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We study the monotonicity under mixing of the scalar curvature for the
a-geometries on the simplex of probability vectors. From the results obtained and
from numerical data, we are led to some conjectures about quamtgeometries

and Wigner—Yanase—Dyson information. Finally, we show that this last conjecture
implies the truth of the Petz conjecture about the monotonicity of the scalar curva-
ture of the Bogoliubov—Kubo—Mori monotone metric. 2005 American Institute

of Physics[DOI: 10.1063/1.1834693

I. INTRODUCTION

The Bogoliubov—Kubo—Mor{BKM) metric is a distinguished element among the monotone
metrics which are the quantum analog of Fisher information on the quantum stat@ssf?anm
definite sense BKM metric is the geometry on the state space that is related to von Neumann
entropy (say, Umegaki relative entropyOther well-known elements of this family are the right
logarithmic derivativ RLD) metric, the symmetric logarithmic derivatiy8LD or Bure$ metric,
and the Wigner—Yanase—-Dys@WYD) metrics. In Ref. 34 Petz made a conjecture on the scalar
curvature of the BKM metric. Many arguments and numerical calculations suggest that the con-
jecture is true; nevertheless, a complete proof is still mis¢seg Refs. 3, 4, 12, 24, and)32

One can state this conjecture in the following way: the BKM scalar curvature is a quantitative
measure of symmetrflike entropy, namely it is increasing under mixing. Let us emphasize that
it is also possible to relate the conjecture to quantities with direct physical meaning. An equivalent
formulation, still due to Pet? is that “..the scalar curvature is an increasing function of the
temperature..” Moreover, the asymptotic relation between volume and curvature in Riemannian
geometry and Jeffrey’s approach to priors in statistics induced Petz to interpret the scalar curvature
as the average statistical uncertaifttyat should increase under coarse graining; see Ref. 36

The original motivations given by Petz for the conjecture rely on the truth of th@ 2ase
and on some numerical results for the general case. Petz and Sudar observed in Ref. 38 that
“...monotonicity of Kubo metric is not surprising because this result is a kind of reformulation of
Lieb convexity theoren® However the monotonicity of the scalar curvature seems to be an
inequality of new type(provided the conjecture is really true.” A recent clear reference for
Lieb’s result and related inequalities can be found in the paper by Rifskai.

The goals of the present paper are the following.

(1) We want to look at “higher mathematics from an elementary point of view.” This means that
we want to furnish an elementary motivation for the Petz conjecture. We do this by studying
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the monotonicity of the curvature far-geometries in the plane. The results obtained in this
case are very intuitive if one looks at the unit sphere oflthepaces. We conjecture that a
similar behavior occurs fow-geometries in higher dimensions and in the noncommutative
case, too.

(2) On the basis of the results of poifi) we make a conjecture about the monotonicity of scalar
curvature for the WYD metrics. Further, we show that, using a continuity argument, this
WYD conjecture would imply the Petz conjecture as a limit céBeeorem 8.1

(3) We review what is known about monotonicity of scalar curvature for quantum Fisher infor-
mation. In particular, we emphasize a result on the Bures metric, attributed to Dittmann,
according to which the scalar curvature, in this case, is neither Schur-increasing nor Schur-
decreasingsee Sec. Il for precise definitionsThis implies that an example of a monotone
metric for which the scalar curvatufer its oppositgis strictly increasing under mixing does
not exist yet. Note that Anddusing an integral decomposition of Ref.)J#oved that also
in the 2x 2 case there exist monotone metrics whose scalar curvature is not mohotone.

Finally, let us note that, related to this area, there exist other interesting papers. Some authors
have suggested that, when statistical mechanics is geometrized, then the scalar curvature should
have important physical meanirfpr example, it should be proportional to the inverse of the free
energy; see Refs. 8, 9, 25-27, and.39

II. MAJORIZATION AND SCHUR-INCREASING FUNCTIONS

For the content of this section we refer to Refs. 1, 5-7, and 31.

