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Quantum Covariance, Quantum Fisher Information,
and the Uncertainty Relations

Paolo Gibilisco, Fumio

Abstract—In this paper, the relation between quantum covari-
ances and quantum Fisher informations is studied. This study is
applied to generalize a recently proved uncertainty relation based
on quantum Fisher information. The proof given here considerably
simplifies the previously proposed proofs and leads to more general
inequalities.

Index Terms—Generalized variance, operator monotone func-
tions, quantum covariance, quantum Fisher information, uncer-
tainty principle.

I. INTRODUCTION

ISHER information has been an important concept in

mathematical statistics and it is an ingredient of the
Cramér—Rao inequality. It was extended to a quantum mechan-
ical formalism in the 1960s by Helstrom [9] and later by Yuen
and Lax [28]; see [10] for the rigorous version.

The state of a finite quantum system is described by a density
matrix D, which is positive semidefinite with TrD = 1. If D
depends on a real parameter —t < @ < ¢, then the true value of
0 can be estimated by a self-adjoint matrix A, called observable,
such that

TrDpA = 0.

This means that expectation value of the measurement of A is
the true value of the parameter (unbiased measurement). When
the measurement is performed (several times on different copies
of the quantum system), the average outcome is a good estimate
for the parameter 6.

It is convenient to choose the value ¢
Cramér-Rao inequality has the form

0. Then, the

1
TrDyA? >
0" = Fisher information

where the Fisher information quantity is determined by the pa-
rametrized family Dy and it does not depend on the observable
A; see [10] and [23].
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The Fisher information depends on the tangent of the curve
Dy. There are many curves through the fixed Dy and the Fisher
information is defined on the tangent space. The latter is the
space of traceless self-adjoint matrices in case of the affine
parametrization of the state space. The Fisher information is
a quadratic form depending on the foot point Djy. If it should
generate a Riemannian metric, then it should depend on Dy
smoothly [1].

II. FROM COARSE GRAINING TO FISHER INFORMATION
AND COVARIANCE

Heuristically, coarse graining implies loss of information,
therefore Fisher information should be monotone under coarse
graining. This was proved in [3] in probability theory and a
similar approach was proposed in [18] for the quantum case.
The approach was completed in [21], where a class of quantum
Fisher information quantities was introduced; see also [22].

Assume that Dy is a smooth curve of density matrices with
tangent A Dy at Dy. The quantum Fisher information
Fp(A) is an information quantity associated with the pair
(Do, A) and it appeared in the Cramér—Rao inequality above.
Let now « be a coarse graining, that is, o : M, — My isa
completely positive trace-preserving mapping. Then, a(Dg) is
another curve in M}.. Due to the linearity of «, the tangent at
a(Dy) is a(A). As it is usual in statistics, information cannot
be gained by coarse graining, therefore we expect that the
Fisher information at the density matrix Dg in the direction
A must be larger than the Fisher information at «e(Dp) in the
direction a(A). This is the monotonicity property of the Fisher
information under coarse graining

Another requirement is that Fp(A) should be quadratic in 4, in
other words, there exists a (nondegenerate) real positive bilinear
form vp(A, B) on the self-adjoint matrices such that

Fp(A) =vp(4,4A). )

The requirements (1) and (2) are strong enough to obtain a rea-
sonable but still wide class of possible quantum Fisher informa-
tions.

The bilinear form yp(A, B) can be canonically extended to
the positive sesqui-linear form (denoted by the same yp) on the
complex matrices, and we may assume that

vp(A, B) = TrA*J51(B)

for an operator Jp acting on matrices. (This formula expresses
the inner product yp by means of the Hilbert-Schmidt inner
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product and the positive linear operator Jp.) Note that this no-
tation transforms (1) into the relation
O[* J_l

wmy@ < Jp 3)

-1/2
a(D)

||J}3/2a* J;gg” < 1. The latter condition can be written as

This is equivalent to ||J anZH < 1 or to the inequality

-1/2 + —1/2
Ja(D)aJDa JQ(D) <lI.

So we conclude that (3) is equivalent to the following:

adpa® < Ja(D)- 4)
Under the above assumptions, there exists a unique operator
monotone function f : RY — R such that f(t) = tf(t7!)
and

Jp = f(LpRp)Rp (%)
where the linear transformations L , and R p acting on matrices
are the left and right multiplications, that is

Lp(X)=DX and Rp(X)=XD.

