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1. Introduction

In [22], Wigner and Yanase proposed to find a measure of our knowledge of a difficult-to-measure

observable with respect to a conserved quantity. They discussed a number of postulates that such a

measure should satisfy and proposed, tentatively, the so called skew information defined by
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Iρ(A) = −1

2
Tr([ρ 1

2 ,A]2),
where ρ is a state (density matrix) and A is an observable (self-adjoint matrix), see the discussion in

[10]. The postulates Wigner and Yanase discussed were all considered essential for such a measure

of information and included the requirement from thermodynamics that knowledge decreases under

the mixing of states; or put equivalently, that the proposed measure is a convex function in the state

variable ρ. Wigner and Yanase were aware that other measures of quantum information could satisfy

the same postulates, including the measure

Iρ(β,A) = −1

2
Tr([ρβ ,A] · [ρ1−β ,A])

with parameter β (0 < β < 1) suggested by Dyson and today known as the Wigner–Yanase–Dyson

skew information. Even these measures of quantum information are only examples of a more general

class of information measures, the so called metric adjusted skew informations [10], that all enjoy the

same general properties as discussed by Wigner and Yanase for the skew information.

The Wigner–Yanase–Dyson (WYD) measures of information are not only used in quantum infor-

mation theory. A list of applications in other fields includes: (i) strong subadditivity of entropy [17,16];

(ii) homogeneity of the state space of factors of type III1 [6]; (iii) measures for quantum entangle-

ment [4,14]; (iv) uncertainty relations (see [1,9] and the references therein); (v) hypothesis testing

[2].

This is, in a certain sense, not surprising since theWYD-information is connected to special choices

of quantum Fisher information (see [12,13,10]). Similarly, the classical Fisher information was born

inside statistics but now plays an important role in a manifold of different mathematical fields, some

very far from the original statistical arena (see, for example, [3]).

The crucial ingredient when establishing the connection between theWYD-information and quan-

tum Fisher information is to prove operator monotonicity of the functions

fβ(x) = β(1 − β)
(x − 1)2

(xβ − 1)(x1−β − 1)
, β ∈ (0, 1), (1.1)

see [13,10,21] for the existing proofs. We will show that operator monotonicity of these functions is a

simple corollary to the main result in the present paper.

To explain the main result we have to recall that in the last century fundamental bijections have

been established between a certain family of operator monotone functions, the Kubo–Ando operator

means and the various types of quantum Fisher information (see [18,15,19]).

Each group of objects can be subdivided into two components according to what follows. Any

quantumFisher information can be seen as a Riemannianmetric on the space of faithful states (density

matrices). It is natural to ask in which cases one can (radially) extend this Riemannian metric to the

complex projective space generated by the pure states. It turns out that this is possible if and only if

the associated operator monotone function is regular, namely if f (0) > 0 (see [10,20]). In this case the

radial limit is just a multiple of the Fubini–Study metric.

Completing a work started in [8] we prove in Section 5 that the mapping f → f̃ , where

f̃ (x) = 1

2

[
(x + 1) − (x − 1)2

f (0)

f (x)

]
, x > 0

is a bijection between the regular and the non-regular operator monotone functions in the setFop to

be defined below. The operator monotonicity of the functions (1.1) then easily follows.

2. Operator monotone functions, matrix means and quantum Fisher information

LetMn :=Mn(C)be the set of alln × n complexmatrices.Weshall denote generalmatrices byX ,Y , . . .

while letters A,B, . . . will be used for self-adjoint matrices. The Hilbert–Schmidt scalar product will be

denotedby 〈X ,Y〉 = Tr(X∗Y). The adjoint of amatrixX is denotedbyX† while the adjoint of a superoper-

ator T : (Mn, 〈·, ·〉) → (Mn, 〈·, ·〉) is denoted by T∗. LetDn be the set of strictly positive elements inMn and

letD1
n ⊂ Dn be the set of strictly positive density matrices, namelyD1

n = {ρ ∈ Mn | Tr ρ = 1, ρ > 0}. If
not otherwise specified, we shall from now on only consider faithful states (ρ > 0).
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A function f : (0,+∞) → R is said to be operator monotone (increasing) if, for any n ∈ N and A,B ∈
Mn such that 0 < A � B, the inequality f (A) � f (B) holds. A positive operator monotone function f is

said to be symmetric if f (x) = xf (x−1), and normalized if f (1) = 1.

