AN INEQUALITY RELATED TO UNCERTAINTY PRINCIPLE IN VON NEUMANN ALGEBRAS

PAOLO GIBILISCO
Dipartimento SEFEMEQ, Facoltà di Economia
Università di Roma "Tor Vergata"
Via Columbia 2, 00133 Rome, Italy
gibilisco@volterra.uniroma2.it
TOMMASO ISOLA
Dipartimento di Matematica, Università di Roma "Tor Vergata" Via della Ricerca Scientifica, 00133 Rome, Italy
isola@mat.uniroma2.it

Received 1 November 2007

Recently Kosaki proved an inequality for matrices that can be seen as a kind of new uncertainty principle. Independently, the same result was proved by Yanagi et al. The new bound is given in terms of Wigner-Yanase-Dyson informations. Kosaki himself asked if this inequality can be proved in the setting of von Neumann algebras. In this paper we provide a positive answer to that question and moreover we show how the inequality can be generalized to an arbitrary operator monotone function.

Keywords: Uncertainty principle; Wigner-Yanase-Dyson information; operator monotone functions.

Mathematics Subject Classification 2000: Primary 62B10, 94A17; Secondary 46L30, 46L60

1. Introduction

If A, B are selfadjoint matrices and ρ is a density matrix, define

$$
\begin{aligned}
\operatorname{Cov}_{\rho}(A, B) & :=\operatorname{Re}\{\operatorname{Tr}(\rho A B)-\operatorname{Tr}(\rho A) \cdot \operatorname{Tr}(\rho B)\} \\
\operatorname{Var}_{\rho}(A) & :=\operatorname{Cov}_{\rho}(A, A)
\end{aligned}
$$

The uncertainty principle reads as

$$
\operatorname{Var}_{\rho}(A) \operatorname{Var}_{\rho}(B) \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2} .
$$

This inequality can be refined as

$$
\operatorname{Var}_{\rho}(A) \operatorname{Var}_{\rho}(B)-\operatorname{Cov}_{\rho}(A, B)^{2} \geq \frac{1}{4}|\operatorname{Tr}(\rho[A, B])|^{2},
$$

(see $[5,12]$). Recently, a different uncertainty principle has been found [11, 9, 10, $8,13,1]$. For $\beta \in(0,1)$, define β-correlation and β-information as

$$
\begin{aligned}
\operatorname{Corr}_{\rho, \beta}(A, B) & :=\operatorname{Re}\left\{\operatorname{Tr}(\rho A B)-\operatorname{Tr}\left(\rho^{\beta} A \rho^{1-\beta} B\right)\right\} \\
I_{\rho, \beta}(A) & :=\operatorname{Corr}_{\rho, \beta}(A, A)=\operatorname{Tr}\left(\rho A^{2}\right)-\operatorname{Tr}\left(\rho^{\beta} A \rho^{1-\beta} A\right),
\end{aligned}
$$

where the latter coincides with the Wigner-Yanase-Dyson information. It has been proved that

$$
\begin{equation*}
\operatorname{Var}_{\rho}(A) \operatorname{Var}_{\rho}(B)-\operatorname{Cov}_{\rho}(A, B)^{2} \geq I_{\rho, \beta}(A) I_{\rho, \beta}(B)-\operatorname{Corr}_{\rho, \beta}(A, B)^{2} . \tag{1.1}
\end{equation*}
$$

The quantities involved in the previous inequality make a perfect sense in a von Neumann algebra setting (see, for example, [7]). In [8], Kosaki asked if the inequality (1.1) is true in this more general setting.

In this paper we provide a positive answer to Kosaki question and moreover we show that, once the inequality is formulated in the context of operator monotone functions, the result can be greatly generalized.

2. Preliminaries

Denote by $M_{n, s a}$ the space of complex self-adjoint $n \times n$ matrices, and recall that a function $f:(0, \infty) \rightarrow \mathbb{R}$ is said operator monotone if, for any $n \in \mathbb{N}$, any $A, B \in$ $M_{n, s a}$ such that $0 \leq A \leq B$, the inequalities $0 \leq f(A) \leq f(B)$ hold. Then, $f:(0, \infty) \rightarrow \mathbb{R}$ is operator monotone if and only if for any $A, B \in \mathcal{B}(\mathcal{H})$ such that $0 \leq A \leq B, f(A) \leq f(B)$ holds. An operator monotone function is symmetric if $f(x):=x f\left(x^{-1}\right)$ and normalized if $f(1)=1$. We denote by \mathfrak{F} the class of positive, symmetric, normalized, operator monotone functions.