To be adjusted to the classical case, we always assume that
f(1) = 1 (see [21] and [24]). It seems to be convenient to call
a function f : R™ — R™ standard if f is operator mono-
tone, f(1) = 1, andf(t) = tf(t!) (a standard function is
essential in the context of operator means [12], [21]). If D =
Diag(A1, Az, ..., An) (with A; > 0), then

1 -

vp(A,DB) = Z mA'ijBij 6)
p

where M is the mean induced by the function f

M¢(a,b) :=bf(a/b).

When A and B are self-adjoint, the right-hand side of (6) is real
as required since My (a,b) = M¢ (b, a).

Similarly to Fisher information, the covariance is a bilinear
form as well. In probability theory, it is well understood but
the noncommutative extension is not obvious. The monotonicity
under coarse graining should hold

qCovp(a*(A4),a*(4)) < qCov,y(py(4, A) @)
where o is the adjoint with respect to the Hilbert—Schmidt
inner product (o* is a unital completely positive mapping). If the
covariance is expressed by the Hilbert—Schmidt inner product as

qCovp(A, B) = TtA*Kp(B)

by means of some positive operators K p, then the monotonicity
(7) has the form

OZKDO[* S KQ(D).
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This is actually the same relation as (4). Therefore, condition
(7) implies that the operator K p must have the form (5) and we
have

qCovp (A, B) = TrA*Jp(B)

if TrDA = TrDDB = 0, where Jp is defined by (5). The general
formula is obtained by replacing A by A — (TrDA)I and B by
B — (TxDB)I, so we have

qCovp(A,B) = TtA*Ip(B) — TtDATYDB.  (8)
This is considered to be the general definition. The one-to-one
correspondence between Fisher information quantities and

(generalized) covariances was discussed in [22]. The analog of
formula (6) is

quvD (A, B) = Z Mf ()\,', )\j)fiijBij

ij

(5 (o).

If we want to emphasize the dependence of the Fisher infor-
mation and the covariance on the function f, we write 'y}; and

quva. The usual symmetrized covariance corresponds to the
function f(t) = (¢t + 1)/2

quva(A,B) = Covp(4, B)
- %T&-(D(A*B + BA*)) - (TtDA*)(T:DB)

Of course, if D, A and B commute, then quva(A,B) =
Covp(4, B) for any standard function f. Note that both quva
and fy{) are particular quasi-entropies [19], [20].

III. RELATION TO THE COMMUTATOR

Let D be a density matrix and A be self-adjoint. The com-
mutator i[D, A] appears in the discussion about Fisher informa-
tion. One reason is that the tangent space Tp := {B = B* :
TrDDB = 0} has a natural orthogonal decomposition

{B=D*:[D,B]=0} @ {i[D,A] : A= A*}.

For self-adjoint operators A;,..., Ay, Robertson’s uncer-
tainty principle is the inequality

N
Det [COVD (Ai ; Aj )]N

ty=1

> Det [—lT&‘D[Ai, Aj]}
2 4,j=1

see [25]. The left-hand side is known in classical probability as

the generalized variance of the random vector (4;,...,An). A

different kind of uncertainty principle has been recently conjec-
tured in [5] and proved in [6] and [2]

Det [Covp(Ai, A7)

1,j=1
O]
2

N
vh([D, A)),i[D, 4;))

4,j=1

> Det )
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The inequality (9) was started with the case N = 1 for
some special functions f. The cases f(z) = (1 + z)/2 and
f(z) = (/w+1)?/4 were proved by Luo [13], [14]. The general
case was proved by Hansen [8] and shortly after by Gibilisco,
Imparato, and Isola with a different technique [7].

In the case N = 2, the inequality was proved by Luo, Q.
Zhang, and Z. Zhang [16], [17], [15], by Kosaki [11], and by
Yanagi, Furuichi, and Kuriyama [27] for some special functions
f. The general case is due to Gibilisco, Imparato, and Isola [7],
[4]. Gibilisco and Isola emphasized the geometric aspects of
the inequality (9) and conjectured it for general quantum Fisher
information [4].

Gibilisco, Imparato, and Isola proved the inequality for every
N € N and for every appropriate function f in [6]. Andai ob-
tained a slightly different form by another method [2].

