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ANALYTICAL RESULTS ON A MODEL FOR DAMAGING
IN DOMAINS AND INTERFACES ∗

Elena Bonetti1 and Michel Frémond2

Abstract. This paper deals with a model describing damage processes in a (nonlinear) elastic body
which is in contact with adhesion with a rigid support. On the basis of phase transitions theory, we
detail the derivation of the model written in terms of a PDE system, combined with suitable initial
and boundary conditions. Some internal constraints on the variables are introduced in the equations
and on the boundary, to get physical consistency. We prove the existence of global in time solutions
(to a suitable variational formulation) of the related Cauchy problem by means of a Schauder fixed
point argument, combined with monotonicity and compactness tools. We also perform an asymptotic
analysis of the solutions as the interfacial damage energy (between the body and the contact surface)
goes to +∞.
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1. Introduction 1

The investigation of damage in elastic materials is deeply studied in the literature both from analytical 2

and theoretical point of view, as well as towards engineering applications. From a macroscopic description 3

the process of damaging can be described as a lack of rigidity of the material. In the approach proposed by 4

Frémond (see [13,16]) volume damage is described as the macroscopic effect of microscopic actions degenerating 5

the cohesion of the material. A volume damage parameter β is introduced to characterize the state of micro- 6

bonds responsible for this cohesion. Then, the rigidity of the material (and thus the stress-strain relation) 7

depends on β and degenerates once the material is completely damaged (i.e. β = 0). From an analytical point 8

of view the problem is written by use of the theory of phase transitions and it has been studied both for elastic 9

and viscoelastic materials, in the case of reversible and irreversible phenomena. We first recall some results 10

holding in the one-dimensional setting (cf., e.g., [17]). Actually, the existence of a solution is proved during 11

a finite time interval, i.e. till the material is completely damaged. Hence, some more recent papers deal with 12

the more complicate situation of a 3D setting. The existence of a local in time solution is proved both for 13

(degenerating) elastic and viscoelastic laws (see [4,5]). The main problem consists in the degeneracy of the 14
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rigidity matrix: once the material is damaged deformations are not controlled. Thus, the quadratic source of1

damage involving deformations is not controlled, too. The possibility of finding a global in time existence result2

for the complete model is still an open problem. However, it seems that it cannot be overcome just by some3

more refined technical tools, as it is, in some sense, a mechanical weakness of the model itself which does not4

provide a suitable description of the material behaviour once it is completely damaged. In a recent paper [15]5

the authors, relying on soil mechanics properties, introduce a viscosity upgrading in the stress, forcing the6

deformation velocity to be bounded. The idea to add some non-degenerating viscosity can be found also in [2],7

combining as a novelty mechanical and thermal actions in the damaging.8

In a similar framework, the theory of damage has been used to investigate the phenomenon of contact with9

adhesion between solids (see [12,14,20]). Indeed, in the classical unilateral theory for contact no resistance to10

tension was accounted for. In the case of adhesive contact the resistance to tension on the contact surface is11

due to microbonds between the surface of the body and its support. The state of such bonds describes the state12

of the adhesion, i.e. the adhesion is active if these bonds are not damaged, while there is no adhesion when13

the bonds get damaged. Thus, a surface damage parameter χ is introduced, for instance the surface fractions14

of micro-bonds, to describe the state of the adhesion. Hence, unilateral condition, i.e. impenetrability between15

solids, is ensured as an internal constraint on the boundary. The analytical formulation of the model has been16

recently introduced for reversible [6] and irreversible situations [7]. In a more recent paper thermal effects have17

been included in the model, influencing the phenomenon of the adhesion on the boundary [8].18

The novelty of the present contribution consists in combining the theory of damage in domains with the19

phenomenon of the adhesion (see [10] for numerical results). More precisely, we investigate the behaviour of20

a body, located in a smooth bounded domain Ω ⊆ R3, which can be damaged and which is in contact with21

adhesion on a rigid support on a part of its boundary Γc. The choice of dealing with a rigid support, instead22

of an elastic body that could be deformed and damaged, too, is just for the sake of simplicity. However, our23

modelling and analytical arguments could be extended, with some further technical difficulties, to describe the24

adhesion between two deformable solids. We consider the boundary ∂Ω = Γ1 ∪ Γ2 ∪ Γc, where Γ1 and Γc have25

strictly positive measures.26

We do not enter the details of the model and refer to [10] where a description of the model is given as well as27

some numerical simulations. Here, we introduce and investigate the corresponding analytical formulation, which28

is given in terms of an initial and boundary value problem. At a first analysis we are dealing with isothermal29

phenomena.30

The main idea is to combine thermomechanical laws holding in the 3D domain Ω and on the boundary Γc.31

We assume that the state variables of the system, in terms of which the mechanical equilibrium is defined, are32

volume and surface variables. More precisely, we fix as state variables in Ω small deformations ∇u, a damage33

parameter β ∈ [0, 1], and its gradient ∇β. Note that the displacement u is considered as a scalar (to avoid34

further technicalities in the analysis). On the surface contact Γc we introduce a damage parameter for the35

adhesion χ ∈ [0, 1], the gradient (on the surface) ∇χ, and the traces of the displacements u|Γc
and of the volume36

damage β|Γc
. Indeed, the mechanical equilibrium on the contact surface clearly depends also on the effects of37

volume damage and displacements. Analogously, the free energy of the system is split into two contributions:38

a surface (contact) free energy ΨΓc and a volume one ΨΩ. They are defined by39

ΨΩ(∇u, β,∇β) =
1
2
β|∇u|2 +

1
2
|∇β|2 + I[0,1](β) + w(1 − β), (1.1)

where w > 0 accounts for cohesion and the indicator function I[0,1](β) forces β to assume only physically40

admissible values, as it is I(β) = 0 if β ∈ [0, 1], while it is equal to +∞ otherwise.41

Then, on Γc it is defined42

ΨΓc(χ,∇χ, u|Γc
, β|Γc

) =
μ

2
χ|u|Γc

|2 + wc(1 − χ) +
1
2
|∇χ|2 + I[0,1](χ) + I(−∞,0](u|Γc

) +
ν

2
|β|Γc

− χ|2, (1.2)
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wc > 0 being a cohesive constant, μ, ν > 0. Let us briefly comment on the choice of the contact free energy. The 1

indicator function I[0,1] forces χ to assume values in [0, 1]. then, the impenetrability condition is given in terms 2

of the function I− = I(−∞,0), as it forces u|Γc
to assume negative values, prescribing as positive orientation the 3

outward normal vector to the boundary. Then, two terms account for interactions between the body and the 4

contact surface. The first one, depending on the positive parameter μ, is actually responsible for the adhesion 5

effect if χ > 0 (μχ can be understood as the surface mechanical rigidity). The second one, depending on ν, 6

accounts for interactions between surface and volume damage [10]. It can force β|Γc
and χ to be “not too 7

far” and accounts for local interactions between volume and surface damages, it may be thought as a discrete 8

gradient. 9

We introduce dissipation by use of the pseudo-potential of dissipation (cf. [19]), that is a convex, non-negative 10

functional attaining its minimum 0 if there is no dissipation. Actually, we introduce two functionals ΦΩ and ΦΓc , 11

defined for dissipative variables in Ω and in Γc, respectively. More precisely, we set 12

ΦΩ(βt) =
1
2
|βt|2, (1.3)

and 13

ΦΓc(χt) =
1
2
|χt|2. (1.4)

