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We study the monotonicity under mixing of the scalar curvature for the
a-geometries on the simplex of probability vectors. From the results obtained and
from numerical data, we are led to some conjectures about quantuma-geometries
and Wigner–Yanase–Dyson information. Finally, we show that this last conjecture
implies the truth of the Petz conjecture about the monotonicity of the scalar curva-
ture of the Bogoliubov–Kubo–Mori monotone metric. ©2005 American Institute
of Physics.fDOI: 10.1063/1.1834693g

I. INTRODUCTION

The Bogoliubov–Kubo–MorisBKM d metric is a distinguished element among the monotone
metrics which are the quantum analog of Fisher information on the quantum state space.35,36 In a
definite sense BKM metric is the geometry on the state space that is related to von Neumann
entropyssay, Umegaki relative entropyd. Other well-known elements of this family are the right
logarithmic derivativesRLDd metric, the symmetric logarithmic derivativesSLD or Buresd metric,
and the Wigner–Yanase–DysonsWYDd metrics. In Ref. 34 Petz made a conjecture on the scalar
curvature of the BKM metric. Many arguments and numerical calculations suggest that the con-
jecture is true; nevertheless, a complete proof is still missingssee Refs. 3, 4, 12, 24, and 32d.

One can state this conjecture in the following way: the BKM scalar curvature is a quantitative
measure of symmetryslike entropyd, namely it is increasing under mixing. Let us emphasize that
it is also possible to relate the conjecture to quantities with direct physical meaning. An equivalent
formulation, still due to Petz,34 is that “…the scalar curvature is an increasing function of the
temperature….” Moreover, the asymptotic relation between volume and curvature in Riemannian
geometry and Jeffrey’s approach to priors in statistics induced Petz to interpret the scalar curvature
as the average statistical uncertaintysthat should increase under coarse graining; see Ref. 36d.

The original motivations given by Petz for the conjecture rely on the truth of the 232 case
and on some numerical results for the general case. Petz and Sudar observed in Ref. 38 that
“…monotonicity of Kubo metric is not surprising because this result is a kind of reformulation of
Lieb convexity theorem.30 However the monotonicity of the scalar curvature seems to be an
inequality of new typesprovided the conjecture is really trued….” A recent clear reference for
Lieb’s result and related inequalities can be found in the paper by Ruskai.40

The goals of the present paper are the following.

s1d We want to look at “higher mathematics from an elementary point of view.” This means that
we want to furnish an elementary motivation for the Petz conjecture. We do this by studying
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the monotonicity of the curvature fora-geometries in the plane. The results obtained in this
case are very intuitive if one looks at the unit sphere of theLp spaces. We conjecture that a
similar behavior occurs fora-geometries in higher dimensions and in the noncommutative
case, too.

s2d On the basis of the results of points1d we make a conjecture about the monotonicity of scalar
curvature for the WYD metrics. Further, we show that, using a continuity argument, this
WYD conjecture would imply the Petz conjecture as a limit casesTheorem 8.1d.

s3d We review what is known about monotonicity of scalar curvature for quantum Fisher infor-
mation. In particular, we emphasize a result on the Bures metric, attributed to Dittmann,
according to which the scalar curvature, in this case, is neither Schur-increasing nor Schur-
decreasingssee Sec. II for precise definitionsd. This implies that an example of a monotone
metric for which the scalar curvaturesor its opposited is strictly increasing under mixing does
not exist yet. Note that Andaisusing an integral decomposition of Ref. 15d proved that also
in the 232 case there exist monotone metrics whose scalar curvature is not monotone.3

Finally, let us note that, related to this area, there exist other interesting papers. Some authors
have suggested that, when statistical mechanics is geometrized, then the scalar curvature should
have important physical meaningsfor example, it should be proportional to the inverse of the free
energy; see Refs. 8, 9, 25–27, and 39d.

