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INEQUALITIES FOR QUANTUM FISHER INFORMATION

PAOLO GIBILISCO, DANIELE IMPARATO, AND TOMMASO ISOLA

(Communicated by Richard C. Bradley)

Abstract. An inequality relating the Wigner-Yanase information and the
SLD-quantum Fisher information was established by Luo (Proc. Amer. Math.
Soc., 132, pp. 885–890, 2004). In this paper, we generalize Luo’s inequality to
any regular quantum Fisher information. Moreover, we show that this general
inequality can be derived from the Kubo-Ando inequality, which states that

any matrix mean is greater than the harmonic mean and smaller than the
arithmetic mean.

1. Introduction

Fisher information appeared for the first time in [3]. From that seminal work
the use of Fisher information spread out, not only in statistics, but also in other
mathematical fields, and in a number of applied sciences [4]. Several quantum
versions of Fisher information have been studied. Among the first examples one
has the Wigner-Yanase information (see [24] or [6], [7], [8], [9] for a recent treatment)
and the SLD-information (see [1], [23], [13]) that are defined as follows. As usual
[·, ·] denotes the commutator. Let ρ be a density matrix and let A be a self-adjoint
matrix. Let L be the solution of the operator equation (Lρ+ρL) = 2i[ρ, A]. Define
the Wigner-Yanase and the SLD-information as

(1.1) IWY
ρ (A) := −1

2
Tr([ρ

1
2 , A]2), ISLD

ρ (A) :=
1
4
Tr(ρL2).

In the paper [16] Luo proved the following three results.
i) If ρ(t) := e−itAρeitA, the functions of t given by IWY

ρ(t) (A), ISLD
ρ(t) (A) are constant

(this is Theorem 1 in [16]).
ii) The following inequality is true (this is Theorem 2 in [16]):

(1.2) IWY
ρ (A) ≤ ISLD

ρ (A) ≤ 2IWY
ρ (A).

iii) The constant 2 is optimal in the inequality (1.2). Namely, if 1 ≤ k < 2, the
inequality

ISLD
ρ (A) ≤ kIWY

ρ (A)

is false and a counterexample can be found in the elementary 2× 2 case (this is the
final Example in [16]).
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A full quantum theory for Fisher information was established only a few years ago
by Petz in his classification theorem [19]. It is worth noting that the Petz theorem
rests on two fundamental breakthroughs due to Rao and Chentsov. Rao observed
that Fisher information should be seen as a Riemannian metric on statistical models
[22]. Chentsov characterized Fisher information as the unique (in the appropriate
setting) Riemannian metric contracting under coarse graining [2].

Starting from this idea, Petz defined the quantum Fisher information (QFI) as
Riemannian metrics (on the state manifold) contracting under coarse graining. He
was able to prove that QFI are parametrized by functions f ∈ Fop, where Fop is the
set of symmetric normalized operator monotone functions. The regular elements
of Fop are those for which f(0) > 0. The corresponding QFI is said to be regular
also. For regular QFI one can define the metric adjusted skew information (or
f -information) as

If
ρ (A) :=

f(0)
2

||i[ρ, A]||2ρ,f

(see [11], [5]). The WY - and SLD-information, defined in (1.1), are particular
cases of the above definition.

In this paper we show that the three results proved by Luo are particular cases
of the following general results.

i′) Set ρH(t) := e−itHρeitH . If [A, H] = 0, then the function If
ρH(t)(A) is con-

stant. Since quantum Fisher information contracts under coarse graining, it is
unitary covariant, and this is the crucial ingredient of the proof. This result was
stated by Hansen in [11], and we provide here a detailed proof.

ii′) The inequality (1.2) is a particular case of the following inequality:

(1.3) If
ρ (A) ≤ ISLD

ρ (A) ≤ 1
2f(0)

If
ρ (A),

which is true for any (regular) quantum Fisher information. Inequality (1.3) is a
consequence of the Kubo-Ando inequality

2(A−1 + B−1)−1 ≤ m(A, B) ≤ A + B

2
,

which states that any matrix mean is greater than the harmonic mean and smaller
than the arithmetic mean.

iii′) The constant 1
2f(0) is optimal in inequality (1.3). Namely, if 1 ≤ k < 1

2f(0) ,
then the inequality

ISLD
ρ (A) ≤ kIf

ρ (A)

is false and a counterexample can be found in the elementary 2 × 2 case.
Let us observe that in the papers [15], [17] Luo also proved another inequality

for the WY and SLD information, namely

(1.4) IWY
ρ (A) ≤ Varρ(A), ISLD

ρ (A) ≤ Varρ(A).