Let us point out that we are not requiring any constraint on the sign of the time derivatives of the damage 14

parameters, as we assume the damage phenomena to be reversible (this is in particular the case of polymers or 15

liquid glue). 16

To recover the equations of the model we use a generalized form of the principle of virtual powers (cf. [13]) in 17

which works and (micro)motions responsible for the damage processing are included. Consequently, we recover 18

two balance equations holding in Ω (the momentum balance and a motion equation for the evolution of β) and 19

an equation written in Γc (a motion equation for the evolution of χ). 20

More precisely, virtual velocities are given in Ω, say v for a virtual macroscopic velocity and γ for a virtual 21

microscopic velocity, and in Γc, say γs a virtual microscopic contact velocity. Then, the power of interior forces 22

is defined as follows 23

Pi(v, γ, γs) = −
∫

Ω

σ · ∇v −
∫

Γc

Rv −
∫

Ω

Bγ −
∫

Ω

H · ∇γ −
∫

Γc

RB(γ − γs) −
∫

Γc

Bsγs −
∫

Γc

Hs · ∇γs, (1.5)

where σ is the stress, B, H, Bs, Hs are new interior forces in Ω and Γc, R is a reaction on the contact surface, 24

RB is an interaction term between damage in Ω and on the contact surface. The power of exterior forces is 25

Pe(v) =
∫

Ω

fv +
∫

Γ2

gv, (1.6)

g being a traction and f a distance force. 26

We assume a quasi-static situation as the engineering applications are in contact mechanics and in civil 27

engineering [10]. The case where the inertia forces are not neglected may involve collisions, i.e., velocity 28

discontinuities. A mechanical model is available with some mathematical results [3,14]. The principle of virtual 29

power reads 30

Pi + Pe = 0. 31
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Then, prescribing the following constitutive relations1

σ =
∂ΨΩ

∂∇u (1.7)

R =
∂ΨΓc

u|Γc

(1.8)

B =
∂ΨΩ

∂β
+
∂ΦΩ

∂βt
(1.9)

H =
∂ΨΩ

∂∇β (1.10)

RB =
∂ΨΓc

∂(β|Γc
− χ)

(1.11)

Bs =
∂ΨΓc

∂χ
+
∂ΦΓc

∂χt
(1.12)

Hs =
∂ΨΓc

∂∇χ , (1.13)

the equations are written as follows. We first have the momentum balance2

− div(β∇u) = f in Ω (1.14)

where σ = β∇u, with boundary conditions3

u = 0 on Γ1, (1.15)

(β∇u) · n = g on Γ2,

(β∇u) · n = −R ∈ −(μχu|Γc
+ ∂I−(u|Γc

)) on Γc,

n being the outward normal vector to the boundary. Let us comment about the reaction R. In the case the4

adhesion is not active, i.e. χ = 0, we recover Signorini conditions ensuring impenetrability between the body5

and the support, as ∂I− is defined for u|Γc
≤ 0 and it is ∂I−(u|Γc

) = 0 if u|Γc
< 0, while ∂I−(0) = [0,+∞).6

In the case χ > 0 the adhesion is active and a tension appears without separation. Then, we introduce the7

equation for β, which is of the form8

B − div H = 0 in Ω (1.16)
with9

H · n = 0 on Γ1 ∪ Γ2, H · n = −RB on Γc. (1.17)
It follows10

βt − Δβ + ∂I[0,1](β) � w − 1
2
|∇u|2, (1.18)

combined with the boundary condition11

∂nβ = −ν(β|Γc
− χ) on Γc, ∂nβ = 0 otherwise. (1.19)

Finally, in Γc we address the balance equation (now the differential operators are defined in Γc, which is assumed12

for the sake of simplicity a flat surface)13

Bs − div Hs = 0 in Γc, Hs · ns = 0 on ∂Γc, (1.20)

ns being the outward normal vector to the boundary of Γc. We get14

χt − Δχ+ ∂I[0,1](χ) � wc −
μ

2
|u|Γc

|2 + ν(β|Γc
− χ). (1.21)
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with 1

∂nχ = 0 (1.22)
on ∂Γc. Finally, initial conditions are prescribed for β, χ 2

β(0) = β0, χ(0) = χ0. (1.23)

Note that, under suitable regularity on β0, χ0, f , and g, we can get u(0) = u0 defined as a solution of the 3

corresponding equation (1.14) with (1.15). 4

In this paper, we are mainly interested to find a solution to the above equations (1.14) (actually we will deal 5

with a slightly modified equation, see (1.24)), (1.18), and (1.21) combined with (1.15), (1.19), (1.22) and (1.23). 6

We can prove a global in time existence result in any finite interval (0, T ), T > 0, for a weaker version of the 7

problem. Uniqueness is really not expected due to the doubly nonlinear character of the system. The main 8

difficulties we encounter are related to highly nonlinear terms in the equations and in the nonlinear coupling of 9

them. First, we have to face with multivoque nonlinear operators, defined both in Ω and in Γc. In particular, 10

let us point out that a nonlinear constraint is written in the boundary condition (1.15). Secondly, the quadratic 11

source of the damage on the right hand side of (1.18) is not controlled once the material is damaged, due to 12

the degeneracy of (1.24) once β = 0. The analogous problem is related to the bound of the quadratic term 13

involving the trace of displacement in (1.21) if χ = 0. To overcome this degeneracy of the model, we actually 14

add a further nonlinearity 1
4 |∇u|4 in ΨΩ. The choice is physically justified by the theory of nonlinear elasticity: 15

the stress in the powder or granular material where β = 0 is very small if the strain is small and very large if 16

the strain is large (a crude model of granular material). As already remarked, the predictive theory needs to 17

be upgraded by new physical informations on the behaviour of the completely damaged material. Besides our 18

choice, a large number of choices are possible depending on physics, see for instance [15]. Thus, the stress turns 19

out to be defined by 20

σ = |∇u|2∇u+ β∇u, 21

and the equation for u (cf. (1.14)) turns out to be 22

−div (|∇u|2∇u+ β∇u) = f. (1.24)

On a second step, we investigate the behaviour of our system once the interaction free energy goes to +∞. 23

More precisely, we let ν → +∞ in the equations. At the limit we get that the trace of the volume damage β|Γc
24

and the surface damage parameter are forced to be the same. We are able to pass to the limit in (1.24), while 25

we have to deal with (1.18) and (1.21) written as variational inequalities in a weaker framework. Indeed, we 26

cannot control nonlinear constraints represented by maximal monotone operators independently of ν. However, 27

we get an interesting result as, at the limit, we get an evolution inequality for β combined with the so-called 28

“dynamic” boundary conditions. Let us point out that, in spite of the use of the adjective “dynamic”, actually 29

βt results from dissipation and not from inertial. 30

Here is the outline of the paper. In Section 2 we introduce a weak version of the problem and state the main 31

existence result (Thm. 2.1). Hence, the proof of theorem is given in Section 3 by use of a fixed point argument, 32

combined with a priori estimates and passage to the limit techniques. Finally, in Section 4 we perform the 33

asymptotic analysis as ν → +∞ (see Thm. 4.1). 34

2. Mathematical formulation and main results 35

In this section, we introduce the variational formulation of (1.24), (1.18), (1.21) combined with boundary 36

assumptions (1.15), (1.19), (1.22). Then, we state the main existence result (see Thm. 2.1). 37

