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Abstract

We prove that the weak coupling 2D Hubbard model away from half
filling is a Landau Fermi liquid up to exponentially small temperatures.
In particular we show that the wave function renormalization is an order 1
constant and essentially temperature independent in the considered range
of temperatures and that the interacting Fermi surface is a regular convex
curve. This result is obtained by deriving a convergent expansion (which
is not a power series) for the two point Schwinger function by Renormal-
ization Group methods and proving at each order suitable power counting
improvements due to the convexity of the interacting Fermi surface. Con-
vergence follows from determinant bounds for the fermionic expectations.

1 Introduction and Main result

1.1 Motivations.

The Hubbard model, according to many (see for instance [L]), has the same
role in the problem of electron correlations as the Ising model in the problem of
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spin-spin correlations, that is it is the simplest possible model displaying many
”real world” features. Still, we are far from a rigorous understanding of many of
its properties, except in 1D, where Bethe ansatz arguments [LW, G] and Renor-
malization Group (RG) analysis [S, M] provide a quite good understanding of
many of its properties up to zero temperature. In more than one dimension
only few of its properties are rigorously known: among them we quote the The-
orems in [L1], establishing the value of the total spin of the ground state in
arbitrary dimension (for all densities in the attractive case and at half–filling in
the repulsive case), and the bounds in [KT] on the correlation functions in 2D,
ruling out the possibility of magnetic ordering or superconductivity at non zero
temperatures. Recent years have seen a great deal of theoretical investigation
on the 2D Hubbard model, as such model has been proposed as a basic model
for the electronic degrees of freedom of high Tc superconductors [A]. Its zero
temperature behavior is still rather controversial and only approximate analysis
have been performed [Me]. On the other hand there are several non trivial and
physically important questions for which a rigorous answer is not known, the
most important of which is about the Fermi liquid or non Fermi liquid behav-
ior of the 2D Hubbard model; while we refer to the comments after Theorem
1.1 for the precise definition of Fermi liquid, we mention that such question
can be answered only by a rather detailed (essentially optimal) knowledge of
the temperature dependence of the Schwinger function (hence the bounds in
[KT] cannot be of any help in such a question). There are convincing physi-
cal arguments [VR] supporting the idea that Fermi liquid behavior is crucially
related to the convexity of the Fermi surface; in particular the 2D Hubbard
model is believed to be a Fermi liquid for densities sufficiently smaller than
the half–filling density, i.e. for values of the chemical potential corresponding
to a closed and convex free Fermi surface. It is on the other hand well known
that the interaction produces a deformation of the Fermi surface [HM] and it
is not guaranteed a priori that the interacting Fermi surface, if existing at all,
is still convex. Moreover doubts on the reliability of lowest order approxima-
tions, due to a possible non convergence of the series expansion, has been raised
recently in the physical literature, see [A]. Therefore, rigorous confirmation on
such expectations is much to be desired and we provide it here.

Our main result can be informally stated in the following way (see Theorem
1.1 for a formal statement, the comment after the Theorem for the definition of
Fermi liquid and (1.7) for the definition of Fermi surface at finite temperature).

For values of the chemical potential smaller than and not too close to µ = 2
(the half filled band case) the weak coupling 2D Hubbard model is a Fermi liquid
up to exponentially small temperatures, independently on the sign of the interac-
tion. In particular the wave function renormalization is essentially temperature
independent and the interacting Fermi surface is a regular convex surface.

In [R, AMR] it has been proved that in the half-filled band case the weak
coupling 2D Hubbard model is not a Fermi liquid for temperatures larger than
an exponentially small one. Then, combining our results with those in [R], we
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find that the 2D Hubbard model, for temperatures larger than an exponentially
small one, shows a crossover between a Fermi and a non Fermi liquid behavior,
while varying the chemical potential from 0 to 2.

Our main result is proved by showing convergence of a suitable resumma-
tion of the weak coupling expansion for the interacting two–point correlation
function, needed to take care of the modification of the Fermi surface due to the
interaction. In fact the deformation of the Fermi surface has the effect that the
naive power series expansion in terms of the free propagator is not convergent at
low temperatures. We have then to employ RG methods so that the interacting
propagator is dynamically changed (“dressed”) at each step of the multiscale
analysis; correspondingly the location of the singularity of the interacting prop-
agator will define an interacting Fermi surface which is dynamically modified at
each RG step. Convergence of the resummed series follows from power counting
improvements at all orders due to the convexity of the interacting Fermi surface
and from determinant bounds for the fermionic expectations.

1.2 The Hubbard model.

The Hamiltonian of the 2D Hubbard model is given by

H =
∑

~x∈Λ

∑

σ=↑↓
a+~x,σ

(
− ∆

2
− µ

)
a−~x,σ + U

∑

~x∈Λ

a+x,↑a
−
~x,↑a

+
~x,↓a

−
~x,↓ (1.1)

where:

1) Λ ⊂ Z
2 is a square sublattice of Z2 with side L (the sites will be labelled by

(n1, n2) ∈ Z
2, −[L/2] ≤ n1, n2 ≤ [(L − 1)/2]);

2) a±~x,σ are creation or annihilation fermionic operators with spin index σ =↑↓
and site index ~x ∈ Λ, satisfying periodic boundary conditions in ~x;

3) ∆ is the discrete Laplacean, acting on a function f : Z2 → R, periodic of
period L in both directions, as: ∆f(~x) =

∑
j=1,2 f(~x+ êj)−2f(~x)+f(~x−

êj), where êj , j = 1, 2, are the two unit versors on Z
2;

4) µ > 0 is the chemical potential, whose value fixes the average density of
particles;

5) U is the strength of the on–site density–density interaction; it can be either
positive or negative.

We shall also consider the operators a±x,σ = eHx0a±~x,σe
−Hx0 with x = (x0, ~x)

and x0 ∈ [0, β], for some β > 0; we shall call x0 the time variable. The finite
temperature Schwinger functions are defined as

S(x1, σ1, ε1; . . . ;xn, σn, εn) =
Tr e−βHT(aε1x1,σ1

· · · aεnxn,σn
)

Tre−βH
(1.2)
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where xi ∈ [0, β] × Λ, σi =↑↓, εi = ± and T is the operator of time ordering,
acting on a product of fermionic fields as:

T(aε1x1,σ1
· · · aεnxn,σn

) = (−1)πaεπ(1)
xπ(1),σπ(1)

· · · aεπ(n)
xπ(n),σπ(n)

(1.3)

where π is a permutation of {1, . . . , n}, chosen in such a way that xπ(1)0 ≥ · · · ≥
xπ(n)0, and (−1)π is its sign1.

In the non–interacting case U = 0 the Schwinger functions of any order n can
be exactly computed as linear combinations of products of two–point Schwinger
functions (via the well–known Wick rule). The two–point Schwinger function
itself (also called the free propagator) is equal to:

S0(x− y) ≡ S(x, σ,−;y, σ,+)
∣∣∣
U=0

=
1

βL2

∑

k∈Dβ,L

e−ik·(x−y)

−ik0 + ε0(~k)− µ
(1.4)

where:

(a) k = (k0, ~k) and Dβ,L = Dβ ×DL;

(b) Dβ = {k0 = 2π
β (n0 +

1
2 ) : n0 ∈ Z} and DL = {~k = 2π

L (n1, n2) : −[L/2] ≤
n1, n2 ≤ [(L− 1)/2]};

(c) ε0(~k) = 2− cos k1 − cos k2 is the dispersion relation.

Note that S0(x) is a function of x0 ∈ R antiperiodic of period β and that its
Fourier transform Ŝ0(k) is well–defined for any k ∈ Dβ,L, even in the thermo-
dynamic limit L → ∞, since |k0| ≥ π

β . We shall refer to this last property by
saying that the inverse temperature β acts as an infrared cutoff for our theory.

In the limit β, L→∞ the propagator Ŝ0(k) becomes singular on the surface

{k0 = 0} × Σ
(0)
F , where Σ

(0)
F ≡ {~k ∈ [−π,+π] × [−π,+π] : ε0(~k) − µ = 0} is

the free Fermi surface. It is easy to realize that, if 0 < µ < 2, then Σ
(0)
F is a

smooth convex closed curve, symmetric around the point ~k = (0, 0). It can be

parameterized as ~k = ~p
(0)
F (θ) in terms of the polar angle θ ∈ [0, 2π]. We shall

also denote |~p(0)F (θ)| by u(0)(θ).
In order to make apparent the structure of the pole singularity of Ŝ0(k) at

{0} × Σ
(0)
F , it is sometimes convenient to rewrite Ŝ0(k) in the form:

Ŝ0(k) =
1

Z0

1

−ik0 + ~v
(0)
F (θ) ·

(
~k − ~p(0)F (θ)

)
+R(~k)

(1.5)

where θ is the polar angle of ~k, Z0 = 1 is the free wave function renormalization

and ~v
(0)
F (θ) = (∂ε0/∂~k)

∣∣
~k=~pF (θ)

is the free Fermi velocity. Moreover, near the

Fermi surface, |R(~k)| ≤ C
∣∣~k − ~p(0)F (θ)

∣∣2, for some positive constant C.

1If some of the time coordinates are equal each other, the arbitrariness of the definition
is solved by ordering each set of operators with the same time coordinate so that creation
operators precede the annihilation operators.
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1.3 Main results.

The interacting two–point function S(x − y) = S(x, σ,−;y, σ,+) turns out to
have, in the L =∞ limit, the following structure. Let us call Ŝ(k) the Fourier
transform of S(x) and Σ(k) the self–energy, defined as usual by the identity

Ŝ(k) =
1

−ik0 + ε0(~k)− µ+Σ(k)
(1.6)

By simple symmetry arguments, one can see that Σ(k0, ~k) = Σ(k0,−~k) =

Σ∗(−k0, ~k); this allows us to introduce the following definitions.

a) The interacting Fermi surface ΣF is defined as

ΣF =
{
~k : ε0(~k) +

1

2

∑

j=±
Σ(jπβ−1, ~k) = µ

}
, (1.7)

see also Remark (3) in Section 1.4. We shall be able to parameterize ΣF
as ~k = ~pF (θ) in terms of the polar angle θ ∈ [0, 2π] and we shall denote
|~pF (θ)| by u(θ).

b) The wave function renormalization is the real quantity

Z(θ) = 1 + i∂k0Σ (1.8)

where ∂k0Σ = (β/2π)[Σ(πβ , ~pF (θ)) − Σ(−πβ , ~pF (θ))].

c) The Fermi velocity is the real vector

~vF (θ) =
1

Z(θ)

∂(ε0 +
1
2

∑
j=± Σ(jπβ−1, ~k))

∂~k

∣∣∣∣∣
~k=~pF (θ)

(1.9)

Our main result is the following.

Theorem 1.1 Let us consider the 2D Hubbard model with 0 < µ < µ0 ≡ 2−
√
2

2

and β−1 ≥ e−
a

|U| where a > 0 is a suitable constant. There exists a constant
U0 > 0 such that, if |U | ≤ U0, the two point Schwinger function Ŝ(k) can be
written, in the limit L =∞, as

Ŝ(k) =
1

Z(θ)

1

−ik0 + ~vF (θ) ·
(
~k − ~pF (θ)

)
+R(k)

(1.10)

with Z(θ), ~vF (θ) and ~pF (θ) real and

Z(θ) = 1 + a(θ)U2 +O(U3)

~vF (θ) = ~v
(0)
F (θ) +~b(θ)U2 +O(U3) (1.11)

~pF (θ) = ~p
(0)
F (θ) + ~c(θ)U +O(U2)
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where a(θ), |~b(θ)|, |~c(θ)| are bounded above and below by positive O(1) constants

in the region β−1 ≥ e−
a

|U| . Moreover

|R(k)| ≤ C
[
|~k − ~pF (θ)|2 + k20 + |~k − ~pF (θ)||k0|

]
(1.12)

for some constant C > 0.

Remark. One corollary of the proof of Theorem 1.1 is that, under the assump-
tions of the Theorem, one can compute the free energy of the Hubbard model
in terms of a convergent expansion (not a power series in U). In particular it
turns out that the first non trivial correction to the free energy coincides with
the first order of naive power series expansion in U ; this means that first order
perturbation theory is asymptotically correct as U → 0. A second corollary of
the proof of the Theorem is that the decay of S(x) in real space can be estimated
as

|S(x)− S0(x)| ≤ CN |U |
1

1 + |x|
1

1 + (β−1|x|)N (1.13)

for any positive integerN . (1.13) tells us that the interacting Schwinger function
S(x) has the same large distance behavior as S0(x), as long as 1 << |x| << β;
for larger distances the decay is suppressed because of the presence of a non
zero temperature β−1.

The above theorem says that the 2D Hubbard model is a Fermi liquid up to
exponentially small temperatures and far from the half filled band case, in the
following sense. Let us compare the representation (1.10) of the interacting two–
point Schwinger function with the free one, given by (1.5). They are apparently

similar but the parameters Z(θ), ~vF (θ) and ~pF (θ), differently from Z0, ~v
(0)
F (θ)

and ~p
(0)
F (θ), are functions of the temperature β−1, for β−1 ≥ e−a/|U|. However

such dependence can be stronger or weaker and the different sensitivity to a
variation of the temperature has important physical consequences. In the case
of the 2D Hubbard model (1.1) with µ < µ0 we prove that Z(θ), ~vF (θ) and
~pF (θ) are slowly depending on β for β−1 ≥ e−a/|U|, that is they are essentially
constant in β above an exponentially small temperature. This means that, in
the considered range of parameters, the interacting two–point correlation is es-
sentially identical to the free one, up to a renormalization of the parameters
essentially independent on the temperature; in this sense we say that the system
shows a Fermi liquid behavior for temperatures larger than an exponentially
small one. This notion of Fermi liquid is the natural mathematical interpreta-
tion of the notion of Fermi liquid often used in the theoretical physics literature,
and it is essentially the same as the one adopted, for instance, in [Sa1, DR].

Of course the property to be a Fermi liquid (in the above sense) is not trivial
at all and it is not verified in many cases. For instance, in the 1D Hubbard
model, the wave function renormalization Z depends logarithmically on β, that
is c1U

2 log β ≤ |Z − 1| ≤ c2U
2 log β, with c1, c2 two positive constants, for

temperatures above an exponentially small temperature; so, with our definition,
the 1D Hubbard model is not a Fermi liquid in such range of temperatures. In
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the 2D Hubbard model at half–filling (i.e. at µ = 2) it has been recently proved
[R, AMR] that, for temperatures above an exponentially small temperature,
c1U

2 log2 β ≤ |Z − 1| ≤ c2U
2 log2 β , so that the system is not a Fermi liquid

at half–filling in that range of temperatures. On the contrary, an example of
Fermi liquid in the above sense is provided by the continuum approximation
of model (1.1) in d = 2, the so–called jellium model, for which [DR] showed
that, in a range of temperatures above an exponentially small temperature,
c1U

2 ≤ |Z − 1| ≤ c2U
2, and the system is a Fermi liquid. Note that in the

jellium model, due to rotation invariance, the interacting and the free Fermi
surfaces have exactly the same shape, that is a circle, and the effect of the
interaction essentially consists just in changing its radius.

1.4 Additional remarks.

1) In the interacting case U 6= 0, the Schwinger functions are not exactly
computable; they can be written as power series in U , convergent for |U | ≤ εβ ,
for some constant εβ. The power expansion in U is constructed in terms of
Feynman diagrams, using as free propagator the function S0(x) in (1.4). All
the known bounds on the radius of convergence εβ of this power series shrink
to zero as β → ∞. Theorem 1.1 has been proved by constructing a suitable
resummed version of the naive power series expansion (needed to take care
of the modification of the Fermi surface) which we show to be convergent for
|U | ≤ a(log β)−1. As far as we know, the bounds provided by Theorem 1.1
are the best available in the literature. Note that if we contented ourselves
of proving the Theorem for |U | ≤

[
Cβα

]−1
, with C,α two positive constants,

the proof below would have been greatly simplified (no resummations and no
multiscale infrared analysis would have been necessary) but of course physically
the result would have been much poorer.
2) The Theorem is proved in the far from half–filling case, that is for 0 <

µ < µ0 = 2−
√
2

2 (i.e. for values of the average density sufficiently smaller than
1). The condition of smallness of the chemical potential guarantees certain
strong convexity properties of the free Fermi surface we shall need in the proof
below; moreover such condition suppresses a class of possibly dangerous con-
tributions to the power series (the so–called “umklapp” processes with n ≤ 4
quasi–particles, see below for definitions) that we are not able to control at the
present time. We expect that our condition µ < µ0 is technical and it is not
unlikely that our proof could be extended to any µ < 2, under the smallness
condition |U | ≤ U0(µ), with limµ→2− U0(µ) = 0. Our result, combined with
the result of [R, AMR] discussed above, implies that the 2D Hubbard model
shows a transition from Fermi to non–Fermi liquid behavior, in the above range
of temperatures, depending on the choice of µ. It would be very interesting to
explicitly investigate the crossover between the two regimes.
3) At non zero temperature there is an ambiguity in the definition of the Fermi
surface and, in order to resolve this ambiguity, we made the specific choice
(1.7). It will be clear from the proof below that any “reasonable” definition of
the Fermi surface will have the same regularity properties as those of the one
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in (1.7). The claim in Theorem 1.1 implies of course that the interacting Fermi
surface is a regular and convex curve, uniformly in β in the allowed range of
temperatures.
4) As already mentioned in item (1), Theorem 1.1 is proved by an iterative
resummation of the original power series expansion for the two–point correla-
tion function and by a renormalization of the free “measure”, which takes into
account, in particular, the modification of Fermi surface. This allows us to reex-
press iteratively the original power series in U as an expansion in an increasing
number of parameters (they are indeed functions), called the “effective cou-
plings” and physically describing the effective interaction at different momentum
scales, denoted by (λ1 ≡ U, λ0, λ−1, λ−2, . . .); moreover, the coefficients of the
new series are themselves depending on U through the renormalized single scale
propagators. The new series will be well–defined whenever Ū = maxh≤1 |λh|
will be smaller than U0, where U0 is a constant independent of the temperature.
From the physical point of view, this means that the temperature dependence
at all orders in the expansion for Ŝ(k) is essentially all included in the effective
couplings, whose size in turn will depend strongly on the temperature. The
possibility of resumming the perturbative expansion in a new series with the
above properties was conjectured in [GS], where the authors proved the claim
for the second order contributions. We stress that the possibility of resumming
the series into a new series admitting this kind of “uniform bounds” is specific
of d = 2 far from half–filling; for instance in d = 1 the coefficient at order 2n ≥ 2
of the resummed expansion for Z(θ) behaves like (Ū/U0)

2n(log β)n, instead of
(Ū/U0)

2n, even assuming that the effective interactions are bounded. This is
not the case in d = 2 far from half–filling; in this case the breaking of Fermi
liquid behavior can be due only to some instability occurring in the effective
interactions.
5) Our result should be compared to [DR], in which a proof of Fermi liquid
behavior was given for the jellium model. We have taken from such papers
two crucial technical ingredients: the idea of using anisotropic sectors (and
the relative sector lemma of [FMRT]) for the bounds and the idea of further
decomposing some sector into isotropic sectors in order to improve the bounds
for the self energy; note however that the technical implementation of such ideas
in the proofs is rather different with respect to [DR], mainly for the heavy use of
trees for reorganizing the perturbative series and for the fact that we do not need
neither a “1PI analysis” to extract our power counting improvements needed
to prove the Theorem. Moreover, the presence of a non circular Fermi surface
causes many new technical problems with respect to the case in [DR]. The more
important one is that, while in the Jellium case the interacting Fermi surface is
fixed a priori to be a circle as consequence of rotational symmetry, here on the
contrary the shape and the regularity or convexity properties of the interacting
Fermi surface are completely unknown: in fact there is no a priori evidence of
the fact that the interacting Fermi surface is regular and convex uniformly in
β in the considered range of temperatures. Hence we cannot in our case fix
the interacting Fermi surface by properly tuning the chemical potential, as it is
done in [DR]; on the contrary, we proceed in a way similar to that used in [BM],
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by inserting at each integration step all the quadratic part of the interaction
in the free fermionic measure. In this way to each fermionic integration at a
certain momentum scale corresponds a different Fermi surface, and one has to
check that the geometrical conditions for defining sectors and to apply the sector
lemma are verified at each scale.
6) In [BGM] a statement similar to Theorem 1.1 above was proved. However
in [BGM] the interacting Fermi surface was fixed by adding a suitable countert-
erm to the free Hamiltonian. The result of Theorem 1.1 cannot be recovered
simply by the results of [BGM], because the inversion of the counterterm must
be discussed. This is an highly non trivial problem, that is essentially solved
below, by checking that the modified Fermi surface satisfies the same convexity
properties of the free one, at each RG step (the choice of dynamically changing
the Fermi surface instead of inverting the counterterm is not substantial and
the two approaches are essentially equivalent). The inversion problem was dis-
cussed at level of perturbation theory in the series of papers [FST] and in [Sa2].
In [PS] it was announced that the inversion problem was solved even at a non
perturbative level; a proof is however not yet published.
7) If the temperature is low enough, it is expected that Fermi liquid behavior
breaks down, as a consequence of quantum instabilities present in the systems.
It is possible to destroy such instabilities by choosing properly an highly non
symmetric dispersion relation, for instance by introducing an external magnetic
field; indeed for such a system in [FKT] a proof of Fermi liquid behavior was
given up to zero temperature in 2D. We stress that also in [FKT] the interacting
Fermi surface is not fixed by the symmetries and a counterterm is introduced to
fix the interacting Fermi surface; however, the ”inversion problem”, which we
solve for the Hubbard problem in the present paper, is still an open problem in
that case.
8) Our results hold for temperatures T ≥ e−

a
|U| where a > 0 is a suitable

constant depending on the parameters of the free Fermi surface and on the size of
the first and second order contributions of the perturbative RG expansion. This
kind of result is obtained thanks to the fact that we use an expansion in terms of
”effective couplings” in which also the marginal terms, quartic in the fermionic
fields, are renormalized. Indeed if such terms were not renormalized one could

obtain at most a bound T ≥ e−
c0
|U| , the constant c0 being related to an all order

bound, like in [DR]; of course it is expected c0 >> a. Apart from improving
the range of temperatures in which our results hold, the renormalization of the
quartic terms is technically very useful, as it greatly simplifies the discussion of
the power counting improvements on which the proof is based.
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2 Grassmann functional integrals and Renor-
malization Group analysis

2.1 Grassmann representation.

It is well–known that the usual formal power series in U for the partition function
and for the Schwinger functions of model (1.1) can be equivalently rewritten in
terms of Grassmann functional integrals, defined as follows.