II. MAJORIZATION AND SCHUR-INCREASING FUNCTIONS

For the content of this section we refer to Refs. 1, 5–7, and 31.

A. Commutative case

We shall denote byPn the manifold of positive vectors ofRn, and byPn
1,Pn the submanifold

of density vectors, namely
Definition 2.1:

Pn
1: = Hr P Rnuo

i

ri = 1, ri . 0J .

We sete: =s1, . . . ,1d. The trace of a vector is Trsvd=oi=1
n vi. For ann3n real matrix, consider

the following properties:

sId tij ù0 i , j =1, . . . ,n,
sII d oi=1

n tij =1 j =1, . . . ,n,
sIII d o j=1

n tij =1 i =1, . . . ,n.

Definition 2.2:

sad T is said to be stochastic if (I),(II) hold;
sbd T is said to be doubly stochastic if (I),(II),(III) hold.

WhenT is seen as an operatorT:Rn→Rn sby sTvd j =oi=1
n tjivid, then the propertiessId,sII d,sIII d

can be written as

sId8 spositivity preservingd Tvù0 if vù0;
sII d8 strace-preservingd TrsTvd=Trsvd ∀vPRn;
sIII d8 sunitald Te=e.

Let xPRn be a vector. We definex↓ as a vector with the same components in a decreasing
order so that

x1
↓ ù x2

↓ ù ¯ ù xn
↓.

Definition 2.3: x is more mixed (more chaotic,…) than y (denoted by xsy ) if and only if
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x1
↓ ø y1

↓,

x1
↓ + x2

↓ ø y1
↓ + y2

↓,

¯ ,

x1
↓ + ¯ + xn−1

↓ ø y1
↓ + ¯ + yn−1

↓ ,

x1
↓ + ¯ + xn

↓ = y1
↓ + ¯ + yn

↓.

For example, ifsr1, . . . ,rnd is a density vector then

S1

n
,
1

n
, . . . ,

1

n
D s sr1, . . . ,rnd s s1,0, . . . ,0,0d.

The relations is a preordering but not a partial ordering. Ifxsy and ysx then x=Ty for
some permutation matrixT.

Theorem 2.1:

x s y ⇔ x = Ty where T is doubly stochastic.

Definition 2.4 (see Ref. 31 pp. 14 and 54): A real-valued function f defined on a setA,Rn is
said to be Schur-increasing onA if

x s y onA ⇒ fsxd ù fsyd.

If, in addition, fsxd. fsyd whenever xsy but x is not a permutation of y, then f is said to be
strictly Schur-increasing. Similarly f is said to be Schur-decreasing onA if

x s y onA ⇒ fsxd ø fsyd,

and f is strictly Schur-decreasing if strict inequality fsxd, fsyd holds when x is not a permutation
of y.

Of course,f is Schur-increasing if and only if −f is Schur-decreasing.
Remark 2.1 (see Ref. 31, p. 54):A,Rn is symmetric ifxPA⇒PxPA for all permutations

P. A function f is symmetric onA if fsxd= fsPxd for all permutationsP. Let D : =hxux1ù ¯

ùxnj. If f is symmetric on a symmetric setA and Schur-increasing onDùA, then f is Schur-
increasing onA.

Remark 2.2:Let us consider the following identificationI : s0,p /2d→P2
1 defined byIsud

: =scos2u ,sin2ud. Evidently, if u1,u2øp /4, then

u1 ø u2 ⇔ Isu1d a Isu2d.

Any function onP2
1 can be seen as a function ons0,p /2d. By abuse of language we shall use the

same symbols to denote the two functions. SinceP2
1 is symmetric we have, because of Remark 2.1

Proposition 2.2:A symmetric functionf on P2
1 is Schur-increasing if and only iff is increas-

ing as a function ons0,p /4d.