From inequalities (1.3) and (1.4) one immediately obtains that this result is also
completely general, namely

If
ρ (A) ≤ Varρ(A),

a result recently proved by Hansen in [11] and with a different approach by the
authors in [5].
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2. Operator monotone functions, matrix means

and quantum Fisher information

Let Mn := Mn(C) (resp. Mn,sa := Mn(C)sa) be the set of all n × n com-
plex matrices (resp. all n × n self-adjoint matrices). We shall denote general
matrices by X, Y, ... while the letters A, B, ... will be used for self-adjoint matri-
ces (the Hilbert-Schmidt scalar product is denoted by 〈A, B〉 = Tr(A∗B)). The
adjoint of a matrix X is denoted by X† while the adjoint of a superoperator
T : (Mn, 〈·, ·〉) → (Mn, 〈·, ·〉) is denoted by T ∗. Let Dn be the set of strictly
positive elements of Mn while D1

n ⊂ Dn is the set of strictly positive density ma-
trices, namely D1

n = {ρ ∈ Mn|Trρ = 1, ρ > 0}. If it is not specified from now on,
we treat the case of faithful states, namely ρ > 0.

Definition 2.1. Suppose that ρ ∈ D1
n is fixed. Define X0 := X − Tr(ρX)I.

Definition 2.2. For A, B ∈ Mn,sa and ρ ∈ D1
n define covariance and variance as

Covρ(A, B) := Tr(ρAB) − Tr(ρA) · Tr(ρB) = Tr(ρA0B0),

Varρ(A) := Tr(ρA2) − Tr(ρA)2 = Tr(ρA2
0).

Let R+ := (0,∞). A function f : R+ → R is said to be operator monotone
(increasing) if, for any n ∈ N, any A, B ∈ Mn such that 0 ≤ A ≤ B, the inequalities
0 ≤ f(A) ≤ f(B) hold. An operator monotone function is said to be symmetric if
f(x) = xf(x−1) and normalized if f(1) = 1.

Definition 2.3. Fop is the class of functions f : R+ → R+ such that
(i′) f(1) = 1,
(ii′) tf(t−1) = f(t),
(iii′) f is operator monotone.

Example 2.4. Two important elements of Fop are

fWY (x) :=
(

1 +
√

x

2

)2

, fSLD(x) =
1 + x

2
.

We now review briefly the Kubo-Ando theory of matrix means (see [14]) as
exposed in [21].

Definition 2.5. A mean for pairs of positive matrices is a function m : Dn×Dn →
Dn such that

(i) m(A, A) = A,
(ii) m(A, B) = m(B, A),
(iii) A < B =⇒ A < m(A, B) < B,
(vi) A < A′, B < B′ =⇒ m(A, B) < m(A′, B′),
(v) m is continuous,
(vi) Cm(A, B)C∗ ≤ m(CAC∗, CBC∗), for every C ∈ Mn.

Property (vi) is known as the transformer inequality. We denote by Mop the set
of matrix means. The fundamental result, due to Kubo and Ando, is the following.

Theorem 2.6. There exists a bijection between Mop and Fop given by the formula

mf (A, B) := A
1
2 f(A− 1

2 BA− 1
2 )A

1
2 .
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When A and B commute (for example if A = x, B = y are positive numbers) we
have that

mf (A, B) := A · f(BA−1).

Example 2.7. The arithmetic, geometric and harmonic (matrix) means are given
respectively by

mA(A, B) := A∇B :=
1
2
(A + B),

mG(A, B) := A#B := A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 ,

mH(A, B) := A!B := 2(A−1 + B−1)−1.