In (9), we have a nontrivial inequality in the case f(0) > 0.
The inequality can be called dynamical uncertainty principle,
since the right-hand side is the volume of a parallelepiped deter-
mined by the tangent vectors of the trajectories of the time-de-
pendent observables A;(t) := D A; D, Another remarkable
property is that inequality (9) gives a nontrivial bound also in
the odd case N = 2m + 1 and this seems to be the first result
of this type in the literature.

The right-hand side of (9) is Fisher information of commuta-
tors. If

f<x>::§(<w+1>—<m—1>2f—@) (10)

f()
then

£(0)

52 Yb D, 41,i(D, B]) = Covp(4, B) - aCov, (4, B)

(11)
for A, B € Tp. Identity (11) is easy to check but it is not ob-
vious that for a standard f the function f is operator monotone.
It is indeed true that f is a standard function as well; see [7,
Prop. 5.2 and 6.3]. Note that the left-hand side of (11) was called
(metric adjusted) skew information in [8].

IV. INEQUALITIES

In this section, we give a simple new proof for the dynamical
uncertainty principle (9). The new proof actually gives a slightly
more general inequality.

Theorem I: Assume that f,g : RT — R are standard func-
tions such that

(a — 1)2

92 2 )

(12)
for some ¢ > 0. Then
qCov¥ (4, A) > evh (D, A, [D, A)).

Proof: We may assume that D = Diag(A1, A2,...,An)
and TrDA = 0. Then, the left-hand side is

D My(Ai, M)A

while the right-hand side is
Z MO

The proof is complete. g

)|A7]|2

For any standard function f and its transform f given by (10),

f > 0 is exactly
_1)2
lte JO@=1? o

2 2f®) <
Therefore, for g(z) = (1 4+ x)/2, the assumption (12) holds
forany f if c = f(0)/2. Actually, this is the point where the op-
erator monotonicity of f is used; in Theorem 1, only inequality
(12) was essential.

The next lemma is standard but the proof is given for com-
pleteness.

Lemma 2: Let K be a finite-dimensional real Hilbert space
with inner product {{-,-). Let {-,-) be a real (not necessarily
strictly) positive bilinear form on K. If

(£, L6
for every vector f € K, then
Det ([{(fi; fi)lij=1) < Det ([{fi, Fidli=1)  (13)

holds for every f1, f2,..., fm € K. Moreover, if {(-,) — (-,")
is strictly positive, then inequality (13) is strict whenever

fi,. .., fun are linearly independent.
Proof: Consider the Gram matrices G := [({(f;, f;)) '7 =1
and H := [(fi, f;)]{"=1, which are symmetric and positive

semidefinite. For every aq, ...,

m

> (o £3) = (fis Fi)aia;

ii=1
= <<szfi;zaifi>> = <Z avifivzaifi> >0
i=1 i=1 i=1 =1

by assumption. This says that G — H is positive semidefinite,
hence it is clear that Det(G) > Det(H).

Moreover, assume that (-,-)) — (-, -} is strictly positive and
fi,..., fm are linearly independent. Then, G — H is positive
definite, and hence, Det(G) > Det(H). O

am € R, we get

The previous general result is used now to have a determinant
inequality, an extension of the dynamical uncertainty relation.

Theorem 3: Assume that f, g : R — R are standard func-
tions such that
(z - 1)?

f(x)

for some ¢ > 0. Then, for self-adjoint matrices
A1, Ay, ..., A, the determinant inequality
Det ([aCovh (s, 47)]}"-,)

i,j=1

> Dot ([erh(D 4L D, AD]" ) a9

glx) > c

holds.
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Moreover, equality holds in (14) if and only if A; —
(TrDA;)I,1 < i < m, are linearly dependent, and both sides
of (14) are zero in this case.

Proof: Let K be the real vector space Tp = {B = B* :
TrDB = 0}. We have qCov%,(A4,A) = 0 if and only if A =
A, therefore

(A, B)) := qCovi,(4, B)

is an inner product on K. From formulas (6) and (9) and from
the hypothesis, we have
Q=)
¢ . |Asj
Mi¢(Xi, Aj)
<D My (i, M)l Ay

= qCovp (4, 4) = (4, A).

evh(ID, A, [D, A]) =

If
(A,B) = cv5([D, A], (D, B))

then (A, A) < (A, A)) holds and (13) gives the statement when
TtDA; = TvDAy = -+ = TrDA,, = 0. The general case
follows by writing A; — (TrDA;)I in place of A;,1 < i < m.