A. Commutative case

We shall denote by, the manifold of positive vectors dt", and bWDﬁC P, the submanifold
of density vectors, namely

Definition 2.1:
Pl = {p eR"Y p=1,p> 0}.
i

We sete: =(1,...,1. The trace of a vector is Tr) ==L ,v;. For ann X n real matrix, consider
the following properties:
(l) tUZO i,j: A O
(”) Ein:]_tij:]. j:].,...,n,
(“l) E]-n:ltij:]. i=1,...n.

Definition 2.2:

(@ T is said to be stochastic if (1),(Il) hojd
(b) T is said to be doubly stochastic if (1),(Il),(lll) hald

WhenT is seen as an operatdr R"— R" (by (Tv)j:Ei”:ltjivi), then the propertied),(11),(Ill')
can be written as

()" (positivity preserving Tv=0 if v=0;
(I’ (trace-preservingTr(Tv)=Tr(v) Qv eR"
(" (unital) Te=e.

Let xe R" be a vector. We defing as a vector with the same components in a decreasing
order so that

| L= ... |
Xf=xp= - =X,

Definition 2.3: x is more mixed (more chaotic) than y (denoted by xy ) if and only if
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X1 <Y1,

X{+ X5 <yi+Vs,

Xp o X S Y H Y,

Xp+ o +xi=yl+ eyl

For example, if(p4, ...,p,) is a density vector then

11 1
== .| >(p1, ... ,pn) > (1,0, ...,0,0.
(n n n) (p1 pn) > ( 0
The relation> is a preordering but not a partial ordering.xlfy andy>x thenx=Ty for
some permutation matriX.
Theorem 2.1:

x>y < x=Ty where T is doubly stochastic

Definition 2.4 (see Ref. 31 pp. 14 and 54): A real-valued function f defined on4G&" is
said to be Schur-increasing oA if

x>yonAO f(x)=f(y).

If, in addition, f(x)>f(y) whenever %y but x is not a permutation of,hen f is said to be
strictly Schur-increasing. Similarly f is said to be Schur-decreasingdoif

x>yonADd f(x)<f(y),

and f is strictly Schur-decreasing if strict inequalitgxf< f(y) holds when x is not a permutation
of y.

Of course,f is Schur-increasing if and only iff-is Schur-decreasing.

Remark 2.1 (see Ref. 31, p. 54):.C R" is symmetric ifx e A0 [Ix e A for all permutations
I1. A function f is symmetric onA if f(x)=f(IIx) for all permutationsll. Let D: ={x|x;= -
=x,}. If f is symmetric on a symmetric set and Schur-increasing o N A, thenf is Schur-
increasing onA.

Remark 2.2:Let us consider the following identificatioh (0,77/2)—>7>§ defined byl(6)
: =(cog,sirtd). Evidently, if ,, 6,< /4, then

GIS 02 And |(01)< |(02)

Any function onP% can be seen as a function ¢, 7/2). By abuse of language we shall use the
same symbols to denote the two functions. S'rﬁéés symmetric we have, because of Remark 2.1
Proposition 2.2:A symmetric functionf on 73% is Schur-increasing if and only ffis increas-

ing as a function or{0,#/4).

B. Noncommutative case

Let M, be the space of complaxx n matrices. We shall denote Wy, the real subspace of
Hermitian matrices, byD,, the manifold of strictly positive elements ™,, and byDﬁCDn the
submanifold of density matrices, namely

Definition 2.5:

Dr={peM"Trp=1, p>0}.
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If Ae M, let\(A) be then-vector of its eigenvalues, arranged in any order with multiplicities
counted. IfA is Hermitian then\(A) is a realn-vector. LetA,B be Hermitian.
Definition 2.6:

A>B = MA) > \(B).

Definition 2.7: A linear mapb on M, is doubly stochastic if it is positive-preserving, trace-
preserving, and unital
Theorem 2.3:

A>B = A=®(B),whered is doubly stochastic

Definition 2.8: A real-valued function f defined on a seC H,, is said to be Schur-increasing
on A if

A>B0O f(A) = (B).

Similarly, f is said to be Schur-decreasing ghif

A>BO f(A) < f(B).

Of course,f is Schur-increasing if and only iff-is Schur-decreasing.