B. Noncommutative case

Let Mn be the space of complexn3n matrices. We shall denote byHn the real subspace of
Hermitian matrices, byDn the manifold of strictly positive elements ofMn, and byDn

1,Dn the
submanifold of density matrices, namely

Definition 2.5:

Dn
1: = hr P MnuTr r = 1, r . 0j.
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If APMn, let lsAd be then-vector of its eigenvalues, arranged in any order with multiplicities
counted. IfA is Hermitian thenlsAd is a realn-vector. LetA,B be Hermitian.

Definition 2.6:

A s B ⇔ lsAd s lsBd.

Definition 2.7: A linear mapF on Mn is doubly stochastic if it is positive-preserving, trace-
preserving, and unital.

Theorem 2.3:

A s B ⇔ A = FsBd,whereF is doubly stochastic.

Definition 2.8: A real-valued function f defined on a setA,Hn is said to be Schur-increasing
on A if

A s B ⇒ fsAd ù fsBd.

Similarly, f is said to be Schur-decreasing onA if

A s B ⇒ fsAd ø fsBd.

Of course,f is Schur-increasing if and only if −f is Schur-decreasing.

III. PULL-BACK OF DUALITY PAIRINGS

To make the paper self-contained, we recall some constructions from Ref. 18.
Let V,W be vector spaces overR sor Cd. One can say that there is a duality pairing if there

exists a separating bilinear form

k·, ·l:V 3 W→ R.

Let M ,N ,Ñ be differentiable manifolds.
Definition 3.1: Suppose we have a pair of immersionssw ,xd, wherew :M→N and x :M

→Ñ, such that a duality pairing exists between TwsrdN and TxsrdÑ for anyrPM. Then, we may
pull-back this pairing onM by defining

ku,vlr
w,x: = kDrwsud,Drxsudl, u,v P TrM.

The most elementary example is given by the case whereN=Ñ is a Riemannian manifold,
w=x, and the duality pairing is just given by the Riemannian scalar product onTwsrdN sthis is the
pull-back metric induced by the mapwd.

A nontrivial example is the following. LetX be a uniformly convex Banach space such that

the dualX̃ is uniformly convex. We denote byk· , ·l the standard duality pairing betweenX andX̃.

Let J:X→ X̃ be the duality mapping, that isJ is the differential of the mapv→ 1
2ivi2. Jsvd is the

unique element of the dual such thatkv ,Jsvdl=ivi2=iJsvdi2.
Definition 3.2: LetM be a manifold. If we have a mapw :M→X we can consider a dualized

pull-back that is a bilinear form defined on the tangent space ofM by

kA,Blr
w: = kA,Blr

w,J+w = kDrwsAd,DrsJ + wdsBdl.

Example 3.1:For X a Hilbert space,J is the identity, and this is again the definition of
pull-back metric induced by the mapw.

In what follows, if pPR \ h0j then p̃ is defined bys1/pd+s1/p̃d=1. If p=1 thenp̃= +`.
Example 3.2:Let sX,F ,md be a measure space. Iff is a measurable function andpP s1,

+`d then ifip: =seuf updmd1/p. Set
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Lp = LpsX,F,md = hf is measurable andifip , `j.

DefineNp asLp with the norm

ifiNp: =
ifip

p
.

ObviouslyNp˜ sthe dual ofNpd can be identified withNp̃.
Now, suppose thatr.0 is measurable ander=1, namelyr is a strictly positive density. Then,

v=pr1/p is an element of the unit sphere ofNp and it is easy to see thatJsvd= p̃r1/p. The family of
mapsr→pr1/p is known as Amari embeddings.

Let X=h1, . . . ,nj and letm be the counting measure. In this caseNp is justRn with the norm
i ·ip/p.

Proposition 3.1: Consider the Amari embeddingw :rPPn
1→pr1/pPNp for an arbitrary p

P s1, +`d. Then, the bilinear form

kA,Blr
w: = kA,Blr

w,J+w = kDrwsAd,DrsJ + wdsBdl, A,B P TrPn
1,

is just the Fisher information.
Proof:

kDrwsAd,DrsJ + wdsBdl =E srs1/pd−1Adsrs1/pd−1Bd =E AB

r
.

h

The above result can be stated in much greater generality using the machinery of Refs. 19 and
14.