Let us temporarily introduce an ultraviolet cutoff on k0 (our lattice model

has an intrinsic ultraviolet cut-off in the ~k variables) in the following way. Con-
sider the smooth support function H0(t), t ∈ R, such that

H0(t) = H0(−t)





= 1 if |t| < e0/γ ,
∈ (0, 1) if e0/γ < |t| < e0 ,
= 0 if |t| > e0 ,

(2.1)

with γ = 4 and e0 a parameter to be fixed below. Then, given a (large) integer
N , we restrict the set Dβ of k0 possible values to the set {k0 = 2π

β (n0 +
1
2 ) :

H0(γ
−Nk0) > 0}, which we shall denote with the same symbol, as well as the set

Dβ,L, which is a finite set for each N . Given N , we consider the Grassmann al-

gebra generated by the Grassmannian variables {ψ̂±
k,σ}

σ=↑↓
k∈Dβ,L

and a Grassmann

integration
∫ [∏σ=↑↓

k∈Dβ,L
dψ̂+

k,σdψ̂
−
k,σ

]
defined as the linear operator on the Grass-

mann algebra such that, given a monomial Q(ψ̂−, ψ̂+) in the variables ψ̂±
k,σ, its

action on Q(ψ̂−, ψ̂+) is 0 except in the case Q(ψ̂−, ψ̂+) =
∏σ=↑↓

k∈Dβ,L
ψ̂−
k,σψ̂

+
k,σ,

up to a permutation of the variables. In this case the value of the integral
is determined, by using the anticommuting properties of the variables, by the
condition ∫ [ σ=↑↓∏

k∈Dβ,L

dψ̂+
k,σdψ̂

−
k,σ

] σ=↑↓∏

k∈Dβ,L

ψ̂−
k,σψ̂

+
k,σ = 1 (2.2)

If we define the free propagator ĝk as ĝk = H0(γ
−Nk0)

[
− ik0 + ε0(~k) − µ

]−1

and the “Gaussian integration” P (dψ) as

P (dψ) =
[ σ=↑↓∏

k∈Dβ,L

(L2βĝk)dψ̂
+
k,σdψ̂

−
k,σ

]
· exp

{
−

σ=↑↓∑

k∈Dβ,L

(
L2βĝk

)−1
ψ̂+
k,σψ̂

−
k,σ

}
,

(2.3)
it holds that ∫

P (dψ)ψ̂−
k1,σ1

ψ̂+
k2,σ2

= L2βδσ1,σ2δk1,k2 ĝk1 , (2.4)

so that

lim
N→∞

1

L2β

∑

k∈Dβ,L

e−ik(x−y)ĝk = lim
N→∞

∫
P (dψ)ψ−

x ψ
+
y = S0(x− y) (2.5)
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where S0(x−y) was defined in (1.4) and the Grassmann fields ψ±
x,σ are defined

by

ψ±
x,σ =

1

L2β

∑

k∈Dβ,L

e±ikxψ̂±
k,σ (2.6)

Let us now consider the function on the Grassmann algebra

V (ψ) = U

∫
dxψ+

x,↑ψ
−
x,↑ψ

+
x,↓ψ

−
x,↓ (2.7)

where the symbol
∫
dx must be interpreted as

∫
dx =

∫ +β/2

−β/2
dx0

∑

~x∈Λ

(2.8)

and note that the integral
∫
P (dψ)e−V (ψ) is well defined for any U ; it is indeed

a polynomial in U , of degree depending on N and L. Standard arguments (see,
for example [NO], where a different cutoff on k0 is used) show that, if there
exists the limit of

∫
P (dψ)e−V (ψ) as N → ∞, then the normalized partition

function can be written as

e−L
2βFL,β

def
=

Tr[e−βH ]

Tr[e−βH0 ]
= lim
N→∞

∫
P (dψ)e−V (ψ) (2.9)

where H0 is equal to (1.1) with U = 0.
Similarly, the Schwinger functions defined in (1.2) can be computed as

S(x1, σ1, ε1; . . . ;xn, σn, εn) = lim
N→∞

∫
P (dψ)e−V (ψ)ψε1x1,σ1

· · ·ψεnxn,σn∫
P (dψ)e−V (ψ)

. (2.10)

In the following we shall study the functional integrals by introducing suitable
expansions where the value of N has no role and we shall indeed be able to
control such expansions uniformly in N , if U is small enough. Our procedure
also implies that we can effectively take the limit N →∞ everywhere.

Note that both the Gaussian integration P (dψ) and the interaction V (ψ)
are invariant under the action of the following symmetry transformations:

(1) spin exchange: ψεx,↑←→ψεx,↓;

(2) global U(1): ψεx,σ → eiεασψεx,σ, with ασ ∈ R independent of x;

(3) global SO(2):

(
ψεx,↑
ψεx,↓

)
→
(

cos θ sin θ
− sin θ cos θ

)(
ψεx,↑
ψεx,↓

)
, with θ ∈ R indepen-

dent of x;

(4) parity: ψ±
(x0,~x),σ

→ ψ±
(x0,−~x),σ;

(5) complex conjugation: ψ±
(x0,~x),σ

→ ψ±
(−x0,~x),σ

, c → c∗, where c is a generic

constant appearing in the formal action.
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2.2 The ultraviolet integration.

It is convenient, for clarity reasons, to start by studying the free energy FL,β ,
defined by (2.9). A preliminary step to our infrared analysis is the integration
of the ultraviolet degrees of freedom corresponding to the large values of k0.
We proceed in the following way. We decompose the free propagator ĝk into
a sum of two propagators supported in the regions of k0 “large” and “small”,
respectively. Given the function H0(t), t ∈ R, defined in (2.1), we define χ(k) =

H0

(√
k20 + [ε0(~k)− µ]2

)
and f1(k) = 1− χ(k), so that we can rewrite ĝk as:

ĝk = f1(k)ĝk + χ(k)ĝk
def
= ĝ(+1)(k) + ĝ(≤0)(k) (2.11)

We now introduce two independent sets of Grassmann fields {ψ(+1)±
k,σ } and

{ψ(≤0)±
k,σ }, k ∈ Dβ,L, σ =↑↓, and the Gaussian integrations P (dψ(+1)) and

P (dψ(≤0)), defined by

∫
P (dψ(+1))ψ̂

(+1)−
k1,σ1

ψ̂
(+1)+
k2,σ2

= L2βδσ1,σ2δk1,k2 ĝ
(+1)(k1) ,

∫
P (dψ(≤0))ψ̂

(≤0)−
k1,σ1

ψ̂
(≤0)+
k2,σ2

= L2βδσ1,σ2δk1,k2 ĝ
(≤0)(k1) . (2.12)

Similarly to P (dψ), the Gaussian integrations P (dψ(+1)), P (dψ(≤0)) also admit
an explicit representation analogous to (2.3), with ĝk replaced by ĝ(+1)(k) or
ĝ(≤0)(k) and the sum over k restricted to the values in the support of χ(k)
or f1(k), respectively; moreover, for any N ≥ 1, P (dψ(≤0)) is independent
of N . The definition of Grassmann integration implies the following identity
(“addition principle”):

∫
P (dψ)e−V (ψ) =

∫
P (dψ(≤0))

∫
P (dψ(+1))e−V (ψ(≤0)+ψ(+1)) (2.13)

so that we can rewrite FL,β as

e−L
2βFL,β =

∫
P (dψ(≤0)) exp

{ ∑

n≥1

1

n!
ET1 (−V (ψ(≤0) + ·);n)

}
≡

≡ e−L
2βF0

∫
P (dψ(≤0))e−V(0)(ψ(≤0)) , (2.14)

where the truncated expectation ET1 is defined, given any polynomial V1(ψ
(+1))

with coefficient depending on ψ(≤0), as

ET1 (V1(·);n) =
∂n

∂λn
log

∫
P (dψ(+1))eλV1(ψ

(+1))
∣∣∣
λ=0

(2.15)

and V(0), which of course depends on the ultraviolet cutoff, is fixed by the
condition V(0)(0) = 0. It can be shown (see Appendix A) that V(0) can be
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written as

V(0)(ψ(≤0)) =

∞∑

l=1

∑

σ1,...,σl=↑↓

∫
dx1 · · · dx2l ·

·
[

l∏

i=1

ψ(≤0)+
x2i−1,σi

ψ(≤0)−
x2i,σi

]
W

(0)
2l (x1, . . . ,x2l) (2.16)

where the integrations
∫
dxi must be interpreted as in (2.8). The possibility

of representing V(0) in the form (2.16), with the kernels W
(0)
2l independent of

the spin indices σi, follows from the symmetries listed above, after (2.10). For

each fixed N , the kernels W
(0)
2l vanish for l large enough; moreover they are

translation invariant and are given, in the limit N = +∞, by power series in U ,
convergent for U small enough; finally, for any family {mij , 1 ≤ i < j ≤ 2l}, of
non negative integers such that m =

∑
1≤i<j≤2lmij ≤ 2, there exists U0 such

that, if |U | ≤ U0,
∫
dx1 · · · dx2l

[ ∏

1≤i<j≤2l

|~xi − ~xj |mij

]∣∣W (0)
2l (x1, . . . ,x2l)

∣∣ ≤ L2βCl|U |max{1,l−1} ,

(2.17)
for some constant C > 0, . The proof of (2.17) is based on a multiscale analysis
of the ultraviolet integration over the time coordinates (much simpler than the
infrared integration we shall study below) and it is sketched in Appendix A.

2.3 Renormalization of the free measure.

The Grassmann integral in the r.h.s. of (2.14) is computed iteratively in the
following way. We step by step decompose the propagator into a sum of two
propagators, the first supported on momenta ∼ γh, h ≤ 0 (here γ is the same
scaling parameter appearing in (2.1)), the second supported on momenta smaller
than γh. Correspondingly we rewrite the Grassmann field as a sum of two
independent fields: ψ(≤h) = ψ(h) + ψ(≤h−1) and we integrate the field ψ(h), in
analogy with (2.14). In this way we inductively prove that, for any h ≤ 0, (2.14)
can be rewritten as

e−L
2βFL,β = e−L

2βFh

∫
PEh,Ch

(dψ(≤h))e−V(h)(ψ≤h) , (2.18)

where: V(h) can be represented by an expansion similar to (2.16), with ψ(≤0)

replaced by ψ(≤h) and the kernels W
(0)
2l replaced by new kernels W

(h)
2l ; the

Grassmann integration PEh,Ch
(dψ(≤h)) can be represented as

PEh,Ch
(dψ(≤h)) =

[ σ=↑↓∏

k∈D∗
β,L

( L2βC−1
h (k)

−ik0 + Eh(k) − µ
)
dψ

(≤h)+
k,σ dψ

(≤h)−
k,σ

]
·

· exp



−

1

L2β

σ=↑↓∑

k∈D∗
β,L

Ch(k)(−ik0 + Eh(k)− µ)ψ̂+(≤h)
k,σ ψ̂

−(≤h)
k,σ



 , (2.19)
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where Eh(k) is a function to be iteratively constructed below, with E0(k0, ~k) ≡
ε0(~k). Moreover Ch(k)

−1 is a compact support function defined as

C−1
h (k) = H0

[
γ−h

∣∣− ik0 + Eh(k) − µ
∣∣] (2.20)

and D∗
β,L the restriction of Dβ,L to the set of momenta in the support of C−1

h (k).

Note that, for h = 0, the Gaussian integration PE0,C0(dψ
(≤0)) coincides with

the integration P (dψ(≤0)) defined above. So, by this remark, we see that the
representation (2.18)–(2.19) is true at the first step h = 0. In order to inductively
prove it for h < 0 we proceed as follows. We introduce the localization operator
as a linear operator acting on the kernels of V(h) in the following way:

LW (h)
2l (x1, . . . ,x2l) =

{
W

(h)
2l (x1, . . . ,x2l) if l = 1, 2;

0 if l ≥ 3 .
(2.21)

We also define R as R = 1− L and rewrite the r.h.s. of (2.18) as

e−L
2βFh

∫
PEh,Ch

(dψ(≤h))e−LV(h)(ψ(≤h)−RV(h)(ψ(≤h) , (2.22)

where by definition LV(h) can be written as

LV(h) =
∑

σ=↑↓

∫
dxdy nh(x− y)ψ(≤h)+

x,σ ψ(≤h)−
y,σ + (2.23)

+
∑

σ,σ′=↑↓

∫
dx1 . . . dx4 λh(x1 . . .x4)ψ

(≤h)+
x1,σ ψ(≤h)−

x2,σ ψ
(≤h)+
x3,σ′ ψ

(≤h)−
x4,σ′ .

Now, calling n̂h(k) the Fourier transform of nh(x) and defining

Eh−1(k) = Eh(k) + C−1
h (k)n̂h(k) , (2.24)

we can rewrite (2.22) as

e−L
2β(Fh+th)

∫
PEh−1,Ch

(dψ(≤h))e−L4V(h)(ψ≤h)−RV(h)(ψ(≤h)) , (2.25)

where th is a constant which takes into account the change in the renormalization
factor of the measure, of size |U ||h|γ2h, as it follows from the bound in the first
line of (2.38) below. Moreover

L4V(h) =
∑

σ,σ′=↑↓

∫
dx1 . . . dx4 λh(x1 . . .x4)ψ

(≤h)+
x1,σ ψ(≤h)−

x2,σ ψ
(≤h)+
x3,σ′ ψ

(≤h)−
x4,σ′ .

(2.26)
We now define V̂(h) ≡ L4V(h) +RV(h) and again use the addition principle in
order to rewrite (2.25) as

e−L
2β(Fh+th)

∫
PEh−1,Ch−1

(dψ(≤h−1))

∫
PEh−1,f

−1
h

(dψ(h))e−V̂(h)(ψ(≤h−1)+ψ(h)) ,

(2.27)
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with PEh−1,f
−1
h

(dψ(h)) a Grassmann Gaussian integration such that

∫
PEh−1,f

−1
h

(dψ(h))ψ̂
(h)−
k1,σ1

ψ̂
(h)+
k2,σ2

= L2βδk1,k2δσ1,σ2 ĝ
(h)(k1) ,

with ĝ(h)(k) =
fh(k)

−ik0 + Eh−1(k) − µ
(2.28)

and

fh(k) = H0

[
γ−h

∣∣− ik0 + Eh(k)− µ
∣∣]−H0

[
γ−h+1

∣∣− ik0 + Eh−1(k)− µ
∣∣] .

(2.29)
If we now define

e−V(h−1)(ψ(≤h−1))−L2βF̃h =

∫
PEh−1,f

−1
h

(dψ(h))e−V̂(h)(ψ(≤h−1)+ψ(h)) , (2.30)

it is easy to see that V(h−1) is of the form (2.16), with ψ(≤0) replaced by ψ(≤h−1)

and the kernels W
(0)
2l replaced by new kernels W

(h−1)
2l , and that

Fh−1 = Fh + th + F̃h . (2.31)

It is sufficient to use the identity

V(h−1)(ψ(≤h−1)) + L2βF̃h =
∑

n≥1

1

n!
(−1)nETh (V̂(h)(ψ(≤h−1) + ·);n) (2.32)

where ETh is the truncated expectation with respect to the propagator ĝ(h)(k).
Moreover the symmetry relations listed after (2.10) are still satisfied, because
the symmetry properties of the free integration are not modified by the renor-
malization procedure, so that the effective potential V(h) on scale h has the same
symmetries as V(0) and in particular it can be expanded in the form (2.16), with

kernels W
(h)
2l independent of the spin labels.

We iterate this procedure up to the first scale hβ such that

γhβ−1e0 < min{|k0 − ImEhβ
(k)|,k ∈ Dβ,L, C−1

hβ
(k) > 0} , (2.33)

where e0 is the same of (2.1). By the properties of Eh(k), that will be described
and proved below, it will turn out that hβ is finite and actually larger than
[logγ(π/2e0β)], see comments after (2.51). Moreover, this definition is such that

fhβ
(k) = C−1

hβ
(k), hence the propagator associated with PEhβ−1,Chβ

(dψ(≤hβ)) is

given by ĝ(hβ)(k).
On scale hβ we define

e−L
2β(F̃hβ

+thβ
) =

∫
PEhβ−1,Chβ

(dψ(≤hβ))e−V̂(hβ )(ψ(≤hβ )) , (2.34)
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so that we have

FL,β = F0 +

0∑

h=hβ

(F̃h + th) . (2.35)

Note that the above procedure allows us to rewrite the effective coupling on
scale h λh(x), x = {x1,x2,x3,x4}, and the renormalized dispersion relation
Eh(k) as functionals of U and λj , Ej , with h < j ≤ 0:

Eh−1(k) = Eh(k) + C−1
h (k)β̂2

h(k;Eh, λh, . . . , E0, λ0, U) ,

λh−1(x) = λh(x) + β4
h(x;Eh, λh, . . . , E0, λ0, U) . (2.36)

The functionals β̂2
h and β4

h are called the E–component and the λ–component
of the Beta function.

The key point of the subsequent discussion will be the fact that the kernels
of the effective potentials V(h) will be given by convergent power series in U, λj ,
h ≤ j ≤ 0, under some smallness and smoothness conditions of Eh and λj .
Once identified the conditions on Eh and λh sufficient for proving convergence
of the series, we shall inductively check such conditions.

The property λh has to satisfy so that the iterative construction is well–
defined is a smallness property, a bit stronger than the request:

|λ̂h(k1,k2,k3,k1 − k2 + k3)| ≤ U0 (2.37)

where λ̂h(k1,k2,k3,k1 − k2 + k3) is the Fourier transform of λh(x1,x2,x3,x4)
and U0 is small enough. The precise statement of the smallness property we
need to require on λh is a bit technical, in particular it involves the definitions
of “sectors” and “modified running coupling functions” and we postpone it to
next subsections, see (2.92) below.

The smallness and smoothness properties that Eh(k) has to satisfy are the
following:

|Eh(k) − Eh−1(k)| ≤ C0|U ||h|γ2h 11(C−1
h (k) > 0) ,

(2.38)

|∂ki1 · · · ∂kin
(
Eh(k)− Eh−1(k)

)
| ≤

≤





Cn|U ||h|γ(2−n)h if 0 < C−1
h (k) < 1

Cn|U |2|h|γ(2−n)h if C−1
h (k) = 1

, n ≥ 1

where the function 11(condition) is the function = 1 if condition is satisfied and
= 0 otherwise, and ij ∈ {0, 1, 2}, j = 1, . . . , n, and ∂ki must be interpreted
as discrete derivatives in the three coordinate directions2, acting on functions

2In the following we will be interested in studying the L → ∞ limit of the free energy
and two–point correlation function. For this reason, even if, strictly speaking, the rigorous
way to proceed should be performing bounds at finite L, showing uniformity in L and then
performing the limit, in order not to make the notation too cumbersome and not to hide
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f : Dβ,L → R as:

∂k0f(k0, k1, k2) =
β

2π

[
f(k0 +

2π

β
, k1, k2)− f(k0, k1, k2)

]
,

∂k1f(k0, k1, k2) =
L

2π

[
f(k0, k1 +

2π

L
, k2)− f(k0, k1, k2)

]
, (2.39)

∂k2f(k0, k1, k2) =
L

2π

[
f(k0, k1, k2 +

2π

L
)− f(k0, k1, k2)

]
.

The reason for having two different bounds depending on the value of C−1(k)
in the second of (2.38) depends on the very definition of Eh−1(k) − Eh(k): by
(2.24) such difference is equal to C−1(k)n̂h(k) with n̂h(k) a function that will be
proved to be bounded proportionally to |U ||h|γ2h and with the n–th derivative
bounded proportionally to |U |2|h|γ(2−n)h; when deriving Eh−1(k) − Eh(k) the
derivatives can all fall onto C−1(k), in which case we get a term proportional
to |U ||h|γ(2−n)h (non vanishing only in the region were C−1(k) is non constant).

Note also that, by the parity and complex conjugation symmetries listed after
(2.10), Eh(k) satisfies the symmetry properties

Eh(k0, ~k) = Eh(k0,−~k) = E∗
h(−k0, ~k) . (2.40)

Note that at the first step h = 0 the symmetry (2.40) is true, by the explicit

form of ε0(~k) and the definition of E0(k).