Ill. PULL-BACK OF DUALITY PAIRINGS

To make the paper self-contained, we recall some constructions from Ref. 18.
Let V,W be vector spaces ovér (or C). One can say that there is a duality pairing if there
exists a separating bilinear form

(¢, VX W= R.

Let M, N, \ be differentiable manifolds.

Definition 3.1: Suppose we have a pair of immersiéasy), where ¢: M — N and y: M
—>j~\/’, such that a duality pairing exists betweegp]'/\/ and Tx(p)X/for any p e M. Then, we may
pull-back this pairing onM by defining

(U,v)*: =(Dye(u),D x(W), uv e T,M.

The most elementary example is given by the case whéré/ is a Riemannian manifold,
@=x, and the duality pairing is just given by the Riemannian scalar produ@t,gpV (this is the
pull-back metric induced by the map.

A nontrivial example is the following. LeX be a uniformly convex Banach space such that
the dualX is uniformly convex. We denote by, ) the standard duality pairing betwedrand X.

Let J:X— X be the duality mapping, that iis the differential of the map — 3[v|%. J(v) is the
unique element of the dual such tiat J(v))=||v|[2=|9()||%

Definition 3.2: LetM be a manifold. If we have a mag: M — X we can consider a dualized
pull-back that is a bilinear form defined on the tangent spacébby

(AB)S:=(AB)"=(D,¢(A),D,(J° ¢)(B)).

Example 3.1:For X a Hilbert spaceJ] is the identity, and this is again the definition of
pull-back metric induced by the map

In what follows, if p e R\{0} thenD is defined by(1/p)+(1/p)=1. If p=1 thenp=+oo,

Example 3.2:Let (X,F,u) be a measure space. fifis a measurable function amle (1,
+o0) then|[f]l,: = (f]f[Pdu)'P. Set
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LP=LP(X,F,u) = {f is measurable anjff||, < o}.

Define NP asLP with the norm

f
s = L.

Obviouslyﬁp (the dual ofNP) can be identified witH\P.

Now, suppose thgi>0 is measurable anfp=1, namelyp is a strictly positive density. Then,
v=pp*P is an element of the unit sphere NP and it is easy to see thatv) =Pp*P. The family of
mapsp— pp*’? is known as Amari embeddings.

Let X={1, ... n} and letu be the counting measure. In this cad®is justR" with the norm
I-lp/p-

pProposition 3.1: Consider the Amari embeddi@gpepﬁ—»pp”pe NP for an arbitrary p
e (1, +%). Then, the bilinear form

(AB)?:=(AB)¢”¢=(D,¢(A),D,(J° ¢)(B)), ABeT,Ps,

is just the Fisher information
Proof:

<Dp<p(A),Dp(Jo¢)(B)>:f(pu/p)—lA)(p(l/p)_lB):fAFB.

d
The above result can be stated in much greater generality using the machinery of Refs. 19 and
14.

IV. SCALAR CURVATURE OF a-GEOMETRIES

The a-geometries are one of the fundamental objects of information georfsetey Refs. 2
and 20. The study of the monotonicity of their curvatures does not appear in the literature as far
as we know. In this section we start such an investigation.

A. The plane case

Definition 4.1: The a-geometry onP% is the pull-back geometry induced by the map
Au(p): P3— R? defined by

_Jee'®, per\{o},
A"(”)"{Iogw p=co,

where p=2/(1-a).

Definition 4.2: We denote by,@) the curvature of ther-geometryfwith p=2/(1-a)] at the
point p e P3.

Remark 4.1For the curvature,(-) there are two easy cases:

—if p=1 thenc(-)=const=0;

—if p=2 thenc,(-)=const=;.

Taking a look at the unit sphere 8f with respect to thé.P-norm, one can easily understand
the following general result.