Before proceeding let us point out some useful notation and assumptions. Hereafter, for the sake of simplicity, 38

we assume that Ω is a bounded smooth domain in R
3, with ∂Ω = Γ̄1 ∪ Γ̄2 ∪ Γ̄c, where Γ1, Γ2, and Γc are open 39

subsets in the relative topology of ∂Ω, each of them with a smooth boundary and disjoint one from another; 40

further, we assume that the contact surface Γc and the region Γ1 have strictly positive measure. Finally, for the 41
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sake of simplicity we let Γc ⊂ R
2. Hence, given a Banach space X , we denote by X′〈·, ·〉X the duality pairing1

between X ′ and X ; by the same symbol ‖ ·‖X we indicate both the norm in a Banach space X and in any power2

of X . Finally, let T > 0 be fixed. In the following, we may denote by the same symbol c possibly different3

positive constants depending only on the data of the problem.4

We introduce the Hilbert triplets5

V ↪→ H ↪→ V ′, Vc ↪→ Hc ↪→ V ′
c6

with7

H := L2(Ω), V := H1(Ω),8

and9

Hc := L2(Γc), Vc := H1(Γc),10

where H and Hc are identified, as usual, with their dual spaces. Then, we set11

W := {v ∈ W 1,4(Ω) : v = 0 a.e. on Γ1},12

endowed with the natural norm induced by W 1,4(Ω). Note in particular that, owing to the strictly positive13

measure of Γ1, Poincaré’s inequality leads to14

‖u‖W ≤ c(Ω)‖∇v‖L4(Ω). (2.1)

We point out that if v ∈W then its trace belongs to W 3/4,4(Γ). Then, let15

(−∞, 0]W = {v ∈ W : v|Γc
≤ 0 a.e. on Γc}16

and introduce the operator α = ∂W,W ′I(−∞,0]W : W → 2W ′
, defined by17

ζ ∈ α(u) if and only if u ∈ (−∞, 0]W , W ′〈ζ, u− v〉W ≥ 0 ∀v ∈ (−∞, 0]W . (2.2)

Analogously, we introduce γ = ∂V,V ′I[0,1]V : V → V ′ where18

[0, 1]V = {β ∈ V : β ∈ [0, 1] a.e. in Ω},19

defined by20

ξ ∈ γ(β) if and only if β ∈ [0, 1]V , V ′〈ξ, β − φ〉V ≥ 0 ∀φ ∈ [0, 1]V . (2.3)
Finally, we let F ∈W ′ defined by21

W ′〈F, v〉W =
∫

Ω

fv +
∫

Γ2

gv, v ∈W.22

Before proceeding, let us fix the assumptions on the data of the problem. We first let23

F ∈ H1(0, T ;W ′). (2.4)

Then, we set24

β0 ∈ [0, 1]V ; χ0 ∈ Vc, χ0 ∈ [0, 1] a.e. in Γc (2.5)
and ν, μ > 0.25

Remark 2.1. Our existence results could apply to the simpler situation of μ = 0 (i.e. without adhesion26

between Ω and the contact surface) and ν = 0 (i.e., without any interaction between volume and surface27

damage). However, we prefer to explicitly consider the case of ν, μ > 0 as it is more interesting both from28

analytical and modelling point of view.29
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Here is the variational formulation of our problem. 1

The variational Problem Pv 2

Find (u, β, χ) such that for a.e. t ∈ (0, T ) 3∫
Ω

|∇u|2∇u · ∇v +
∫

Ω

β∇u · ∇v + μ

∫
Γc

χu|Γc
v|Γc

+W ′ 〈ζ, v〉W =W ′ 〈F, v〉W ∀v ∈ (−∞, 0]W , ζ ∈ α(u) in W ′,

(2.6)
4∫

Ω

βtφ+
∫

Ω

∇β ·∇φ+V ′ 〈ξ, φ〉V +ν
∫

Γc

(β|Γc
−χ)φ|Γc

=
∫

Ω

wφ− 1
2

∫
Ω

|∇u|2φ ∀φ ∈ [0, 1]V , ξ ∈ γ(β) in V ′, (2.7)

5

χt − Δχ+ δ = wc −
μ

2
|u|Γc

|2 − ν(χ− β|Γc
), δ ∈ ∂I[0,1](χ) a.e. in Γc., (2.8)

and fulfilling 6

β(0) = β0, χ(0) = χ0. (2.9)

The following theorem ensures existence of a solution to Pv. 7

Theorem 2.1. Let T > 0 and assume that (2.4) and (2.5) hold. Then, there exists a solution (u, β, χ) to Pv 8

with the following regularity 9

u ∈ L∞(0, T ;W ), (2.10)

β ∈ H1(0, T ;H) ∩ L∞(0, T ;V ), (2.11)
χ ∈ H1(0, T ;Hc) ∩ L∞(0, T ;Vc) ∩ L2(0, T ;H2(Γc)). (2.12)

3. A fixed point argument 10

Our first step is to prove existence of a solution to Problem Pv (see Thm. 2.1). To this aim, we apply the 11

Schauder fixed point theorem to a slightly regularized version of Pv in which a viscosity term is added in (3.1), 12

i.e. we deal with the following equation for κ > 0 13

14∫
Ω

βtφ+ κ

∫
Ω

∇βt · ∇φ+
∫

Ω

∇β · ∇φ+V ′ 〈ξ, φ〉V + ν

∫
Γc

(β|Γc
− χ)φ|Γc

=
∫

Ω

wφ− 1
2

∫
Ω

|∇u|2φ 15

∀φ ∈ [0, 1]V , ξ ∈ γ(β) in V ′. (3.1) 16
17

Remark 3.1. Let us point out that (3.1) describes a model for damage in which dissipative effects are included 18

in the local interaction. 19

Let 20

X = {(φ, ψ) ∈ L∞(0, T ;H)× L∞(0, T ;Hc), (3.2)

φ, ψ ∈ [0, 1] a.e. in Ω × (0, T ) and in Γc × (0, T ) respectively}.

X is endowed with the natural norm induced by L∞(0, T ;H)×L∞(0, T ;Hc). Hence, we are going to construct 21

an operator 22

T : X → X 23

proving that it is compact and continuous (with respect to the topology of X ), whose fixed points define a 24

solution to our problem. For the sake of simplicity, let us take μ = 1. 25
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3.1. Auxiliary results1

First step. Let us fix2

(β̂, χ̂) ∈ X . (3.3)

We look at the solution u = T1(β̂, χ̂) of the following abstract equation3

Au + Hχ̂u+ Div (β̂∇u) + ζ = F ζ ∈ α(u), in W ′, a.e. in (0, T ), (3.4)

where α is introduced by (2.2) and the operators A,Hχ̂ : W →W ′ and Div : H3 →W ′ are defined as follows.4

For u, v ∈W5

W ′〈Au, v〉W =
∫

Ω

|∇u|2∇u · ∇v, (3.5)

W ′〈Hχ̂u, v〉W =
∫

Γc

χ̂u|Γc
v|Γc

, (3.6)

W ′〈Div (β̂∇u), v〉W =
∫

Ω

β̂∇u · ∇v. (3.7)

The following lemma ensures the existence and uniqueness of a solution to (3.4).6

Lemma 3.2. Let (2.4) hold. There exists a unique solution to (3.4). Moreover7

‖u‖L∞(0,T ;W ) ≤ c1, (3.8)

for a constant c1 > 0 depending on the data of the problem, but not on the choice of (β̂, χ̂) in X .8