Any convex combination of two means is still a mean (see [14]). Kubo and
Ando [14] proved that, among matrix means, the arithmetic is the largest while the
harmonic is the smallest.

Corollary 2.8. For any f ∈ Fop and for any x, y > 0 one has

fRLD(x) :=
2x

1 + x
≤ f(x) ≤ 1 + x

2
,

2xy

x + y
≤ mf (x, y) ≤ x + y

2
.

In what follows if N is a differential manifold we denote by TρN the tangent
space to N at the point ρ ∈ N. Recall that there exists a natural identification of
TρD

1
n with the space of self-adjoint traceless matrices; namely, for any ρ ∈ D1

n,

TρD
1
n = {A ∈ Mn|A = A∗ , Tr(A) = 0}.

A Markov morphism is a completely positive and trace-preserving operator T :
Mn → Mm. A monotone metric (also called a quantum Fisher information) is a
family of Riemannian metrics g = {gn} on {D1

n}, n ∈ N, such that

gm
T (ρ)(TX, TX) ≤ gn

ρ (X, X)

holds for every Markov morphism T : Mn → Mm, for every ρ ∈ D1
n and for every

X ∈ TρD
1
n. Usually monotone metrics are normalized in such a way that [A, ρ] = 0

implies gf,ρ(A, A) = Tr(ρ−1A2).
Define Lρ(A) := ρA, and Rρ(A) := Aρ, and observe that they are commuting

self-adjoint superoperators on Mn,sa. Now we can state the fundamental theorems
about monotone metrics.

Theorem 2.9 (see [19]). There exists a bijective correspondence between monotone
metrics (quantum Fisher information) on D1

n and normalized symmetric operator
monotone functions f ∈ Fop. This correspondence is given by the formula

〈A, B〉ρ,f := Tr(A · mf (Lρ, Rρ)−1(B)).

We set ||A||2ρ,f := 〈A, A〉ρ,f .

Proposition 2.10.

||A||ρ,fSLD
≤ ||A||ρ,f ≤ ||A||ρ,fRLD

.

Proof. This is an immediate consequence of Corollary 2.8. �
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Proposition 2.11 (See [19], p. 83). Monotone metrics are unitarily covariant;
namely, if U is unitary, then

||U∗AU ||2U∗ρU,f = ||A||2ρ,f .

3. The function f̃ and the f-information

For f ∈ Fop define f(0) := limx→0 f(x). The condition f(0) �= 0 is relevant
because it is a necessary and sufficient condition for the existence of the so-called
radial extension of a monotone metric to pure states (see [20]). Following [11] we
say that a function f ∈ Fop is regular iff f(0) �= 0. The corresponding operator
mean, associated QFI, etc., are said to be regular too.

Definition 3.1.

F r
op := {f ∈ Fop | f(0) �= 0}, F n

op := {f ∈ Fop | f(0) = 0}.
Trivially one has Fop = F r

op∪̇F n
op.

Definition 3.2. For f ∈ F r
op and x > 0 set

f̃(x) :=
1
2

[
(x + 1) − (x − 1)2

f(0)
f(x)

]
.

Example 3.3.

f̃WY (x) =
√

x, f̃SLD(x) =
2x

1 + x
.

Observe [5] that f ∈ F r
op implies f̃ ∈ F n

op.
A self-adjoint operator A determines the evolution of the state ρ by the formula

ρA(t) := e−iAtρeiAt. The evolution satisfies the equation ρ̇A(t) = i[ρA(t), A]. We
set

ρ̇A := ρ̇A(0) = i[ρ, A].
Observe that L := 2(Lρ + Rρ)−1(i[ρ, A]) can be seen as a quantum analogue of the
symmetric logarithmic derivative (see [16]).

Definition 3.4.

IWY
ρ (A) := −1

2
Tr([ρ

1
2 , A]2), ISLD

ρ (A) :=
1
4
Tr

(
ρL2

)
.

Proposition 3.5.