We now proceed as follows. In the following subsections 2.4–2.9 we shall:
describe the geometric properties of the Fermi surface on scale h, which will
be crucial for the subsequent inductive bounds; describe the perturbative ex-
pansion in (λh, . . . , λ0, U) for the effective potential V(h); resume the inductive
procedure described in [BGM] (adapted to the present case) allowing to prove
that, under the above smallness and smoothness conditions on Eh and λh, the
expansion for V(h) is well–defined; adapt the expansion for the free energy to
the computation of the two–point Schwinger function and complete the proof
of the Main Theorem, under the above smallness and smoothness conditions on
Eh and λh. Then in section §3 we shall inductively prove the smallness and
smoothness properties of Eh and λh. While the smallness condition on λh will
be controlled as in [BGM], by imposing a condition on the temperature, the
inductive proof of the smallness and smoothness conditions on Eh is the main
novelty (and the real new technical difficulty) with respect to [BGM]. This will
conclude the proof of Main Theorem in the introduction.

the ideas behind the proof, we shall sometimes proceed formally by replacing the discrete
derivatives in spatial direction by their formal L → ∞ limit, and the sums (2π/L)2

∑
~k∈DL

by
∫

π

−π

∫
π

−π
d~k. Being the bounds we perform purely dimensional, it can be realized that our

bounds can be adapted also to the finite L case, and the resulting estimates turn out to be
uniform in L for L big enough. A rigorous discussion of the uniformity of the bounds at finite
L for L big enough in a case similar to the one discussed in this paper can be found in [BM]
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2.4 The Fermi surface at scale h.

Given hβ ≤ h ≤ 0 and Eh(k), we define an effective dispersion relation on scale
h as

εh(~k)
def
=

1

2

[
Eh(

π

β
,~k) + Eh(−

π

β
,~k)
]
. (2.41)

Remark. Note that, thanks to (2.40), εh(~k) is real and εh(~k) = εh(−~k).

A crucial consequence of the properties (2.38) and of the explicit form of the

unperturbed dispersion relation ε0(~k) is that at any scale h ≤ 0 we can define a

Fermi surface Σ
(h)
F = {~k : εh(~k)− µ = 0} with strong convexity properties.

Let us start by stating the properties of the free dispersion relation ε0(~k) we
shall use in the following.

1. If µ < µ0 ≡ 2−
√
2

2 , there exists e0 < µ0−µ (e0 is the same parameter appear-

ing in (2.1)) such that, for |e| ≤ e0, ε0(~k)− µ = e defines a convex curve
Σ(0)(e) encircling the origin, which can be represented in polar coordinates
as ~p = u0(θ, e)~er(θ) with ~er(θ) = (cos θ, sin θ). Moreover u0(θ, e) ≥ c0 > 0
and, if r0(θ, e) is the curvature radius,

r0(θ, e)
−1 ≥ c0 > 0 . (2.42)

Note that the symmetry property ε0(~k) = ε0(−~k) implies that the curves
Σ(0)(e) are symmetric by reflection with respect to the origin.

2. If |e| ≤ e0 and ~p = u0(θ, e)~er(θ), then

0 < c01 ≤ ~∇ε0(~p) · ~er(θ) ≤ c02 . (2.43)

3. Given e as in item 1) and ~k1, . . . , ~k2n ∈ Σ(0)(e), n ≤ 4, then

∣∣
2n∑

i=1

~ki
∣∣ < 2π . (2.44)

We shall refer to this property by saying that “umklapp processes with
n ≤ 4 quasi–particles are not allowed”.

Remark. The validity of property (3) can be checked by noting that: if µ1 < µ2

the surface Σ
(0)
µ1 (0) corresponding to chemical potential µ1 is completely enclosed

into the surface Σ
(0)
µ2 (0) corresponding to chemical potential µ2; at µ and e fixed

and n ≤ 4, the l.h.s. of (2.44) is maximized by 8 arccos(1 − µ − e), obtained
in correspondence of the choice ~ki = (arccos(1 − µ − e), 0), ∀i = 1, . . . , 2n; the
condition µ+ e0 < (2−

√
2)/2 is equivalent to 8 arccos(1− µ− e0) < 2π.
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We call Σ
(0)
F ≡ Σ(0)(0) the free Fermi surface and we put u0(θ, 0)~er(θ) =

~p
(0)
F (θ) and u0(θ) ≡ u0(θ, 0) = |~p(0)F (θ)|.
The key remark is that, if (2.38) is true for |U | ≤ U0 with U0 small enough,

for any hβ ≤ h ≤ 0, then the same properties (1)–(3) above still hold (with
slightly modified constants) for the Fermi surfaces corresponding to the disper-

sion relations εh(~k).

Lemma 2.1 Let us assume that (2.38) is satisfied for hβ ≤ h ≤ 0 and for
|U | ≤ U0, with c0 ≡ |hβ |U0 small enough. Then there exist constants e, c, c1, c2
such that the following properties are true.

1. If |e| ≤ e, εh(~k)−µ = e defines a convex curve Σ(h)(e), encircling the origin
and symmetric by reflection with respect to it, which can be represented in polar
coordinates as ~p = uh(θ, e)~er(θ). Moreover uh(θ, e) ≥ c > 0 and, if rh(θ, e) is
the curvature radius,

rh(θ, e)
−1 ≥ c > 0 . (2.45)

2. If |e| ≤ e and ~p = uh(θ, e)~er(θ), then

0 < c1 ≤ ~∇εh(~p) · ~er(θ) ≤ c2 . (2.46)

3. If µ < µ0 ≡ 2−
√
2

2 and |e| ≤ e, then

n ≤ 4 , ~ki ∈ Σ(h)(e), i = 1, . . . , 2n , ⇒
∣∣

2n∑

i=1

~ki
∣∣ < 2π . (2.47)

Remark. Lemma 2.1 says that, under the smallness and smoothness properties
(2.38) and under the symmetry assumption (2.40), the qualitative and quanti-
tative properties of the dispersion relation on scale h are the same as the free
one. From the proof below it will become clear that, if U0 is small enough, then
the constants e, c, c1, c2 can be chosen equal to: e = e0/2, c = c0/2, c1 = c01/2
and c2 = 3c02/2.

Proof. Given hβ ≤ h ≤ 0, we can write εh(~k) = ε0(~k)+
∑0
j=h+1(εj−1(~k)−εj(~k)).

From this identity and the inductive assumption (2.38) we soon find, if c0 ≤ 1,

|εh(~k)− ε0(~k)| ≤ C0|U |
0∑

j=h~k

|j|γ2j ≤ C′
0|U | ,

|~∇εh(~k)− ~∇ε0(~k)| ≤ 2C1|U |
0∑

j=h~k

γj|j| ≤ C′
1|U | , (2.48)

|∂2kikrεh(~k)− ∂
2
kikrε0(

~k)| ≤ C2|U |


|U |

0∑

j=h~k
+3

|j|+
h~k

+3∑

j=h+1

|j|


 ≤ 4C2c0 ,
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where h~k = min{j ≥ h+1 : C−1
j (πβ−1, ~k) > 0} and we used that C−1

j (πβ−1, ~k)

= 1 if j ≥ h~k + 3 and that
∑h~k

+3

j=h+1 ≤ 3. The first two bounds in (2.48)

show that εh(~k) and ~∇εh(~k) are close within O(U) and O(U2) to ε0(~k) and
~∇ε0(~k) respectively. This properties and the validity of properties (1)–(3) in

the unperturbed case h = 0 guarantee that the equation εh(~k) − µ = e can
be inverted for h < 0 if e is small enough (as it follows from an application
of implicit function Theorem). Then the set of vectors Σ(h)(e) defines a closed
curve enclosing the origin (and symmetric around it, because of the remark after
(2.41)), close to Σ(0)(e) within O(U). Also, the third bound in (2.48) implies

that the second derivatives of εh(~k) are close to the second derivatives of ε0(~k),
if c0 small enough. This means that Σ(h)(e) is convex (since so Σ(0)(e) is) and
rh(θ, e) = r0(θ, e) +O(c20) (because the curvature radius rh(θ, e) is computed in

terms of the first two derivatives of εh(~k)) and the Lemma is proved.
In analogy with the definitions corresponding to the unperturbed dispersion

relation ε0(~k), we call Σ
(h)
F ≡ Σ(h)(0) the Fermi surface on scale h and we put

uh(θ, 0)~er(θ) = ~p
(h)
F (θ) and uh(θ) ≡ uh(θ, 0) = |~p(h)F (θ)|.

We conclude this section by listing some more properties of Eh(k) and of
ĝ(h)(k) following from the inductive assumptions (2.38). First of all, by pro-
ceeding as in the proof of Lemma 2.1, we see that (2.38) imply that

|Eh(k)− E0(k)| ≤ C′
0|U |

|∂kiEh(k)− ∂kiE0(k)| ≤ C′
1|U | ,

|∂ki1 ∂ki2Eh(k) − ∂ki1∂ki2E0(k)| ≤ C′
2c0 , (2.49)

|∂ki1 · · ·∂kinEh(k) − ∂ki1 · · ·∂kinE0(k)| ≤ C′
n|U ||h|γ(2−n)h , n ≥ 3

with c0 ≡ |hβ|U0 small enough.
Finally, let us consider the propagator ĝ(h)(k) in (2.28). By putting Eh−1(k)

= Eh(k) + (Eh−1(k) − Eh(k)) and by expanding Eh(k) at first order in k0, we
see that the propagator ĝ(h)(k) in (2.28) can be rewritten as

ĝ(h)(k) =
fh(k)

−ik0
[
1 + ah(~k)

]
+ εh(~k) + rh(k) − µ

, (2.50)

where, if ∂k0 is defined as in (1.8),

ah(~k) = i∂k0Eh(−
π

β
,~k) . (2.51)

By the second of (2.40), we see that ah(~k) is real. Moreover both ah and the
rest rh can be bounded using (2.38) and (2.49); we find that there exists C > 0

such that |ah(~k)| ≤ C|U | and |rh(k)| ≤ C|U ||h|γ2h for any k in the support of
fh(k). This implies in particular that, under the inductive assumption (2.38),
the scale hβ defined in (2.33)) is finite and larger than [logγ(π/2e0β)], if U is
small enough. Moreover, by using the definition of fh(k) in (2.29), one can
easily see that there exists K > 0 such that

fh(k) 6= 0 ⇒ K−1e0γ
h ≤ |k0|+ |εh(~k)− µ| ≤ Ke0γh . (2.52)
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In particular, if fh(k) 6= 0, we can write ~k = uh(θ, e)~er(θ) with e = εh(~k) − µ
and |e| ≤ Kγhe0.

2.5 The sector decomposition.

The smoothness properties of Eh(k) and the symmetry and convexity proper-
ties of the Fermi surface described in previous subsection allow for a further
decomposition of the propagator ĝ(h)(k) that is convenient for explicitly per-
forming the bounds on the kernels of V(h): as in [BGM] we decompose the
field ψ(≤h), by slicing the support of C−1

h (k) as follows. As in section 2.3 of
[BGM], we introduce the angles θh,ω = π(ω + 1

2 )γ
h/2, with ω an integer in the

set Oh = {0, 1, . . . , γ−(h−1)/2 − 1} (recall that γ = 4). Correspondingly we
introduce the functions ζh,ω(θ) with the properties:

||θ − θh,ω|| <
π

4
γh/2 ⇒ ζh,ω(θ) = 1

||θ − θh,ω|| >
3π

4
γh/2 ⇒ ζh,ω(θ) = 0 (2.53)

∑

ω∈Oh

ζh,ω(θ) = 1 , ∀θ ∈ T
1

where || · || is the usual distance on T
1.

We also introduce the support function Fh,ω(k) = fh(k)ζh,ω(θ), where, if

k = (k0, ~k), then θ is the polar angle of ~k. We shall call the functions Fh,ω(k)
the anisotropic support functions and the indices ω ∈ Oh the anisotropic sector
indices (the name recalls the fact that the support of Fh,ω(0, ~k) is a geometric
set that is “wider” than “thick”; it is O(γh/2) “wide” in the direction tangential
to the Fermi surface and O(γh) “thick” in the normal direction).

Given any k belonging to the support of Fh,ω(k), we put

~k = ~p
(h)
F (θh,ω) + k′1~nh(θh,ω) + k′2~τh(θh,ω) = ~p

(h)
F (θh,ω) + ~k′ (2.54)

where, putting ~et(θ) = (− sin θ, cos θ), the vectors ~τh(θ) and ~nh(θ) are defined
as

~τh(θ) =
d~p

(h)
F (θ)

dθ

∣∣∣∣∣
d~p

(h)
F (θ)

dθ

∣∣∣∣∣

−1

=
u′h(θ)~er(θ) + uh(θ)~et(θ)√

u′h(θ)
2 + uh(θ)2

,

~nh(θ) =
uh(θ)~er(θ)− u′h(θ)~et(θ)√

u′h(θ)
2 + uh(θ)2

. (2.55)

Using (2.52) and (2.53) it is easy to realize that |k′1| ≤ Cγh and |k′2| ≤ Cγh/2

for some constant C; see Lemma 7.3 of [BGM] for details.
Using the decomposition (2.54), we can rewrite

ψ(h)±
x,σ ≡

∑

ω∈Oh

e±i~p
(h)

F
(θh,ω)~xψ(h)±

x,σ,ω , P (dψ(h)) =
∏

ω∈Oh

P (dψ(h)
ω ) , (2.56)
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where P (dψ
(h)
ω ) is the Grassmannian integration with propagator

g(h)ω (x) =
1

β

∑

k0∈Dβ

∫ π

−π

∫ π

−π

d~k′

(2π)2
e−i(k0x0+~k

′~x) Fh,ω(k
′ + p

(h)
F (θh,ω))

−ik0 + Eh−1(k′ + p
(h)
F (θh,ω))− µ

.

(2.57)

where we defined p
(h)
F (θh,ω)

def
= (0, ~p

(h)
F (θh,ω)). We insert the decomposition (2.56)

into the r.h.s. of (2.30):
∫
PEh−1,f

−1
h

(dψ(h)) exp
{
− V̂(h)

(
ψ(≤h−1)±
x,σ +

∑

ω∈Oh

e±i~p
(h)

F
(θh,ω)~xψ(h)±

x,σ,ω

)}
,

(2.58)
and in this way we induce a decomposition of the kernels of V(h−1) into a sum of
contributions labelled by the choices of the sector labels of the integrated fields

ψ
(h)±
x,σ,ω, see next section for a description of this further decomposition of the

kernels of V(h−1).

The bounds on the (decomposed) kernels of V(h−1) are based on the following

key bound on the asymptotic behavior of g
(h)
ω (x).

Lemma 2.2 Let us assume that the bounds (2.38) are valid and that c0 ≡
|hβ|U0 is small enough. Given hβ ≤ h ≤ 0 and ω ∈ Oh, let us put

~x = x′1~nh(θh,ω) + x′2~τh(θh,ω) (2.59)

Then, given M ≥ 1 and N ≥ 2, there exists a constant CM,N such that

|g(h)ω (x)| ≤ CM,Nγ
3
2h

[1 + (γh|dβ(x0)|+ γh|x′1|)M ][1 + γ−h(γh|x′2|)N ]
(2.60)

where dβ(x0) = βπ−1 sin(πβ−1x0).

Remark. The bound (2.60) implies that
∫
dx |x|j · |g(h)ω (x)| ≤ Cjγ−(1+j)h , j ≥ 0 , (2.61)

that will be widely used in the following. In order to prove (2.61), it is sufficient
to consider the integral obtained by substituting |x|j with (

√
|dβ(x0)|2 + |x′1|2)j1 ·

|x′2|j2 , j1 + j2 = j. This integral can be bounded by choosing M ≥ 3 + j1 and
N = 2+ j2 in (2.60) and by doing the rescalings x0 → γ−hx0, x′1 → γ−hx′1 and
x′2 → γ−h(j2+1)/(j2+2)x′2; one gets a bound proportional to γ−j1h−αj2h, with
αj = 1/2 + (j + 1)2/(j + 2) ≤ j + 1.

Proof. The key remark in order to get the bound (2.60) is the following. If

k = (k0, ~k) belongs to the support of Fh,ω(k), ω ∈ Oh, and we write ~k =

~p
(h)
F (θh,ω) + k′1~nh(θh,ω) + k′2~τh(θh,ω), then

∣∣∣∣
∂Eh−1(k)

∂k′2

∣∣∣∣ ≤ Cγ
h
2 , (2.62)
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for some constant C. In fact, if k = (k0, ~k) belongs to the support of Fh,ω(k),

we can write Eh−1(k) = εh(~k)+(Eh−1(k)−Eh(k))+(Eh(k)−εh(~k)) where, by
the properties described in previous section,

∣∣∂k′2 [(Eh−1(k)−Eh(k))+(Eh(k)−
εh(~k))]

∣∣ ≤ Cγh. Moreover it is easy to prove that ∂k′2εh(
~k) = O(γh/2). In fact we

have ~∇εh(~k) = |~∇εh(~k)|~nh(θ, e) where |~∇εh(~k)| = O(1), e = εh(~k)−µ = O(γh),

θ is the polar angle of ~k and ~nh(θ, e) is the outgoing normal vector at Σ(h)(e)

in ~k. Furthermore ||θ − θh,ω|| = O(γh/2) so that

∂εh(~k)

∂k′2
= |~∇εh(~k)|~nh(θ, e) · ~τh(θh,ω) = |~∇εh(~k)|~nh(θ) · ~τh(θh,ω) +O(γh) =

= |~∇εh(~k)| sin(θ − θh,ω) +O(γh) = O(γh/2) (2.63)

and (2.62) follows.
The bound (2.60) is simply obtained by integration by parts and dimensional

bounds on the integrand and on the measure of the support. First of all, note

that by the compact support properties of Fh,ω(k) it holds that |g(h)ω (x)| ≤
Cγ

3
2h, for some constant C. In order to bound |(x′2)Ng

(h)
ω (x)| with N ≥ 2, by

integrating by parts with respect to k′2, we rewrite:

|(x′2)Ng(h)ω (x)| =
∣∣∣
1

β

∑

k0∈Dβ

∫
d~k′

(2π)2
e−i(k0x0+~k

′~x)∂Nk′2
·

·
[ Fh,ω(k

′ + p
(h)
F (θh,ω))

−ik0 + Eh−1(k′ + p
(h)
F (θh,ω))− µ

]∣∣∣ . (2.64)

Using (2.62), (2.49) and the fact that the n-th order derivative of ζh,ω(θ) is of

order γ−nh/2, it is easy to see that ∂Nk′2

[
Fh,ω(k′+p

(h)

F
(θh,ω))

−ik0+Eh−1(k′+p
(h)

F
(θh,ω))−µ

]
= O(γ−Nh)

for N ≥ 2 and any k′ in the support of Fh,ω(k
′ + p

(h)
F (θh,ω)); this implies that

|(x′2)Ng
(h)
ω (x)| ≤ CNγ

3
2hγ−h(N−1) for some constant CN .

Similarly, using the bounds (2.49), we find that, given N ≥ 0,

|[dβ(x0)]Ng(h)ω (x)| ≤ CNγ
3
2hγ−Nh , |(x′1)Ng(h)ω (x)| ≤ CNγ

3
2hγ−Nh . (2.65)

Combining (2.65) with the analogue bounds on |g(h)ω (x)| and |(x′2)Ng
(h)
ω (x)| we

find (2.60).

Note that g
(h)
ω (x) is approximately odd in x: in fact g

(h)
ω (0) admits an im-

proved dimensional estimate with respect to the bound (2.60), as expressed by
the following Lemma.

Lemma 2.3 Let us fix h ≤ 0 and ω ∈ Oh. Then

|g(h)ω (0)| ≤ Cγ 5
2h (2.66)
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Remark. Note that the bound (2.66) on the size of g
(h)
ω (0) is γh smaller than

the bound on the size of g
(h)
ω (x), see (2.60).

Proof. The propagator g
(h)
ω (0) can be written as

g(h)ω (0) =

∫
dθζh,ω(θ)

∫
dk0ρdρ

fh(k0, ρ~er(θ))

−ik0[1 + a(θ)] + eθ(ρ) +O(c0γ2h)
(2.67)

where, referring to (2.50), a(θ) = ah(uh(θ)~er(θ)) and eθ(ρ)
def
= εh(ρ~er(θ)) −

εh(uh(θ)~er(θ)) (note that eθ(uh(θ)) = 0 and e′θ(uh(θ)) = O(1) uniformly in
θ). The bound on the error term in the denominator in (2.67) comes from

the bounds on rh(k) and ah(~k) discussed after (2.50). Similarly we find that
fh(k0, ρ~er(θ)) = f̃h

(√
k20 [1 + a(θ)]2 + eθ(ρ)2

)
+ fRh (k0, ρ~er(θ)), where

f̃h(t) = H0

(
γ−ht)−H0

(
γ−h+1t) (2.68)

and fRh (k0, ρ~er(θ)) is an O(γh) function, vanishing outside a region slightly

larger than the support of fh(k0, ρ~er(θ)). Replacing in (2.67) fh with f̃h + fRh
and using that the error term in the denominator is O(c0γ

2h), we find that

g(h)ω (0) =

∫
dθζh,ω(θ)

∫
dk0ρdρ

f̃h
(√

k20 [1 + a(θ)]2 + eθ(ρ)2
)

−ik0[1 + a(θ)] + eθ(ρ)
+R(h)

ω , (2.69)

where the rest R
(h)
ω is dimensionally bounded by |R(h)

ω | ≤ cγ 5
2h.