The existence of u ∈ L∞(0, T ;W ) solving (3.4) is proved exploiting well known-result on the theory of9

maximal monotone operators (for the general theory on maximal monotone operators in Banach spaces see,10

e.g., [1]). Concerning uniqueness, it follows by the fact that A satisfies (cf. [18])11

W ′〈A(u1) −A(u2), u1 − u2〉W = 0 if and only if u1 − u2 = 0. (3.9)

Indeed, as A, Hχ̂, Div (with fixed β̂), and α are monotone operators, if we write (3.4) for two solutions u1, u2,12

take the difference, and test by u1 − u2, we get13

0 ≤W ′ 〈A(u1) −A(u2), u1 − u2〉W ≤ 0,14

from which we deduce u1 = u2 due to (3.9).15

To prove (3.8) let us test (3.4) by u. We first observe that (see (2.2))16

W ′〈α(u), u〉W ≥ 0. (3.10)

Hence, we have (independently of t)17 ∫
Ω

|∇u|4 +
∫

Ω

β̂|∇u|2 +
∫

Γc

χ̂|u|2 ≤W ′ 〈F, u〉W . (3.11)

After exploiting the Young inequality and (2.1), it follows18

‖u‖4
W +

∫
Ω

β̂|∇u|2 +
∫

Γc

χ̂|u|2 ≤ c‖F‖4/3
W ′ (3.12)
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from which (3.8) is deduced as β̂, χ̂ > 0 and F satisfies (2.4). In addition, we infer that 1

‖χ̂1/2
u|Γc

‖L∞(0,T ;Hc) + ‖β̂1/2∇u‖L∞(0,T ;H) ≤ c1. (3.13)

Note that (3.8) yields 2

‖|∇u|2∇u‖L∞(0,T ;L4/3(Ω)) ≤ c, (3.14)

from which, by a comparison in (3.4), the following bound is recovered 3

‖ζ‖L∞(0,T ;W ′) ≤ c. (3.15)

Second step. Assume (2.5) and (2.4). Fix u = T1(β̂, χ̂) (defined by Lem. 3.2) and χ̂. Then, let us consider 4

the equation in V ′ for a.e. t ∈ (0, T ) 5

βt + κA0βt +Aβ + ξ = w − 1
2
|∇u|2 + Tχ̂, ξ ∈ γ(β) (3.16)

where 6

A,A0 : V → V ′, V ′〈Aβ, φ〉V =
∫

Ω

∇β · ∇φ+ ν

∫
Γc

β|Γc
φ|Γc

, (3.17)

V ′〈A0βt, φ〉V =
∫

Ω

∇βt · ∇φ

and 7

V ′〈Tχ̂, φ〉V = ν

∫
Γc

χ̂φ|Γc
8

for any φ ∈ V . The following lemma holds. 9

Lemma 3.3. There exists a unique solution β = T2(u, χ̂) to (3.16), (2.9). Moreover, it is 10

‖β‖H1(0,T ;V ) ≤ c2, (3.18)

where c2 is independent of β̂ and χ̂. 11

The existence and uniqueness result stated by Lemma 3.3 is fairly standard and follows from the theory 12

of evolution (parabolic) equations, associated with maximal monotone operators, whose right hand side is in 13

L∞(0, T ;H) + L∞(0, T ;V ′). Hence, let us proof the uniform bound (3.18). We test (3.1) by βt and integrate 14

over (0, t). We get, exploiting Young’s inequality and trace theorems, 15

‖βt‖2
L2(0,t;V ) +

1
2
‖∇β(t)‖2

H +
ν

2
‖β|Γc

(t)‖2
Hc

≤ 1
2
‖∇β0‖2

H +
∫ t

0

∫
Ω

w|βt| +
1
2

∫ t

0

∫
Ω

|∇u|2|βt|

+ ν

∫ t

0

∫
Γc

χ̂|βt| +
ν

2
‖β|Γc

(0)‖2
Hc

≤ c

(
1 +

∫ t

0

‖∇u‖4
L4(Ω) + ‖χ̂‖2

L2(0,T ;Hc)

)
+

1
2
‖βt‖2

L2(0,t;V )

≤ c2 +
1
2
‖βt‖2

L2(0,t;V ), (3.19)
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where c2 depends on c1 and on the data of the problem (see (3.8)), but not on the choice of β̂ and χ̂. Note that1

we have exploited the fact that, by chain rule,2

∫ t

0
V ′〈ξ, βt〉V ≥ 0.3

Thus, (3.18) easily follows. Then, a comparison in (3.16) yields4

‖ξ‖L∞(0,T ;V ′) ≤ c2. (3.20)

Third step. Let u = T1(β̂, χ̂) and β = T2(u, χ̂) defined by Lemmas 3.2 and 3.3, once (2.4) and (2.5) are5

assumed. Consider the following equation, written in Γc × (0, T )6

χt − Δχ+ δ + νχ = wc −
1
2
|u|Γc

|2 + νβ|Γc
, δ ∈ ∂I[0,1](χ). (3.21)

Lemma 3.4. There exists a unique solution χ = T3(u, β) to (3.21), (2.9) with7

‖χ‖H1(0,T ;Hc)∩L∞(0,T ;Vc)∩L2(0,T ;H2(Γc)) ≤ c3, (3.22)

where c3 does not depend on β̂ and χ̂ but only on the data of the problem.8

We first observe that, by trace theorems and Sobolev’s embedding, (3.18) implies9

‖β|Γc
‖L∞(0,T ;L4(Γc)) ≤ c. (3.23)

Analogously, due to (3.8) we get, at least, for any p10

‖u|Γc
‖L∞(0,T ;Lp(Γc)) ≤ c. (3.24)

Thus, the right hand side of (3.21) turns out to be bounded in L∞(0, T ;L4(Γc)) and existence and uniqueness11

of the solution to (3.16), (2.9) follows by standard arguments (cf. [1,7]). Then, to show that (3.22) holds, let us12

test the equation (3.21) by χt and integrate over (0, t). It is now a standard matter to infer that13

‖χt‖2
L2(0,t;Hc)

+ ‖∇χ(t)‖2
Hc

+
ν

2
‖χ(t)‖2

Hc
≤ c

(
1 +

∫ t

0

‖u|Γc
‖4

L4(Γc)
+ ν

∫ t

0

‖β|Γc
‖2

Hc

)
≤ c, (3.25)

where c depends on the data of the problem and, in particular, on c1 and c2. Hence, we can test (3.21) by −Δχ.14

After integrating over (0, t) and observing that by monotonicity15

∫
Ω

∇δ · ∇χ ≥ 016

it follows that17

‖Δχ‖2
L2(0,T ;Hc) ≤ c. (3.26)

Combining (3.25) and (3.26) we get (3.22) and, by a comparison in (3.21)18

‖δ‖L2(0,T ;Hc) ≤ c. (3.27)
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3.2. Existence of the operator T and of a fixed point 1

Combining T1, T2, and T3, due to Lemmas 3.2–3.4, we are in the position of well define an operator T : X → X 2

as follows 3

T (β̂, χ̂) = (β, χ) where β = T2(u, χ̂), u = T1(β̂, χ̂), χ = T3(u, β). (3.28)
Note in particular that, by construction, a fixed point (β, χ) of T provides a solution to Pv (in which (3.1) is 4

considered for κ > 0) (u, β, χ) defined by (3.28). 5

Now, to apply the Schauder theorem, and deduce that T admits a fixed point, we need to show that it is 6

compact and continuous in X w.r.t. the topology induced by L∞(0, T ;H)× L∞(0, T ;Hc). 7

