb et al., 1981) refers to the toad.

The second order involves pointwise calculations of

[Ca21], [cGMP] (and current) on the boundary of the outer

segment. Our simulations, run over a time period of 1.2 s,

assume activation of a single rhodopsin and generate
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a ‘‘localized’’ spread of excitation about the activated disc.

This is in good qualitative agreement with the experimental

results of Gray-Keller et al. (1999) who used two-photon

excitation to locally stimulate rhodopsin. In their experi-

ments, each flash was estimated to activate ;20 rhodopsins

spanning over ;40 discs. This suggests that if, theoretically,

a single rhodopsin were activated, the spread of 5 mm they

detected, would probably be an overestimate.

The amplitudes predicted by our model are smaller (but of

the same order) than the experimental results of Gray-Keller

et al. (1999). The two results, however, are not directly

comparable as the notion of spread and the experimental

setup and parameters are significantly different. In that work

the spread is defined as the distance from the activation site

where the current is e�1 of the peak response, measured at

the time of peak response. The experiments are carried on the

gecko ROS and 10–20 rhodopsins were activated as opposed

to only one. Our parameters are for the salamander and the

spread is a function of space and time. Further discussion on

the notion of spread is in Supplementary Material, Appendix

B, § B1.

In all cases the current suppression and the spread of

activation depends strongly on the diffusion parameters D*

and DcG and on the ratio nRE/kE. There is considerable

variability of these parameters. In the simulations we have

taken kE as in Nikonov et al. (2000), and have varied nRE

from 220/s to 275/s. The value of nRE estimated in Gray-

Keller et al. (1999), for the gecko is ;1000/s. In Lamb and

Pugh (1992), it is conjectured that Rh* and PDE are

immobile, that G* is produced at a single point and that the

disc is actually infinite (the whole plane). To compensate for

the stillness of Rh* and PDE it is assumed that G* diffuses

on the faces of the discs with diffusivity DG*, given by the

sum of the diffusivities of rhodopsin, G-protein and PDE.

Rough, indirect estimates for the values of these diffusivities

are given, and result into DG* � 3 mm2/s. It is further

assumed that PDE* is generated instantaneously by G* and

that the ratio of the two quantities must remain constant.

Thus [PDE*] must diffuse with the same diffusivity as G*.

We are uncertain of the physical and mathematical basis of

these assumptions. However, to compare our model to

existing theories we have assumed that PDE* is generated by

a point source and diffuses on the face of the disc (not an

infinite plane) with diffusivity of the same order as the one

proposed in Lamb and Pugh (1992). This is the basis of the

activating mechanism (Eq. 24) as well as for the choice D* ¼
5 mm2/s. In Supplementary Material, Appendix B, § B2, we

report on numerical simulations with various combinations

of numerical values of the diffusivities D* and DcG while

keeping the value of nRE to the published value of 220/s.

Past the time of peak response t � 800 ms, the simulated

current suppression keeps increasing, because the model

does not contain a viable recovery mechanism other than the

negative damping term in Eq. 23a and the corresponding one

in Eq. 24.

These remarks, the numerical simulations and the

attempts, present in the literature, of modeling the lateral

diffusion of Rh*, G*, and PDE* point to a need for a more

complete understanding of the role of diffusion in the

activation mechanism.

Numerical setup

The domain of integration consists of volumes (the interior

of the cylinder V) and surfaces (the outer shell S and the

limiting activated disc DR 3 {zo}). The volumes have been

discretized by tetrahedral elements whereas the surfaces have

been subdivided into triangles. Both are isoparametric

elements based on affine, shape functions. As a consequence,

both [cGMP] and [Ca21] are approximated by continuous,

piecewise affine functions. The time discretization has been

achieved by an implicit finite-difference scheme, thus

guaranteeing an intrinsic numerical stability. The nonlinear

forcing terms have been linearized within each of the

discretization elements about the local, instantaneous, mean

value of each of the unknowns [cGMP] and [Ca21].

The peculiar nature of the problem does not permit direct

usage of standard finite element packages. Accordingly we

have generated a dedicated finite-element code within the

Matlab (Natick, MA) interpreted environment. A suitable

mesh generator has been written so that local refinements of

the mesh are permitted within predefined regions, such as the

one near the activated disc DR 3 {zo}. The values of the

global current have been calculated by numerical integration

of the sum JcG 1 Jex, where [cGMP] and [Ca21] are, at each

time, the nodal solutions. Runs were done on a Dell

Poweredge 4600 server with dual Xeon 2.2 GHz processors,

2.5 GB of RAM with Redhat 7.3 Linux operating system and

utilities.

CONCLUSIONS

We have developed a model describing the correlation

between the transversal and longitudinal diffusion of cGMP

and Ca21 in the rod outer segment. This model, at present,

examines the excitation phase of the signaling cascade of the

rod outer segment in response to illumination. The model

does not assume that the cytosol is well stirred, and as

a result, the exact biochemical processes that are occurring

do not have to be assumed to be averaged over the total rod

outer segment. This allows for the potential to examine more

locally the current fluxes that are occurring and how these

localized current fluxes combine to elicit a response in the

rods.

The two main modeling ideas to arise from this work are:

1), a novel approach to correctly model surfaces to volumes

interactions; and 2), retaining all of the spatio-temporal

information while obtaining an easily computable signaling

module. In regards to the first point, biochemical formalisms

such as Michaelis-Menten and Hill relationships that describe

1374 Andreucci et al.

Biophysical Journal 85(3) 1358–1376



enzyme kinetics, assume a well-stirred environment. These

formalisms do not adequately describe cases where the

enzyme or substrate are membrane bound. Thus, the model-

ing ideas described here may be applied to correctly model

membrane-associated phenomena. In regards to the second

point, homogenization is an approach that allows all of the

dynamic spatio-temporal signaling information to be retained

across two different geometric scales while still allowing

a computational approach to modeling.

We postulate that homogenization methods similar to

those described here can be applied to other complex geo-

metries of many cell types. Single signal transduction

modules, such as the one described here, may be able to be

built up together to describe multiple signal transduction

pathways interacting in ways known from biological ex-

perimentation or predicted from the model. The level of

cellular regulatory complexity that is unfolding is likely to

call upon mathematical models of signal transduction for

critical evaluation of the data and for quantitative under-

standing of the processes, as well as useful tools for

designing discriminating experiments (Hartwell et al., 1999).

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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