Now, for any fixed θ, we can use Dini’s theorem to invert the relation eθ(ρ) =
e into ρ = ρ(e), and we can rewrite the first integral in the r.h.s. of (2.69) as

∫
dθζh,ω(θ)

∫
dk0ρ(e)de

1

e′θ(ρ(e))

f̃h
(√

k20 [1 + a(θ)]2 + e2
)

−ik0[1 + a(θ)] + e
(2.70)

Note that on the support of f̃h we have e = O(γh), so that we can rewrite
ρ(e) = uh(θ) + O(γh) and e′θ(ρ(e)) = e′θ(uh(θ)) + O(γh), where uh(θ) and
e′θ(uh(θ)) are bounded below and above by positive O(1) constants, uniformly
in θ. Then (2.70) is equal to

∫
dθζh,ω(θ)uh(θ)

1

e′θ(uh(θ))

∫
dk0de

f̃h
(√

k20 [1 + a(θ)]2 + e2
)

−ik0 + e
+O(γ

5
2h) (2.71)

and, since the first integral is zero by oddity, the Lemma is proved.

In order to perform the inductive bounds, in the following it will also be
convenient to introduce, besides the anisotropic sector functions, the isotropic
ones, defined as follows. We introduce the angles θh,ω̄ = π(ω + 1

2 )γ
h, with ω an

integer in the set Oh = {0, 1, . . . , γ−(h−1) − 1}, and the functions ζh,ω̄(θ) with
the properties:

||θ − θh,ω̄|| <
π

4
γh ⇒ ζh,ω(θ) = 1
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||θ − θh,ω̄|| >
3π

4
γh ⇒ ζh,ω(θ) = 0 (2.72)

∑

ω̄∈Ōh

ζh,ω̄(θ) = 1 , ∀θ ∈ T
1 .

We also introduce the support functions Fh,ω̄(k) = fh(k)ζh,ω̄(θ), to be called
the isotropic support functions. From now on we shall use the convention that

we shall denote all the quantities associated with the isotropic sectors by symbols
obtained by overlining the symbols for the corresponding quantities associated
with the anisotropic sectors.

Given any k belonging to the support of Fh,ω̄(k), we put

~k = ~p
(h)
F (θh,ω̄) + ~k′ (2.73)

where ~k′ = O(γh). Correspondingly we can decompose g(h)(k) into a sum of
isotropic propagators:

g(h)(x) =
∑

ω̄∈Ōh

ei~p
(h)

F
(θ̄h,ω̄)~xg

(h)
ω̄ (x) ,

g
(h)
ω̄ (x) =

1

β

∑

k0∈Dβ

∫ π

−π

∫ π

−π

d~k′

(2π)2
e−i(k0x0+~k

′~x) ·

· Fh,ω̄(k
′ + p

(h)
F (θh,ω̄))

−ik0 + Eh−1(k′ + p
(h)
F (θh,ω̄))− µ

. (2.74)

with g
(h)
ω̄ (x) satisfying the following analogue of Lemma 2.2 and of Lemma 2.3

(to be proven via a repetition of the proof of Lemma 2.2 and Lemma 2.3).

Lemma 2.4 Let us assume that the bounds (2.38) are valid and that c0 ≡
|hβ|U0 is small enough. Given hβ ≤ h ≤ 0 and ω ∈ Oh and N ≥ 0, there exists
a constant CN such that

|g(h)ω̄ (x)| ≤ CNγ
2h

1 + (γh|dβ(x0)|+ γh|~x|)N . (2.75)

Remark. (2.75) implies the analogue of (2.61):
∫
dx |x|j · |g(h)ω̄ (x)| ≤ Cjγ−(1+j)h , j ≥ 0 . (2.76)

Note that the dimensional bound on the integral of an isotropic propagator is
the same as the bound on the integral of an anisotropic one.

Lemma 2.5 Let us fix h ≤ 0 and ω ∈ Oh. Then

|g(h)ω̄ (0)| ≤ Cγ3h (2.77)
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Remark. Note that the bound (2.77) on the size of g
(h)
ω̄ (0) is γh smaller than

the bound on the size of g
(h)
ω̄ (x), see (2.75).

2.6 The tree expansion.

In this section and in the two following ones we shall describe the expansion for
the effective potential V(h) and the inductive bounds we use to prove conver-
gence of the expansion for the free energy, under the smoothness and smallness
assumption (2.38) and under a smallness assumption on λh(x) to be stated in
a precise form below. In particular we shall summarize the bounds described
in [BGM] in a form adapted to the present case and suitable for proving the
improved dimensional bounds on Eh(k) (i.e. allowing for an inductive proof of
(2.38), see next Chapter).

Our expansion of V(h), 0 ≥ h ≥ hβ , is obtained by integrating iteratively the
field variables of scale j ≥ h+1 and sector index ω ∈ Oj (for the moment we do
not consider isotropic sectors; they will be introduced in next Chapter in order
to optimize the bounds) and by applying at each step the localization procedure
described above. The result can be expressed in terms of a tree expansion,
very similar to the one described in [BGM]. For completeness we list here the
definition of trees. See Fig.1 for an example of a possible tree appearing in the
expansion for the effective potentials.

r v0

v

h h+ 1 hv −1 0 +1

Figure 1: : an example of tree.

1) Let us consider the family of all trees which can be constructed by joining
a point r, the root, with an ordered set of n ≥ 1 points, the endpoints of the
unlabelled tree (see Fig. 1), so that r is not a branching point. n will be called
the order of the unlabelled tree and the branching points will be called the non
trivial vertices. The unlabelled trees are partially ordered from the root to the
endpoints in the natural way; we shall use the symbol < to denote the partial
order.
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Two unlabelled trees are identified if they can be superposed by a suitable
continuous deformation, so that the endpoints with the same index coincide.
It is then easy to see that the number of unlabelled trees with n end-points is
bounded by 4n.

We shall consider also the labelled trees (to be called simply trees in the
following); they are defined by associating some labels with the unlabelled trees,
as explained in the following items.
2) We associate a label h ≤ −1 with the root and we denote by Th,n the
corresponding set of labelled trees with n endpoints. Moreover, we introduce
a family of vertical lines, labelled by an integer taking values in [h, 1], and we
represent any tree τ ∈ Th,n so that, if v is an endpoint or a non trivial vertex,
it is contained in a vertical line with index hv > h, to be called the scale of v,
while the root is on the line with index h. There is the constraint that, if v is
an endpoint, hv > h+ 1.

The tree will intersect in general the vertical lines in set of points different
from the root, the endpoints and the non trivial vertices; these points will be
called trivial vertices. The set of the vertices of τ will be the union of the
endpoints, the trivial vertices and the non trivial vertices. Note that, if v1 and
v2 are two vertices and v1 < v2, then hv1 < hv2 .

Moreover, there is only one vertex immediately following the root, which
will be denoted v0 and can not be an endpoint (see above); its scale is h+ 1.

Finally, if there is only one endpoint, its scale must be equal to h+ 2.
3) With each endpoint v of scale hv = +1 we associate one of the monomials in
(2.16) contributing to V(0) and a set xv of space-time points (the corresponding
integration variables); with each endpoint of scale hv ≤ 0 we associate a con-
tribution of type λ, that is a contribution of the form (2.26), with h = hv − 1,
and the corresponding set xv of space-time points. We impose the constraint
that, if v is an endpoint, hv = hv′ +1, if v′ is the non trivial vertex immediately
preceding v.

Given a vertex v, which is not an endpoint, xv will denote the family of all
space-time points associated with one of the endpoints following v.
4) If v is not an endpoint, the cluster Lv with scale hv is the set of endpoints
following the vertex v; if v is an endpoint, it is itself a (trivial) cluster. The tree
provides an organization of endpoints into a hierarchy of clusters.
5) The trees containing only the root and an endpoint of scale h+1 (note that
they do not belong to Th,1 ) will be called the trivial trees.
6) We introduce a field label f to distinguish the field variables appearing in
the terms associated with the endpoints as in item 3); the set of field labels
associated with the endpoint v will be called Iv. Analogously, if v is not an
endpoint, we shall call Iv the set of field labels associated with the endpoints
following the vertex v; x(f), ε(f) = ± and σ(f) =↑↓ will denote the space-time
point, the creation/annihilation index and the spin index, respectively, of the
field variable with label f .
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In terms of these trees, the effective potential V(h), h ≤ 1, can be written as

V(h)(ψ(≤h)) + LβF̃h+1 =

∞∑

n=1

∑

τ∈Th,n

V(h)(τ, ψ(≤h)) , (2.78)

where, if v0 is the first vertex of τ and τ1, .., τs (s = sv0) are the subtrees of τ
with root v0, V(h)(τ, ψ(≤h)) is defined inductively by the relation

V(h)(τ, ψ(≤h)) =
(−1)s+1

s!
ETh+1[V̄(h+1)(τ1, ψ

(≤h+1)); . . . ; V̄(h+1)(τs, ψ
(≤h+1))] ,

(2.79)
and V̄(h+1)(τi, ψ

(≤h+1))
a) is equal to RV(h+1)(τi, ψ

(≤h+1)) if the subtree τi is not trivial;
b) if τi is trivial and h < −1, it is equal to L4V(h+1) or, if h = −1, to one of
the monomials contributing to V(0)(ψ≤0).
ETh+1 denotes the truncated expectation with respect to the measure P (dψ(h+1)),
that is

ETh+1(X1; . . . ;Xp) ≡
∂p

∂λ1 . . . ∂λp
log

∫ ∏

ω

P (dψ(h+1)
ω )eλ1X1+···λpXp

∣∣∣∣∣
λi=0

.

(2.80)
This means, in particular, that, in (2.79), one has to use for the field variables
the sector decomposition (2.56). The sector decomposition induces a further
decomposition of the functions V(h)(τ, ψ(≤h)) in the r.h.s. of (2.78) and in order
to describe it we need some more definitions.

We associate with any vertex v of the tree a subset Pv of Iv, the external
fields of v. These subsets must satisfy various constraints. First of all, if v is
not an endpoint and v1, . . . , vsv are the vertices immediately following it, then
Pv ⊂ ∪iPvi ; if v is an endpoint, Pv = Iv. Given a vertex v, |Pv| = 2 is not
allowed and vertices v with |Pv| = 4 are necessarily endpoints. We shall denote
Qvi the intersection of Pv and Pvi ; this definition implies that Pv = ∪iQvi . The
subsets Pvi\Qvi, whose union Iv will be made, by definition, of the internal
fields of v, have to be non empty, if sv > 1. Given τ ∈ Th,n, there are many
possible choices of the subsets Pv, v ∈ τ , compatible with all the constraints.
We shall denote Pτ the family of all these choices and P the elements of Pτ .

Moreover, we associate with any f ∈ Iv a scale label h(f) = hv and an index
ω(f) ∈ Oh(f). Note that h(f) and ω(f) single out a sector of scale h(f) and
sector index ω(f) associated with the field variable of index f . In this way we
assign h(f) and ω(f) to each field label f , except those which correspond to the
set Pv0 ; we associate with any f ∈ Pv0 the scale label h(f) = h and a sector
index ω(f) ∈ Oh. We shall also put, for any v ∈ τ , Ωv = {ω(f), f ∈ Pv}. We
shall call Oτ the family of possible values of Ω = {ω(f), f ∈ ∪vIv}.

With these definitions, we can rewrite V(h)(τ, ψ(≤h)) in the r.h.s. of (2.78)
as:

V(h)(τ, ψ(≤h)) =
∑

P∈Pτ ,Ω∈Oτ

V(h)(τ,P,Ω) ,
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V(h)(τ,P,Ω) =

∫
dxv0 ψ̃

(≤h)
Ωv0

(Pv0)K
(h+1)
τ,P,Ω (xv0) , (2.81)

where
ψ̃
(≤h)
Ωv

(Pv) =
∏

f∈Pv

eiε(f)~p
(h)

F
(θh,ω(f))~x(f)ψ

(≤h)ε(f)
x(f),σ(f),ω(f) (2.82)

and K
(h+1)
τ,P,Ω (xv0 ) is defined inductively by the equation, valid for any v ∈ τ

which is not an endpoint,

K
(hv)
τ,P,Ω(xv) =

1

sv!

sv∏

i=1

[K(hv+1)
vi (xvi)] EThv

[ψ̃
(hv)
Ω1

(Pv1\Qv1), . . . , ψ̃
(hv)
Ωsv

(Pvsv \Qvsv )] ,

(2.83)

where Ωi = {ω(f), f ∈ Pvi\Qvi} and ψ̃
(hv)
Ωi

(Pvi\Qvi) has a definition similar to

(2.82). Moreover, if v is an endpoint and hv ≤ 0, K
(hv)
v (xv) = λhv−1(xv), while

if hv = +1 K
(1)
v is equal to one of the kernels of the monomials in (2.16).

(2.78)–(2.81) is not the final form of our expansion; we further decompose
V(h)(τ,P,Ω), by using the following representation of the truncated expectation
in the r.h.s. of (2.83). Let us put s = sv, Pi ≡ Pvi\Qvi ; moreover we order in an
arbitrary way the sets P±

i ≡ {f ∈ Pi, ε(f) = ±}, we call f±
ij their elements and

we define x(i) = ∪f∈P−
i
x(f), y(i) = ∪f∈P+

i
x(f), xij = x(f−

i,j), yij = x(f+
i,j).

Note that
∑s

i=1 |P−
i | =

∑s
i=1 |P+

i | ≡ n, otherwise the truncated expectation
vanishes. A couple l ≡ (f−

ij , f
+
i′j′) ≡ (f−

l , f
+
l ) will be called a line joining the

fields with labels f−
ij , f

+
i′j′ , sector indices ω−

l = ω(f−
l ), ω+

l = ω(f+
l ) and spin

indices σ−
l = σ(f−

l ), σ+
l = σ(f+

l ), connecting the points xl ≡ xi,j and yl ≡ yi′j′ ,
the endpoints of l. Moreover, if ω−

l = ω+
l , we shall put ωl ≡ ω−

l = ω+
l . Then, it

is well known [Le, GM] that, up to a sign, if s > 1,

ETh (ψ̃
(h)
Ω1

(P1), ..., ψ̃
(h)
Ωs

(Ps)) =

=
∑

T

∏

l∈T
g̃(h)ωl

(xl − yl)δω−
l
,ω+

l
δσ−

l
,σ+

l

∫
dPT (t) detG

h,T (t) , (2.84)

where
g̃(h)ω (x) = e−i~pF (θh,ω)~xg(h)ω (x) (2.85)

and T is a set of lines forming an anchored tree graph between the clusters of
points x(i) ∪ y(i), that is T is a set of lines, which becomes a tree graph if one
identifies all the points in the same cluster. Moreover t = {ti,i′ ∈ [0, 1], 1 ≤
i, i′ ≤ s}, dPT (t) is a probability measure with support on a set of t such that
ti,i′ = ui · ui′ for some family of vectors ui ∈ R

s of unit norm. Finally Gh,T (t)
is a (n− s+ 1)× (n− s+ 1) matrix, whose elements are given by

Gh,Tij,i′j′ = ti,i′ g̃
(h)
ωl

(xij − yi′j′)δω−
l
,ω+

l
(2.86)

with (f−
ij , f

+
i′j′ ) not belonging to T .
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In the following we shall use (2.84) even for s = 1, when T is empty, by
interpreting the r.h.s. as equal to 1, if |P1| = 0, otherwise as equal to detGh =
ETh (ψ̃(h)(P1)).

If we apply the expansion (2.84) in each non trivial vertex of τ , we get an
expression of the form

V(h)(τ,P,Ω) =
∑

T∈T

∫
dxv0 ψ̃

(≤h)
Ωv0

(Pv0)W
(h)
τ,P,Ω\Ωv0 ,T

(xv0 ) ≡
∑

T∈T

V(h)(τ,P,Ω, T ) ,

(2.87)
where T is a special family of graphs on the set of points xv0 , obtained by
putting together an anchored tree graph Tv for each non trivial vertex v. Note
that any graph T ∈ T becomes a tree graph on xv0 , if one identifies all the points
in the sets xv, for any vertex v which is also an endpoint. Given τ ∈ Th,n and
the labels P,Ω, T , calling v∗i , . . . , v

∗
n the endpoints of τ and putting hi = hv∗

i
,

the explicit representation of W
(h)
τ,P,Ω\Ωv0 ,T

(xv0) in (2.87) is

Wτ,P,Ω\Ωv0 ,T
(xv0) =

[
n∏

i=1

Khi

v∗
i
(xv∗

i
)

]{
∏

v

not e.p.

1

sv!

∫
dPTv

(tv) ·

· detGhv ,Tv (tv)
[ ∏

l∈Tv

δω+
l
,ω−

l
δσ−

l
,σ+

l
g̃(hv)
ωl

(xl − yl)]
]}

, (2.88)

2.7 Modification of the running coupling functions.

Let us consider the expansion described in previous section and let us remark
that, thanks to momentum conservation and compact support properties of
propagator Fourier transforms, V(h)(τ,P,Ω) vanishes for some choices of Ω.
In the following bounds it will be crucial to take into account this constraint,
and for this reason we introduce a different representation of the running cou-
pling functions λh, in order to include in the new definitions the momentum
constraints on the external lines of the corresponding vertices.

We define, for any h ≤ 0 and ω ∈ Oh, the s-sector Sh,ω as

Sh,ω = {~k = ρ~er(θ) ∈ R
2 : |εh(~k)− µ| ≤ γhe0, ζh,ω(θ) 6= 0} . (2.89)

Remark. Note that the definition of s-sector has the property, to be used ex-
tensively in the following, that the s-sector Sh+1,ω of scale h + 1 contains the
union of two s-sectors of scale h: Sh+1,ω ⊇ {Sh,2ω ∪ Sh,2ω+1}. This follows from
the definition of ζh,ω and the inductive assumption on Eh(k), see (2.38), to-
gether with the fact that γ = 4 (so that γ1/2 = 2). Moreover Sh,2ω and Sh,2ω+1

are the two only sectors on scale h strictly contained into Sh+1,ω.

We now observe that the field variables ψ̂
≤hv0 ,ε(f)

k(f),ω(f),σ(f) have the same supports

as the functions C−1
hv0

(k(f)) ζhv0 ,ω(f)
(θ(f)) and h(f) ≤ hi−1, ∀f ∈ Pv∗

i
; hence in

the expression (2.88), we can freely multiply K̂hi

v∗
i
(kv∗

i
) by

∏
f∈Pv∗

i

F̃hi−1,ω̃(f)(~k),
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where F̃h,ω(~k) is a smooth function equal to 1 on Sh,ω and with a support
slightly greater than Sh,ω, while ω̃(f) ∈ Ohi−1 is the unique sector index such
that Sh(f),ω(f) ⊆ Shi−1,ω̃(f). In order to formalize this statement, it is useful to
introduce the following definition.

Let G(~x) be a function of 2p variables ~x = (~x1, . . . , ~x2p) with Fourier trans-

form Ĝ(~k), defined so that G(~x) =
∫
d~k(2π)−4p exp(−i∑2p

l=1 εi
~ki~xi)Ĝ(~k), where

ε1, . . . , εp = −εp+1 = . . . = −ε2p = +1. Then, we define, given h ≤ 0 and a
family ω = {ωi ∈ Oh, i = 1, . . . , 2p} of sector indices,

(F2p,h,ω ∗G)(~x) =
∫

d~k

(2π)4p
e−i
∑

2p

l=1
εi~ki~xi

[
2p∏

i=1

F̃h,ωi
(~ki)

]
Ĝ(~k) . (2.90)

Hence, if we put pi = |Pv∗
i
|, Ωv∗

i
= {ω(f), f ∈ Pv∗

i
} and we define

K̃hi

v∗
i
,Ωv∗

i

(xv∗
i
) =

(
Fpi,hi−1,Ωv∗

i

∗Khi

v∗
i

)
(xv∗

i
) , (2.91)

we can substitute in (2.88) each Khi

v∗
i
(xv∗

i
) with K̃hi

v∗
i
,Ωv∗

i

(xv∗
i
), to be called the

modified coupling functions. In particular, if v∗i is of type λ, we shall denote
the corresponding modified coupling functions by the symbol λ̃hi−1,Ωv∗

i

(xv∗
i
).

The smallness condition on λ can be now stated in terms of λ̃hi−1,Ωv∗
i

(xv∗
i
) as

follows:
1

L2β

∫
dxv∗

i
|λ̃hi−1,Ωv∗

i

(xv∗
i
)| ≤ C|U | , (2.92)

for some constant C > 0.

We shall call W
(mod)
τ,P,Ω,T (xv0 ) the expression we get from Wτ,P,Ω\Ωv0 ,T

(xv0 )

by the substitution of the kernels Khi

v∗
i
(xv∗

i
) with the modified ones. Note that

W
(mod)
τ,P,Ω,T (xv0) is not independent of Ωv0 , unlike Wτ,P,Ω\Ωv0 ,T

(xv0), and that

W
(mod)
τ,P,Ω,T (xv0) is equal to Wτ,P,Ω\Ωv0 ,T

(xv0 ), only if |Pv0 | = 0; however, the
previous considerations imply that, if p0 = |Pv0 | > 0,

(
Fp0,h,Ωv0

∗W (mod)
τ,P,Ω,T

)
(xv0) =

(
Fp0,h,Ωv0

∗Wτ,P,Ω\Ωv0 ,T

)
(xv0 ) , (2.93)

a trivial remark which will be important in the discussion of the running coupling
functions flow in next Chapter.