Theorem 4.1: For the function g(-):P§—>R one has the following properties

—if pe(1,2) then ¢(-) is a strictly Schur-decreasing functipn

—if p e (2, +o] then ¢(-) is a strictly Schur-increasing function

Proof: Let us first considep e (1,). Then, thea-geometry,a=(p-2)/p, on P5 is the
geometry of the set
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p p
B =1(x, EHZ:<5) <X> -1, 0, o}.
{(xy) o + 0 X> y>

Let us introduce the parametrization

x=p(cos9?P, y=p(sin 9P, 0<I< g

Then

X' = 2(cos9) P Y(-sin9), y' =2(sin 9)?Pcos I,

2 2
X" = 2(cos ﬁ)(z’p)‘2<r—)sin2 9 - 1), y’ = 2(sin ﬁ)(z’p)"z([—) cos 9 - 1) .

Let us parametrize density vectors(ass 6,sir? 9). In this way the curvature af-geometry at
the pointp, namelyc,(p), is

o (9= XY =Xyl _p-1 (sin 9 cos §) P2
PP T2+ (y)PPR2 T p o [(sin (cos9) P + ((sin 9)YPcos 9)4132
p- 1( l>2[1—(2/p)] (sin 219)2[1—(2/p)] gp(ﬁ)
~op \2 [(cos )P + (sin 9312~ " P fp(ﬁ)g ;

where we set

p-1(1 2[1-(2/p)]
Agi=——\3 ,
p \2

gp(9): = (sin 26)274P),

fo(9): = (cos )P + (sin 9)4P.

We want to compute the monotonicity propertiexpfvith respect to the preordering. We have

2
gp(9): = 4(sin 29)1 4P (cos & + sin ﬂ)(l - 5)(0051‘}— sin 9);

since <9< /2, then

4(sin 29)1"4P) . (cos 9 + sin ¥) > 0,

and therefore
! 2 H
gp(z?) >0 (1 —I—D)(cosﬁ— sin¥) > 0.
Moreover
4
fi(9) = ~Bsin ¥ cos 3((sin 9P 1+ (cos )P ((sin §)@P1 - (cos9)@PY);

again, since 829 </2, then

4 sin & cos ¥((sin 9) @1+ (cos 9)@P1) > 0,

and therefore
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1
f(® >0 = Z((sin 9P~ (cos 9)?P1) > 0.
P

Cy(+) is evidently symmetric orP} and therefordbecause of Proposition 3.the fact that the
curvature is strictly Schur-increasirigecreasingis equivalent to the fact thaty(«9) is strictly

increasing(decreasingfor 0< 9 < w/4.
We have the following cases:

Case:1<p<?2.
This implies 1+2/p) <0,(2/p)-1<0, and therefore

g,’)({})>0a cosd <sind = 7—T<q‘}<z,
4 2

fo(9) >0 < (sin 9@ 1> (cos9)@P1 < sin¥<cosd = 0< I< 727

Therefore, for 6< 9 < 7/4, g is decreasingf is increasing, and ¥#2 is decreasing. This implies

that
. 9

Cp= Apﬁl/o'z
p

is strictly decreasing for & 9 < /4.

Case:2<p<ce.
This implies 1<2/p)>0,(2/p)-1>0, and therefore

gp(®) >0 = cos¥>sin ¥ = 0< 1‘}<§,

fi(9) >0 = (sin 9)#P™1> (cos 9)@P = sin 9 > cos 9 = E <9< %T
Therefore, for 6< 9 < /4, g is increasingf is decreasing, and 1¥? is increasing. This implies
that
S

Cp=Ap F3/2
p

is strictly increasing for &< 9<w/4.
Case: p=».
Use now the following parametrization:
x=2log(cosh), y=2 log(sin 6),

for the curvee*+e¥=1.Then

_,Sin¢ ,_.cosd
" “cos¥’ " “sing’
-2 -2
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C(9): = IX'y"=x"y'|  (sin 6 cos6)?
T2+ (y)?P2 T [(cos 6)* + (sin )2
p-1 ( 1)2[1-(2/p)] (sin 29)21-2P)]
= lim —( = . .
pote P \2 [(cos 9)*P + (sin 9)*P]3/2
Note that
Co(9) = lim c,(6).
p—>+w
If we set
g..(9): = (sin 6 cos H)?, f.(9):=(cosO)*+ (sin 6)%,
then
0..(%) =2 sin ¥ cos ¥(cos ¥ + sin 3)(cos I — sin 3),
. (9) =4 sin ¥ cos ¥ cos I+ sin 9)(sin ¥ — cos D).
This implies

g.(9) >0 < cosd >sin 9,

f.(9) >0 < sin ¥ > cos .