Examples of operator monotone functions are the so-called Wigner-YanaseDyson functions

$$
f_{\beta}(x):=\beta(1-\beta) \frac{(x-1)^{2}}{\left(x^{\beta}-1\right)\left(x^{1-\beta}-1\right)}, \quad \beta \in(0,1)
$$

Returning to a general $f \in \mathfrak{F}$, we associate to it a function $\tilde{f} \in \mathfrak{F}$ [2] defined by

$$
\tilde{f}(x):=\frac{1}{2}\left((x+1)-(x-1)^{2} \frac{f(0)}{f(x)}\right), \quad x>0
$$

For example,

$$
\tilde{f}_{\beta}(x)=\frac{1}{2}\left(x^{\beta}+x^{1-\beta}\right) .
$$

The left and right multiplication operators are defined as $L_{\rho}(A):=\rho A$ and $R_{\rho}(A):=A \rho$.

Definition 2.1. For $A, B \in M_{n, s a}, f \in \mathfrak{F}$, and ρ a faithful density matrix, define f-correlation and f-information as

$$
\begin{aligned}
\operatorname{Corr}_{\rho}^{f}(A, B) & :=\operatorname{Re}\left\{\operatorname{Tr}(\rho A B)-\operatorname{Tr}\left(R_{\rho} \tilde{f}\left(L_{\rho} R_{\rho}^{-1}\right)(A) \cdot B\right)\right\}, \\
I_{\rho}^{f}(A) & :=\operatorname{Corr}_{\rho}^{f}(A, A) .
\end{aligned}
$$

Recall that f-information is also known as metric adjusted skew information (see [4]). The following generalization of inequality (1.1) is proved in [2].

Theorem 2.2. $\operatorname{Var}_{\rho}(A) \operatorname{Var}_{\rho}(B)-\operatorname{Cov}_{\rho}(A, B)^{2} \geq I_{\rho}^{f}(A) I_{\rho}^{f}(B)-\operatorname{Corr}_{\rho}^{f}(A, B)^{2}$.
In the next section, we prove that the above inequality holds true in a general von Neumann algebra, thus answering, in particular, the question raised by Kosaki in [8], and recalled above. A different generalization of Theorem 2.2 has been proved in [3].

3. The Main Result

Let \mathcal{M} be a von Neumann algebra, and ω a normal faithful state on \mathcal{M}, and denote by \mathcal{H}_{ω} and ξ_{ω} the GNS Hilbert space and vector, and by S_{ω}, J_{ω} and Δ_{ω} the modular operators associated to ω.

The proof of the main result is divided in a series of lemmas. In order to deal with unbounded operators, we introduce some sesquilinear forms on \mathcal{H}_{ω}, and take [6] as our standard reference.

Definition 3.1. Let $f \in \mathfrak{F}$ and define the following sesquilinear forms

$$
\begin{aligned}
\mathcal{E}(\xi, \eta) & :=\left\langle\Delta_{\omega}^{1 / 2} \xi, \Delta_{\omega}^{1 / 2} \eta\right\rangle, \\
\mathcal{E}_{1}(\xi, \eta) & :=\mathcal{E}(\xi, \eta)+\langle\xi, \eta\rangle, \\
\mathcal{F}^{f}(\xi, \eta) & :=\left\langle\tilde{f}\left(\Delta_{\omega}\right)^{1 / 2} \xi, \tilde{f}\left(\Delta_{\omega}\right)^{1 / 2} \eta\right\rangle, \\
\mathcal{G}^{f}(\xi, \eta) & :=\frac{1}{2} \mathcal{E}_{1}(\xi, \eta)-\mathcal{F}^{f}(\xi, \eta) .
\end{aligned}
$$

It follows from [6, Example VI.1.13] that $\mathcal{E}, \mathcal{E}_{1}, \mathcal{F}^{f}$ are closed, positive and symmetric sesquilinear forms.