IWY
ρ (A) =

fWY (0)
2

||ρ̇A||2ρ,fW Y
, ISLD

ρ (A) =
fSLD(0)

2
||ρ̇A||2ρ,fSLD

.

Proof. For the first equality see [12] or [6], [11]. For the second equality remember
that fSLD(x) := 1+x

2 .
Therefore one has

ISLD
ρ (A) = Tr

(
ρ(Lρ + Rρ)−1(i[ρ, A])(Lρ + Rρ)−1(i[ρ, A])

)
=

1
2
Tr

(
(Lρ + Rρ)(Lρ + Rρ)−1(ρ̇A)(Lρ + Rρ)−1(ρ̇A)

)
=

1
4
Tr(2(Lρ + Rρ)−1(ρ̇A)(ρ̇A))

=
fSLD(0)

2
Tr(mSLD(Lρ, Rρ)−1(ρ̇A)(ρ̇A))

=
fSLD(0)

2
||ρ̇A||2ρ,fSLD

. �
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Definition 3.6. For f ∈ Fr
op the metric adjusted skew information (or f -informa-

tion) is defined as

If
ρ (A) :=

f(0)
2

||ρ̇A||2ρ,f .

Of course, if ρ and A commute, then If
ρ (A) = 0. In what follows the following

definition is very important.

Definition 3.7.
Cf

ρ(A0) := Tr(mf (Lρ, Rρ)(A0) · A0).

Observe [5] that If
ρ (A) = Varρ(A)−Cf̃

ρ(A0). Note that this formula allows us to
consider the f -information also for those states which are not faithful.

Definition 3.8. For any state (faithful or not faithful) and for f regular define:

If
ρ (A) := Varρ(A) − Cf̃

ρ(A0).

Proposition 3.9 (See [5]). If g ≤ f , one has

0 ≤ Cg
ρ(A0) ≤ Cf

ρ(A0).

Moreover if ρ is pure,
Cg

ρ(A0) = 0.

We have immediately the following result.

Proposition 3.10.
If
ρ (A) ≤ Varρ(A)

with equality on pure states.

Luo (see [18]) suggested that if one considers the variance as a measure of “un-
certainty” of an observable A in the state ρ, then the equality

Varρ(A) = If
ρ (A) + Cf̃

ρ(A0)

splits the variance into a “quantum” part (If
ρ (A)) and a “classical” part (Cf̃

ρ(A0)).

4. The main results

Theorem 1 in [16] is a particular case of the following result (which was stated
by Hansen in [11]).

Theorem 4.1. If [A, H] = 0, then If
ρH(t)(A) = If

ρ (A), for all t ∈ R.

Proof. Set Ut := eitH . Then

ρH(t) := e−itHρeitH = U∗
t ρUt.

Since [A, Ut] = 0 we have (using Proposition 2.11)

If
ρH(t)(A) =

f(0)
2

||i[ρH(t), A]||2ρH(t),f =
f(0)

2
||i[U∗

t ρUt, A]||2U∗
t ρUt,f

=
f(0)

2
||U∗

t (i[ρ, A])Ut||2U∗
t ρUt,f =

f(0)
2

||i[ρ, A]||2ρ,f = If
ρ (A). �

Proposition 4.2. If g̃ ≤ f̃ , one has

If
ρ (A) ≤ Ig

ρ (A).
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Proof. This is an immediate consequence of Proposition 3.9. �

Theorem 2 in [16] is a particular case of the following result.

Theorem 4.3. For any f ∈ F r
op, for any ρ ∈ D1

n and for any A ∈ Mn,sa, we have
that

If
ρ (A) ≤ ISLD

ρ (A) ≤ 1
2f(0)

If
ρ (A).

Proof. The first inequality is an immediate consequence of Proposition 4.2, Example
3.3 and Corollary 2.8. The second inequality is a consequence of Proposition 2.10,
because we have

||ρ̇A||ρ,fSLD
≤ ||ρ̇A||ρ,f

and therefore

fSLD(0)
2

||ρ̇A||2ρ,fSLD
≤ 1

4
||ρ̇A||2ρ,f

so that

IfSLD
ρ (A) =

fSLD(0)
2

||ρ̇A||2ρ,fSLD
≤ 1

2f(0)
· f(0)

2
· ||ρ̇A||2ρ,f =

1
2f(0)

· If
ρ (A).