We have the same situation of the case @<« and therefore the same conclusion.
This ends the proof. O
Note that we have also
Proposition 4.2: For the function ,K:-):P%—»R one has the following properties: if p
e (-, 0) then ¢(-) is strictly Schur-increasing

Proof: Since
2 2 ~
1-->0, --1>1>0, 0<p<1,
p p
we have the same situation of the case @<« in the preceding Theorem 4.1 and therefore the
same conclusion. O

If pe(0,1) thency(-) can have an arbitrary behavi¢gchur-increasing, Schur-decreasing,
neither of the twa.

B. The general case

Definition 4.3: The a-geometry onP% is the pull-back geometry induced by the map
Au(p): PE—R" defined by

e peR\{0},
A"(”)"{Iog(p), p=c,

where p=2/(1-a).

Definition 4.4: We denote bycal(p) the scalar curvature of thex-geometry[with p
=(2/(1-a))] at the pointp e P>

Of course the casgs=1 (flat geometry and p=2 (geometry of an—1)-dimensional sphere
with radius 2 are easy to study. One has

—if p=1 then Scal(-)=const=0;

—if p=2 then chﬂl(-):const:%(n—l)(n—Z).
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Again taking a look at the unit sphere Bf equipped with_P-norm, one can easily understand
the following conjecture.

Conjecture 4.1: Suppose>n2. For the functionScaL(-):PﬁﬁR one has the following prop-
erties:

—if p e (1,2) thenScal,(-) is a strictly Schur-decreasing functipn

—if p e (2, +] thenScaly(-) is a strictly Schur-increasing function

C. Non-commutative case

Definition 4.5: Thea-geometry orIDﬁ is the geometry induced by the pull-back of the map
Au(p): DE— M, defined by

e peR\{0},
Ap(P).—{IOg(p), p=o,

wherep=2/(1-a).

Since the commutativity or noncommutativity of the context will always be clear, we perform
a little abuse of language in the following definition.

Definition 4.6: We denote bycal,(p) the scalar curvature of thex-geometry[with p
=(2/(1-a))] at the pointp € D}

Again, the cas@=1 (flat geometry is obvious. The casp=2 is known(see Refs. 16 and 17
or Theorem 7.2 beloy and we have

—if p=1 then Scg|-)=const=0;

—if p=2 then chal(-):const:;ll(nz—1)(n2—2).

Motivated by the commutative plane case we formulate the following conjecture.

Conjecture 4.2: Suppose=n2. For the functionSca[,(-):DﬁeR one has the following prop-
erties:

—if p e (1,2) thenScal(-) is a strictly Schur-decreasing functipn

—if p e (2, +o¢] thenScaly(-) is a strictly Schur-increasing function

V. MONOTONE METRICS AND THEIR SCALAR CURVATURES

A commutative Markov morphisrit:R"—R™ is a stochastic map. A noncommutative Mar-
kov morphism is a linear map: M,,— M, that is completely positive and trace-preservingte
that in the commutative case complete positivity is equivalent to positivity; see, for example, Ref.
41).

In the commutative case a monotone metric is a family of Riemannian metri¢g™ on
{PY, neN such that

g7, (TXTX) < g(X,%)

holds for every Markov morphisii: R"— R™ and allp e P} andX e T,Pn.
In perfect analogy, a monotone metric in the noncommutative case is a family of Riemannian
metricsg={g"} on {D}}, ne N such that

g7, (TXTX) < gl(X,X)

holds for every Markov morphisfii:M,— M, and allp e D; andX e T,Dr.

Let us recall that a functiof: (0,%) — R is called an operator monotone if for any N, any
A, B e M,, such that = A<B, the inequalities & f(A)<f(B) hold. An operator monotone func-
tion is said to be symmetric if(x)=xf(x!) and normalized iff(1)=1. In what follows, by
operator monotone we mean normalized symmetric operator monotone. With each operator mono-
tone functionf one associates also the so-called Chentsov—Morotzova function
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1
ci(x,y):=——— forx,y>0.
()

y

DefineL ,(A): =pA, andR,(A): =Ap. SinceL ,,R, commute we may defingL,,R,). Now, we can
state the fundamental theorems about monotone metriigueness and classification are up to
scalars.