Lemma 3.2. Let $\xi, \eta \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$, and $\left\{\xi_{n}\right\},\left\{\eta_{n}\right\} \subset \mathcal{D}\left(\Delta_{\omega}\right)$ be such that $\xi_{n} \rightarrow \xi$, $\mathcal{E}\left(\xi_{n}-\xi, \xi_{n}-\xi\right) \rightarrow 0$ as $n \rightarrow \infty$, and analogously for η_{n} and η. Then

$$
\begin{aligned}
\mathcal{E}(\xi, \eta) & =\lim _{n \rightarrow \infty} \mathcal{E}\left(\xi_{n}, \eta_{n}\right)=\lim _{n \rightarrow \infty}\left\langle\xi_{n}, \Delta_{\omega} \eta_{n}\right\rangle, \\
\mathcal{F}^{f}(\xi, \eta) & =\lim _{n \rightarrow \infty} \mathcal{F}^{f}\left(\xi_{n}, \eta_{n}\right)=\lim _{n \rightarrow \infty}\left\langle\xi_{n}, \tilde{f}\left(\Delta_{\omega}\right) \eta_{n}\right\rangle .
\end{aligned}
$$

Proof. It follows from [6, Theorem VI.2.1] that $\mathcal{D}\left(\Delta_{\omega}\right)$ is a core for $\mathcal{D}(\mathcal{E}) \equiv$ $\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$, so that, from [6, Theorem VI.1.21], for any $\xi \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$ there is $\left\{\xi_{n}\right\} \subset \mathcal{D}\left(\Delta_{\omega}\right)$ such that $\xi_{n} \rightarrow \xi$ and $\mathcal{E}\left(\xi_{n}-\xi, \xi_{n}-\xi\right) \rightarrow 0$ as $n \rightarrow \infty$. Then
$\mathcal{E}\left(\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. Now observe that $0 \leq \tilde{f}(x) \leq \frac{1}{2}(x+1)$, for $x>0$ [2], so that

$$
\begin{aligned}
\mathcal{F}^{f}\left(\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right) & =\left\langle\tilde{f}\left(\Delta_{\omega}\right)^{1 / 2}\left(\xi_{n}-\xi_{m}\right), \tilde{f}\left(\Delta_{\omega}\right)^{1 / 2}\left(\xi_{n}-\xi_{m}\right)\right\rangle \\
& =\left\langle\xi_{n}-\xi_{m}, \tilde{f}\left(\Delta_{\omega}\right)\left(\xi_{n}-\xi_{m}\right)\right\rangle \\
& \leq \frac{1}{2}\left\langle\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right\rangle+\frac{1}{2}\left\langle\xi_{n}-\xi_{m}, \Delta_{\omega}\left(\xi_{n}-\xi_{m}\right)\right\rangle \\
& =\frac{1}{2}\left\|\xi_{n}-\xi_{m}\right\|+\frac{1}{2} \mathcal{E}\left(\xi_{n}-\xi_{m}, \xi_{n}-\xi_{m}\right) \rightarrow 0 \text { as } m, n \rightarrow \infty
\end{aligned}
$$

This implies $\xi \in \mathcal{D}\left(\mathcal{F}^{f}\right)$ and $\mathcal{F}^{f}\left(\xi_{n}-\xi, \xi_{n}-\xi\right) \rightarrow 0$ as $n \rightarrow \infty$.
Therefore, if $\xi, \eta \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$, and $\left\{\xi_{n}\right\},\left\{\eta_{n}\right\} \subset \mathcal{D}\left(\Delta_{\omega}\right)$, approximating ξ, η in the above sense, we obtain, from [6, Theorem VI.1.12], that $\mathcal{F}^{f}(\xi, \eta)=$ $\lim _{n \rightarrow \infty} \mathcal{F}^{f}\left(\xi_{n}, \eta_{n}\right)$, and analogously for \mathcal{E}.

Lemma 3.3.

(i) $\mathcal{D}\left(\mathcal{F}^{f}\right) \supset \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$,
(ii) \mathcal{G}^{f} is a symmetric sesquilinear form on $\mathcal{D}\left(\mathcal{G}^{f}\right) \supset \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$, which is positive on $\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$.

Proof. (i) It follows from the proof of the previous lemma.
(ii) We only need to prove positivity. To begin, let $\xi \in \mathcal{D}\left(\Delta_{\omega}\right)$. Then, setting $g(x):=\frac{1}{2}(x+1)-\tilde{f}(x) \geq 0$, for all $x>0$, we have $\mathcal{G}^{f}(\xi, \xi)=\frac{1}{2} \mathcal{E}_{1}(\xi, \xi)-\mathcal{F}^{f}(\xi, \xi)=$ $\frac{1}{2}\langle\xi, \xi\rangle+\frac{1}{2}\left\langle\xi, \Delta_{\omega} \xi\right\rangle-\left\langle\xi, \tilde{f}\left(\Delta_{\omega}\right) \xi\right\rangle=\left\langle\xi, g\left(\Delta_{\omega}\right) \xi\right\rangle \geq 0$.