�

A different proof can be given for the second inequality. It is more complicated
but can shed light on Luo’s proof and on the optimality of the constant 1

2f(0) .

Proposition 4.4. Let k ≥ 1. The following inequalities are equivalent:

(i) ISLD
ρ (A) ≤ k · If

ρ (A) ∀A ∈ Mn,sa, ∀ρ ∈ D1
n,

(ii) mf̃ ≤
(
1 − 1

k

)
mA + 1

kmH,

(iii) f(x) ≤ 2kf(0) · 1+x
2 , ∀x > 0.

Proof. Let {ϕi} be a complete orthonormal basis composed of eigenvectors of ρ, and
{λi} the corresponding eigenvalues. Set aij ≡ 〈A0ϕi|ϕj〉. Note that aij �= Aij :=
the i, j entry of A.

As a consequence of the spectral theorem for commuting self-adjoint operators,
one gets the following formulas (see [5]):

Varρ(A) = Tr(ρA2
0) =

1
2

∑
i,j

(λi + λj)aijaji,

Cf̃
ρ(A0) =

∑
i,j

mf̃ (λi, λj)aijaji.
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(i) ⇐⇒ (ii).

k · If
ρ (A) − ISLD

ρ (A) = [k · Varρ(A) − k · Cf̃
ρ(A0)] − [Varρ(A) − Cf̃SLD

ρ (A0)]

= (k − 1) Varρ(A) + Cf̃SLD
ρ (A0) − kCf̃

ρ(A0)

= (k − 1)
∑
i,j

1
2
· (λi + λj)aijaji +

∑
i,j

mH(λi, λj)aijaji

− k ·
∑
i,j

mf̃ (λi, λj)aijaji

= k
∑
i,j

[(
1 − 1

k

)
mA(λi, λj) +

1
k

mH(λi, λj) − mf̃ (λi, λj)
]
|aij |2.

Therefore, because of the arbitrariness of both ρ and A, one has that

kIf
ρ (A) − ISLD

ρ (A) ≥ 0

is equivalent to

mf̃ ≤
(
1 − 1

k

)
mA +

1
k

mH.

(ii) ⇐⇒ (iii). Suppose x > 0, x �= 1. Then

mf̃ ≤
(
1 − 1

k

)
mA +

1
k

mH

is equivalent to

f̃(x) ≤
(
1 − 1

k

) (
1 + x

2

)
+

1
k

(
2x

x + 1

)
∀x > 0,

which, using the definition of f̃ , can be transformed into

2kf(0) · 1 + x

2
≥ f(x) ∀x > 0,

and this ends the proof. �

Example 4.5. In the case of the Wigner-Yanase metric, one has fWY (0) = 1
4 and

f̃WY (x) =
√

x. The inequality of Proposition 4.4(ii) (when k = 2 = 1
2fW Y (0) ) states

that

mG ≤ 1
2
(mA + mH);

that is, the geometric mean is smaller than the “midpoint” between the arithmetic
and harmonic means. The calculations used by Luo in the proof of inequality (1.1)
can be seen as an application of the above inequality.

We now prove that 1
2f(0) is the best constant we can have in Theorem 4.3.

Proposition 4.6. Let 1 ≤ k ≤ 1
2f(0) . The inequality

ISLD
ρ (A) ≤ k · If

ρ (A) ∀A ∈ Mn,sa, ∀ρ ∈ D1
n

is false.
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Proof. From the hypothesis we get that the inequality

f(x) ≤ 2kf(0) · 1 + x

2
∀x > 0

cannot be true; otherwise one would have

1 = f(1) ≤ 2kf(0) < 1,

which is absurd. From Proposition 4.4 we get the conclusion. �

5. The inequality on the Bloch sphere

As an example we discuss in detail what happens for 2 × 2 matrices. We show
that also in this case the constant 1

2f(0) is optimal. The final Example in [16] is a
particular case of this discussion.