Theorem 5.1 (Ref. 10):There exists a unique monotone metric Ebgiven by the Fisher
information

Theorem 5.2 (Ref. 35)There exists a bijective correspondence between monotone metrics on

Dﬁ and operator monotone functions given by the formula

(AB), = Tr(A - c(L,,R)(B)).

To state the general formula for the scalar curvature of a monotone metric we need some
auxiliary functions. In what follows’,(log ¢)’ denote derivatives with respect to the first vari-
able, andc=c;.

c(x,y) — zdx,z)c(y,2)

My 2= 2(y - 2c(x,2)c(y,2)’
 (c(x,2) = c(y,2)?

Y2 rexyIex ey, 2)

ha(x.y,2): = Z(In ¢)'(z,x) = (In c)’(z,y),

X=-y
hs(x,y,2): =z(In ¢)'(z,x)(In ¢)'(z,y),

h: =h; - 2h, + 2hy - h,. (5.1)

The functionsh; have no essential singularities if arguments coincide.

Note that(A,B)’: =Tr(A-c((L,,R,)(B)) defines a Riemannian metric also oy (D is a
submanifold of codimension)lLet Scal(p) be the scalar curvature c(tDn,<-,->;) at p and
Scaf(p) be the scalar curvature 6D}, (-, ).

Theorem 5.3 (Ref. 12):Let o(p) be the spectrum gb. Then

Scalip)= > hxy.2- > h(xxX),
X,y,ze a(p) xea(p)
Scaf(p) = Scal(p) + 3(n>— 1)(n*- 2).

These results have the following form in the simplest ¢@s¢2 matrice$. From Theorem 5.3
it follows that (see Ref. 3
Corollary 5.4: If p e D, has eigenvalues,\,, one has

Sca[p) = h()\l,)\l,)\z) + h()\l,)\z,)\l) + h()\z,)\l,)\l) + h()\z,)\z,)\l)
+h(\a A, A0) + (A, A Np) + 3.
Theorem 5.5 (Ref. 3):If p e D, has eigenvalues,\,, and a=2\;—1, then
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1-a) |? 1-a 1-a
14a-1)| f'| — 2@°+7a-6)f'| — | 81-af'| —
l+a l+a l+a

+ +
1 2 1-a 1-a
(1+a)’| fl — (1+a)%afl — (1+a)f| —
1 1l+a 1+a

-a
+a

1-a
2(1+a)f<—)
+a

1 3a+5a%+8a-4
+ +

al 2(1+a)a®

re(@): = Sca(p) =

VI. THE WYD METRICS

We are going to study a particular class of monotone metrics.

Definition 6.1:
1 (x—1)?
f(x):=—"- , R\{0,1},
7 - ppepogy PERMOY
x—-1
fl(X) - foo(x) - IOg(X), p - 1100-

Obviously f,=fz and

fo=limf,=limf,="f..
p—1l  pow

Theorem 6.1 (Refs. 22 and 23)The function { is operator monotone if and only if A
:=(-0,-1]U[3, +o].

Note thatp € A if and only if @ € [-3,3].

Definition 6.2: The WY [p) metric of parameter p is the monotone metric associated with f
(where pe A).

We have thaf_; is the function of the RLD-metrid; =f.. is the function of the BKM-metric,
andf, is the function of the Wigner—Yanase metric.

In what followsp € (1, +*) and we use again the symhig} to denoteM, with the norm

IAlle = p~H(Tr(|AP) M.

All the commutative construction of Example 3.2 goes through. The following Proposition is the
noncommutative analogous of Proposition 8&&e also Refs. 16, 21, 23, 28, and.37

Proposition 6.2 (Ref. 18): Lap:p € Di— pp*P e N, be the Amari embedding. The dualized
pull-back

(AB)S:=(A BT =(D,¢(A),D,(J° ¢)(B))

coincides with the Wigner—Yanase—Dyson information.