Moreover, if $\xi \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$, and $\xi_{n} \in \mathcal{D}\left(\Delta_{\omega}\right)$ is such that $\xi_{n} \rightarrow \xi$, and $\mathcal{E}\left(\xi_{n}-\xi, \xi_{n}-\xi\right) \rightarrow 0$, then, from Lemma 3.2, it follows $\mathcal{G}^{f}(\xi, \xi)=\lim _{n \rightarrow \infty}$ $\mathcal{G}^{f}\left(\xi_{n}, \xi_{n}\right) \geq 0$.

We can now introduce the main objects of study. In the sequel, we denote by $T \widehat{\in} \mathcal{M}$ the fact that T is a closed, densely defined, linear operator on \mathcal{H}_{ω}, and is affiliated with \mathcal{M}.

Definition 3.4. For any $A, B \widehat{\in} \mathcal{M}_{s a}$, such that $\xi_{\omega} \in \mathcal{D}(A) \cap \mathcal{D}(B)$, and any $f \in \mathfrak{F}$, we set $A_{0}:=A-\left\langle\xi_{\omega}, A \xi_{\omega}\right\rangle, B_{0}:=B-\left\langle\xi_{\omega}, B \xi_{\omega}\right\rangle$, and define the bilinear forms

$$
\begin{aligned}
\operatorname{Cov}_{\omega}(A, B) & :=\operatorname{Re}\left\langle A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right\rangle \\
\operatorname{Var}_{\omega}(A) & :=\operatorname{Cov}_{\omega}(A, A) \\
\operatorname{Corr}_{\omega}^{f}(A, B) & :=\operatorname{Re}\left\langle A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right\rangle-\operatorname{Re}\left\langle\tilde{f}\left(\Delta_{\omega}\right)^{1 / 2} A_{0} \xi_{\omega}, \tilde{f}\left(\Delta_{\omega}\right)^{1 / 2} B_{0} \xi_{\omega}\right\rangle \\
I_{\omega}^{f}(A) & :=\operatorname{Corr}_{\omega}^{f}(A, A)
\end{aligned}
$$

Remark 3.5. Observe that in the matrix case $\omega=\operatorname{Tr}(\rho \cdot)$, for some density matrix ρ, and $\Delta_{\omega}=L_{\rho} R_{\rho}^{-1}$, so that the previous definition is a true generalization of covariance and f-correlation in the matrix case.

For the reader's convenience, we prove the following folklore result.
Lemma 3.6. $\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)=\left\{T \xi_{\omega}: T \widehat{\in} \mathcal{M}, \xi_{\omega} \in \mathcal{D}(T) \cap \mathcal{D}\left(T^{*}\right)\right\}$.
Proof. (1) Let us first prove that $\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right) \subset\left\{T \xi_{\omega}: T \widehat{\in} \mathcal{M}, \xi_{\omega} \in \mathcal{D}(T) \cap \mathcal{D}\left(T^{*}\right)\right\}$. Indeed, let $\eta \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$, and define the linear operator $T_{0}: x^{\prime} \xi_{\omega} \in \mathcal{N}^{\prime} \xi_{\omega} \mapsto x^{\prime} \eta \in$ \mathcal{H}_{ω}, which is densely defined, and affiliated with \mathcal{M}. Let us show that if is preclosed: indeed, if $x_{n}^{\prime} \xi_{\omega} \rightarrow 0$, and $x_{n}^{\prime} \eta \rightarrow \zeta$, then, for any $y^{\prime} \in \mathcal{N}^{\prime}$, we get

$$
\begin{aligned}
\left\langle\zeta, y^{\prime} \xi_{\omega}\right\rangle & =\lim _{n \rightarrow \infty}\left\langle x_{n}^{\prime} \eta, y^{\prime} \xi_{\omega}\right\rangle=\lim _{n \rightarrow \infty}\left\langle\eta, x_{n}^{\prime *} y^{\prime} \xi_{\omega}\right\rangle=\lim _{n \rightarrow \infty}\left\langle\eta, S_{\omega}^{*}\left(y^{\prime *} x_{n}^{\prime} \xi_{\omega}\right)\right\rangle \\
& =\lim _{n \rightarrow \infty}\left\langle y^{\prime *} x_{n}^{\prime} \xi_{\omega}, S_{\omega} \eta\right\rangle=\lim _{n \rightarrow \infty}\left\langle x_{n}^{\prime} \xi_{\omega}, y^{\prime} S_{\omega} \eta\right\rangle=0
\end{aligned}
$$