To prove the statement on equality case, we show that g(z) >
c(x — 1)/ f(z) or f(x)g(z) > c¢(x — 1)? for all z > 0. Since
f(x)g(w) is increasing while ¢c(z — 1)? is decreasing for 0 <
z < 1, it is clear that f(z)g(z) > c¢(z — 1)2 for0 < z <
1. Since f(x) and g(x) are (operator) concave, it follows that
f(@)g(z)/2? = (f(x)/x)(g(x)/z) is decreasing for z > 0.
But ¢(z — 1)?/x? is increasing for & > 1, so that we have
f(@)g(z) > c¢(x — 1)? for 2 > 1 as well. The inequality shown
above implies that

(i = Aj)?

My(Ais Aj) > ¢
g( J) Mf()\L,)\J)

forall 1 <4,7 < m.Hence, (-, )) — (-, ) is strictly positive on
K, and the latter statement follows from Lemma 2. O

Recall that (9) is obtained by the choice g(z) = (1 + z)/2
and ¢ = f(0)/2. Assume we put ¢ = f(0)/2. Then, (14) holds
for a standard f if

N s F0)(—1)2
9(z) 2 T(l')

In particular, g(0) > 1/2. The only standard g satisfying this
inequality is g(t) = (¢ + 1)/2. This corresponds to the case
where the left-hand side is the usual covariance.

Motivated by [15] and [26], Kosaki studied [11] the case
when f(z) equals

AL - B)(x = 1)
ha(z) = (J,ﬁ( = 1)(),151_[3 _)1).

In this case, g(x) = hg(z) is possible for every 0 < 8 < 1
if the constant c is chosen properly. More generally, inequality
(14) holds for any standard f and g when the constant ¢ is ap-
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propriate. It follows from Lemma 4 that ¢ = f(0)g(0) is good;
see (15).

Lemma 4: For every standard function f

f(@) 2 f(O)]z - 1].

Proof: The inequality is not trivial only if f(0) > 0 and
x > 1, so assume these conditions. Let g(x¢) be the constant
such that the tangent line to the graph of f at the point 2o > 1
has the equation

y = f'(wo)x + q(xo).

Since f is (operator) concave, one has g(zg) > f(0). Using
again (operator) concavity and symmetry, one has

Fllwo) 2 lim f'(@)= lim %%_)

= lim flz™1) = £(0) > 0.
This implies

f(xo) = f'(z0) - mo + q(xo) > f(0) - zo + £(0)
> f(0) - zo — f(0) = f(0) - (0 — 1)

and the proof is complete. O

The lemma gives the inequality

f(@)g(x) > £(0)g(0)(x — 1) (15)

for standard functions. If f(0) > 0 and g(0) > 0, then Theorem
3 applies.

Similarly to the proof of Theorem 3, one can prove that the
right-hand side of (14) is a monotone function of the variable f.

Theorem 5: Assume that f, g : Rt — R are standard func-
tions. If
o 15 I
f) = 9
for some positive constants ¢, d and Ay, A, ...
adjoint matrices, then

pet (b0, 4110, 4], )

1,j=1

< Det ([drh((D, A, 1D, ADNfey) (D)

(16)

, A, are self-

holds.

V. DISCUSSION AND CONCLUSION

Covariance and Fisher information arc uniquely defined and
standard concepts in mathematical statistics. In the quantum me-
chanical setting, the situation is very different. When the mono-
tonicity under coarse graining is the essential requirement, then
an operator monotone function appears as a parameter (if the
density matrix of the quantum state commutes with the observ-
ables, then the operator monotone function does not play any
role).
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The uncertainty principle of quantum theory is well known.
The standard uncertainty relation contains the commutator(s) of
observables in a lower bound for the variance. Luo and Zhang
proposed an uncertainty relation that includes the commutator
of the observables and the density matrix. The generalization of
the proposal has been studied by many people and the proofs
have been rather complicated. In this paper, a generalized ver-
sion is presented, and the variance includes an operator mono-
tone function. In spite of the fact that the variance and the lower
bound are parametrized by different functions, the proof is much
simpler than the previous versions, moreover the condition of
equality is also described.
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