As far as compactness, it easily follows from (3.18) and (3.22) (holding for constants depending only on the 8

data of the problem), due to [21]. 9

Then, it remains to prove that the operator T is continuous. To this aim let us take (β̂n, χ̂n) ∈ X such that 10

β̂n → β̂ in L∞(0, T ;H) (3.29)

χ̂n → χ̂ in L∞(0, T ;Hc). (3.30)

Our aim is to show that 11

(βn, χn) = T (β̂n, χ̂n) → T (β̂, χ̂) in L∞(0, T ;H)× L∞(0, T ;Hc). (3.31)

Let us denote by 12

un = T1(β̂n, χ̂n), βn = T2(un, χ̂n), χn = T3(un, βn). (3.32)
Then, by ζn, ξn, δn we denote the selections of α, γ, ∂I[0,1] in (3.4), (3.16), (3.21) written for the index n. 13

We first recall that (3.8), (3.18), and (3.22) imply 14

‖un‖L∞(0,T ;W ) ≤ c, (3.33)

‖βn‖H1(0,T ;V ) ≤ c, (3.34)

‖χn‖H1(0,T ;Hc)∩L∞(0,T ;Vc)∩L2(0,T ;H2(Γc)) ≤ c, (3.35)

where c does not depend on n. Thus, by weak star compactness results, at least for some suitable subsequences 15

(still denoted by the index n just for the sake for simplicity), we deduce (at least) 16

un
∗
⇀ u in L∞(0, T ;W ), un ⇀ u in L4(0, T ;W ), (3.36)

βn ⇀ β in H1(0, T ;V ), (3.37)

χn
∗
⇀ χ in H1(0, T ;Hc) ∩ L∞(0, T ;Vc) ∩ L2(0, T ;H2(Γc)). (3.38)

Let us point out that to perform the following asymptotic analysis would be sufficient to have 17

‖βn‖H1(0,T ;H)∩L∞(0,T ;V ), βn
∗
⇀ β in H1(0, T ;H) ∩ L∞(0, T ;V ). (3.39)

Hence, strong compactness theorems ensure 18

βn → β in C0([0, T ];H1−ε(Ω)), ε > 0, (3.40)
χn → χ in C0([0, T ];H1−ε(Γc)) ∩ L2(0, T ;H2−ε(Γc)), ε > 0. (3.41)

In particular, owing to Sobolev’s embedding and trace theorems (3.40) imply 19

βn → β in C0([0, T ];Lp(Ω)), p < 6, (3.42)

βn|Γc
→ β|Γc

in C0([0, T ];Lp(Γc)), p < 4.
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Analogously, as far as the convergence of the trace of un, (3.33) and (3.36) yield1

un|Γc

∗
⇀ u|Γc

in L∞(0, T ;W 3/4,4(Γc)), (3.43)

and consequently a weak convergence holds, e.g., in Lp(0, T ;Lp(Γc)), for 1 < p < +∞. Then, (3.41) leads to2

χn → χ in C0([0, T ];Lp(Γc)), p < +∞. (3.44)

Now, let us comment about ζn, ξn, δn. We recall that (3.15), (3.20), and (3.27) imply3

‖ζn‖L∞(0,T ;W ′) ≤ c (3.45)

‖ξn‖L2(0,T ;V ′) ≤ c (3.46)

‖δn‖L2(0,T ;Hc) ≤ c, (3.47)

independently of n. Then, the following convergences follow4

ζn
∗
⇀ ζ in L∞(0, T ;W ′), ζn ⇀ ζ in L2(0, T ;W ′) (3.48)

ξn ⇀ ξ in L2(0, T ;V ′) (3.49)

δn ⇀ δ in L2(0, T ;Hc). (3.50)

Now, let us deal with the passage to the limit in (3.4) as n → +∞. We first observe that ηn = |∇un|2∇un is5

bounded in L∞(0, T ;L4/3(Ω)) (see (3.14)), so that6

ηn = |∇un|2∇un
∗
⇀ η in L∞(0, T ;L4/3(Ω)). (3.51)

This implies that7

‖A(un)‖L∞(0,T ;W ′) ≤ c, (3.52)

Aun
∗
⇀ E, in L∞(0, T ;W ′), Aun ⇀ E in L2(0, T ;W ′),

where8

W ′〈E, v〉W =
∫

Ω

η · ∇v, v ∈W. (3.53)

Owing to (3.43) and (3.44) for any v ∈W as n→ +∞ there holds9 ∫
Γc

χ̂nun|Γc
v|Γc

→
∫

Γc

χ̂u|Γc
v|Γc

. (3.54)

Analogously, (3.36) and (3.37) imply10 ∫
Ω

β̂n∇un · ∇v →
∫

Ω

β̂∇u · ∇v. (3.55)

Eventually, exploiting (3.36), (3.48), (3.52) (see (3.51)), (3.54), and (3.55), we can pass to the limit weakly11

in (3.4) and get the following weak equation in W ′
12

E + ζ + Hχ̂u+ Div (β̂∇u) = F. (3.56)

In particular, we have to identify E ∈ Au and ζ ∈ α(u). We apply an analogous argument as that exploited in13

Lemma 5.1 of [9] for the Hilbert case.14
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Lemma 3.5. Let X,X ′ be reflexive Banach spaces and F : X → X ′ a duality mapping, B a maximal monotone 1

set in X ×X ′. Suppose that (xn, yn) ∈ B for any n ∈ N and for n→ +∞ 2

xn ⇀ x in X, yn ⇀ y in X ′. 3

Then, denoting by 〈·, ·〉 the duality pairing between X ′ and X, 4

lim inf
n→+∞〈yn, xn〉 ≥ 〈y, x〉. 5

Let us briefly comment about the proof of the above result. As B is monotone, for any (ω, ρ) ∈ B there holds 6

〈yn − ρ, xn − ω〉 ≥ 0 ∀n. 7

Thus, passing to the limit we have 8

lim inf
n→+∞〈yn, xn〉 ≥ 〈y, ω〉 + 〈ρ, x〉 − 〈ρ, ω〉, (3.57)

for any (ω, ρ) ∈ B. Now, let us take, for λ > 0, the resolvent Jλ and the Yosida approximation Bλ of B (cf. [1] 9

p. 41). Let ω = Jλx and ρ = Aλx. By definition, we have 10

Aλx = −λ−1F (Jλx− x). 11

Then, it follows 12

〈ρ, x− ω〉 = 〈−λ−1F (Jλx− x), Jλx− x〉 ≥ 0 13

and due to (3.57) 14

lim inf
n→+∞〈yn, xn〉 ≥ 〈y, Jλx〉. (3.58)

Now, due to [1], Corollary 1.2, the strong closure of D(B) is convex. Thus, it coincides with the weak closure 15

of D(B). In particular, we get that x belongs to the strong closure of D(B), so that Jλx → x as λ → 0 due 16

to [1], Proposition 1.1, which concludes the proof of the lemma passing to the limit in (3.58). 17