which shows that T_{0} is preclosed. Let $T_{\eta}:=\overline{T_{0}}$. Then, $T_{\eta} \widehat{\in} \mathcal{M}$, and $T_{\eta} \xi_{\omega}=\eta$. It remains to be proved that $\xi_{\omega} \in \mathcal{D}\left(T_{\eta}^{*}\right)$. Since $S_{\omega} \eta \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$, we can also consider $T_{S_{\omega} \eta}$. Let us show that $T_{S_{\omega} \eta} \subset T_{\eta}^{*}$. Indeed, for any $x^{\prime}, y^{\prime} \in \mathcal{M}^{\prime}$, we have

$$
\begin{aligned}
\left\langle T_{S_{\omega} \eta} x^{\prime} \xi_{\omega}, y^{\prime} \xi_{\omega}\right\rangle & =\left\langle x^{\prime} S_{\omega} \eta, y^{\prime} \xi_{\omega}\right\rangle=\left\langle S_{\omega} \eta, x^{\prime *} y^{\prime} \xi_{\omega}\right\rangle \\
& =\left\langle y^{\prime *} x^{\prime} \xi_{\omega}, \eta\right\rangle=\left\langle x^{\prime} \xi_{\omega}, y^{\prime} \eta\right\rangle=\left\langle x^{\prime} \xi_{\omega}, T_{\eta} y^{\prime} \xi_{\omega}\right\rangle .
\end{aligned}
$$

Then, $\xi_{\omega} \in \mathcal{D}\left(T_{S_{\omega} \eta}\right) \subset \mathcal{D}\left(T_{\eta}^{*}\right)$, which shows that $\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right) \subset\left\{T \xi_{\omega}: T \widehat{\in} \mathcal{M}, \xi_{\omega} \in\right.$ $\left.\mathcal{D}(T) \cap \mathcal{D}\left(T^{*}\right)\right\}$.
(2) Let us now prove that $\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right) \supset\left\{T \xi_{\omega}: T \widehat{\in} \mathcal{M}, \xi_{\omega} \in \mathcal{D}(T) \cap \mathcal{D}\left(T^{*}\right)\right\}$. Indeed, if $T \widehat{\in \mathcal{M}}$ is such that $\xi_{\omega} \in \mathcal{D}(T) \cap \mathcal{D}\left(T^{*}\right)$, we can consider its polar decomposition $T=v|T|$, and let $e_{n}:=\chi_{[0, n]}(|T|), T_{n}:=v|T| e_{n}$, for any $n \in \mathbb{N}$. Since $\xi_{\omega} \in$ $\mathcal{D}(T)$, we have $T_{n} \xi_{\omega}=v e_{n}|T| \xi_{\omega} \rightarrow T \xi_{\omega}$. Moreover, since $\xi_{\omega} \in \mathcal{D}\left(T^{*}\right)$, we have $T_{n}^{*} \xi_{\omega}=|T| e_{n} v^{*} \xi_{\omega}=e_{n} T^{*} \xi_{\omega} \rightarrow T^{*} \xi_{\omega}$. Since S_{ω} is a closed operator, it follows that $T \xi_{\omega} \in \mathcal{D}\left(S_{\omega}\right)=\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$ [and $\left.S_{\omega} T \xi_{\omega}=T^{*} \xi_{\omega}\right]$, which is what we wanted to prove.

Lemma 3.7. For any $A, B \widehat{\in} \mathcal{M}_{s a}$, such that $\xi_{\omega} \in \mathcal{D}(A) \cap \mathcal{D}(B)$, and any $f \in \mathfrak{F}$, we have
(i) $\operatorname{Cov}_{\omega}(A, B)=\frac{1}{2} \operatorname{Re} \varepsilon_{1}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)$ is a positive bilinear form.
(ii) $\operatorname{Corr}_{\omega}^{f}(A, B)=\operatorname{Re} \mathcal{G}^{f}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)$ is a positive bilinear form.

