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Stam inequality on Zn
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Abstract

We prove a discrete version of Stam inequality for random variables taking values on Zn .
c© 2008 Elsevier B.V. All rights reserved.

MSC: 94A17; 62B10

1. Introduction

If X is a real random variable with differentiable strictly positive density f , then the Fisher information IX is
defined as

IX :=

∫
( f ′(x)/ f (x))2 f (x)dx . (1.1)

Stam (1959) proved a convolution inequality for IX . More precisely, if X, Y are independent random variables such
that IX , IY < ∞, then

1
IX+Y

≥
1
IX

+
1
IY

, (1.2)

with equality if and only if X, Y are Gaussian.
From this inequality important results like the entropy power inequality and the log-Sobolev inequality follow, see

Blachman (1965), Carlen (1991), Kagan and Landsman (1997) and Zamir (1998). For a recent application in statistical
mechanics see Villani (2003). Recently, the inequality has been greatly generalized in Madiman and Barron (2007).

A free analogue of Stam inequality has been proved in free probability by the introduction of the free Fisher
information. In this case the equality in (1.2) characterizes the free analogue of the Gaussian distribution, namely the
semicircular Wigner distribution, see Voiculescu (1998).
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Discrete analogues of the Fisher score and Fisher information have been already discussed in the literature, see
Johnstone and MacGibbon (1987), Kontoyiannis et al. (2005) and Madiman et al. (2007). A version of Stam inequality
on the set of integers Z has been proved by Papathanasiou (1993) and rediscovered by Kagan (2001b). In this case
the equality characterizes the Poisson distribution. As noted in the final comments in Kagan (2001a), some features
of Stam inequality appear group theoretical in character.

In this paper we show that, after suitable modifications, the proof for Z applies to the cyclic group Zn giving a
further version of Stam inequality. In the present case we show that the equality characterizes the uniform distribution.
This is in some sense natural because the uniform distribution maximizes entropy on Zn ; in the appropriate contexts
this is true also for the Gaussian, Poisson and Wigner distributions, see Voiculescu (1998), Harremoes (2001) and
Johnson (2007).

2. Preliminaries

We recall the formulation of Stam inequality in two cases, where it has already been proved.

2.1. Stam inequality on R

Let f : R → R be a differentiable, strictly positive density. One may define the Fisher f -score J f : R → R by

J f :=
f ′

f
.

Let (Ω ,F, p) be a probability space. In general, if X : (Ω ,F, p) → R is a random variable with density f we write
JX = J f and define the Fisher information (about a shift parameter) as

IX := Var f (J f ) = E f (J 2
f );

namely,

IX =

∫
R
( f ′(x)/ f (x))2 f (x)dx . (2.1)

Theorem 2.1 (See Stam (1959) and Blachman (1965)). If X, Y : (Ω ,F, p) → R are independent random variables
such that IX , IY < ∞, then

1
IX+Y

≥
1
IX

+
1
IY

, (2.2)

with strict equality if and only if X, Y are Gaussian.

2.2. Stam inequality on Z

Let f : Z → R be a (discrete) density. We say that f belongs to the class RSP (right side positivity) if

f (k) > 0 H⇒ f (k + 1) > 0.

If f ∈ RSP, then we may define the Fisher f -score by

J f (k) =


f (k) − f (k − 1)

f (k)
f (k) > 0,

0 f (k) = 0.

If X : (Ω ,F, p) → Z is a random variable with (discrete) density f ∈ RSP we write JX = J f and define the
Fisher information (about a shift parameter) as

IX := Var f (J f ) = E f (J 2
f ).
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Theorem 2.2 (See Papathanasiou (1993) and Kagan (2001a)). If X, Y : (Ω ,F, p) → Z are independent random
variables with densities in RSP and such that IX , IY < ∞, then

1
IX+Y

≥
1
IX

+
1
IY

, (2.3)

with strict equality if and only if X, Y have (possibly shifted) Poisson distribution.

3. Stam inequality on Zn

We denote by Zn the cyclic group {0, 1, . . . , n − 1}. Introduce the class P of strictly positive densities, that is

P :=

 f : Zn → R

∣∣∣∣∣∣
∑
j∈Zn

f ( j) = 1, f (k) > 0 ∀k ∈ Zn

 .

We assume, from now on, that all densities are strictly positive.
Let f ∈ P . In analogy with the previous definitions, we may introduce the Fisher f -score J f : Zn → R by

J f (k) :=
f (k) − f (k − 1)

f (k)
.

By definition of expectation and since k ∈ Zn , it is straightforward to see that J f is an f -centred random variable;
namely,

E f [J f ] = 0. (3.1)

Next, if X : (Ω ,F, p) → Zn is a random variable with density f (k) = fX (k) := p(X = k), where fX ∈ P , from
the score JX := J f it is possible to define the Fisher information (about a shift parameter) as

IX := Var f (J f ) = E f (J 2
f ).

Note that, due to the finiteness of Zn , in this case the condition IX < ∞ always holds. However, we cannot ensure
in general that IX 6= 0. In fact, it is easy to characterize this degenerate case.

Lemma 3.1. The following conditions are equivalent

(1) X has uniform distribution;
(2) JX = 0;
(3) IX = 0;
(4) JX has constant increments, namely JX (x + 1) − JX (x) = α = constant.

Proof. The equivalence of (1), (2), (3) is immediate by definitions. It is also obvious that (2) implies (4). Therefore, it
is enough to prove that (4) implies (1).

Let

JX (x + 1) − JX (x) = α = constant.

We have

JX (n) = JX (0) + nα = JX (0).