IV. SCALAR CURVATURE OF a-GEOMETRIES

The a-geometries are one of the fundamental objects of information geometryssee Refs. 2
and 20d. The study of the monotonicity of their curvatures does not appear in the literature as far
as we know. In this section we start such an investigation.

A. The plane case

Definition 4.1: Thea-geometry onP2
1 is the pull-back geometry induced by the map

Apsrd :P2
1→R2 defined by

Apsrd: = Hpr1/p, p P R \ h0j ,

logsrd, p = `,

where p=2/s1−ad.
Definition 4.2: We denote by cpsrd the curvature of thea-geometryfwith p=2/s1−adg at the

point rPP2
1.

Remark 4.1:For the curvaturecps·d there are two easy cases:
—if p=1 thencps·d=const=0;
—if p=2 thencps·d=const=1

2.
Taking a look at the unit sphere ofR2 with respect to theLp-norm, one can easily understand

the following general result.
Theorem 4.1:For the function cps·d :P2

1→R one has the following properties:
—if pP s1,2d then cps·d is a strictly Schur-decreasing function;
—if pP s2, +`g then cps·d is a strictly Schur-increasing function.
Proof: Let us first considerpP s1,`d. Then, thea-geometry,a=sp−2d /p, on P2

1 is the
geometry of the set
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B: = Hsx,yd P R2:S x

p
Dp

+ S y

p
Dp

= 1, x . 0, y . 0J .

Let us introduce the parametrization

x = pscosqd2/p, y = pssin qd2/p, 0 , q ,
p

2
.

Then

x8 = 2scosqds2/pd−1s− sin qd, y8 = 2ssin qds2/pd−1cosq,

x9 = 2scosqds2/pd−2S2

p
sin2 q − 1D, y9 = 2ssin qds2/pd−2S2

p
cos2 q − 1D .

Let us parametrize density vectors asscos2 u ,sin2 qd. In this way the curvature ofa-geometry at
the pointr, namelycpsrd, is

cpsqd: =
ux8y9 − x9y8u

fsx8d2 + sy8d2g3/2 =
p − 1

p

ssin q cosqds2/pd+2

fssin qscosqd1/pd4 + sssin qd1/pcosqd4g3/2

=
p − 1

p
S1

2
D2f1−s2/pdg

·
ssin 2qd2f1−s2/pdg

fscosqd4/p̃ + ssin qd4/p̃g3/2 = Ap ·
gpsqd

fpsqd
3
2

,

where we set

Ap: =
p − 1

p
S1

2
D2f1−s2/pdg

,

gpsqd: = ssin 2qd2−s4/pd,

fpsqd: = scosqd4/p̃ + ssin qd4/p̃.

We want to compute the monotonicity properties ofcp with respect to the preorderings. We have

gp8sqd: = 4ssin 2qd1−s4/pd · scosq + sin qdS1 −
2

p
Dscosq − sin qd;

since 0,q,p /2, then

4ssin 2qd1−s4/pd · scosq + sin qd . 0,

and therefore

gp8sqd . 0 ⇔ S1 −
2

p
Dscosq − sin qd . 0.

Moreover

fp8sqd =
4

p̃
sin q cosqsssin qds2/p̃d−1 + scosqds2/p̃d−1dsssin qds2/p̃d−1 − scosqds2/p̃d−1d;

again, since 0,q,p /2, then

4 sin q cosqsssin qds2/p̃d−1 + scosqds2/p̃d−1d . 0,

and therefore
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fp8sqd . 0 ⇔
1

p̃
sssin qds2/p̃d−1 − scosqds2/p̃d−1d . 0.

cps·d is evidently symmetric onP2
1 and thereforesbecause of Proposition 2.2d the fact that the

curvature is strictly Schur-increasingsdecreasingd is equivalent to the fact thatcpsqd is strictly
increasingsdecreasingd for 0,q,p /4.