Proof. (i) Observe that

$$
\begin{aligned}
\left\langle B_{0} \xi_{\omega}, A_{0} \xi_{\omega}\right\rangle & =\left\langle B_{0}^{*} \xi_{\omega}, A_{0}^{*} \xi_{\omega}\right\rangle=\left\langle J_{\omega} \Delta_{\omega}^{1 / 2} B_{0} \xi_{\omega}, J_{\omega} \Delta_{\omega}^{1 / 2} A_{0} \xi_{\omega}\right\rangle \\
& =\left\langle\Delta_{\omega}^{1 / 2} A_{0} \xi_{\omega}, \Delta_{\omega}^{1 / 2} B_{0} \xi_{\omega}\right\rangle=\mathcal{E}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)
\end{aligned}
$$

The result follows from this and the fact that $\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)=\left\{T \xi_{\omega}: T \widehat{\in} \mathcal{M}, \xi_{\omega} \in\right.$ $\left.\mathcal{D}(T) \cap \mathcal{D}\left(T^{*}\right)\right\}$.
(ii) It follows from (i) and Lemma 3.3(ii).

Lemma 3.8. Let $\xi, \eta \in \mathcal{H}_{\omega}, \Delta_{\omega}=\int_{0}^{\infty} t d e(t)$ and define, for Ω a Borel subset of $[0, \infty), \mu_{\xi \eta}(\Omega):=\operatorname{Re}\langle\xi, e(\Omega) \eta\rangle$ and

$$
\mu:=\mu_{\xi \xi} \otimes \mu_{\eta \eta}+\mu_{\eta \eta} \otimes \mu_{\xi \xi}-2 \mu_{\xi \eta} \otimes \mu_{\xi \eta} .
$$

Then μ is a bounded positive Borel measure on $[0, \infty)^{2}$.
Proof. Let Ω_{1}, Ω_{2} be Borel subsets of $[0, \infty)$, and set $e_{j}:=e\left(\Omega_{j}\right), j=1,2$. Observe that $\left|\operatorname{Re}\left\langle\xi, e_{1} \eta\right\rangle \cdot \operatorname{Re}\left\langle\xi, e_{2} \eta\right\rangle\right| \leq\left\|e_{1} \xi\right\| \cdot\left\|e_{1} \eta\right\| \cdot\left\|e_{2} \xi\right\| \cdot\left\|e_{2} \eta\right\|$, so that

$$
\begin{aligned}
\mu\left(\Omega_{1} \times \Omega_{2}\right) \geq & \left\|e_{1} \xi\right\|^{2} \cdot\left\|e_{2} \eta\right\|^{2}+\left\|e_{2} \xi\right\|^{2} \cdot\left\|e_{1} \eta\right\|^{2} \\
& -2\left\|e_{1} \xi\right\| \cdot\left\|e_{1} \eta\right\| \cdot\left\|e_{2} \xi\right\| \cdot\left\|e_{2} \eta\right\| \geq 0 .
\end{aligned}
$$

The result follows by standard measure theoretic arguments.
Theorem 3.9. For any $A, B \widehat{\in} \mathcal{M}_{s a}$ such that $\xi_{\omega} \in \mathcal{D}(A) \cap \mathcal{D}(B)$ and any $f \in \mathfrak{F}$, we have

$$
\operatorname{Var}_{\omega}(A) \operatorname{Var}_{\omega}(B)-\operatorname{Cov}_{\omega}(A, B)^{2} \geq I_{\omega}^{f}(A) I_{\omega}^{f}(B)-\operatorname{Corr}_{\omega}^{f}(A, B)^{2}
$$

Proof. Set

$$
\begin{aligned}
G(A, B):= & \operatorname{Var}_{\omega}(A) \operatorname{Var}_{\omega}(B)-\operatorname{Cov}_{\omega}(A, B)^{2}-I_{\omega}^{f}(A) I_{\omega}^{f}(B)+\operatorname{Corr}_{\omega}^{f}(A, B)^{2} \\
\stackrel{(\mathrm{a})}{=} & \frac{1}{2} \varepsilon_{1}\left(A_{0} \xi_{\omega}, A_{0} \xi_{\omega}\right) \cdot \frac{1}{2} \mathcal{E}_{1}\left(B_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)-\left(\frac{1}{2} \operatorname{Re} \mathcal{E}_{1}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)\right)^{2} \\
& -\left(\frac{1}{2} \mathcal{E}_{1}\left(A_{0} \xi_{\omega}, A_{0} \xi_{\omega}\right)-\mathcal{F}^{f}\left(A_{0} \xi_{\omega}, A_{0} \xi_{\omega}\right)\right) \\
& \times\left(\frac{1}{2} \varepsilon_{1}\left(B_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)-\mathcal{F}^{f}\left(B_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)\right) \\
& +\left(\frac{1}{2} \operatorname{Re} \mathcal{E}_{1}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)-\operatorname{Re} \mathcal{F}^{f}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)\right)^{2} \\
= & \frac{1}{2} \varepsilon_{1}\left(A_{0} \xi_{\omega}, A_{0} \xi_{\omega}\right) \cdot \mathcal{F}^{f}\left(B_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right) \\
& +\frac{1}{2} \mathcal{F}^{f}\left(A_{0} \xi_{\omega}, A_{0} \xi_{\omega}\right) \cdot \mathcal{E}_{1}\left(B_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right) \\
& -\mathcal{F}^{f}\left(A_{0} \xi_{\omega}, A_{0} \xi_{\omega}\right) \cdot \mathcal{F}^{f}\left(B_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right) \\
& -\operatorname{Re} \mathcal{E}_{1}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right) \cdot \operatorname{Re} \mathcal{F}^{f}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right) \\
& +\left(\operatorname{Re} \mathcal{F}^{f}\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)\right)^{2},
\end{aligned}
$$