Applying Lemma 3.5 in the duality of L2(0, T ;W ) with L2(0, T ;W ′), owing to (3.36) and (3.48). It follows 18

lim inf
n→+∞

∫ t

0
W ′〈ζn, un〉W ≥

∫ t

0
W ′〈ζ, u〉W . (3.59)

Now, let us consider (3.4) written for n (denoting by En = Aun). Test it by un and integrate over (0, t) 19

lim sup
n→0

∫ t

0
W ′〈En, un〉W ≤ − lim inf

n→+∞

∫ t

0

∫
Γc

χ̂n|un|2 − lim inf
n→+∞

∫ t

0

∫
Ω

β̂n|∇un|2

+ lim
n→+∞

∫ t

0
W ′〈F, un〉W − lim inf

n→+∞

∫ t

0
W ′〈ζn, un〉W

≤ −
∫ t

0

∫
Γc

χ̂|u|2 −
∫ t

0

∫
Ω

β̂|∇u|2 +
∫ t

0
W ′〈F, u〉W −

∫ t

0
W ′〈ζ, u〉W . (3.60)

Let us comment about (3.60). Due to (3.30), at least for some subsequence, χ̂
1/2

n → χ̂1/2
a.e. and strongly, 20

e.g., in Lq for q < +∞. Thus, recalling that (3.43) holds and χ̂1/2

n un is bounded in L∞(0, T ;Hc) (cf. (3.13)), 21

we can pass to the limit 22

χ̂1/2

n un ⇀ χ̂1/2
u in L2(0, T ;Hc) (3.61)
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so that by lower semicontinuity of norm1

lim inf
n→+∞

∫ t

0

∫
Γc

χ̂n|un|2 ≥
∫ t

0

∫
Γc

χ̂|u|2.2

Analogously, we can deduce that3

lim inf
n→+∞

∫ t

0

∫
Ω

β̂n|∇un|2 ≥
∫ t

0

∫
Ω

β̂|∇u|2.4

Now, combining (3.60) with (3.56) yields5

lim sup
n→+∞

∫ t

0
W ′〈En, un〉W ≤

∫ t

0
W ′〈E, u〉W , (3.62)

from which we deduce E = Au due to [1], Lemma 1.3. In particular, it follows6

lim
n→+∞

∫ t

0
W ′〈En, un〉W = lim

n→+∞

∫ t

0

∫
Ω

|∇un|4 =
∫ t

0

∫
Ω

|∇u|4, (3.63)

yielding that un converges strongly (see (3.36))7

un → u in L4(0, T ;W ). (3.64)

Then, we can identify ζ ∈ α(u) proceeding as in (3.60) applying [1], as it holds8

lim sup
n→+∞

∫ t

0
W ′〈ζn, un〉W ≤ −

∫ t

0

∫
Ω

|∇u|4 −
∫ t

0

∫
Γc

χ̂|u|2 −
∫ t

0

∫
Ω

β̂|∇u|2 +
∫ t

0
W ′〈F, u〉W =

∫ t

0
W ′〈ζ, u〉W .

(3.65)
Now, we pass to the limit weakly in (3.1), written for the index n, as n→ +∞. Owing to (3.30), (3.37), (3.40),9

(3.42), and (3.49), (3.64) we get at the limit (3.1). It remains to identify ξ ∈ γ(β). We proceed as above (cf.,10

e.g., (3.60)) by semicontinuity and test (3.1), written for n, by βn and integrate over (0, t). Integrating by parts11

in time and exploiting once more (3.30), (3.37), (3.42), and (3.64), by lower semicontinuity of norms, we have12

lim sup
n→+∞

∫ t

0
V ′〈ξn, βn〉V = lim sup

n→+∞
−1

2
‖βn(t)‖2

H +
1
2
‖β0‖2

H − κ

2
‖∇βn(t)‖2

H +
κ

2
‖∇β(0)‖2

H −
∫ t

0

∫
Ω

|∇βn|2

−
∫ t

0

∫
Γc

|β|Γc n
|2 +

∫ t

0

∫
Ω

wβn − 1
2

∫ t

0

∫
Ω

|∇un|2βn ≤ −1
2
‖β(t)‖2

H +
1
2
‖β0‖2

H − κ

2
‖∇β(t)‖2

H +
κ

2
‖∇β(0)‖2

H

−
∫ t

0

∫
Ω

|∇β|2 −
∫ t

0

∫
Γc

|β|Γc
|2 +

∫ t

0

∫
Ω

wβ − 1
2

∫ t

0

∫
Ω

|∇u|2β =
∫ t

0
V ′〈ξ, β〉V (3.66)

leading to ξ ∈ γ(β) in V ′ for a.e. t.13

Finally, it is now a standard matter to pass to the limit in (3.21) exploiting (3.38), (3.50), (3.41), (3.42),14

and (3.64) (from which we deduce a strong convergence for the traces e.g. in L4(Γc×(0, T ))). Note in particular15

that we can directly identify δ ∈ ∂I[0,1](χ) due to (3.44) and (3.50).16

Eventually,the operator T turns out to be continuous in X (see (3.42) and (3.44)). By the Schauder theorem17

there exists a fixed point (β, χ) from which we have a solution to problem (2.6), (3.1), and (2.8) given by18

(T1(β, χ), β, χ).19
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Remark 3.6. Let us point out that we can identify ζ and ξ only in a weak sense, so that we cannot think to 1

ζ and ξ as interior constraints a.e. defined as we can do for δ in (3.21). However, our result is still physically 2

consistent as it sufficient to deduce that u ∈ D(α) and β ∈ D(γ), i.e., for a.e. t, u|Γc
≤ 0 a.e. on Γc and β ∈ [0, 1] 3

a.e. in Ω. 4

3.3. Passage to the limit as κ ↘ 0 5

Now, we pass to the limit in (2.6), (3.1), (2.8) as κ↘ 0 to conclude the proof of Theorem 2.1. For the sake of 6

simplicity, for the moment we do not specify the dependence of the solution (u, β, χ) on κ. Then, we introduce 7

u0 ∈ D(α) as the solution of (3.4) written for t = 0 (see Lem. (3.2)). We proceed formally testing (2.6) by ut, 8

(3.1) by βt, and (2.8) by χt and adding the resulting equations. After integrating by parts in time some terms 9

cancel. Then, using the chain rule (also for the subdifferentials) and applying the Young inequality we infer 10

that 11

1
4
‖∇u(t)‖4

L4(Ω) +
1
2

∫
Ω

β(t)|∇u(t)|2 +
1
2

∫
Γc

χ(t)|u|Γc
(t)|2 + ‖βt‖2

L2(0,t;H) + κ‖∇βt‖2
L2(0,t;H)

+
1
2
‖∇β(t)‖2

H + ‖χt‖2
L2(0,t;Hc)

+
1
2
‖∇χ(t)‖2

H +
ν

2
‖(β|Γc

− χ)(t)‖2
Hc

≤ 1
4
‖∇u0‖4

L4(Ω) +
1
2

∫
Ω

β0|∇u0|2 +
1
2

∫
Γc

χ0|u|Γc
(0)|2 +

1
2
‖∇β0‖2

H

+
1
2
‖∇χ0‖2

Hc
+ ν‖β|Γc

(0) − χ0‖2
Hc

+ |W ′〈F (t), u(t)〉W | + |W ′〈F (0), u0〉W |

+
∫ t

0

|W ′ 〈Ft, u〉W | +
∫ t

0

∫
Ω

|wβt| +
∫ t

0

∫
Γc

|wcχt|

≤ c
(
+ ‖F‖2

L∞(0,T ;W ′)

)
+

∫ t

0

‖Ft‖W ′‖u‖W +
1
2
‖βt‖2

L2(0,t;H) +
1
2
‖χt‖2

L2(0,t;Hc)
. (3.67)