We have the following cases:
Case:1,p,2.
This implies 1−s2/pd,0,s2/p̃d−1,0, and therefore

gp8sqd . 0 ⇔ cosq , sin q ⇔
p

4
, q ,

p

2
,

fp8sqd . 0 ⇔ ssin qds2/p̃d−1 . scosqds2/p̃d−1 ⇔ sin q , cosq ⇔ 0 , q ,
p

4
.

Therefore, for 0,q,p /4, g is decreasing,f is increasing, and 1/f3/2 is decreasing. This implies
that

cp = Ap
gp

fp
3/2

is strictly decreasing for 0,q,p /4.
Case:2,p,`.
This implies 1−s2/pd.0,s2/p̃d−1.0, and therefore

gp8sqd . 0 ⇔ cosq . sin q ⇔ 0 , q ,
p

4
,

fp8sqd . 0 ⇔ ssin qds2/p̃d−1 . scosqds2/p̃d−1 ⇔ sin q . cosq ⇔
p

4
, q ,

p

2
.

Therefore, for 0,q,p /4, g is increasing,f is decreasing, and 1/f3/2 is increasing. This implies
that

cp = Ap
gp

fp
3/2

is strictly increasing for 0,q,p /4.
Case: p=`.
Use now the following parametrization:

x = 2 logscosud, y = 2 logssin ud,

for the curveex+ey=1.Then

x8 = − 2
sin u

cosu
, y8 = 2

cosu

sin u
,

x9 =
− 2

cos2 u
, y9 =

− 2

sin2 u
,
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c`sqd: =
ux8y9 − x9y8u

fsx8d2 + sy8d2g3/2 =
ssin u cosud2

fscosud4 + ssin ud4g3/2

= lim
p→+`

p − 1

p
S1

2
D2f1−s2/pdg

·
ssin 2qd2f1−s2/pdg

fscosqd4/p̃ + ssin qd4/p̃g3/2.

Note that

c`sqd = lim
p→+`

cpsud.

If we set

g`sqd: = ssin u cosud2, f`sqd: = scosud4 + ssin ud4,

then

g8̀ sqd = 2 sinq cosqscosq + sin qdscosq − sin qd,

f 8̀ sqd = 4 sinq cosqscosq + sin qdssin q − cosqd.

This implies

g8̀ sqd . 0 ⇔ cosq . sin q,

f 8̀ sqd . 0 ⇔ sin q . cosq.

We have the same situation of the case 2,p,` and therefore the same conclusion.
This ends the proof. h

Note that we have also
Proposition 4.2: For the function cps·d :P2

1→R one has the following properties: if p
P s−` ,0d then cps·d is strictly Schur-increasing.

Proof: Since

1 −
2

p
. 0,

2

p̃
− 1 . 1 . 0, 0, p̃ , 1,

we have the same situation of the case 2,p,` in the preceding Theorem 4.1 and therefore the
same conclusion. h

If pP s0,1d then cps·d can have an arbitrary behaviorsSchur-increasing, Schur-decreasing,
neither of the twod.

B. The general case

Definition 4.3: Thea-geometry onPn
1 is the pull-back geometry induced by the map

Apsrd :Pn
1→Rn defined by

Apsrd: = Hpr1/p, p P R \ h0j,

logsrd, p = `,

where p=2/s1−ad.
Definition 4.4: We denote byScalpsrd the scalar curvature of thea-geometry fwith p

=s2/s1−addg at the pointrPPn
1.

Of course the casesp=1 sflat geometryd andp=2 sgeometry of asn−1d-dimensional sphere
with radius 2d are easy to study. One has

—if p=1 then Scalps·d=const=0;
—if p=2 then Scalps·d=const=1

4sn−1dsn−2d.
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Again taking a look at the unit sphere ofRn equipped withLp-norm, one can easily understand
the following conjecture.