Definition 2.1. Fop is the class of functions f : (0,+∞) → (0,+∞) such that

(i) f (1) = 1,

(ii) xf (x−1) = f (x) for x > 0,

(iii) f is operator monotone.

Example 2.1. Examples of elements inFop are given in the following list:

fRLD(x) = 2x

x + 1
, fWY(x) =

(
1 + √

x

2

)2

,

fSLD(x) = 1 + x

2
, fβ(x) = β(1 − β)

(x − 1)2

(xβ − 1)(x1−β − 1)
, β ∈ (0, 1).

A very short account of Kubo-Ando’s theory of matrix means [15] may be summarized as follows:

Definition 2.2. Amean for pairs of positive matrices is a function m : Dn ×Dn → Dn such that

(i) m(A,A) = A,

(ii) m(A,B) = m(B,A),

(iii) A ≤ B �⇒ A ≤ m(A,B) ≤ B,

(iv) A ≤ A′, B ≤ B′ �⇒ m(A,B) ≤ m(A′,B′),
(v) m is continuous,

(vi) Cm(A,B)C∗ ≤ m(CAC∗,CBC∗) for every C ∈ Mn.

Property (vi) is known as the transformer inequality. We denote by Mop the set of matrix means.

The fundamental result, due to Kubo and Ando, is the following.

Theorem 2.1. There exists a bijection betweenMop andFop given by the formula

mf (A,B) = A
1
2 f

(
A− 1

2 BA− 1
2

)
A

1
2 .

IfN is a differentiable manifold we denote by TρN the tangent space toN at the point ρ ∈ N.

Recall that there exists anatural identificationof TρD
1
nwith the spaceof self-adjoint tracelessmatrices;

namely, for any ρ ∈ D1
n

TρD
1
n = {A ∈ Mn | A = A∗, Tr A = 0}.

A stochastic map is a completely positive and trace preserving operator T : Mn → Mm. A monotone

metric is a family of Riemannian metrics g = {gn} on {D1
n}, n ∈ N, such that

gmT(ρ)(TX , TX) � gnρ (X ,X)

holds for every stochastic map T : Mn → Mm, every faithful state ρ ∈ D1
n, and every X ∈ TρD

1
n. Usually

monotone metrics are normalized in such a way that [A, ρ] = 0 implies gρ(A,A) = Tr(ρ−1A2). A mono-

tone metric is also called (an example of) quantum Fisher information (QFI). This notation is inspired

by Chentsov’s uniqueness theorem for commutative monotone metrics [5].

Define Lρ(A) = ρA and Rρ(A) = Aρ, and observe that Lρ and Rρ are commuting positive superoper-

ators on Mn. For any f ∈ Fop one may also define the positive (non-linear) superoperator mf (Lρ ,Rρ).

The fundamental theorem of monotone metrics may be stated in the following way.
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Theorem 2.2 (see [19]). There exists a bijective correspondence between monotone metrics (quantum

Fisher informations) onD1
n and functions f ∈ Fop. The correspondence is given by the formula

〈A,B〉ρ,f = Tr(A · mf (Lρ ,Rρ)−1(B))

for self-adjoint matrices A and B.

3. Regular functions and extendable Fisher information

Definition 3.1. For f ∈ Fop we define f (0) = limx→0 f (x). We say that a function f ∈ Fop is regular if

f (0) /= 0 and non-regular if f (0) = 0, cf. [20,10].

Definition 3.2. AquantumFisher information is extendable if its radial limit exists and is aRiemannian

metric on the real projective space generated by the pure states.

For the definition of the radial limit see [20] where the following fundamental result is proved.