12

Eventually, owing to (2.1) and exploiting the Gronwall lemma, we deduce the following bounds independent 13

of κ 14

‖uκ‖L∞(0,T ;W ) ≤ c (3.68)

‖βκ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c (3.69)

‖χκ‖H1(0,T ;Hc)∩L∞(0,T ;Vc) ≤ c (3.70)

‖β1/2
κ ∇uκ‖L∞(0,T ;H) ≤ c (3.71)

‖χ1/2
κ u|Γc ,κ‖L∞(0,T ;Hc) ≤ c. (3.72)

Moreover, 15

κ1/2‖∇∂tβκ‖L2(0,T ;H) ≤ c. (3.73)
We can also test (2.8) by −Δχκ, integrate over (0, t) and get (cf. Lem. 3.4 and (3.26)) 16

‖χκ‖L2(0,t;H2(Γc)) ≤ c. (3.74)

It is now a standard matter to deduce the following weak and weak star convergences for 17

uκ
∗
⇀ u in L∞(0, T ;W ), uκ ⇀ u in L4(0, T ;W ) (3.75)

βκ
∗
⇀ β in H1(0, T ;H) ∩ L∞(0, T ;V ) (3.76)

χκ
∗
⇀ χ in H1(0, T ;Hc) ∩ L∞(0, T ;Vc) ∩ L2(0, T ;H2(Γc)). (3.77)
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Moreover,1

κ∇∂tβκ ⇀ 0 in L2(0, T ;H). (3.78)

Hence, by a comparison in the equations, we obtain the analogous of (3.45)–(3.47), now written for ζκ, ξκ, δκ.2

As a consequence3

ζκ
∗
⇀ ζ in L∞(0, T ;W ′), ζκ ⇀ ζ in L2(0, T ;W ′), (3.79)

ξκ ⇀ ξ in L2(0, T ;V ′), (3.80)

δκ ⇀ δ in L2(0, T ;Hc). (3.81)

We are now in the position of applying the same passage to the limit procedure as that exploited in4

Section 3.2 to pass to the limit as κ → 0. Indeed, we are able to deduce exactly the same convergences5

as (3.40)–(3.44), (3.51), (3.54)–(3.55) (for χκ and βκ) as they follow from (3.75)–(3.77) arguing as in Section 3.26

(cf. (3.33), (3.35), (3.64), and (3.39)). At the limit (u, β, χ) turn out to solve Problem Pv.7

4. Asymptotic analysis8

In this section, we should consider the asymptotic behaviour of a solution to Problem Pv as the interfacial9

coefficient ν → +∞. This corresponds to investigate the properties of the adhesion once the interaction energy10

blows up.11

We first perform some a priori estimates for the solution, which are independent of the interface parameter ν.12

To this aim we have to improve the regularity required on the initial data. Indeed, let13

β0 ∈ H3/2(Ω), β0 ∈ [0, 1] a.e. in Ω (4.1)

and fix χ0 = β0,|Γc
, so that (cf. (2.5))14

χ0 ∈ Vc, χ0 ∈ [0, 1] a.e. in Γc. (4.2)

Then, let β0,ν and χ0,ν satisfying (4.1), (4.2),15

converging to β0 and χ0 in V and Vc respectively, with (4.3)

ν1/2‖β0,ν |Γc
− χ0,ν‖Hc ≤ c,

where c does not depend on ν. Then, letting u0,ν be the unique solution of (3.4) written for t = 0 where β0,ν16

and χ0,ν are fixed, it follows (cf. (3.8))17

‖u0,ν‖W ≤ c. (4.4)

The following lemma holds.18

Lemma 4.1. Let (2.4), (4.1)–(4.3) hold (cf. also (4.4)). Denote by (uν , βν , χν) a solution to Problem Pv for19

ν > 0 fixed. Then,20

‖uν‖L∞(0,T ;W ) ≤ c (4.5)

‖βν‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c (4.6)

‖χν‖H1(0,T ;Hc)∩L∞(0,T ;Vc)∩L2(0,T ;H2(Γc)) ≤ c (4.7)

independently of ν.21
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For the sake of simplicity, for the moment we do not specify the dependence of the solution (u, β, χ) on ν. 1

To prove Lemma 4.1 we proceed formally and test (2.6) by ut, (2.7) by βt, and (2.8) by χt. Then, we add the 2

resulting equations and integrate over (0, t). We get the analogous of estimates (3.67), where now κ = 0, 3

1
4
‖∇u(t)‖4

L4(Ω) +
1
2

∫
Ω

β(t)|∇u(t)|2 +
1
2

∫
Γc

χ(t)|u|Γc
(t)|2 + ‖βt‖2

L2(0,t;H) (4.8)

+
1
2
‖∇β(t)‖2

H + ‖χt‖2
L2(0,t;Hc) +

1
2
‖∇χ(t)‖2

H +
ν

2
‖(β|Γc

− χ)(t)‖2
Hc

≤ 1
4
‖∇u0‖4

L4(Ω) +
1
2

∫
Ω

β0|∇u0|2 +
1
2

∫
Γc

χ0|u|Γc
(0)|2 +

1
2
‖∇β0‖2

H +
1
2
‖∇χ0‖2

Hc

+ ν‖β|Γc
(0) − χ0‖2

Hc
+ |W ′〈F (t), u(t)〉W | + |W ′〈F (0), u0〉W | +

∫ t

0

|W ′〈Ft, u〉W |

+
∫ t

0

∫
Ω

|wβt| +
∫ t

0

∫
Γc

|wcχt|

≤ c
(
1 + ‖F‖2

L∞(0,T ;W ′)

)
+

∫ t

0

‖Ft‖W ′‖u‖W +
1
2
‖βt‖2

L2(0,t;H) +
1
2
‖χt‖2

L2(0,t;Hc)
.

Eventually, owing to (4.1)–(4.4), (2.1), and exploiting the Gronwall lemma, we deduce the following bounds 4

independent of ν: 5

‖u‖L∞(0,T ;W ) ≤ c (4.9)

‖β‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c (4.10)

‖χ‖H1(0,T ;Hc)∩L∞(0,T ;Vc) ≤ c (4.11)

‖β1/2∇u‖L∞(0,T ;H) ≤ c (4.12)

‖χ1/2u|Γc
‖L∞(0,T ;Hc) ≤ c (4.13)

ν1/2‖β|Γc
− χ‖L∞(0,T ;Hc) ≤ c. (4.14)

Now, we aim to pass to the limit in (2.6)–(2.8) as ν → +∞ and prove that at the limit we find a system solved 6

by (u, β, χ). Actually, as we will show in a moment, we are able to prove that (u, β, χ) solve only a weaker 7

version of our system, we are going to introduce. 8

By definition of γ and ∂I[0,1] we can equivalently rewrite (3.1) and (2.8) as follows 9

∫ t

0

∫
Ω

βt(β − φ) +
∫ t

0

∫
Ω

∇β · ∇(β − φ) + ν

∫ t

0

∫
Γc

(β|Γc
− χ)(β|Γc

− φ|Γc
)

−
∫ t

0

∫
Ω

w(β − φ) +
1
2

∫ t

0

∫
Ω

|∇u|2(β − φ) ≤ 0 ∀φ ∈ L2(0, T ; [0, 1]V ), (4.15)∫ t

0

∫
Γc

χt(χ− ψ) +
∫ t

0

∫
Γc

∇χ · ∇(χ− ψ) −
∫ t

0

∫
Γc

wc(χ− ψ)