Conjecture 4.1: Suppose n.2. For the functionScalps·d :Pn
1→R one has the following prop-

erties:
—if pP s1,2d thenScalps·d is a strictly Schur-decreasing function;
—if pP s2, +`g thenScalps·d is a strictly Schur-increasing function.

C. Non-commutative case

Definition 4.5: Thea-geometry onDn
1 is the geometry induced by the pull-back of the map

Apsrd :Dn
1→Mn defined by

Apsrd: = Hpr1/p, p P R \ h0j,

logsrd, p = `,

wherep=2/s1−ad.
Since the commutativity or noncommutativity of the context will always be clear, we perform

a little abuse of language in the following definition.
Definition 4.6: We denote byScalpsrd the scalar curvature of thea-geometry fwith p

=s2/s1−addg at the pointrPDn
1.

Again, the casep=1 sflat geometryd is obvious. The casep=2 is knownssee Refs. 16 and 17
or Theorem 7.2 belowd, and we have

—if p=1 then Scalps·d=const=0;
—if p=2 then Scalps·d=const=1

4sn2−1dsn2−2d.
Motivated by the commutative plane case we formulate the following conjecture.
Conjecture 4.2: Suppose nù2. For the functionScalps·d :Dn

1→R one has the following prop-
erties:

—if pP s1,2d thenScalps·d is a strictly Schur-decreasing function;
—if pP s2, +`g thenScalps·d is a strictly Schur-increasing function.

V. MONOTONE METRICS AND THEIR SCALAR CURVATURES

A commutative Markov morphismT:Rn→Rm is a stochastic map. A noncommutative Mar-
kov morphism is a linear mapT:Mn→Mm that is completely positive and trace-preservingsnote
that in the commutative case complete positivity is equivalent to positivity; see, for example, Ref.
41d.

In the commutative case a monotone metric is a family of Riemannian metricsg=hgnj on
hPn

1j, nPN such that

gTsrd
m sTX,TXd ø gr

nsX,Xd

holds for every Markov morphismT:Rn→Rm and allrPPn
1 andXPTrPn.

In perfect analogy, a monotone metric in the noncommutative case is a family of Riemannian
metricsg=hgnj on hDn

1j, nPN such that

gTsrd
m sTX,TXd ø gr

nsX,Xd

holds for every Markov morphismT:Mn→Mm and allrPDn
1 andXPTrDn

1.
Let us recall that a functionf : s0,`d→R is called an operator monotone if for anynPN, any

A, BPMn such that 0øAøB, the inequalities 0ø fsAdø fsBd hold. An operator monotone func-
tion is said to be symmetric iffsxd=xfsx−1d and normalized iffs1d=1. In what follows, by
operator monotone we mean normalized symmetric operator monotone. With each operator mono-
tone functionf one associates also the so-called Chentsov–Morotzova function
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cfsx,yd: =
1

yfSx

y
D for x,y . 0.

DefineLrsAd : =rA, andRrsAd : =Ar. SinceLr ,Rr commute we may definecsLr ,Rrd. Now, we can
state the fundamental theorems about monotone metricssuniqueness and classification are up to
scalarsd.

Theorem 5.1 (Ref. 10):There exists a unique monotone metric onPn
1 given by the Fisher

information.
Theorem 5.2 (Ref. 35):There exists a bijective correspondence between monotone metrics on

Dn
1 and operator monotone functions given by the formula

kA,Blr,f: = TrsA ·cfsLr,RrdsBdd.