VII. KNOWN RESULTS ON MONOTONICITY

In this short section we review what is known about monotonicity of scalar curvature for
monotone metrics. This is useful to emphasize that, up to now, no examples exist of a monotone
metrics with Schur-increasin@r Schur-decreasingscalar curvature.

The Bures or SLD metric is the monotone metric associated with the funttioh+x)/2.

Theorem 7.1 (Refs. 11 and 13)The scalar curvature of SLD metric is neither Schur-
increasing nor Schur-decreasing

Proof: By Ref. 11 the SLD-metric has a global minimum at the most mixed state fon.aQwn
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the other handthis is due to Ref. 18 if o=diad2,:,2) and p=diad:,,2) thenp> 0. Using
Theorem 5.3 one can calculate Soak3078/25> 3447/28 Scdp) and so the conclusion fol-
lows. O

Theorem 7.2 (Ref. 17):The scalar curvature of WY metric is a constant equaﬁ(toz—l)
X (n?-2).

2)
'3
SO

VIIl. A CONJECTURE ON THE WYD SCALAR CURVATURE AND ITS RELATION TO
PETZ CONJECTURE

In this section we want to suggest that a whole family of monotone metrics with Schur-
increasing scalar curvature may exist.

Conjecture 8.1: There exist>0 such that for p in the interval :I=(1,1+¢) the scalar
curvature of theWYD(p) metrics is a Schur-increasing function

Conjecture 8.2 (Petz conjecture): The scalar curvature of BKM metric is a Schur-increasing
function. This can be rephrased as

p> o0 Sca} (p) = Sca} (0).

The motivations for Conjecture 8.1 are the following. The WpPmetrics come from the
dualized pull-back of Proposition 6.2. This means that the \ifBnetrics depend, indeed, on the
pair (p,P). Note that wherp is in the Schur-decreasing regioh,2) we have thaf is in the
Schur-increasing regio(®2, +») (Theorem 4.1, Conjectures 4.1, 1.%henp approaches 1 then
P goes to infinity. Near the boundary valufds +c0} the increasing—decreasing “symmetry” should
be broken: in this case WY([) geometry comes from a geometry converging to a flat lifpit
—1) and a geometry converging to(eonjecturedl Schur-increasing scalar curvatui@— ).

Theorem 8.1:If Conjecture 8.1 is true then Conjecture 8.2 (Petz conjecture) is true

Proof: For an arbitrary manifoldM let us denote byM (M) the manifold of Riemannian
metrics of M. If pe M is fixed andg e M(M) then the functionF ,(-): M(M)—R defined by
F,(9): =Scaj(p) is a smooth functiorisee Refs. 29 and 33ldentifying f, with the metric

(AB),.) = Tr(AG; (L, R,)(B)),

we may consider the functiop— f, as a continuous curve lm/l(Dl) This implies that, by
composition, the functlorp—>8ca}p(p) is a real, continuous function for eaghs Dl Suppose
now that Conjecture 8.1 is true.

We have for arbitranyp, o e D?, such thalp> o

Sca}l(p) = lim Scal (p) = lim Sca} (o) = Scal (o).
p—1 P p—1 P !

But, this is precisely the Petz conjecture. O
-0.7 -0.5 -0.25 0.25 0.5 75
-0.5
-1
-1.5
-2

FIG. 1. Casg=1+10"
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FIG. 2. Casep=1+107F.

A. Numerical results

Conjecture 8.1 would have many consequences. An example is the following theorem.

Theorem 8.2: Conjecture 8.1 implies that there exists>0 such that for ps (1,1+¢) the
functions g: =T of Theorem 5.5 are concave and have their maximum at zero

Proof: It follows immediately by Theorem 5.5. O

Using MATHEMATICA , one has the following graphs for the functign

Casep=1+101; see Fig. 1;

Casep=1+105; see Fig. 2.

Let us emphasize what we said in the Introduction: a recent result of Astiaivs the
nontriviality of the above behavior. Indeed, also in th& 2 case there exist many monotone
metrics with nonincreasing scalar curvature.
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