Theorem 3.1. An operator monotone function f ∈ Fop is regular, if and only if 〈·, ·〉ρ,f is extendable.

Remark 3.1. The reader shouldbeaware that there isnonegative connotationassociatedwith thequal-

ification “non-regular”. For example, a very important quantumFisher information in quantumphysics

(see [7]), namely the Kubo-Mori metric related to the function f (x) = (x − 1)/ log x, is non-regular.

4. Some preliminary notions

Definition 4.1. The Morozova–Chentsov function cf associated to a function f ∈ Fop is given by

cf (x, y) = 1

mf (x, y)
, x, y > 0.

If f is regular one can also define the function

df (x, y) = x + y

f (0)
− (x − y)2cf (x, y).

Another useful definition is the following:

cλ(x, y) = 1 + λ

2

(
1

x + λy
+ 1

λx + y

)
, λ ∈ [0, 1].

In the result that follows we synthesize Corollaries 2.3, 2.4 and Proposition 3.4 of the paper [10],

see also the beginning of Section 2 in [1].

Theorem 4.1. Given f ∈ Fop there exists a unique (canonical) probability measure μ on [0, 1] such that

1

f (x)
=

∫ 1

0
cλ(x, 1) dμ(λ), x > 0,

cf (x, y) =
∫ 1

0
cλ(x, y) dμ(λ), x, y > 0,

df (x, y) =
∫ 1

0
xy · cλ(x, y)

(1 + λ)2

λ
dμ(λ), x, y > 0.

Furthermore, df is operator concave as a function of two variables.
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5. The correspondence f → f̃ and its properties

We introduce the sets of regular and non-regular functions

Fr
op :={f ∈ Fop | f (0) /= 0}, Fn

op :={f ∈ Fop | f (0) = 0}
and notice that triviallyFop = Fr

op ∪Fn
op.

Definition 5.1. For f ∈ Fr
op we set

f̃ (x) = 1

2

[
(x + 1) − (x − 1)2

f (0)

f (x)

]
, x > 0.

We also writeG(f ) = f̃ , cf. [10,8,1].

Notice that one has the identity

f̃ (x) = f (0)

2
df (x, 1), x > 0.

Theorem 5.1. The correspondence f → f̃ is a bijection betweenFr
op andFn

op.

Proof. Take a function f ∈ Fr
op and consider f̃ . It was noticed in [8] that f̃ is a non-regular function in

Fop. Indeed, it is easy to see that f̃ (0) = 0, f̃ (1) = 1 and xf̃ (x−1) = f̃ (x) for x > 0. Furthermore, since

df is operator concave, so is f̃ . But since a positive operator concave function defined in the positive

half-axis is operator monotone (Theorem 2.5 in [11]) we get the desired conclusion.

It is easy to establish that the correspondence f → f̃ is injective.

It remains to showthat the correspondence f → f̃ is surjective. Therefore, suppose g is a non-regular

function inFop. We have to find a regular function f ∈ Fop such that f̃ = g. Consider the function

h(x) = g(x)

x
= 1

g�(x)
, x > 0,

where g → g� is the involution ofFop given by

g�(x) = x

g(x)
, x > 0,

cf. Definition 2.5 in [1]. It follows that h is operator monotone decreasing, h(1) = 1, and h satisfies the

functional equation

h(x−1) = g(x−1)

x−1
= x · g(x−1) = g(x) = x · h(x), x > 0.

Therefore, there exists [10, Corollary 2.3] a probability measure μ on the unit interval such that

h(x) =
∫ 1

0

1 + λ

2

(
1

x + λ
+ 1

1 + xλ

)
dμ(λ), x > 0. (5.1)

Suppose for a moment that μ has an atom in zero. Then h is of the form

h(x) = μ(0)
x + 1

2x
+ k(x),

where k(x) is some non-negative operator monotone function. Consequently,

g(x) = x · h(x) � μ(0)
x + 1

2
, x > 0

contradicting the choice of g as a non-regular function inFop. We conclude that μ has no atom in zero.