+
1
2

∫ t

0

∫
Γc

|u|Γc
|2(χ− ψ) + ν

∫ t

0

∫
Γc

(χ− β|Γc
)(χ− ψ) ∀ψ ∈ L2(0, T ;Vc),

ψ ∈ [0, 1] a.e. in Γc × (0, T ). (4.16)

Then, to pass to the limit in (4.15)–(4.16), we restrict our analysis to consider as test functions in (4.15) 10

φ ∈ L2(0, T ;H3/2(Ω)) s.t. φ ∈ [0, 1] a.e. in Ω × (0, T ), 11
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so that φ|Γc
∈ L2(0, T ;Vc) and φ|Γc

∈ [0, 1] a.e. in Γc × (0, T ). In particular, we are allowed to take as test1

function in (4.16) ψ = φ|Γc
. Then, adding the resulting inequalities we get2

∫ t

0

∫
Ω

βt(β − φ) +
∫ t

0

∫
Ω

∇β · ∇(β − φ) + ν

∫ t

0

∫
Γc

(β|Γc
− χ)2 −

∫ t

0

∫
Ω

w(β − φ) (4.17)

+
1
2

∫ t

0

∫
Ω

|∇u|2(β − φ) +
∫ t

0

∫
Γc

χt(χ− φ|Γc
) +

∫ t

0

∫
Γc

∇χ · ∇(χ− φ|Γc
)

−
∫ t

0

∫
Γc

wc(χ− φ|Γc
) +

1
2

∫ t

0

∫
Γc

|u|Γc
|2(χ− φ|Γc

) ≤ 0

and also, as ν
∫
Γc

(β|Γc
− χ)2 ≥ 0,3

∫ t

0

∫
Ω

βt(β − φ) +
∫ t

0

∫
Ω

∇β · ∇(β − φ) −
∫ t

0

∫
Ω

w(β − φ) (4.18)

+
1
2

∫ t

0

∫
Ω

|∇u|2(β − φ) +
∫ t

0

∫
Γc

χt(χ− φ|Γc
) +

∫ t

0

∫
Γc

∇χ · ∇(χ− φ|Γc
)

−
∫ t

0

∫
Γc

wc(χ− φ|Γc
) +

1
2

∫ t

0

∫
Γc

|u|Γc
|2(χ− φ|Γc

) ≤ 0

for all φ ∈ L2(0, T ;H3/2(Ω)) s.t. φ ∈ [0, 1] a.e. in Ω × (0, T ).4

The following theorem holds.5

Theorem 4.1. Let (2.4), (4.1)–(4.4) hold. Then, as ν → +∞, at least for some subsequence6

uν
∗
⇀ u in L∞(0, T ;W ) (4.19)

βν
∗
⇀ β in H1(0, T ;H) ∩ L∞(0, T ;V ) (4.20)

χν
∗
⇀ χ in H1(0, T ;Hc) ∩ L∞(0, T ;Vc). (4.21)

Moreover β|Γc
= χ a.e. and (u, β, χ) solve for a.e. t ∈ (0, T ) (3.4) and (4.18) for any φ ∈ L2(0, T ;H3/2(Ω)) s.t.7

φ ∈ [0, 1] a.e. in Ω × (0, T ).8

Convergences (4.19)–(4.21) easily follows by Lemma 4.1. Hence, (4.20) and (4.21) lead to9

βν → β in C0([0, T ];H1−ε(Ω)), (4.22)
χν → χ in C0([0, T ];H1−ε(Γc)). (4.23)

In particular, (4.22) implies10

βν → β|Γc
in C0([0, T ];Lp(Γc)), p < 4. (4.24)

Moreover, (4.14) and (4.22)–(4.24) imply11

βν − χν → 0 in L∞(0, T ;Hc) (4.25)

and12

β|Γc
= χ a.e. in Γc × (0, T ). (4.26)

Now, we pass to the limit in (2.6) and (4.18). We first proceed investigating the asymptotic behaviour of the13

equation (2.6). Due to Lemma 4.1, we are allowed apply the same arguments we have exploited in Section 314
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to pass to the limit in (2.6) (written for n as n→ +∞). In particular, let us recall that we get, e.g., 1

uν → u in L4(0, T ;W ). (4.27)

Hence, we pass to the limit in (4.18) written for ν. By lower semicontinuity of norms, weak(weak star)-strong 2

convergence, (4.19)–(4.24), (4.27), and (4.26) it is now a standard matter to infer that 3

∫ t

0

∫
Ω

βtβ +
∫ t

0

∫
Ω

|∇β|2 −
∫ t

0

∫
Ω

wβ +
1
2

∫ t

0

∫
Ω

|∇u|2β (4.28)

+
∫ t

0

∫
Γc

∂tβ|Γc
β|Γc

+
∫ t

0

∫
Γc

|∇β|Γc
|2 −

∫ t

0

∫
Γc

wcβ|Γc
+

1
2

∫ t

0

∫
Γc

|u|2β|Γc

≤ lim inf
ν→+∞

∫ t

0

∫
Ω

∂tβνβν +
∫ t

0

∫
Ω

|∇βν |2 −
∫ t

0

∫
Ω

wβν +
1
2

∫ t

0

∫
Ω

|∇uν |2βν

+
∫ t

0

∫
Γc

∂tχνχν +
∫ t

0

∫
Γc

|∇χν |2 −
∫ t

0

∫
Γc

wcχν +
1
2

∫ t

0

∫
Γc

|uν |2χν

≤ −
∫ t

0

∫
Ω

βtφ−
∫ t

0

∫
Ω

∇β · ∇φ+
∫ t

0

∫
Ω

wφ − 1
2

∫ t

0

∫
Ω

|∇u|2φ

−
∫ t

0

∫
Γc

∂tβ|Γc
φ|Γc

−
∫ t

0

∫
Γc

∇β|Γc
· ∇φ|Γc

+
∫ t

0

∫
Γc

wcφ|Γc
− 1

2

∫ t

0

∫
Γc

|u|2φ|Γc
,

which is our expected result. 4

Remark 4.2. Let us point out that (4.28) yields (for β sufficiently regular) a variational inclusion with a 5

subdifferential. Indeed, let π ∈ ∂H3/2(Ω),(H3/2(Ω))′I[0,1]
H3/2

(β) for a.e. t, where 6

[0, 1]H3/2 = {φ ∈ H3/2(Ω) s.t. φ ∈ [0, 1] a.e. in Ω}. 7

Thus, (4.28) leads to 8

∫ t

0

∫
Ω

βtφ+
∫ t

0

∫
Ω

∇β · ∇φ +
∫ t

0

∫
Γc

∂tβ|Γc
φ|Γc

+
∫ t

0

∫
Γc

∇β|Γc
· ∇φ|Γc

+
∫ t

0
(H3/2(Ω))′〈π, φ〉H3/2(Ω)

=
∫ t

0

∫
Ω

wφ +
1
2

∫ t

0

∫
Ω

|∇u|2φ+
∫ t

0

∫
Γc

wcφ|Γc
+

1
2

∫ t

0

∫
Γc

|u|Γc
|2φ|Γc

, (4.29)

for any φ ∈ L2(0, T ; [0, 1]H3/2), which can be read as a variational inclusion with “dynamic boundary conditions”. 9
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[11] M. Frémond, Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris 295 (1982) 913–916.7
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