where in (a), we have used Lemma 3.7. Let us now introduce the function, for $\xi, \eta \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$,

$$
\begin{aligned}
H(\xi, \eta):= & \frac{1}{2} \mathcal{E}_{1}(\xi, \xi) \cdot \mathcal{F}^{f}(\eta, \eta)+\frac{1}{2} \mathcal{F}^{f}(\xi, \xi) \cdot \mathcal{E}_{1}(\eta, \eta)-\mathcal{F}^{f}(\xi, \xi) \cdot \mathcal{F}^{f}(\eta, \eta) \\
& -\operatorname{Re} \mathcal{E}_{1}(\xi, \eta) \cdot \operatorname{Re} \mathcal{F}^{f}(\xi, \eta)+\left(\operatorname{Re} \mathcal{F}^{f}(\xi, \eta)\right)^{2}
\end{aligned}
$$

and recall that $\mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)=\left\{T \xi_{\omega}: T \widehat{\in} \mathcal{M}, \xi_{\omega} \in \mathcal{D}(T) \cap \mathcal{D}\left(T^{*}\right)\right\}$, so that, if A, B are as in the statement of the theorem, we obtain $G(A, B)=H\left(A_{0} \xi_{\omega}, B_{0} \xi_{\omega}\right)$, and to prove the theorem it suffices to show that $H(\xi, \eta) \geq 0$, for all $\xi, \eta \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$. Observe that, for $\xi, \eta \in \mathcal{D}\left(\Delta_{\omega}\right)$, we get

$$
\begin{aligned}
& H(\xi, \eta)= \frac{1}{2}\left\langle\xi,\left(1+\Delta_{\omega}\right) \xi\right\rangle \cdot\left\langle\eta, \tilde{f}\left(\Delta_{\omega}\right) \eta\right\rangle+\frac{1}{2}\left\langle\eta,\left(1+\Delta_{\omega}\right) \eta\right\rangle \cdot\left\langle\xi, \tilde{f}\left(\Delta_{\omega}\right) \xi\right\rangle \\
&-\left\langle\xi, \tilde{f}\left(\Delta_{\omega}\right) \xi\right\rangle \cdot\left\langle\eta, \tilde{f}\left(\Delta_{\omega}\right) \eta\right\rangle \\
&-\operatorname{Re}\left\langle\xi,\left(1+\Delta_{\omega}\right) \eta\right\rangle \cdot \operatorname{Re}\left\langle\xi, \tilde{f}\left(\Delta_{\omega}\right) \eta\right\rangle+\left(\operatorname{Re}\left\langle\xi, \tilde{f}\left(\Delta_{\omega}\right) \eta\right\rangle\right)^{2} \\
& \stackrel{(\mathrm{~b})}{=} \frac{1}{2} \int_{0}^{\infty}(s+1) d \mu_{\xi \xi}(s) \int_{0}^{\infty} \tilde{f}(t) d \mu_{\eta \eta}(t) \\
&+\frac{1}{2} \int_{0}^{\infty} \tilde{f}(s) d \mu_{\xi \xi}(s) \int_{0}^{\infty}(t+1) d \mu_{\eta \eta}(t) \\
&-\int_{0}^{\infty} \tilde{f}(s) d \mu_{\xi \xi}(s) \int_{0}^{\infty} \tilde{f}(t) d \mu_{\eta \eta}(t) \\
&-\frac{1}{2} \int_{0}^{\infty}(s+1) d \mu_{\xi \eta}(s) \int_{0}^{\infty} \tilde{f}(t) d \mu_{\xi \eta}(t) \\
&-\frac{1}{2} \int_{0}^{\infty} \tilde{f}(s) d \mu_{\xi \eta}(s) \int_{0}^{\infty}(t+1) d \mu_{\xi \eta}(t) \\
&-\int_{0}^{\infty} \tilde{f}(s) d \mu_{\xi \eta}(s) \int_{0}^{\infty} \tilde{f}(t) d \mu_{\xi \eta}(t) \\
& \stackrel{(\mathrm{c})}{=} \frac{1}{2} \int_{[0, \infty)^{2}}((s+1) \tilde{f}(t)+(t+1) \tilde{f}(s)-2 \tilde{f}(s) \tilde{f}(t)) d \mu_{\xi \xi} \otimes \mu_{\eta \eta}(s, t) \\
&-\frac{1}{2} \int_{[0, \infty)^{2}}((s+1) \tilde{f}(t)+(t+1) \tilde{f}(s)-2 \tilde{f}(s) \tilde{f}(t)) d \mu_{\xi \eta} \otimes \mu_{\xi \eta}(s, t) \\
& \stackrel{(\mathrm{d})}{=} \frac{1}{4} \iint_{[0, \infty)^{2}}((s+1) \tilde{f}(t)+(t+1) \tilde{f}(s)-2 \tilde{f}(s) \tilde{f}(t)) d \mu(s, t),
\end{aligned}
$$