To state the general formula for the scalar curvature of a monotone metric we need some
auxiliary functions. In what followsc8 ,slog cd8 denote derivatives with respect to the first vari-
able, andc=cf.

h1sx,y,zd: =
csx,yd − zcsx,zdcsy,zd

sx − zdsy − zdcsx,zdcsy,zd
,

h2sx,y,zd: =
scsx,zd − csy,zdd2

sx − yd2csx,ydcsx,zdcsy,zd
,

h3sx,y,zd: = z
sln cd8sz,xd − sln cd8sz,yd

x − y
,

h4sx,y,zd: = zsln cd8sz,xdsln cd8sz,yd,

h: = h1 − 1
2h2 + 2h3 − h4. s5.1d

The functionshi have no essential singularities if arguments coincide.
Note thatkA,Blr

f : =TrsA·cfsLr ,RrdsBdd defines a Riemannian metric also overDn sDn
1 is a

submanifold of codimension 1d. Let Scalfsrd be the scalar curvature ofsDn,k· , ·lr
f d at r and

Scalf
1srd be the scalar curvature ofsDn

1,k· , ·lr
f d.

Theorem 5.3 (Ref. 12):Let ssrd be the spectrum ofr. Then

Scalfsrd = o
x,y,zPssrd

hsx,y,zd − o
xPssrd

hsx,x,xd,

Scalf
1srd = Scalfsrd + 1

4sn2 − 1dsn2 − 2d.

These results have the following form in the simplest cases232 matricesd. From Theorem 5.3
it follows that ssee Ref. 3d

Corollary 5.4: If rPD2 has eigenvaluesl1,l2, one has

Scalsrd = hsl1,l1,l2d + hsl1,l2,l1d + hsl2,l1,l1d + hsl2,l2,l1d

+ hsl2,l1,l2d + hsl1,l2,l2d + 3
2 .

Theorem 5.5 (Ref. 3):If rPD2 has eigenvaluesl1,l2, and a=2l1−1, then
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r fsad: = Scalfsrd =

14sa − 1dF f8S1 − a

1 + a
DG2

s1 + ad3F fS1 − a

1 + a
DG2

+

2sa2 + 7a − 6df8S1 − a

1 + a
D

s1 + ad2afS1 − a

1 + a
D +

8s1 − adf9S1 − a

1 + a
D

s1 + ad3fS1 − a

1 + a
D

+

2s1 + adfS1 − a

1 + a
D

a2
+

3a3 + 5a2 + 8a − 4

2s1 + ada2
.

VI. THE WYD METRICS

We are going to study a particular class of monotone metrics.
Definition 6.1:

fpsxd: =
1

pp̃
·

sx − 1d2

sx1/p − 1dsx1/p̃ − 1d
, p P R \ h0,1j,

f1sxd = f`sxd: =
x − 1

logsxd
, p = 1,`.

Obviously fp= f p̃ and

f1 = lim
p→1

fp = lim
p→`

fp = f`.

Theorem 6.1 (Refs. 22 and 23):The function fp is operator monotone if and only if pPA
: =s−` ,−1gøf 1

2 , +`g.
Note thatpPA if and only if aP f−3,3g.
Definition 6.2: The WYDspd metric of parameter p is the monotone metric associated with fp

(where pPA).
We have thatf−1 is the function of the RLD-metric,f1= f` is the function of the BKM-metric,

and f2 is the function of the Wigner–Yanase metric.
In what followspP s1, +`d and we use again the symbolNp to denoteMn with the norm

iAiNp = p−1sTrsuAupdd1/p.

All the commutative construction of Example 3.2 goes through. The following Proposition is the
noncommutative analogous of Proposition 3.1ssee also Refs. 16, 21, 23, 28, and 37d.

Proposition 6.2 (Ref. 18): Letw :rPDn
1→pr1/pPNp be the Amari embedding. The dualized

pull-back

kA,Blr
w: = kA,Blr

w,J+w = kDrwsAd,DrsJ + wdsBdl

coincides with the Wigner–Yanase–Dyson information.

VII. KNOWN RESULTS ON MONOTONICITY

In this short section we review what is known about monotonicity of scalar curvature for
monotone metrics. This is useful to emphasize that, up to now, no examples exist of a monotone
metrics with Schur-increasingsor Schur-decreasingd scalar curvature.