2.8 Bounds for the effective potentials and the free energy.

In order to explicitly keep track of the constraints satisfied by the sector indices
Ω, which is crucial for performing the dimensional bounds on the free energy,
we introduce the following constraint functions. Given a tree τ ∈ Th,n with all
its labels, a vertex v ∈ τ and the set of anisotropic sector indices Ωv = {ω(f) ∈
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Oh(f), f ∈ Pv} labelled by Pv, we define

χ(Ωv) =





11
(
∀f ∈ Pv, ∃~k(f) ∈ Sh(f),ω(f) :

∑
f∈Pv

ε(f)~k(f) = 0
)
, |Pv| ≤ 8

1 , |Pv| ≥ 10 .
(2.94)

The previous considerations and (2.35) imply that

FL,β ≤ F0 +

0∑

h=hβ


th +

∞∑

n=1

∑

τ∈Th,n

∑

P∈Pτ
|Pv0 |=0

∑

T∈T

J
(0)
h,n(τ,P, T )


 , (2.95)

with

J
(F )
h,n (τ,P, T ) =

∑

Ω\Ω(F )
ext

[
∏

v

χ(Ωv)

]∫
d(xv0\x∗)

∣∣∣W (mod)
τ,P,Ω,T (xv0)

∣∣∣ , (2.96)

where x∗ is an arbitrary point in xv0 , Ω ∈ Oτ and, if 2l0 = |Pv0 | > 0 and

0 < F ≤ 2l0, Ω
(F )
ext ⊂ Ωv0 is an arbitrary subset of the sector indices in Ωv0 of

cardinality F , |Ω(F )
ext | = F : in particular, if l0 = 0 or F = 0,

∑
Ω\Ω(F )

ext∈Oτ
coin-

cides with
∑

Ω∈Oτ
. Note that we could freely insert

∏
v χ(Ωv) in (2.96), because

of the constraints following from momentum conservation and the compact sup-
port properties of propagator Fourier transforms; here we used that umklapp
processes are impossible if |Pv| ≤ 8 (because of the condition on µ chosen in
Theorem 1.1); for vertices with |Pv| ≥ 10 we discarded any possible constraint
coming from momentum conservation (modulo 2πZ2).

The following Theorem will be the starting point of our analysis.

Theorem 2.1 Given hβ ≤ h ≤ 0, τ ∈ Th,n, P ∈ Pτ , T ∈ T, if Ej(k) satisfies

(2.38) for any j ≥ h, λ̃hv∗−1,Ωv∗
satisfies (2.92) for any endpoint v∗ ∈ τ and

U0|hβ| = c0 is small enough, then

J
(0)
h,n(τ,P, T ) ≤ (c|U |)nγh(2− 3

4 |Pv0 |)
∏

v not e.p.

1

sv!
γδ(|Pv |) ,

J
(1)
h,n(τ,P, T ) ≤ (c|U |)nγh( 5

2− 3
4 |Pv0 |)

∏

v not e.p.

1

sv!
γδ(|Pv|) , (2.97)

where
δ(p) = 1− p

4
+ 11(p ≥ 10) . (2.98)

Remark. By construction, clusters with |Pv| = 2 are not allowed, and clusters
with |Pv| = 4 are necessarily endpoints. Then the exponent δ(|Pv|) appearing in
(2.97) is always ≤ −1/2 and, as a consequence, it can be easily proved that the
sums over P and τ in (2.95) converge exponentially, see [BGM], so that the sum
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in the r.h.s. of (2.95) is absolutely convergent and, under the assumptions of
the Theorem, limL→∞ FL,β does exist and is O(U). This proves the first claim
in the Remark following Theorem 1.1.

In the remaining part of this section we shall give the proof of Theorem
2.1, already presented in section 2.7 of [BGM] (see in particular eq. 2.101) in a
slightly different case and with a smallness condition on the λ̃h different from
(2.92) (but dimensionally equivalent). Moreover, the proof will be presented
here in a form convenient for performing the improved dimensional bounds on
Eh(k) in next Chapter.

Proof. We shall describe the proof in the case that all the endpoints are of
type λ. A posteriori, it will be clear that the possible presence of endpoints of
scale +1 with p ≥ 6 external legs (produced by the ultraviolet integration, see
Appendix A) does not qualitatively change the argument.

We begin with considering the case F = 1. By using the definition of

W
(mod)
τ,P,Ω,T (xv0) and the expression (2.88), we can bound the r.h.s. of (2.96)

as

∑

Ω\Ω(1)
ext

[
∏

v

χ(Ωv)

] ∫ ∏

l∈T∗

d(xl − yl)

[
n∏

i=1

|λ̃hi−1,Ωv∗
i

(xv∗
i
)|
]
·

·
{

∏

v

not e.p.

1

sv!
max
tv
| detGhv ,Tv (tv)|

∏

l∈Tv

|g(hv)
ωl

(xl − yl)|
}
, (2.99)

where T ∗ is a tree graph obtained from T = ∪vTv, by adding in a suitable
(obvious) way, for each endpoint v∗i , i = 1, . . . , n, two lines connecting the four
space-time points belonging to xv∗

i
.

A standard application of Gram–Hadamard inequality, combined with the

dimensional bound on g
(h)
ω given by Lemma 2.2, implies (see eq.(2.80) of [BGM]

and related proof) that

| detGhv ,Tv
α (tv)| ≤ c

∑
sv

i=1
|Pvi

|−|Pv|−2(sv−1) · γhv
3
4 (
∑

sv

i=1
|Pvi

|−|Pv|−2(sv−1)) .
(2.100)

By using the bound (2.61) with j = 0, it also follows that

∏

v not e.p.

1

sv!

∫ ∏

l∈Tv

d(xl − yl)|g(hv)
ωl

(xl − yl)| ≤ cn
∏

v not e.p.

1

sv!
γ−hv(sv−1) .

(2.101)
The smallness assumption (2.92) on the size of λ̃hv−1,Ωv

implies that

∫ ∏

l∈T∗\∪vTv

d(xl − yl)

n∏

i=1

|λ̃hi−1,Ωv∗
i

(xv∗
i
)| ≤ (C|U |)n . (2.102)

33



Finally, as we shall explain below, by suitably taking into account the constraint
functions χ(S(Pv)), the sum over the choices of the sector indices gives

∑

Ω\Ω(1)
ext

∏

v∈τ

(
χ(Ωv)

∏

l∈Tv

δω+
l
,ω−

l

)
≤ (2.103)

≤ cnγ− 1
2hn

∏

v 6 e. p.
γ[−

1
2m4(v)+

1
2 (|Pv |−3)11(4≤|Pv|≤8)+ 1

2 (|Pv |−1)11(|Pv |≥10)] ,

where m4(v) denotes the number of endpoints (all of type λ, by hypothesis)
following v on τ . It is straightforward to check that Theorem 2.1 in the case
F = 1 follows by combining the bounds (2.100), (2.101), (2.102) and (2.104).

If F = 0 and |Pv0 | > 0, the Theorem simply follows by the remark that the
r.h.s. of (2.96), that is of the form

∑
Ω[· · ·] can be rewritten as

∑
ω1∈Oh

∑
Ω\ω1

[· · ·],
where ω1 is an arbitrary sector index in Ωv0 . Now, the sum

∑
Ω\ω1

[· · ·] can be

bounded as in the second line of (2.97), the first sum
∑
ω1∈Oh

gives a contri-

bution O(γ−h/2) and the first line of (2.97) follows. If |Pv0 | = 0, the proof of

(2.104) shows that the same bound is true if the sector Ω
(1)
ext is substituted with

a suitable internal sector; hence the Theorem follows by the same remark as
before.

Let us now describe the proof of (2.104), that will be the starting point of
the proof of the improved dimensional bounds on Eh(k), to be described in next
Chapter.

Let us first note that, by the definition of s–sector Sh,ω and by the properties
of Eh(k), the following crucial property is true:

given ω ∈ Oh and the s–sector Sh,ω, for any j > h there is a unique ω′(j;ω) ∈ Oj
such that Sj,ω′(j;ω) ⊃ Sh,ω.

This property allows us to give a meaning to the following definition. Given

τ ∈ Th,n, P ∈ Pτ and v ∈ τ , we introduce the symbol Ω
(j)
v to denote the set

Ω(j)
v = {ω(f), f ∈ Pv : h(f) ≥ j} ∪ {ω′(j;ω(f)), f ∈ Pv : j > h(f)} ≡
≡ {ω(j)

f ∈ Oj(j)
f

, f ∈ Pv} , (2.104)

where the last identity defines the scales j
(j)
f and the sector indices ω

(j)
f , f ∈ Pv.

The definition (2.104) implies in particular that Ωv = Ω
(h)
v . With reference to

definition (2.104), in the following we shall also denote:

χ(Ω(j)
v ) = 11

(
∀f ∈ Pf , ∃~k(f) ∈ Sj(j)

f
,ω

(j)

f

:
∑

f∈Pf

ε(f)~k(f) = ~0
)
, (2.105)

Note in particular that:

χ(Ω(j)
v ) ≤ χ(Ω(k)

v ) , if j ≤ k . (2.106)
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Given τ ∈ Th,n, we define the set Vc(τ) of c–vertices of τ as the set of vertices v
of τ which either are endpoints or have the property that their set Iv of internal
lines is non empty3; in the following we shall often drop the dependence on τ
(when it is clear from the context). Note that by definition, if τ ∈ Th,n, then
|Vc(τ)| = O(n) and it holds

∏
v∈τ χ(Ωv) =

∏
v∈Vc

χ(Ωv). Moreover, using that

Ωv = Ω
(h)
v , we see that we can replace the product

∏
v∈τ χ(Ωv) in the l.h.s. of

(2.104) by
∏
v∈Vc

χ(Ω
(h)
v ).

We now begin to inductively bound the l.h.s. of (2.104); first of all we shall
bound the sum corresponding to the first c–vertex following the root; then we
will iteratively enter its structure. After each step we will be left with a product
of sector sums of the same form of the initial one, but on larger scales.

We call ṽ0 the first c–vertex following the root and h0 ≡ hṽ0 (the scale label
of the legs belonging to Tṽ0); using (2.106), we find

∏

v∈Vc

χ(Ω(h)
v ) ≤ χ(Ω(h)

ṽ0
)

∏

v>ṽ0,v∈Vc

χ(Ω(h0)
v ) . (2.107)

Substituting (2.107) into the l.h.s. of (2.104), we find

∑

Ω\Ω(1)
ext

∏

v∈Vc

(
χ(Ω(h)

v )
∏

l∈Tv

δω+
l
,ω−

l

)
≤ (2.108)

≤
∗∑

Ω
(h0)

ṽ0

[ ∗∑

Ω
(h)

ṽ0
≺Ω

(h0)

ṽ0

χ(Ω
(h)
ṽ0

)
] ∑

Ω\Ωṽ0

∏

v>ṽ0,v∈Vc

χ
(
Ω(h0)
v

)∏

l∈T
δω+

l
,ω−

l
,

where Ω
(h)
ṽ0
≺ Ω

(h0)
ṽ0

means that the indices in Ω
(h)
ṽ0

satisfy the following con-

straint: given f ∈ Pv and the corresponding index ω
(h0)
f ∈ O

j
(h0)

f

of Ω
(h0)
ṽ0

, then

the index ω
(h)
f ∈ O

j
(h)

f

of Ω
(h)
ṽ0

is such that S
j
(h)

f
,ω

(h)

f

⊂ S
j
(h0)

f
,ω

(h0)

f

. The symbol

∗ on the sums in the second line means that the sector index in Ω
(1)
ext, associated

to one of the fields in Pṽ0 (say to the field f0 ∈ Pṽ0), is not summed over.
By the sector counting Lemma (see Lemma C.1 in Appendix C), the sum in

square brackets can be bounded, uniformly in Ω
(h0)
ṽ0

, as

∗∑

Ω
(h)
ṽ0

≺Ω
(h0)

ṽ0

χ(Ω
(h)
ṽ0

) ≤ cγ(h0−h)[ 12 (|Pṽ0 |−3)11(4≤|Pṽ0 |≤8)+ 1
2 (|Pṽ0 |−1)11(|Pṽ0 |≥10)]

(2.109)
so that the r.h.s. of (2.109) can be bounded by the r.h.s. of (2.109) times

∗∑

∪vΩ
(h0)
v

[ ∏

v>ṽ0,v∈Vc

χ(Ω(h0)
v )

][∏

l∈T
δω+

l
,ω−

l

]
, (2.110)

3With reference to the definition of χ–vertices introduced in Sect.3.1 of [BGM], a vertex
is called a c–vertex if it is either an endpoint or a χ–vertex. The prefix c– recalls that a
constraint function χ is associated to any c–vertex.
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where the ∗ on the sum recalls again that we are not summing over the sector
index of f0 ∈ Pṽ0 .

We will now prove that (2.110) can be reduced to a product of contributions
analogue to the l.h.s. of (2.109), with h0 replacing h. In fact, calling ṽ0 =

{v1, . . . , vsṽ0 } the set of c–vertices immediately following ṽ0 on τ and Ω
(h0)
ṽ
0

=

∪v∈ṽ
0
Ω

(h0)
v , we can rewrite (2.110) as

∗∑

Ω
(h0)

ṽ
0

∏

v∈ṽ
0

[ ∑

∪w>vΩ
(h0)
w \Ω(h0)

v

∏

w≥v,w∈Vc

χ
(
Ω(h0)
w

) ∏

l∈∪w≥vTw

δω+
l
,ω−

l

]
·

·
∏

l∈Tṽ0

δω+
l
,ω−

l
≡

∗∑

Ω
(h0)

ṽ
0

∏

v∈ṽ
0

Fv(Ω
(h0)
v )

∏

l∈Tṽ0

δω+
l
,ω−

l
. (2.111)

The function Fv(Ω
(h0)
v ), defined by (2.111), is the sum over the “internal sector

indices” of the product of the constraint functions corresponding to the vertex
v. Note that also the l.h.s. of (2.109) could have been written in terms of one

of these functions; the l.h.s. of (2.109) is in fact equal to
∑∗

Ω
(h)
v0

Fv0(Ω
(h)
v0 ).

We now choose as the root of Tṽ0 the vertex vi ∈ ṽ0 such that f0 ∈ Pvi ;
then we select a leaf v∗ of Tṽ0 and we call l∗ the branch of Tṽ0 anchored to v∗.

Calling Ω
(h0)
ṽ
0
\v∗ = ∪v∈ṽ0\v∗Ω

(h0)
v , we denote by Fṽ0\v∗(Ωṽ0\v∗) the product of

the constraint functions corresponding to the set of vertices ṽ0 \ v∗:

Fṽ
0
\v∗(Ω

(h0)
ṽ
0
\v∗)

def
=

∏

v∈ṽ
0
\v∗

Fv(Ω
(h0)
v )

∏

l∈Tṽ0\l∗
δω+

l
,ω−

l
(2.112)

so that we can rewrite (2.111) as

∑

ω+

l∗
,ω−

l∗

δω+

l∗
,ω−

l∗

∗∗∑

Ωṽ0\v∗

Fṽ
0
\v∗
(
Ω

(h0)
ṽ
0
\v∗
) ∗∑

Ω
(h0)

v∗

Fv∗
(
Ω

(h0)
v∗
)
, (2.113)

where the ∗∗ on the second sum means that we are not summing neither on ωf0
nor on ωl∗ and the ∗ on the third sum recalls that we are not summing over ωl∗ .

Bounding the last sum by supωl∗

∑∗
Ω

(h0)

v∗
Fv∗(Ω

(h0)
v∗ ), we see that the last sum

can be factorized out:

(2.113) ≤
∗∑

Ωṽ
0
\v∗

Fṽ
0
\v∗(Ω

(h0)
ṽ
0
\v∗) · sup

ωl∗

[ ∗∑

Ω
(h0)

v∗

Fv∗(Ω
(h0)
v∗ )

]
. (2.114)

It is now clear that we can iterate the same procedure by choosing another leaf
of Tṽ0 \ l∗ and by factorizing out the corresponding contribution. At the end of
the procedure we reach the root of Tṽ0 and we finally find that (2.110) can be
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bounded by
∏

v∈ṽ
0

sup
ω∗

v

∗∑

Ω
(h0)
v

Fv(Ω
(h0)
v ) , (2.115)

where ω∗
v is the sector index corresponding to the line of Tṽ0 entering v ∈ ṽ0, if

v is not the root, or to l0, otherwise; the ∗ on the sum
∑∗

Ω
(h0)
v

means that we

are not summing over ω∗
v .

Now, if v ∈ ṽ0 is an endpoint, then the corresponding contribution in (2.115)
can be easily bounded by

∗∑

Ω
(h0)
v

Fv(Ω
(h0)
v ) ≤ cγ−

h0
2 , (2.116)

where we used again the sector counting Lemma C.1.
If v ∈ ṽ0 is not an endpoint, the corresponding factor in (2.115) has exactly

the same form as the l.h.s. of (2.109), and we can bound it by repeating the
same procedure described above; then, proceeding by induction, we find (2.104).

Before concluding this section, let us state a generalization of the bound
(2.104), proved in Appendix D, that will be useful in the following.

Lemma 2.6 Given hβ ≤ h ≤ 0 and a tree τ ∈ Th,n with all its labels, let us
consider the sum ∑

Ω\Ω(F )
ext

∏

v∈τ

(
χ(Ωv)

∏

l∈Tv

δω+
l
,ω−

l

)
(2.117)

with F compatible with P, i.e. F ≤ |Pv0 |. If F = 3, (2.117) can be bounded

by the r.h.s. of (2.104) times γ
h
2 and, if F = 5, (2.117) can be bounded by the

r.h.s. of (2.104) times γh.
The same result is true if τ is a trivial tree or τ ∈ Th,1 and |Pv0 | = 4.

Lemma 2.6 allows to get the following generalization of Theorem 2.1.

Lemma 2.7 Given hβ ≤ h ≤ 0, τ ∈ Th,n, P ∈ Pτ , T ∈ T, if Ek(k) satisfies

(2.38) for any k ≥ h, if λ̃hv∗−1,Ωv∗
satisfies (2.92) for any endpoint v∗ ∈ τ and

if U0|hβ | = c0 is small enough, then

J
(3)
h,n(τ,P, T ) ≤ (c|U |)nγh(3− 3

4 |Pv0 |)
∏

v not e.p.

1

sv!
γδ(|Pv |) ,

J
(5)
h,n(τ,P, T ) ≤ (c|U |)nγh( 7

2− 3
4 |Pv0 |)

∏

v not e.p.

1

sv!
γδ(|Pv|) , (2.118)

The proof of Lemma 2.7 consists in a repetition of the proof of Theorem 2.1,
unless for the fact that one has to use the estimates described in Lemma 2.6 in
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order to bound the sum over the sector indices. Lemma 2.6 guarantees exactly
that the analogue of the sum in (2.104) with 3 external fixed sectors is bounded
by the r.h.s. of (2.104) times a gain γh/2 and the analogue of the sum in (2.104)
with 5 external fixed sectors is bounded by the r.h.s. of (2.104) times γh, and
(2.118) follows.

2.9 The two point Schwinger function.

In this section we want to describe how to modify the expansion for the free en-
ergy described in previous sections in order to compute the two point Schwinger
function.

The Schwinger functions (2.10) can be derived from the generating function
defined as

W(φ) = log

∫
P (dψ)e−V(ψ)+

∫
dx[φ+

x,σψ
−
x,σ+ψ

+
x,σφ

−
x,σ] (2.119)

where the variables φεx,σ are Grassmann variables, anticommuting among them-
selves and with the variables ψεx,σ. In particular the two–point Schwinger func-
tion S(x− y) ≡ S(x, σ,−; y, σ,+), see (2.10), is given by

S(x− y) =
∂2

φ+x,σφ
−
y,σ

W(φ)
∣∣∣
φ=0

(2.120)

We start by studying the generating function (2.119) and, in analogy with the
procedure described in Section 2.2, we begin by decomposing the field ψ in an
ultraviolet and an infrared component: ψ = ψ(1)+ψ(≤0), see (2.11). Proceeding
through the analogues of (2.13) and (2.14), after the integration of the ψ(1)

variables, we can rewrite:

eW(φ) = e−L
2βF0+S

(≥0)(φ)

∫
P (dψ(≤0)) ·

·e−V(0)(ψ(≤0))−B(0)(ψ(≤0),φ)+
∫
dx
[
φ+
x,σψ

(≤0)−
x,σ +ψ

(≤0)+
x,σ φ−

x,σ

]
, (2.121)

where S(≥0)(φ) collects the terms depending on φ but not on ψ(≤0) and
B(0)(ψ(≤0), φ) the terms depending both on φ and ψ(≤0), at least quadratic in
φ.