where we used in (b) notation as in Lemma 3.8, in (c) Fubini-Tonelli theorem, and in (d) the symmetries of the first integrand and notation as in Lemma 3.8.

Since μ is a positive measure, and
$(s+1) \tilde{f}(t)+(t+1) \tilde{f}(s)-2 \tilde{f}(s) \tilde{f}(t)=(s+1-\tilde{f}(s)) \tilde{f}(t)+(t+1-\tilde{f}(t)) \tilde{f}(s) \geq 0$, we obtain $H(\xi, \eta) \geq 0$, for any $\xi, \eta \in \mathcal{D}\left(\Delta_{\omega}\right)$.

It follows from Lemma 3.2 that, for any $\xi, \eta \in \mathcal{D}\left(\Delta_{\omega}^{1 / 2}\right)$, we have $H(\xi, \eta)=$ $\lim _{n \rightarrow \infty} H\left(\xi_{n}, \eta_{n}\right) \geq 0$, which ends the proof.

References

[1] P. Gibilisco and T. Isola, Uncertainty principle and quantum Fisher information, Ann. Inst. Statist. Math. 59 (2007) 147-159.
[2] P. Gibilisco, D. Imparato and T. Isola, Uncertainty principle and quantum Fisher information II, J. Math. Phys. 48(7) (2007) 072109.
[3] P. Gibilisco, D. Imparato and T. Isola, A Robertson-type uncertainty principle and quantum Fisher information, Linear Algebra Appl. 428(7) (2008) 1706-1724.
[4] F. Hansen, Metric adjusted skew information, Proc. Natl. Acad. Sci. USA 105 (2008) 9909-9916.
[5] W. Heisenberg, Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Zeitschrift für Physik 43 (1927) 172-198.
[6] T. Kato, Perturbation Theory for Linear Operators (Springer, New York, 1966).
[7] H. Kosaki, Interpolation theory and the Wigner-Yanase-Dyson-Lieb concavity, Commun. Math. Phys. 87 (1982/1983) 315-329.
[8] H. Kosaki, Matrix trace inequality related to uncertainty principle, Int. J. Math. 16 (2005) 629-645.
[9] S. Luo and Q. Zhang, On skew information, IEEE Trans. Inform. Theory 50 (2004) 1778-1782.
[10] S. Luo and Q. Zhang, Correction to "On skew information", IEEE Trans. Inform. Theory 51 (2005) 4432.
[11] S. Luo and Z. Zhang, An informational characterization of Schrödinger's uncertainty relations, J. Statist. Phys. 114 (2004) 1557-1576.
[12] E. Schrödinger, About Heisenberg uncertainty relation (original annotation by A. Angelow and M. C. Batoni), Bulgar. J. Phys. 26 (2000) 193-203. Translation of Proc. Prussian Acad. Sci. Phys. Math. Sec. 19 (1930) 296-303.
[13] K. Yanagi, S. Furuichi and K. Kuriyama, A generalized skew information and uncertainty relation, IEEE Trans. Inform. Theory 51 (2005) 4401-4404.