The Bures or SLD metric is the monotone metric associated with the functionf =s1+xd /2.
Theorem 7.1 (Refs. 11 and 13):The scalar curvature of SLD metric is neither Schur-

increasing nor Schur-decreasing.
Proof: By Ref. 11 the SLD-metric has a global minimum at the most mixed state for anyn. On
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the other handsthis is due to Ref. 13d, if s=diags 2
9 , 1

9 , 2
3

d and r=diags 1
6 , 1

6 , 2
3

d then rss. Using
Theorem 5.3 one can calculate Scalssd=3078/25.3447/28=Scalsrd and so the conclusion fol-
lows. h

Theorem 7.2 (Ref. 17):The scalar curvature of WY metric is a constant equal to1
4sn2−1d

3sn2−2d.

VIII. A CONJECTURE ON THE WYD SCALAR CURVATURE AND ITS RELATION TO
PETZ CONJECTURE

In this section we want to suggest that a whole family of monotone metrics with Schur-
increasing scalar curvature may exist.

Conjecture 8.1: There exist«.0 such that for p in the interval I: =s1,1+«d the scalar
curvature of theWYDspd metrics is a Schur-increasing function.

Conjecture 8.2 (Petz conjecture): The scalar curvature of BKM metric is a Schur-increasing
function. This can be rephrased as

r s s ⇒ Scalf1srd ù Scalf1ssd.

The motivations for Conjecture 8.1 are the following. The WYDspd metrics come from the
dualized pull-back of Proposition 6.2. This means that the WYDspd metrics depend, indeed, on the
pair sp, p̃d. Note that whenp is in the Schur-decreasing regions1,2d we have thatp̃ is in the
Schur-increasing regions2, +`d sTheorem 4.1, Conjectures 4.1, 4.2d. Whenp approaches 1 then
p̃ goes to infinity. Near the boundary valuesh1, +`j the increasing–decreasing “symmetry” should
be broken: in this case WYDspd geometry comes from a geometry converging to a flat limitsp
→1d and a geometry converging to asconjecturedd Schur-increasing scalar curvaturesp̃→`d.

Theorem 8.1: If Conjecture 8.1 is true then Conjecture 8.2 (Petz conjecture) is true.
Proof: For an arbitrary manifoldM let us denote byMsMd the manifold of Riemannian

metrics of M. If rPM is fixed andgPMsMd then the functionFrs·d :MsMd→R defined by
Frsgd : =Scalgsrd is a smooth functionssee Refs. 29 and 33d. Identifying fp with the metric

kA,Blr,fp
: = TrsAcfp

sLr,RrdsBdd,

we may consider the functionp→ fp as a continuous curve inMsDn
1d. This implies that, by

composition, the functionp→Scalfp
srd is a real, continuous function for eachrPDn

1. Suppose
now that Conjecture 8.1 is true.

We have for arbitraryr ,sPDn
1, such thatrss

Scalf1srd = lim
p→1

Scalfp
srd ù lim

p→1
Scalfp

ssd = Scalf1ssd.

But, this is precisely the Petz conjecture. h

FIG. 1. Casep=1+10−1.
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A. Numerical results

Conjecture 8.1 would have many consequences. An example is the following theorem.
Theorem 8.2: Conjecture 8.1 implies that there exists«.0 such that for pP s1,1+«d the

functions rp: =r fp
of Theorem 5.5 are concave and have their maximum at zero.

Proof: It follows immediately by Theorem 5.5. h

Using MATHEMATICA , one has the following graphs for the functionrp:
Casep=1+10−1; see Fig. 1;
Casep=1+10−6; see Fig. 2.
Let us emphasize what we said in the Introduction: a recent result of Andai3 shows the

nontriviality of the above behavior. Indeed, also in the 232 case there exist many monotone
metrics with nonincreasing scalar curvature.
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