Proceeding as in Section 2.3, we can show inductively (see below) that for
any hβ ≤ h < 0, eW(φ) can be rewritten in a way similar to the r.h.s. of (2.121)
(and analogous to (2.18)):

eW(φ) = e−L
2βFh+S

(≥h)(φ)

∫
PEh,Ch

(dψ(≤h)) · (2.122)

·e−V(h)(ψ(≤h))−B(h)(ψ(≤h),φ)+
∫
dk
[
φ̂+
k,σ

Q̂
(h+1)

k
ψ̂

(≤h)−

k,σ
+ψ̂

(≤h)+

k,σ
Q̂

(h+1)

k
φ̂−
k,σ

]
,

where
∫
dk must be interpreted as equal to 1

βL2

∑
k∈Dβ,L

and B(h)(ψ(≤h), φ)

can be written as B
(h)
φ (ψ(≤h)) +W

(h)

R , with W
(h)

R containing the terms of third
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or higher order in φ and B
(h)
φ (ψ(≤h)) of the form

∫
dx
[
φ+·,σ ∗ G(h+1) ∗ ∂V

(h)(ψ(≤h))

∂ψ
(≤h)+
·,σ

+
∂V(h)(ψ(≤h))

∂ψ
(≤h)−
·,σ

∗G(h+1) ∗ φ−·,σ
]
+

+

∫
dx
[
φ+·,σ ∗G(h+1) ∗ ∂2V̂(h)(ψ(≤h))

∂ψ
(≤h)+
·,σ ∂ψ

(≤h)−
·,σ′

∗G(h+1) ∗ φ−·,σ′

]
, (2.123)

where
G(h+1)(x) =

∑

j≥h+1

g(k) ∗Q(k)(x) (2.124)

and Q̂
(h)
k is defined inductively by the relations

Q̂
(h)
k = Q̂

(h+1)
k − n̂h(k)Ĝ(h+1)(k) , Q

(1)
k ≡ 1 , (2.125)

with n̂h(k) defined as in (2.23)–(2.24). Note that, by the compact support
properties of ĝ(h)(k) and the bound in the first line of (2.38), it holds that (for
U small enough), if ĝ(h)(k) 6= 0, then ĝ(j)(k) = 0 for |j − h| > 2, so that

Q̂
(h)
k = 1− n̂h(k)ĝ(h+1)(k)Q̂

(h+1)
k − n̂h+1(k)ĝ

(h+2)(k)Q̂
(h+2)
k . (2.126)

Hence, proceeding by induction, we see that on the support of ĝ(h)(k) we have

|Q̂(h)
k − 1| ≤ C|U ||h|γh , |∂nk Q̂

(h)
k | ≤ Cn|U ||h|γ(1−n)h , (2.127)

uniformly in h. In order to derive (2.127), we used the inductive assumption
(2.38).

Using (2.127) and the definition (2.124), it is easy to see that G(h)(x) satisfies
bounds similar to (2.60) and (2.61); in particular, we find that

∫
dx |x|j |G(h)(x)| ≤ Cjγ−(1+j)h . (2.128)

For h = 0 the assumption (2.123) is clearly true (it coincides with (2.121)).
Assuming inductively that (2.123) is true up to a certain value of h ≤ 0, we can
show that the same representation is valid for h− 1. In fact we can rewrite the
term V(h) in the exponent of (2.123) as V(h) = LV(h)+RV(h), using (2.21), and
we “absorb” the quadratic part of LV(h) (the one in the first line of (2.23)) in
the fermionic integration, as explained in §2.3. Similarly we rewrite

∂

∂ψ
(≤h)±
x,σ

V(h)(ψ(≤h)) =

∫
dy nh(x−y)ψ(≤h)∓

y,σ +
∂

∂ψ
(≤h)±
x,σ

V̂(h)(ψ(≤h)) , (2.129)

where V̂(h) was defined after (2.26). This rewriting induces a decomposition of
the first line of (2.123) into two pieces, the first proportional to nh, the second
identical to the first line of (2.123) itself, with V(h) replaced by V̂(h). We choose
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to “absorb” the term proportional to nh into the definition of Q(h), and this
gives the recursion relation (2.125).

After these splittings and redefinitions, we integrate the field ψ(h), as in
Section 2.3, and we end up with an expression given by the r.h.s. of (2.123),
with h replaced by h− 1 and the inductive assumption (2.123) is proved.

For h = hβ we define

e−L
2β(F̃hβ

+thβ
)+S(<hβ )(φ) =

∫
PEhβ−1,Chβ

(dψ(≤hβ)) ·

· exp
{
− V̂(hβ)(ψ(≤hβ))−B(hβ)(ψ(≤hβ), φ) + (2.130)

+

∫
dk
[
φ̂+k,sQ̂

(hβ+1)
k ψ̂

(≤hβ)−
k,σ + ψ̂

(≤hβ)+
k,σ Q̂

(hβ+1)
k φ̂−k,σ

]}
,

so that, up to terms of third or higher order in φ,

S(<hβ)(φ) =
∑

σ=↑↓

∫
dx · (2.131)

·
(
φ+σ ∗Q(hβ) ∗ g(hβ) ∗Q(hβ) ∗ φ−σ − φ+σ ∗G(hβ) ∗ nhβ−1 ∗G(hβ) ∗ φ−σ

)
.

From the definitions and the construction above, we get

S(x− y) =
∂2

φ+x,σφ
−
y,σ

[
S(<hβ)(φ) + S(≥hβ)(φ)

]∣∣∣
φ=0

= (2.132)

=

1∑

h=hβ

[(
Q(h) ∗ g(h) ∗Q(h)

)
(x− y)−

(
G(h) ∗ nh−1 ∗G(h)

)
(x− y)

]
.

Taking the Fourier transform and defining hk = min{h : ĝ(h)(k) 6= 0}, we get

Ŝ(k) =

hk+2∑

j=hk

g(j)(k)
(
Q

(j)
k

)2 −
hk+2∑

j=hk

G(j)(k)2n̂j−1(k) , (2.133)

where we used the compact support properties of fj(k), see comment after
(2.125). If we define Dh(k) = −ik0 + Eh−1(k) − µ, we can rewrite (2.133) as

Ŝ(k) =
1

Dhk
(k)

[
1 +W (k)

]
, (2.134)

where we used the identity, easily following from the definition (2.29),

hk+2∑

j=hk

fj(k) = 1 (2.135)

and we defined

W (k) =

hk+2∑

j=hk

fj(k)

[
Dhk

(k)

Dj(k)

(
Q

(j)
k

)2 − 1

]
−
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−
hk+2∑

j=hk

n̂j−1(k)

Dhk
(k)




hk+2∑

j′=j

fj′(k)Q
(j′)
k

Dhk
(k)

Dj′ (k)




2

. (2.136)

By using (2.24), (2.38) and (2.127), it follows that

|W (k)| ≤ C|U ||h|γh , |∂nkW (k)| ≤ Cn|U ||h|γ(1−n)h . (2.137)

Substituting (2.134) into the definition (1.6) of Σ(k) we find:

Σ(k) = Ehk−1(k) − ε0(~k) +
[ 1

1 +W (k)
− 1
]
Dhk

(k) , (2.138)

so that, using (2.38) and (2.137), we find

|Σ(k)| ≤ C|U | , |∂2kΣ(k)| ≤ Cc0 . (2.139)

In the same way we can prove that |∂kΣ(k)| ≤ C|U |, but this bound is not
sufficient to prove Theorem 1.1, which needs the improved bound

|∂kΣ(k)| ≤ C|U |2 . (2.140)

In order to get this estimate, one has to check that at first order Σ(k) does not
depend on k. By using (2.126), (2.135) and some straightforward calculation,
one can see that

Σ(k) =

0∑

j=hk−1

n̂j(k) +O(U2) (2.141)

Then (2.140) follows from the remark that the first order contribution to nj(k)
(the tadpole graph) is constant.

Theorem 1.1 follows from the bounds (2.139) and (2.140), the remark that,

by the same symmetries implying (2.40),
∑
j=± ImΣ(jπβ−1, ~k) = 0 and

∑
j=± jReΣ(jπβ

−1, ~k) = 0 and an explicit calculation of the second order con-

tributions to Σ(k) and its first derivatives with respect to k0 and ~k, showing that
they are not vanishing, as well as the first order contribution to Σ(k) (shown in
(2.141)).

The second claim in the Remark after Theorem 1.1 on the spatial decay of
S(x) follows from bounding (2.132) and its derivatives, in a way similar to that
described in sec.5 of [BGM] or in sec.12 of [GM]. We do not repeat here the
details.

Of course, the results above are obtained under the assumption (2.38) and
the assumption that (2.92) is true for any hi− 1 ≥ hβ , that we shall inductively
prove in the next section.
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3 Smoothness of the effective dispersion rela-
tion

3.1 Proof of the bounds (2.38)

In this section we first want to prove (2.38), under the assumption that the λ
smallness condition (2.92) is verified for any hi > h; we shall then prove the
smallness assumption on λh by an iterative argument.

We actually want to prove a statement slightly stronger than (2.38) and, in
order to do this, we introduce some definitions. We denote by β2

h(x) the Fourier

transform of β̂2
h(k) = n̂h(k), see (2.36) and (2.24), and, given an isotropic sector

index ω ∈ Oh, we define

β2
h,ω̄(x)

def
= (F2,h,(ω̄,ω̄) ∗ β2

h)(x) , (3.1)

where F2,h,(ω̄,ω̄) is the “isotropic analogue” of the operator in (2.90) (i.e. the

operator obtained by replacing F̃h,ωi
(~k) in the r.h.s. of (2.90) with F̃h,ω̄(~k),

where F̃h,ω̄(~k) is a smooth function = 1 on Sh,ω̄ and with a support slightly
larger than Sh,ω̄). We want to prove the following.

Theorem 3.1 Given hβ ≤ h ≤ 0, let us assume that Ej(k) satisfies (2.38) for

any j ≥ h and that, given any tree τ ∈ Th,n (with all its labels), λ̃hv∗−1,Ωv∗

satisfies (2.92) for all the endpoints v∗ ∈ τ . Then, if U0|hβ| = c0 is small
enough,

∫
dx|β2

h,ω̄(x)| ≤ C0|U ||h|γ2h ,
∫
dx|x|n|β2

h,ω̄(x)| ≤ Cn|U |2|h|γ(2−n)h , n ≥ 1 . (3.2)

Note that the bound (2.38) easily follows from Theorem 3.1. In fact, given k

in the support of C−1
h (k), let us define ω(~k) ∈ Oh as the isotropic sector index

such that F̃h,ω̄(~k)(
~k) = 1, so that β̂2

h(k) = F̃h,ω̄(~k)(
~k)β̂2

h(k). Hence, we can write

β̂2
h(k) =

∫
dx eikxβ2

h,ω̄(x) ,

∂ki1 · · · ∂kin
(
β̂2
h(k)

)
= in

∫
dx xi1 · · ·xineikxβ2

h,ω̄(x) . (3.3)

The bounds (2.38) immediately follow from these identities, together with the
definition of C−1

h (k) and the bounds (3.2).
So now we shall focus on the proof of Theorem 3.1.

Proof. The same iterative construction leading to the tree expansion for V(h)

allows us to represent β2
h,ω̄(x) as a sum over trees. Let x,y be the two points
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where the two external fields (the fields in Pv0) are hooked on; then, by (2.23),
(2.24) and (2.87),

β2
h,ω̄(x− y) =

∞∑

n=1

∑

τ∈Th−1,n

∑

P∈Pτ
|Pv0 |=2

∑

T∈T

∑

Ω\Ωv0

[∏

v

χ(Ωv)
]
·

·F2,h,(ω̄,ω̄) ∗
∫
d(xv0 \ {x,y})W

(mod)
τ,P,Ω,T (xv0 ) , (3.4)

where W
(mod)
τ,P,Ω,T (xv0 ) can be represented as in (2.88), with the kernels Khi

v∗
i
re-

placed by the modified ones. Again, for simplicity, we shall explicitly study
only contributions coming from trees τ such that all the endpoints are of type
λ. Given τ ∈ Th−1,n, P ∈ Pτ with |Pv0 | = 2, T ∈ T, in analogy with definition

(2.96), we define J
(2)

h,n,ω̄(τ,P, T ; j) as

J
(2)

h,n,ω̄(τ,P, T ; j) =
∑

Ω\Ωv0

[
∏

v

χ(Ωv)

] ∫
d(x− y) |x − y|j ·

·
∣∣∣∣F2,h,(ω̄,ω̄) ∗

∫
d(xv0 \ {x,y})W

(mod)
τ,P,Ω,T (xv0 )

∣∣∣∣ . (3.5)

We want to prove an improved version of the bound (2.97), valid if |Pv0 | = 2
and n ≥ 2:

sup
ω̄∈Ōh

J
(2)

h,n,ω̄(τ,P, T ; j) ≤ (cj |U |)n|h|γ(2−j)h
∏

v∈Vc

1

sv!
|Pv|5γδ(|Pv |)(hv−hv′ ) , (3.6)

where v′ is the c–vertex immediately preceding v on τ . Note that the proof of
Theorem 2.1, adapted to the present case, would easily imply a bound like (3.6)
with |h|γ2h replaced by γh and |Pv|5 replaced by 1. The bound (3.6) is valid
for n ≥ 2; if n = 1 there is only one possible choice of τ ∈ Th,1 and, calling v
the only endpoint in τ and {f2, f3} = Pv \ Pv0 , we shall prove that

J
(2)

h,1,ω̄(τ,P, T ; j) =
∑

ω(f2),ω(f3)∈Oh

δω(f2),ω(f3)

∫
d(x1 − x4) |x1 − x4|j ·

·
∣∣∣F2,h,(ω̄,ω̄) ∗

∫
dx2dx3 g

(h)
ω(f3)

(x2 − x3)λ̃h,Ωv
(x1,x2,x3,x4)

∣∣∣ ≤ (3.7)

≤ cj|U |2−δj,0 |h|δj,0γ(2−j)h .

It is easy to realize that the bounds (3.6) and (3.7) and the representation (3.4)
allow us to get the bound (3.2) on β2

h,ω̄. So we will now prove (3.6) and (3.7).
We shall proceed as follows; we shall first prove (3.6) under the assumption
that, given h′ and k with h ≤ h′ ≤ k, ω1, ω4 ∈ Ok, with |ω1 − ω4| ≤ 1, and
P = P i ∪ P a, with P i = {f1, f4}, P a = {f2, f3},

∑

ω∈Oh′

∫
d(x1 − x4) |x1 − x4|j

∣∣∣
∫
dx2dx3 g

(h′)
ω (x2 − x3) ·
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·λ̃k,Ω̃4
(x1,x2,x3,x4)

∣∣∣ ≤ cj |U |2−δj,0(1 + |k|δj,0)γ2h
′−jk , (3.8)

where Ω̃4 = {ωf ∈ Ok, f ∈ P i} ∪ {ω(f) = ω, f ∈ P a} and, with a small abuse
of notation,

λ̃k,Ω̃4
(x1,x2,x3,x4) =

1

β4

∑

k0

∫
d~k

(2π)8
e−i
∑4

i=1
kixi ·

·F̃ k,ω̄f1
(~k1)F̃h′,ω(~k2)F̃h′,ω(~k3)F̃ k,ω̄f4

(~k4) λ̂k(k1,k2,k3,k4) . (3.9)

After having proved (3.6) under the assumption (3.8), we shall prove (3.8) in-
ductively in h′, so that, in particular, (3.7) will follow.

In order to prove (3.6), we will first further expand W
(mod)
τ,P,Ω,T (x) in (3.5) by

extracting some “loop propagators” from the Gram determinant in the second
line of (2.99) (via an interpolation technique described below). Such extrac-
tion of loop propagators will imply some new constraints on the sector indices
appearing in the sum

∑
Ω\Ωv0

in (3.5). Then, depending on the explicit struc-

ture of the terms obtained by this further expansion, we shall decide whether
rewriting the extracted loop propagators as sums of isotropic propagators or
not. In both cases we shall describe a new inductive procedure to bound the
sum over the sector indices, in order to take into account the new constraints
coming from the extraction of the loop propagators. We shall compare the new
inductive procedure to bound the sector sums with the one described in §2.8
and by comparison we will show how to get the desired dimensional gains.

We can now turn to the proof of (3.6) and we shall first consider the case
j = 0. The proof is done by distinguishing among several different cases. First
of all, we need to introduce some definitions. We call v0 = {v1, . . . , vsv0 } the set
of c–vertices immediately following v0 on τ (note that, for the trees contribut-
ing to β2

h,ω̄(x− y), v0 is necessarily a c–vertex). Given Tv0 , we identify the two
(possibly coinciding) clusters vx and vy in which the two fields in Pv0 (call them
fx, fy) enter. Correspondingly, we call lx,y the (possibly trivial) path on Tv0
connecting vx and vy. Moreover we identify vx with the root of Tv0 : in this way
the concept of leaf of Tv0 is well defined.

(A) Let us assume that sv0 ≥ 2. Let us further distinguish the case Tv0 6= lx,y
and Tv0 ≡ lx,y.

(A1) sv0 ≥ 2 and Tv0 6= lx,y. In this case there must be at least one leaf of Tv0
different from vy; let us choose one such leaf and call it v∗; see Fig. 2, where
the solid lines represent the tree propagators in Tv0 , the wiggling lines represent
the loop fields and the broken lines represent the external fields. Note that in
Fig. 2 the case vx 6= vy is considered, but the following analysis is independent
of this condition.
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vx vy

v∗ l∗

Figure 2: : an example of case (A1).

By construction, v∗ has one exiting line belonging to the spanning tree Tv0
(call it l∗ and f∗ its field label) and |Pv∗ |− 1 ≥ 3 loop lines. Let P̃v

0
⊂ ∪v∈v

0
Pv

be the set of fields contracted into the Gram determinant detGhv0 ,Tv0 appearing
in (2.88). If, given a set I of field labels, we define I± = {f ∈ I : ε(f) = ±},
we can think Ghv0 ,Tv0 as a matrix whose rows are associated to the fields f ∈ P̃−

v
0

and whose columns are associated to the fields f ∈ P̃+
v
0
. Let us distinguish the

field labels belonging to P̃v∗ ≡ Pv∗ \ f∗ from those belonging to P̃v
0
\ P̃v∗ and

let us correspondingly write Gh,Tv0 in blocks, as follows:

detGh,Tv0 = det

(
A B
C D

)
(3.10)

where: A is the block with both row and column indices belonging to P̃v∗ ; B is
the block with row indices in P̃v∗ and column indices in P̃v

0
\ P̃v∗ ; C is the block

with row indices in P̃v
0
\ P̃v∗ and column indices in P̃v∗ ; D is the block with

both row and column indices belonging to P̃v
0
\ P̃v∗ . Note that by construction

neither A nor D are square matrices and, because of this, det

(
A 0
0 D

)
= 0, so

that we can rewrite the r.h.s. of (3.10) as:

det

(
A B
C D

)
− det

(
A 0
0 D

)
=

∫ 1

0

ds
d

ds
det

(
A sB
sC D

)
=

=

∫ 1

0

ds
∑

i∈P̃−

v∗
, j∈P̃+

v
0
\P̃+

v∗

(−1)i+jBij detmij

(
G(s)

)
+

+

∫ 1

0

ds
∑

i∈P̃−
v
0
\P̃−

v∗
, j∈P̃+

v∗

(−1)i+jCij detmij

(
G(s)

)
, (3.11)

where G(s) =

(
A sB
sC D

)
and, given a matrix M , mij(M) is the minor of M
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corresponding to the entry i, j. The identity (3.11) is essentially a first order

expansion of det

(
A B
C D

)
around the point

(
A 0
0 D

)
and it corresponds to

the operation of “extracting one loop” connecting P̃v∗ with P̃v
0
\ P̃v∗ . The key

remark is that the r.h.s. of (3.11) is a sum of less than
∏
v∈v0
|Pv| terms, each of

them equal to the product of a propagatorBij or Cij times a determinant that is
still a Gram determinant, then it can still be bounded via the Gram–Hadamard
inequality, the result being the following dimensional estimate, analogue to the
r.h.s. of (2.100):

| detmji

(
G(s)

)
| ≤ c

∑
sv0
i=1

|Pvi
|−|Pv|−2sv0γ

3
4h(
∑

sv0
i=1

|Pvi
|−|Pv|−2sv0 ) (3.12)

A procedure analogue to the first order expansion leading to (3.11) allows us to

expand

(
A B
C D

)
up to fifth order around the point

(
A 0
0 D

)
and to rewrite

detGh,Tv0 as

detGh,Tv0 (tv0) =

∗∑

{i1j1,i′1j′1}
(−1)ε1Gh,Tv0

i1j1,i′1j
′
1
(tv0) ·

· det G̃h,Tv0

(
{i1j1, i′1j′1}; 0, tv0

)
+

1

3!

∗∑

{iqjq,i′qj′q}3
q=1

(−1)ε1+ε2+ε3 ·

[ 3∏

q=1

G
h,Tv0

iqjq ,i′qj
′
q
(tv0 )

]
det G̃h,Tv0

(
{iqjq, i′qj′q}3q=1; 0, tv0

)
+ (3.13)

+
1

5!