Recall that the Pauli matrices are the following:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

A generic 2 × 2 density matrix in the Stokes parameterization is written as

ρ =
1
2

(
1 + x y + iz
y − iz 1 − x

)
=

1
2
(I + xσ1 + yσ2 + zσ3),

where (x, y, z) ∈ R3, and x2 + y2 + z2 ≤ 1. Let r :=
√

x2 + y2 + z2 ∈ [0, 1]. The
eigenvalues of ρ are λ1 = 1−r

2 and λ2 = 1+r
2 .

Proposition 5.1.

If
ρ (A) =

[
1 − mf̃ (1 − r, 1 + r)

]
· |a12|2.

Proof. We use the notation as in the proof of Proposition 4.4. Observe that

λi + λj

2
− mf̃ (λi, λj) =

{
0, i = j,
1
2 − mf̃ (λi, λj), i �= j.

Therefore

If
ρ (A) =

∑
i,j

[
λi + λj

2
− mf̃ (λi, λj)

]
· |aij |2

=
[
1
2
− mf̃ (

1 − r

2
,
1 + r

2
)
]
|a12|2 +

[
1
2
− mf̃ (

1 + r

2
,
1 − r

2
)
]
|a21|2

=
[
1 − mf̃ (1 − r, 1 + r)

]
· |a12|2.

�

Corollary 5.2. If r �= 0, then

ISLD
ρ (A) =

[
r2

1 − mf̃ (1 − r, 1 + r)

]
· If

ρ (A).

Proof. If fSLD(x) = 1+x
2 , then f̃SLD = 2x

x+1 . In this case,

mf̃SLD
(1 − r, 1 + r) = (1 + r)f̃SLD

(
1 − r

1 + r

)
= 1 − r2.
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Therefore, from the above proposition,

ISLD
ρ (A) =

[
1 − mf̃SLD

(1 − r, 1 + r)
]
· |a12|2 =

[
1 − (1 − r2)

]
· |a12|2 = r2 · |a12|2,

and this ends the proof. �

Example 5.3. In the case fWY (x) =
(

1+
√

x
2

)2

one has f̃WY (x) =
√

x. In this
case (see [16]),

ISLD
ρ (A) =

[
r2

1 − mf̃W Y
(1 − r, 1 + r)

]
· IWY

ρ (A)
[

r2

1 −
√

1 − r2

]
· IWY

ρ (A)

= [1 +
√

1 − r2] · IWY
ρ (A).

Remark 5.4. Note that for any regular f the function f̃ is not regular and therefore

lim
r→1

r2

1 − mf̃ (1 − r, 1 + r)
= lim

r→1

r2

1 − (1 + r)f̃
(

1−r
1+r

) =
1

1 − f̃(0)
= 1.

We already know such a result because the case r = 1 is that of pure states where
any f -information coincides with the variance.

Proposition 5.5. If f is regular, then

lim
r→0

r2

1 − mf̃ (1 − r, 1 + r)
= − 1

2f̃ ′′(1)
=

1
2f(0)

.

Proof. Let g(r) := 1 − mf̃ (1 − r, 1 + r). For any f ∈ Fop one has f ′(1) = 1
2

(because of symmetry), and this implies that g(0) = g′(0) = 0. Therefore we have
to use twice the l’Hôpital theorem. An easy calculation shows that f̃ ′′(1) = −f(0);
therefore we get

lim
r→0

r2

1 − mf̃ (1 − r, 1 + r)
= lim

r→0

d2

dr2 r2

d2

dr2

[
1 − mf̃ (1 − r, 1 + r)

]
= lim

r→0

2

− 4
(1+r)3 f̃ ′′

(
1−r
1+r

) =
2

−4f̃ ′′(1)
=

1
2f(0)

.

�

From the above proposition we get a different proof of the fact that the constant
1

2f(0) is optimal also in the 2 × 2 matrix case.
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