In particular, if one defines the constant
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C =
∫ 1

0

2λ

(1 + λ)2
dμ(λ),

then 0 < C < ∞ (this conclusion requires only that μ is not the Dirac measure in zero). We now define

another probability measure ν on the unit interval by setting

dν(λ) = 1

C
· 2λ

(1 + λ)2
dμ(λ).

We next define a function f in the positive half-axis by setting

1

f (x)
:=

∫ 1

0

1 + λ

2

(
1

x + λ
+ 1

1 + xλ

)
dν(λ), x > 0.

Since the right hand side is operator monotone decreasing, we obtain that f is operator monotone

(increasing). Since also f (1) = 1 and f satisfies the functional equation f (x) = xf (x−1), we realize that

f ∈ Fop. Finally, since the limit

lim
x→0

1

f (x)
= 1

C
> 0,

we conclude that f is a regular function inFop. Note that the measure dν coincides with the canonical

measure associated to f according to Theorem 4.1. The function f̃ may be written as

f̃ (x) = f (0)

2
df (x, 1), x > 0,

where

df (x, 1) =
∫ 1

0
x
1 + λ

2

(
1

x + λ
+ 1

1 + xλ

)
(1 + λ)2

λ
dν(λ), x > 0.

Inserting f (0) = C and the measure ν we obtain

f̃ (x) = x

∫ 1

0

1 + λ

2

(
1

x + λ
+ 1

1 + xλ

)
dμ(λ) = x · h(x) = g(x), x > 0. (5.2)

This ends the proof. �

Remark 5.1. Note that if the measure μ had an atom in zero then it would not affect the definition of

ν since the weight function vanishes in zero. We would then have

C
(1 + λ)2

2λ
dν(λ) = dμ(λ) − μ(0)δ(λ),

where δ is the Dirac measure in zero and hence f̃ (x) = g(x) − μ(0)(x + 1)/2 for x > 0. This is why we

need the hypothesis that g is non-regular.

6. Some applications

6.1. The inversion formula

Definition 6.1. For g ∈ Fn
op set

ǧ(x) =
⎧⎨
⎩
g

′′
(1) · (x − 1)2

2g(x) − (x + 1)
, x ∈ (0, 1) ∪ (1,∞),

1, x = 1.
(6.1)

We also writeH(g) = ǧ.

Proposition 6.1. If g is non-regular then ǧ is regular, namely ǧ ∈ Fr
op. Moreover, if f ∈ Fr

op and g ∈ Fn
op

then

H(G(f )) = f and G(H(g)) = g.
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Proof. Let g be non-regular and f regular such that f̃ = g. This means that

g(x) = 1

2

[
(x + 1) − (x − 1)2

f (0)

f (x)

]
.

If x /= 1 this implies

f (x) = −f (0) · (x − 1)2

2g(x) − (x + 1)
.

Note that the property xg(x−1) = g(x) implies g′(1) = 1/2 for every g ∈ Fop. Therefore, by applying De

L’Hopital’s theorem twice we obtain

1 = lim
x→1

f (x) = −f (0) lim
x→1

(x − 1)2

2g(x) − (x + 1)
= −f (0) · 1

g
′′
(1)

.

That is −f (0) = g
′′
(1) and the proof is complete. �

6.2. WYD information and a class of operator monotone functions

The correspondence between the WYD-information

Iρ(β,A) = −1

2
Tr([ρβ ,A][ρ1−β ,A]), 0 < β < 1

and quantum Fisher information depends, as noted in the introduction, on the operator monotonicity

of the functions

fβ(x) = β(1 − β)
(x − 1)2

(xβ − 1)(x1−β − 1)
0 < β < 1,

see [13,10,21] for the existing proofs. We conclude that Proposition 6.1 gives a new proof of the above

result.

Proposition 6.2. The function fβ ∈ Fr
op for 0 < β < 1.

Proof. The function

gβ(x) = xβ + x1−β

2
, 0 < β < 1

is operator monotone. It easily follows that gβ ∈ Fop and that gβ is non-regular. Since f̃β = gβ we get

the desired conclusion. �
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