∗∑

{iqjq ,i′qj′q}5
q=1

(−1)ε1+···+ε5
[ 5∏

q=1

G
h,Tv0

iqjq ,i′qj
′
q
(tv0 )

]
·

· det G̃h,Tv0

(
{iqjq, i′qj′q}5q=1; s̄, tv0

)

where: the ∗’s on the three sums constraint the indices {iqjq, i′qj′q} to run over

choices such that f−
iqjq
∈ P̃v∗ and f+

i′qj
′
q
∈ P̃v

0
\ P̃v∗ or viceversa; εq = ± is a sign,

depending on the parity of the element index {iqjq, i′qj′q}, q = 1, . . . , 5; the ma-

trices G̃h,Tv0

(
{iqjq, i′qj′q}Lq=1; s, tv0), L = 1, 3, 5 are the minors of Gh,Tv0 (s, tv0)

complementary to the elements (iqjq, i
′
qj

′
q), q = 1, . . . , L; the parameter 0 ≤

s̄ ≤ 1 appearing in the argument of G̃h,Tv0 in the third line is an interpolation
parameter corresponding to the integration variable s appearing in (3.11). Note
that the determinants on the first two lines are computed at s = 0, and this im-
plies that they are the product of two determinants, the first involving only fields
in P̃v∗ , the second involving only fields in P̃v

0
\ P̃v∗ . The three determinants in

(3.13) are Gram determinants which can be bounded using Gram–Hadamard
inequality: the one on the first line can be bounded exactly as in (3.12), while
the other two can be bounded by the r.h.s. of (3.12) times a factor γ−3h or γ−6h

respectively.
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The splitting (3.13) induces a similar splitting in J
(2)

h,n,ω̄(τ,P, T ; 0) with
|Pv0 | = 2:

J
(2)

h,n,ω̄(τ,P, T ; 0) ≤
∑

L=1,3,5

J
(2)

h,n,ω̄(τ,P, T ; 0, L) (3.14)

and, calling sL = δL,5s̄,

J
(2)

h,n,ω̄(τ,P, T ; 0, L) =
∑

Ω\Ωv0

[∏

v

χ(Ω̃v,ω̄)
]∣∣∣∣∣

∫ ∏

l∈T∗

d(xl − yl) ·

·
[ ∏

v e.p.

λ̃hv−1,Ω̃v,ω̄
(xv)

]{∫
dPTv0

(tv0)
1

sv0 !

1

L!
·

·
∗∑

{iqjq ,i′qj′q}L
q=1

[ L∏

q=1

G
h,Tv0

iqjq,i′qj
′
q
(tv0)

]
· (3.15)

det G̃h,Tv0

(
{iqjq, i′qj′q}Lq=1; sL, tv0

) ∏

l∈Tv0

g(h)ωl
(xl − yl)δω+

l
,ω−

l

}
·

·
{∫

dPTv
(tv)

∏

v>v0
not e.p.

1

sv!
detGhv ,Tv(tv)

∏

l∈Tv

g(hv)
ωl

(xl − yl)δω+
l
,ω−

l

}∣∣∣∣∣ ,

where

Ω̃v,ω̄ =
{
ω(f) ∈ Oh(f), f ∈ Pv \{fx, fy}

}
∪
{
ωf ≡ ω, f ∈ Pv∩{fx, fy}

}
(3.16)

and, by writing χ(Ω̃v,ω̄), we implicitly introduced the notion of a χ function de-
pending on a set of sector indices which contains both isotropic and anisotropic
sector indices: in general, if P av ⊂ Pv, P

i
v = Pv \ P av and Ω′

v is the set of sector
indices Ω′

v = {ω(f) ∈ Oh(f), f ∈ P av } ∪ {ωf ∈ Ojf , f ∈ P iv} labelled by P av and
P iv, we define

χ(Ω′
v) = χ


∀f ∈ Pv , ∃~k(f) ∈

{
Sh(f),ω(f), if f ∈ P av
Sjf ,ω̄f

, if f ∈ P iv
:
∑

f∈Pv

ε(f)~k(f) = 0


 .

(3.17)
The modified coupling function λ̃hv−1,Ω̃v,ω̄

(xv) is defined in a way similar to

(3.9). The presence of the functions χ(Ω̃v,ω̄) and of λ̃hv−1,Ω̃v,ω̄
(xv) is due to the

convolution operator F2,h,(ω̄,ω̄) appearing in the definition (3.5).

We now want to show how to get the desired dimensional gain for the three

contributions J
(2)

h,n,ω̄(τ,P, T ; 0, L) in (3.15), L = 1, 3, 5. In order to do that, we
shall suppose that the modified coupling functions satisfy the following bound,
essentially equivalent to the smallness condition (2.92):

1

L2β

∫
dxv|λ̃hv−1,Ω̃v,ω̄

(xv)| ≤ C|U | . (3.18)

47



At the end, by an iterative argument, we shall prove this bound, together with
the bound (3.8).

(A1.1) L = 3: there are exactly three loop lines connecting P̃v∗ with P̃v0 \ P̃v∗ ,
call them l1, l2, l3 and f1, f2, f3 their field labels, see Fig. 3.

vx vy

v∗

f∗

l1
l2

l3

Figure 3: : an example of case (A1.1).

Let us consider the product
∏3
q=1G

h,Tv0

iqjq,i′qj
′
q
=
∏3
q=1 tiq,i′qg

(h)
ω(fq)

(xlq − ylq )

δω+
lq
,ω−

lq

in (3.15) and let us substitute both the extracted loop propagators

g
(h)
ω(fq)

with q = 1, 2, 3 and the propagator of the spanning tree g
(h)
ω(f∗) (we recall

that f∗ is the field label of the line l∗ of Tv0 exiting from v∗) with the sums of

isotropic propagators g
(h)
ω̄q

, q = 1, 2, 3, and g
(h)
ω̄∗ , such that Sh,ω̄q

⊂ Sh,ω(fq) and

Sh,ω̄∗ ⊂ Sh,ω(f∗). This operation is allowed since
∑

ω∈Oh
g
(h)
ω =

∑
ω̄∈Ōh

g
(h)
ω̄

and our definitions are such that any isotropic sector is strictly contained in one
anisotropic sector.

For any fixed configuration of internal anisotropic sectors, the new sums on
the isotropic sectors can be written as:

∑

ω̄q≺ω(fq)

q=1,2,3

∑

ω̄∗≺ω(f∗)

, (3.19)

where the meaning of the symbol ≺ is the same as in (2.109). Note also that, by
construction, the summand in the r.h.s. of (3.15) is 0 unless χ({ω1, ω2, ω3, ω

∗}) =
1, so that we can freely multiply the summand in the r.h.s. of (3.15) by
χ({ω1, ω2, ω3, ω

∗}).
Having done this, we can bound the resulting expression by replacing all the

modified coupling functions, all the propagators and all the Gram determinants
with their absolute values. Now, we can bound the integral over the absolute
values of the modified coupling functions as in (2.102) (by using (3.18) in place of
(2.92)), the integral over the absolute values of the propagators of the spanning
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tree as in (2.101) (note that the integral
∫
d(xl∗−yl∗)|g(h)ω̄∗ (xl∗−yl∗)| admits the

same dimensional bound as the integral of an anisotropic propagator, see Lemma

2.4). Moreover, the product of the determinants times
∏3
q=1 |g

(h)
ω̄q

(xlq−ylq )| can
be bounded by the product over v of the r.h.s. of (2.100) times a dimensional

gain γ3h/2 coming from the fact that the bound on the size of |g(h)ω̄q
(xlq −ylq )| is

γh/2 smaller than the bound on the size of an anisotropic propagator of scale h,
see Lemma 2.2 and Lemma 2.4. After these bounds, the sum

∑∗
{iqjq ,i′qj′q}3

q=1
can

be bounded by
∏
v∈v

0
|Pv|3 ≤

∏
v∈Vc

|Pv|5, where the latter is the same product

appearing in the r.h.s. of (3.6).
We are still left with the sum over the sector indices:

∑

∪vΩv\Ωv0

∑

ω̄q≺ω(fq)

ω̄∗≺ω(f∗)

[ ∏

v>v0
v∈Vc

χ(Ω̃v,ω̄)
]
χ({ω1, ω2, ω3, ω

∗})
[∏

l∈T
δω+

l
,ω−

l

] 3∏

q=1

δω+
lq
,ω−

lq

.

(3.20)

where the product χ({ω1, ω2, ω3, ω
∗})
∏3
q=1 δω+

lq
,ω−

lq

takes into account the new

constraints coming from the extraction of the three loop propagators.
We want to prove that (3.20) can be bounded by the r.h.s. of (2.104) times

a dimensional factor γ−h/2|h|. Combining this loss with the gain γ3h/2 coming
from the bound on the size of the loop propagators and discussed above, we see
that globally the contribution under analysis has a dimensional gain γh|h| with
respect to the bounds described in §2.8, that is the desired gain.

We proceed keeping in mind the procedure followed in the proof of (2.104)
and by comparison we shall show how to get the dimensional gain. Using the
definitions introduced in §2.8 after (2.110) we can rewrite (3.20) as

∑

Ωv
0
\Ωv0

∑

ω̄q≺ω(fq)

ω̄∗≺ω(f∗)

{
∏

v∈v
0

[ ∑

∪w>vΩw\Ωv

∏

w≥v,w∈Vc

χ
(
Ω̃w,ω̄

) ∏

l∈∪w≥vTw

δω+
l
,ω−

l

]
·

·χ({ω1, ω2, ω3, ω
∗})

∏

l∈Tv0

δω+
l
,ω−

l

3∏

q=1

δω+
lq
,ω−

lq

}
≡

∑

Ωv
0
\Ωv0

∑

ω̄q≺ω(fq)

ω̄∗≺ω(f∗)

(3.21)

[ ∏

v∈v
0

Fv(Ω̃v,ω̄)
]
· χ({ω1, ω2, ω3, ω

∗})
∏

l∈Tv0

δω+
l
,ω−

l

3∏

q=1

δω+
lq
,ω−

lq

.

Defining

Fv0\v∗(Ω̃v0\v∗)
def
=

∏

v∈v
0
\v∗

Fv(Ω̃v,ω̄)
∏

l∈Tv0\l∗
δω+

l
,ω−

l
, (3.22)

and calling Ω(4) = {ω(f1), ω(f2), ω(f3), ω(f∗)}, we can bound (3.21) as

(3.21) ≤ sup
Ω(4),Ωv0

[ ∗∗∑

Ω̃v0\v∗

Fv
0
\v∗
(
Ω̃v

0
\v∗
)]
· sup
Ω(4)

[ ∗∑

Ω̃v∗,ω̄

Fv∗
(
Ω̃v∗,ω̄

)]
·
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·
∑

ω̄1,ω̄2,ω̄3,ω̄∗

χ({ω1, ω2, ω3, ω
∗}) , (3.23)

where the ∗∗ on the first sum means that we are not summing over the indices
in Ωv0 ∪ Ω(4), while the ∗ on the second sum means that we are not summing
over the indices in Ω(4). Now, the first two sums can be bounded using Lemma
2.6 and, with respect to the cases in which the two sums have just one fixed
external sector (as it is the case in the proof of (2.104), see (2.114)), they have a
dimensional gain γh and γh/2 respectively. The last sum can be bounded using
the following Lemma, see Appendix B for a proof.

Lemma 3.1 Given hβ ≤ h ≤ 0, the following bound holds:

sup
ω̄1∈Ōh

∑

ω̄q∈Ōh
q=2,3,4

χ
(
{ω1, ω2, ω3, ω4}

)
≤ cγ−h|h| . (3.24)

Using Lemma 3.1 we see that
∑

ω̄1,ω̄2,ω̄3,ω̄∗

χ({ω1, ω2, ω3, ω
∗}) ≤ cγ−2h|h| . (3.25)

Combining all the gains and losses described above, we see that (3.20) can be
bounded by the r.h.s. of (2.104) times a dimensional factor γ−h/2|h|. As dis-

cussed after (3.20) this implies that J
(2)

h,n,ω̄(τ,P, T ; 0, L = 3) with |Pv0 | = 2
admits a dimensional bound given by the r.h.s. of (3.6) with j = 0.

(A1.2) L=5: there are five extracted loop lines connecting P̃v∗ with P̃v0 \ P̃v∗ ,
call them l1, l2, l3, l4, l5 and f1, f2, f3, f4, f5 their field labels, see Fig. 4; the
other lines exiting from P̃v∗ can be contracted with any other loop line.

vx vy

v∗

f∗

l1
l3

l5

l2

l4

Figure 4: : an example of case (A1.2).

We replace all the modified coupling functions, all the propagators and all
the Gram determinants with their absolute values. Having done this, we bound
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the integral over the modified coupling functions as in (2.102), the integral over
the propagators of the spanning tree as in (2.101) and we bound the product

of the determinants times
∏5
q=1 |g

(h)
ω(fq)

(xlq − ylq )| by the product over v of the

r.h.s. of (2.100). After these bounds, the sum
∑∗

{iqjq ,i′qj′q}5
q=1

can be bounded

by
∏
v∈v

0
|Pv|5 ≤

∏
v∈Vc

|Pv|5, where the latter is the same product appearing

in the r.h.s. of (3.6).
We are still left with the sum over the sector indices:

∑

∪vΩv\Ωv0

[ ∏

v>v0
v∈Vc

χ(Ω̃v,ω̄)
][∏

l∈T
δω+

l
,ω−

l

] 5∏

q=1

δω+
lq
,ω−

lq

, (3.26)

where the product
∏5
q=1 δω+

lq
,ω−

lq

takes into account the new constraints coming

from the extraction of the three loop propagators.
We want to prove that (3.26) can be bounded by the r.h.s. of (2.104) times

a dimensional factor γh, that is even more than the desired dimensional gain.
With the same notations as above, we rewrite (3.26) in the form

∑

Ωv
0
\Ωv0

[ ∏

v∈ṽ0

Fv(Ω̃v,ω̄)
]
·
∏

l∈Tv0

δω+
l
,ω−

l

5∏

q=1

δω+
lq
,ω−

lq

. (3.27)

Defining Fv
0
\v∗(Ω̃v

0
\v∗) as in (3.22) and calling Ω(6) = {ω(fq)}5q=1 ∪ {ω(f∗)},

we can bound (3.27) by

sup
Ωv0

[ ∗∑

Ω̃v
0
\v∗

Fv
0
\v∗
(
Ω̃v

0
\v∗
)]
· sup
Ω(6)

[ ∑

Ω̃v∗,ω̄\Ω(6)

Fv∗
(
Ω̃v∗

)]
. (3.28)

where the ∗ on the first sum means that we are not summing over the sectors in
Ωv0 . Now, the first sum can be bounded exactly as in the proof of (2.43), while
the second one, using Lemma 2.6, has a dimensional gain γh, and this concludes
the proof in the present case.

(A1.3) L=1: there is exactly one loop line connecting P̃v∗ with P̃v0 \ P̃v∗ , call it
l1 and f1 its field label, see Fig. 5.

We consider the extracted loop propagator G
h,Tv0

i1j1,i′1j
′
1
= ti1,i′1g

(h)
ω(f1)

(xl1 −
yl1)δω+

l1
,ω−

l1

and we rewrite both g
(h)
ω(f1)

and the propagator of the spanning tree

g
(h)
ω(f∗) as sums of isotropic propagators, to be denoted by g

(h)
ω̄1

and g
(h)
ω̄∗ . For any

fixed configuration of internal anisotropic sectors, the new sums on the isotropic
sectors can be written as:

∑

ω̄1≺ω(f1)

ω̄∗≺ω(f∗)

11(|ω̄1 − ω̄∗| ≤ 1) , (3.29)
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vx vy

v∗

f∗

l1

Figure 5: : an example of case (A1.3).

where the characteristic function is due to the remark that the value of the
integrand in the r.h.s. of (3.15) is 0 unless |ω̄1− ω̄∗| ≤ 1, because of momentum
conservation.

We now rewrite the determinant det G̃hv0 ,Tv0 ({i1j1, i′1j′1}; 0, tv0) as a prod-
uct of two determinants, the first involving only fields in P̃v∗ \ f1, the second
involving only fields in P̃v

0
\ (P̃v∗ ∪ f1):

det G̃h,Tv0 ({i1j1, i′1j′1}; 0, tv0) = det G̃hv∗(tv∗) · det G̃
h,Tv0

v
0
\v∗(tv0) . (3.30)

The splitting (3.30) allows us to bound the resulting expression by

∗∑

{i1j1,i′1j′1}

∑

ω̄1,ω̄∗

11(|ω̄1 − ω̄∗| ≤ 1) [v∗] · [v0 \ v∗] · sup
x

|g(h)ω̄1
(x)|

∫
dx|g(h)ω̄∗ (x)| ≤

≤ cγ2hγ−h
∗∑

{i1j1,i′1j′1}

∑

ω̄1,ω̄∗

11(|ω̄1 − ω̄∗| ≤ 1) [v∗] · [v0 \ v∗] , (3.31)

where [v∗] collects all the spanning tree propagators, the determinants and the
endpoints associated with the vertices v ≥ v∗, except the propagators of l1 and
l∗, while [v0 \ v∗] collects all the other terms, again except the propagators of l1
and l∗.

Note that [v∗] has the structure of a contribution to the effective potential
with two external fields whose isotropic sectors are fixed. If we denote by τ ′

the subtree of τ rooted in v0 and containing v∗ and by P′,Ω′, T ′ the subsets of
P,Ω, T corresponding to the subtree τ ′ of τ , we can write

[v∗] =
∑

Ω′\(ω̄1∪ω̄∗)

[ ∏

v∈τ ′

χ(Ω̃v,ω̄1,ω̄∗)
]
· (3.32)

·
∣∣∣∣∣

∫
d(xv∗ \ x∗)F2,h,(ω̄1,ω̄∗) ∗

[
det G̃hv∗(tv∗) ·W

(mod)
τ ′,P′,Ω′,T ′(xv∗)

]
∣∣∣∣∣,
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where x∗ is the space time point of xv∗ where the line l∗ is hooked on and, in
analogy to (3.16), we defined

Ω̃v,ω̄1,ω̄∗ =
{
ω(f) ∈ Oh(f), f ∈ Pv \ {f1, f∗}

}
∪
{
ωf1 = ω1, ωf∗ = ω∗} . (3.33)

Note that, in the case that v∗ is an endpoint, the r.h.s. of (3.32) can be
bounded by (3.8), with k = h′ = h and j = 0, which has a dimensional factor
γh|h| more than the dimensional estimate one would get simply using (2.92)
and Lemma 2.2. If v∗ is not an endpoint, we will prove below that

[v∗] ≤ (c|U |)m4(v
∗)γ2h|h|

∏

v∈Vc,v>v∗

1

sv!
|Pv|5γδ(|Pv |)(hv−hv′ ) , (3.34)

wherem4(v
∗) is the number of endpoints of τ ′ and v′ is the c–vertex immediately

preceding v on τ ′. The proof of (3.34) will be postponed, see item (B) below.
Note that the bound in (3.34) has a γh|h| more than the dimensional bound one
would get by repeating the proof of Theorem 2.1.

Let us now consider the factor [v0 \ v∗]. It can be written in the following
way:

[v0 \ v∗] =
∫
dx1dx2dy |G(4)

ω̄,ω̄1,ω̄∗(x,y,x1,x2)| , (3.35)

where x1 and x2 are the space-time points in τ\τ ′, where the two propagators of

l∗ and l1 are hooked on. Note that G
(4)
ω̄,ω̄1,ω̄∗(x,y,x1,x2) has the same structure

of a contribution to the effective potential with four external fields with fixed
isotropic sectors. It follows that

[v0 \ v∗] ≤ G̃
(4)
ω,ω1,ω∗ , (3.36)

where ω, ω1, ω2 are the anisotropic sectors containing ω̄, ω̄1, ω̄
∗, respectively and

G̃
(4)
ω,ω1,ω∗ has the same structure of J

(4)
h,n−m4(v∗)

(τ\τ ′,P\P′, T \T ′), see (2.96).
By using Lemma 2.7, we get

G̃
(4)
ω,ω1,ω∗ ≤ (c|U |)n−m4(v

∗)
∏

v∈Vc,v 6∈τ ′,v>v0

γδ(|Pv|)(hv−hv′) , (3.37)

In order to complete the proof, we still have to bound the two sums in
(3.31); the first one gives a factor

∏
v∈v

0
|Pv| ≤

∏
v∈Vc,v 6∈τ ′ |Pv|, the second a

factor γ−h. Combining all these bounds, we find that also the term with L = 1
can be bounded by the r.h.s. of (3.6).

(A2) sv0 ≥ 2 and Tv0 ≡ lx,y. In this case by hypothesis all the vertices in v0
belong to lx,y and each of them has at least two free loop lines contracted into
the Gram determinant, see Fig. 6.

We consider the vertex vx and we note that, by construction, vx has one
external line coinciding with fx and another one belonging to the spanning tree
Tv0 , let us call it f

∗. Calling P̃v
0
the set of loop lines contracted into the Gram
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Figure 6: : an example of case (A2).

determinant and P̃vx = P̃v
0
∩Pvx , we again write Gh,Tv0 in blocks, as in (3.10),

with A the block with both row and column indices in P̃vx , B the block with
row indices in P̃vx and column indices in P̃v

0
\ P̃vx , C the block with row indices

in P̃v
0
\ P̃vx and column indices in P̃vx and D the block with both row and

column indices in P̃v
0
\ P̃vx .