This implies nα = 0, namely α = 0, that is, JX = constant. Therefore, there exists a constant β > 0 such that

fX (x − 1)

fX (x)
=

1
β

.

We have

fX (x) = β fX (x − 1),
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namely

fX (n) = βn fX (0) = fX (0),

so that βn
= 1. This implies β = 1, that is, X is uniform. This concludes the proof. �

Let us recall also the following result that is immediate by using the convolution formula:

Proposition 3.2. If X, Y : (Ω ,F, p) → Zn are independent random variables and X is uniform then also Z = X+Y
is uniform.

Proposition 3.3. Let X, Y : (Ω ,F, p) → Zn be independent random variables such that their densities belong to P .
If X or Y has uniform distribution, then

1
IX+Y

=
1
IX

+
1
IY

,

in the sense that both sides of equality are equal to infinity.

Proof. Let Z = X + Y . If X is uniform, then Z is uniform by Proposition 3.2 and we are done by Lemma 3.1. �

Because of the above proposition, in what follows we consider random variables with strictly positive Fisher
information.

Before the proof of the main result, we need the following lemma:

Lemma 3.4. Let X, Y : (Ω ,F, p) → Zn be two independent random variables with densities fX , fY ∈ P and let
Z := X + Y . Then

JZ (Z) = Ep[JX (X)|Z ] = Ep[JY (Y )|Z ]. (3.2)

Proof. Let fZ be the density of Z ; namely,

fZ (k) =

n−1∑
j=0

fX (k − j) fY ( j), k ∈ Zn,

with fZ ∈ P . Then,

fZ (k) − fZ (k − 1) =

n−1∑
j=0

[ fX (k − j) − fX (k − j − 1)] fY ( j)

=

n−1∑
j=0

fY (k − j)[ fX ( j) − fX ( j − 1)].

Therefore, given k ∈ Zn ,

JZ (k) =
fZ (k) − fZ (k − 1)

fZ (k)

=

n−1∑
j=0

fX ( j) fY (k − j)

fZ (k)

[ fX ( j) − fX ( j − 1)]

fX ( j)

=

n−1∑
j=0

JX ( j)p(X = j |Z = k)

= E fX [JX |Z = k]

= Ep[JX (X)|Z = k].

Similarly, by symmetry of the convolution formula one can obtain
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JZ (k) = Ep[JY (Y )|Z = k], k ∈ Zn,

proving Lemma 3.4. �

We are ready to prove the main result. As already said in the Introduction, note that not only the statement but also
the proof of the following theorem exactly mimics the cases R and Z:

Theorem 3.5. Let X, Y : (Ω ,F, p) → Zn be two independent random variables such that IX , IY > 0. Then

1
IX+Y

>
1
IX

+
1
IY

. (3.3)

Proof. Define Z := X + Y . Let a, b ∈ R; then, by Lemma 3.4

Ep[a JX (X) + bJY (Y )|Z ] = aEp[JX (X)|Z ] + bEp[JY (Y )|Z ]

= (a + b)JZ (Z). (3.4)

Hence, by applying Jensen’s inequality it holds

Ep[(a JX (X) + bJY (Y ))2
] = Ep[Ep[(a JX (X) + bJY (Y ))2

|Z ]]

≥ Ep[Ep[a JX (X) + bJY (Y )|Z ]
2
]

= Ep[(a + b)2 JZ (Z)2
]

= (a + b)2 IZ , (3.5)

and thus

(a + b)2 IZ ≤ Ep[(a JX (X) + bJY (Y ))2
]

= a2Ep[JX (X)2
] + 2abEp[JX (X)JY (Y )] + b2Ep[JX (X)2

]

= a2 IX + b2 IY + 2abEp[JX (X)JY (Y )]

= a2 IX + b2 IY ,

where the last equality follows from independence and (3.1).
Now, take a := 1/IX and b := 1/IY ; then we obtain(

1
IX

+
1
IY

)2

IZ ≤
1
IX

+
1
IY

.

It remains to be proved that the equality sign cannot hold in (3.3). To this purpose, define c := a + b, where, again,
a = 1/IX and b = 1/IY ; then equality holds if and only if

c2 IZ = a2 IX + b2 IY . (3.6)

Let us first prove that (3.6) is equivalent to

a JX (X) + bJY (Y ) = cJZ (X + Y ). (3.7)

Indeed, let H := a JX (X) + bJY (Y ); then equality in (3.5) occurs if and only if

Ep[H2
|Z ] = (Ep[H |Z ])2,

i.e.

Ep[(H − Ep[H |Z ])2
|Z ] = 0.

Therefore, H = Ep[H |Z ], so that

Ep[a JX (X) + bJY (Y )|Z ] = a JX (X) + bJY (Y )

= cJZ (Z),
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due to (3.4). Conversely, if (3.7) holds, then by applying the squared power and the expectation operator we obtain
(3.6).

Let x, y ∈ Zn ; because of independence

p(X = x + 1 ∩ Y = y) = p(X = x + 1) · p(Y = y) 6= 0.

Thus, it makes sense to write equality (3.7) on A := (X = x + 1) ∩ (Y = y), so that

a JX (x + 1) + bJY (y) = cJZ (x + y + 1)

and analogously

a JX (x) + bJY (y + 1) = cJZ (x + y + 1).

Subtracting these relations one has

a[JX (x + 1) − JX (x)] = b[JY (y + 1) − JY (y)], ∀x, y ∈ Zn .

Therefore, the increments of each score are constant, so that IX = 0 from Lemma 3.1. In the hypotheses we
assumed IX > 0 and this contradiction ends the proof. �
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