In this case, by a fourth order expansion of

(
A B
C D

)
around

(
A 0
0 D

)
, we

get the analogue of (3.13) and, since |Pv0 | = 2, we get the bound analogue to
(3.14):

J
(2)

h,n,ω̄(τ,P, T ; 0) ≤
∑

L=0,2,4

J
(2)

h,n,ω̄(τ,P, T ; 0, L) (3.38)

where J
(2)

h,n,ω̄(τ,P, T ; 0, L) with L = 0, 2, 4 are defined by an equation com-

pletely analogous to (3.15), where, if L = 2, 4, the sum
∑∗

{iqjq ,i′qj′q}L
q=1

has to

be interpreted as the sum over the indices {iqjq, i′qj′q}Lq=1 such that fiqjq ∈ Pvx
and fi′qj′q ∈ Pv0 \ Pvx or viceversa, while, if L = 0, the factor 1

L!

∑∗
{iqjq,i′qj′q}L

q=1[∏L
q=1G

h,Tv0

iqjq,i′qj
′
q

]
· det G̃h,Tv0

(
{iqjq, i′qj′q}Lq=1; sL, tv0

)
in (3.15) must be inter-

preted as equal to detA · detD. In other words, the bound (3.38) allows us

to distinguish between the contributions to J
(2)

h,n,ω̄(τ,P, T ; 0) such that: vx is
connected with v0 \ vx only by a line of the spanning tree (L = 0) or vx is
connected with v0 \ vx also by exactly two loop lines (L = 2) or vx is connected
with v0 \ vx also by four or more loop lines (L = 4).

We now want to show how to get the desired dimensional gain for the three

contributions J
(2)

h,n,ω̄(τ,P, T ; 0, L), L = 0, 2, 4, in the r.h.s. of (3.38).

(A2.1) L = 2: there are exactly two loop lines connecting P̃vx with P̃v0 \ P̃vx ,
call them l1, l2 and f1, f2 their field labels, see Fig. 7.

This case can be treated in a way similar to the case A1.1 above. Let

us consider the product
∏2
q=1G

h,Tv0

iqjq ,i′qj
′
q
=
∏2
q=1 tiq ,i′qg

(h)
ω(fq)

(xlq − ylq )δω+
lq
,ω−

lq

in
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Figure 7: : an example of case (A2.1).

(3.15) and let us rewrite both the extracted loop propagators g
(h)
ω(fq)

with q = 1, 2

and the propagator of the spanning tree g
(h)
ω(f∗) (we recall that f∗ is the line of

Tv0 belonging to Pvx) as sums of isotropic propagators, to be denoted by g
(h)
ω̄q

,

q = 1, 2, and g
(h)
ω̄∗ . For any fixed configuration of internal anisotropic sectors,

the new sums on the isotropic sectors can be written as

∑

ω̄q≺ω(fq)

q=1,2

∑

ω̄∗≺ω(f∗)

, (3.39)

where the meaning of the symbol ≺ is the same as in (2.109). Note also that, by
construction, the summand in the r.h.s. of (3.15) is 0 unless χ({ω, ω1, ω2, ω

∗}) =
1, so that we can freely multiply the summand in the r.h.s. of (3.15) by
χ({ω, ω1, ω2, ω

∗}). In this case it is crucial the assumption that the external
sector index corresponding to fx is isotropic.

Having done this, we can bound the resulting expression by replacing all the
modified coupling functions, all the propagators and all the Gram determinants
with their absolute values. Now, we can bound the integral over the absolute
values of the modified coupling functions as in (2.102) (by using again (3.18)
in place of (2.92)), the integral over the absolute values of the propagators
of the spanning tree as in (2.101) and the product of the determinants times∏2
q=1 |g

(h)
ω̄(fq)

(xlq − ylq )| by the product over v of the r.h.s. of (2.100) times

a dimensional gain γh. After these bounds, the sum
∑∗

{iqjq,i′qj′q}2
q=1

can be

bounded by
∏
v∈v

0
|Pv|2 ≤

∏
v∈Vc

|Pv|5 (the latter is the same product appearing

in the r.h.s. of (3.6)) and we are still left with the sum over the sector indices:

∑

∪vΩv\Ωv0

∑

ω̄q≺ω(fq)

ω̄∗≺ω(f∗)

[ ∏

v>v0
v∈Vc

χ(Ω̃v,ω̄)
]
χ({ω, ω1, ω2, ω

∗})
[∏

l∈T
δω+

l
,ω−

l

] 2∏

q=1

δω+
lq
,ω−

lq

.

(3.40)

where the product χ({ω, ω1, ω2, ω
∗})∏2

q=1 δω+
lq
,ω−

lq

takes into account the new
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constraints coming from the extraction of the two loop propagators.
We want to prove that (3.40) can be bounded by the r.h.s. of (2.104) times

a dimensional factor |h|. Combining this loss with the gain γh coming from
the bound on the size of the loop propagators and discussed above, we see
that globally the contribution under analysis has a dimensional gain γh|h| with
respect to the bounds described in §2.8, that is the desired gain.

We proceed as in item A1.1 above. With the same notations as in (3.21),
we can rewrite (3.40) as

∑

Ωv
0
\Ωv0

∑

ω̄q≺ω(fq)

ω̄∗≺ω(f∗)

[ ∏

v∈ṽ0

Fv(Ω̃v,ω̄)
]
· χ({ω, ω1, ω2, ω

∗})
∏

l∈Tv0

δω+
l
,ω−

l

2∏

q=1

δω+
lq
,ω−

lq

.

(3.41)
Defining

Fv0\vx(Ω̃v0\vx)
def
=

∏

v∈v0\vx

Fv(Ω̃v,ω̄)
∏

l∈Tv0\l∗
δω+

l
,ω−

l
, (3.42)

and calling Ω(3) = {ω(f1), ω(f2), ω(f∗)}, we can bound (3.41) by

sup
Ω(3)

[ ∗∑

Ω̃v
0
\vx

Fv0\vx
(
Ω̃v0\v∗

)]
· sup
ω̄,Ω(3)

[ ∗∑

Ω̃vx,ω̄

Fv∗
(
Ω̃vx,ω̄

)]
·

·
∑

ω̄1,ω̄2,ω̄∗

χ({ω, ω1, ω2, ω
∗}) , (3.43)

where the ∗ on the sums means that we are not summing over the indices in
{ω}∪Ω(3). Now, the first two sums can be bounded using Lemma 2.6 and, with
respect to the cases in which the two sums have just one fixed external sector (as
it is the case in the proof of (2.104), see (2.114)), they both have a dimensional
gain γh/2 (so combining the two, their product has a gain of γh). By Lemma 3.1
we see that the contribution from the last sum can be bounded by cγ−h|h|, and
we see that (3.40) can be bounded by the r.h.s. of (2.104) times a dimensional

factor |h|. As discussed after (3.40) this implies that J
(2)

h,n,ω̄(τ,P, T ; 0, L = 2)
with |Pv0 | = 2 admits a dimensional bound given by the r.h.s. of (3.6) with
j = 0.

(A2.2) L=4: there are four extracted loop lines connecting P̃vx with P̃v
0
\ P̃vx ,

call them l1, l2, l3, l4 and f1, f2, f3, f4 their field labels, see Fig. 8.
This case can be treated in a way similar to item A1.2 above: we replace

all the modified coupling functions, all the propagators and all the Gram de-
terminants with their absolute values. Having done this, we bound the integral
over the modified coupling functions as in (2.102), the integral over the prop-
agators of the spanning tree as in (2.101) and we bound the product of the

determinants times
∏4
q=1 |g

(h)
ω(fq)

(xlq − ylq )| by the product over v of the r.h.s.

of (2.100). After these bounds, the sum
∑∗

{iqjq ,i′qj′q}4
q=1

can be bounded by
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Figure 8: : an example of case (A2.2).

∏
v∈v

0
|Pv|4 ≤

∏
v∈Vc

|Pv|5 (the latter is the same product appearing in the

r.h.s. of (3.6)) and we are still left with the sum over the sector indices:

∑

∪vΩv\Ωv0

[ ∏

v>v0
v∈Vc

χ(Ω̃v,ω̄)
][∏

l∈T
δω+

l
,ω−

l

] 4∏

q=1

δω+
lq
,ω−

lq

, (3.44)

where the product
∏4
q=1 δω+

lq
,ω−

lq

takes into account the new constraints coming

from the extraction of the three loop propagators.
We want to prove that (3.44) can be bounded by the r.h.s. of (2.104) times

a dimensional factor γh, that is even more than the desired dimensional gain.
With the same notations as above, we rewrite (3.44) in the form

∑

Ωv
0
\Ωv0

[ ∏

v∈ṽ
0

Fv(Ω̃v,ω̄)
]
·
∏

l∈Tv0

δω+
l
,ω−

l

4∏

q=1

δω+
lq
,ω−

lq

. (3.45)

Defining Fv
0
\vx(Ω̃v0\vx) as in (3.42) and calling Ω(5) = {ω(fq)}4q=1,∪{ω(f∗)},

we can bound (3.45) by

sup
ω̄

[ ∗∑

Ω̃v
0
\vx

Fv0\vx
(
Ω̃v0\vx

)]
· sup
ω̄,Ω(5)

[ ∗∑

Ω̃vx,ω̄\Ω(5)

Fvx
(
Ω̃vx

)]
. (3.46)

where the ∗ on the sums means that we are not summing over the sectors in
Ωv0 . Now, the first sum can be bounded exactly as in the proof of (2.43), while
the second one, using Lemma 2.6, has a dimensional gain γh, and this concludes
the proof in the present case.

(A2.3) L=0: there are no loop lines connecting P̃vx with P̃v0 \ P̃vx , see Fig. 9.
We consider the line l∗ in Tv0 anchored to vx and we rewrite the correspond-

ing propagator g
(h)
ω(f∗) as a sum of isotropic propagators, to be denoted by g

(h)
ω̄∗ .
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Figure 9: : an example of case (A2.3).

For any fixed configuration of internal anisotropic sectors, the new sum on the
isotropic sectors can be written as

∑
ω̄∗≺ω(f∗) 11(|ω − ω∗| ≤ 1), where the char-

acteristic function is due to the remark that the value of the integrand in the
r.h.s. of (3.15) is 0 unless |ω − ω∗| ≤ 1. We recall that if L = 0 the factor
1
L!

∑∗
{iqjq,i′qj′q}L

q=1

[∏L
q=1G

h,Tv0

iqjq,i′qj
′
q

]
· det G̃h,Tv0

(
{iqjq, i′qj′q}Lq=1; sL, tv0

)
in (3.15)

must be interpreted as equal to detA · detD. If we rename the matrix A by

G̃hvx(tvx) and the matrix D by G̃
h,Tv0

v
0
\vx(tv0), we can bound J

(2)

h,n,ω̄(τ,P, T ; 0, 0)

in a way similar to (3.31):

∑

ω̄∗

11(|ω − ω∗| ≤ 1)[vx] · [v0\vx]
∫
dx|g(h)ω̄∗ (x)| . (3.47)

Note that [vx] has a form similar to (3.32), so that it can be bounded by using
(3.8), if vx is an endpoint, or (3.34), in the opposite case; this will produce a
gain γh|h| with respect to the dimensional estimate one would get simply using
(2.92) and Lemma 2.2.

Let us now consider [v0\vx]. It has the structure of a contribution to the
effective potential with two external fields with fixed isotropic sectors, which we
substitute in the bound with the corresponding anisotropic ones, before using
Theorem 2.1. Hence no gain or loss follows from this operation, as well from

the bound
∫
dx|g(h)ω̄∗ | ≤ cγ−h. Since

∑
ω̄∗ 11(|ω − ω∗| ≤ 1) ≤ c, the r.h.s. of

(3.47) can be bounded by (C|U |)n(|h|γ2h)γhγ−h = (C|U |)n|h|γ2h, times the
usual factor

∏
v∈Vc,v>vx

1
sv !
|Pv|5γδ(|Pv|)(hv−hv′ ).

We now turn to the proof of the case sv0 = 1 and of the bound (3.34).

(B) In this item we prove the dimensional gain for the case sv0 = 1. The proof
includes the unfinished proofs of items (A1.3) and (A2.3) above, that is the
proofs of the bounds (3.34) and of the analogue bound for [vx] in (A2.3).

If sv0 = 1, we call vm the first non trivial vertex following v0 on τ and
v1, . . . , vm−1 the trivial c–vertices preceding vm on τ , see Fig. 10, where the
c–vertices are represented as dots of larger size with respect to the others.
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Figure 10: : an example of tree in case (B).

Let us call k = hvm the scale of vm and vm the set of c–vertices immediately
following vm on τ ; we shall also call tadpole propagator any propagator linking
two external fields of a single vertex. Very roughly, the strategy will consist
in getting a first dimensional gain γk|k| on scale k = hvm by a loop extraction
similar to that described in §3.1, by distinguishing again among several cases.
Moreover, in order to “transfer the gain on scale h = hv0”, we shall suitably
“extract from the determinant” one tadpole propagator of scale h and expand
it into a sum of isotropic propagators, as described below.

Calling detGhv0 , detG
hv1
v1 , . . . , detG

hvm−1
vm−1 the determinants of the tadpole prop-

agators contracted on scales h, hv1 , . . . , hvm−1 respectively, we want to prove the
following:

∑

Ω\Ωv0

[∏

v∈τ
χ(Ω̃v,ω̄)

]∣∣∣∣∣

∫
d(xvm\x∗)F2,h,(ω̄,ω̄) ∗

[(m−1∏

i=0

detG
hvi
vi

)
· (3.48)

·W (mod)
τ ′,P′,Ω′,T ′(xvm)

]∣∣∣∣∣ ≤ (c|U |)nγ2h|h|
∏

v∈Vc,v>v0

1

sv!
|Pv|5γδ(|Pv|)(hv−hv′) ,

where the l.h.s. is equal to J
(2)

h,n,(ω̄,ω̄)(τ,P, T ; 0) and τ ′ is the subtree of τ
such that v′0, i.e. the first vertex following the root on τ ′, coincides with vm.
Correspondingly,P′,Ω′, T ′ are the field labels, the sector labels and the spanning
tree of τ ′.

Comparing (3.48) with the naive bound one would get by repeating the proof
of Theorem 2.1 we see that, again, we want to find a dimensional gain of γh|h|
with respect to the estimates in Sect.2.

Remark. After a suitable (and obvious) identification of the symbols in (3.32)
with those in (3.48), it becomes clear that the bound (3.34) and the analogue
bound for [vx] in item (A2.3) are essentially the same as (3.48) (unless for the
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specific values of the external fixed isotropic sectors). Then the proof of (3.48)
described in the following applies unvaried to the analysis of (3.34) and of the
analogue bound for [vx] so that the bound (3.48) will also complete the proof
of the dimensional gain in items (A1.3) and (A2.3) above.

We look into the structure of vm. Since, by construction, svm ≥ 2, the spanning
tree Tvm can be represented as in Fig. 2 or in Fig. 6; the only difference is that
the loop fields may have different scales between k and h, with the important
constraint that at least four fields have scale h (indeed two fields of scale h
would be sufficient). Let us choose, as before, vx as the root of Tvm and select
one leaf of Tvm , to be called again v∗. If it is possible, as in the case of Fig.
2, we choose v∗ 6= vy, otherwise (that is if Tvm ≡ lx,y, as in Fig. 6) it will be
necessarily v∗ ≡ vy. By construction v∗ has one external line belonging to the
spanning tree Tvm , call it f∗ and call ω∗ its sector label. If v∗ 6= vy, Pv∗ will
have an odd number of fields associated to loop lines contracted into the Gram
determinant. If v∗ = vy, Pv∗ will have an even number of fields associated to
loop lines contracted into the Gram determinant and one more field belonging
to Pv0 (associated to a fixed isotropic sector index).

We consider the product of determinants

(m−1∏

i=0

detG
hvi
vi

)
· detGhvm ,Tvm , (3.49)

where detGhvm ,Tvm is the determinant of the loop lines contracted on scale
hvm , if this family of lines is not empty, otherwise it is equal to 1. The product
in (3.49) can be rewritten as the determinant of a single “big” matrix Gv

m
of

all the loop lines contracted on scales h, hv1 , . . . , hvm (all the loop lines in the
examples similar to those of Fig. 2 and 6). Let us call P̃v∗ ⊂ Pv∗ the set of
loop lines of Pv∗ contracted into Gv

m
and P̃v

m
the whole set of loop lines in

∪w∈v
m
Pw contracted into Gv

m
. In analogy with the procedure described in

item (A1), we rewrite Gv
m

in blocks, as in the r.h.s. of (3.10), with the blocks
A,B,C,D defined in a way similar to that introduced after (3.10): that is A
is the block with both row and column indices in P̃v∗ , B is the block with row
indices in P̃v∗ and column indices in P̃v

m
\P̃v∗ , and so on. Then we Taylor

expand the determinant det

(
A B
C D

)
around det

(
A 0
0 D

)
up to fourth or

fifth order, depending whether v∗ is equal to vy or not: in this way we can
distinguish the contributions to (3.48) in which there are exactly L = 0, 1, 2, 3
loop lines connecting v∗ with vm\v∗ from those with at least 4 or 5 loop lines,
depending on whether v∗ is equal to vy or not. We do not write explicitly here
the expressions corresponding to these various contributions: they are similar to
the r.h.s. of (3.15) with G̃h,Tv0 replaced by a suitable minor G̃v

m
of the matrix

Gv
m
. As in Section 3.1 above, in the contributions with L = 0, 1, 2, 3, the

minor G̃v
m

can be rewritten in a factorized form, analogue to (3.30), allowing
to distinguish a contribution associated with the leaf v∗ from a rest associated
with vm\v∗.
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The case L = 0 can be treated as in item (A2.3). In fact, in this case the only
coupling between the contribution associated with v∗ and the rest is through a
single propagator belonging to Tvm . It follows, by momentum conservation and
the support properties of the single scale propagators (see the identity (2.135)),
that the scale of vm is ≤ h + 2, so that the analysis in item (A2.3) can be
repeated almost unchanged.

We now turn to the detailed analysis of the cases L = 1, 2, 3, 4, 5.

(B.1a) L = 3: as in the example of Fig. 3, there are exactly three loop lines con-
necting P̃v∗ with P̃vm \ P̃v∗ , call them l1, l2, l3 and denote by f1, f2, f3, h1, h2, h3
and ω1, ω2, ω3 their field, scale and sector labels. With no loss of generality, we
can assume h ≤ h1 ≤ h2 ≤ h3 ≤ k.

In this case we consider the propagators of f1, f2, f3, f
∗ and we expand them

as sums of isotropic propagators, to be denoted by g
(hi)
ω̄i

, i = 1, 2, 3 and g
(k)
ω̄f∗ . If

h1 = h, we rewrite the propagator gh1
ω̄1
(xf+

1
− yf−

1
) in the form

gh1
ω̄1
(xf+

1
− yf−

1
) = gh1

ω̄1
(0) + (xf+

1
− yf−

1
)

∫ 1

0

ds∂xg
h1
ω̄1

(
s(xf+

1
− yf−

1
)
)
. (3.50)

If h1 > h, we expand the determinant of G̃v
m

appearing in the analogue of

(3.15) along the row corresponding to a field label f−
0 ∈ P−

v1 \P−
v0 (that is a field

of scale h) and we rewrite

det G̃v
m
=

∑

f+
0 ∈P+

v1
\P+

v0

(−1)ε0g(h)ω0
(xf+

0
− yf−

0
) ·

· det G̃v
m
({f+

0 , f
−
0 }) · δω(f+

0 ),ω(f−
0 ) , (3.51)

g(h)ω0
(xf+

0
− yf−

0
) = g(h)ω0

(0) +
∑

ω̄0≺ω0

(
xf+

0
− yf−

0

)
·

·
∫ 1

0

ds ∂xg
(h)
ω̄0

(
s(xf+

0
− yf−

0
)
)
,

where G̃v
m
({f+

0 , f
−
0 }) is the minor of G̃v

m
corresponding to the entry (f+

0 , f
−
0 ),

(−1)ε0 is the corresponding sign and we denoted by ω0 the common value of
ω(f±

0 ). See Fig. 11 for an example.
Both in the case h1 = h and h1 > h, implementing the decompositions

(3.50) or (3.51), we see that the terms proportional to gh1
ω̄1
(0) or to g

(h)
ω0 (0) have

a dimensional gain of γh, associated with the fact that the bound on g
(h)
ω̄ (0) and

on g
(h)
ω (0) are γh smaller than the respective bounds on g

(h)
ω̄ (x) and on g

(h)
ω (x),

see Lemma 2.2, Lemma 2.3, Lemma 2.4 and Lemma 2.5.
So, in both cases, let us focus on the contributions proportional to the in-

terpolated term in (3.50) and (3.51).
Such terms have essentially the same structure as the r.h.s. of (3.15) with

L = 3, unless for the following facts: the minor G̃h,Tv0 is replaced by a suitable
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vx vy

v∗

f∗

l1
l2

l3

l0

Figure 11: : an example of case (B.1a).

minor of the determinant detGv
m

of all loop lines contracted on scales h =
hv0 , hv1 , . . . , hvm = k; if h1 > h the number of extracted loop lines is 4 instead
of 3 and their field labels are denoted by f0, f1, f2, f3; one of the loop lines (f1 if
h1 = h or f0 if h1 > h) is associated to an interpolated propagator (the second
term in(3.50) or the second term in the second line of (3.51), respectively).

For any fixed configuration of anisotropic sectors, the new sums on the
isotropic sectors, including possibly the sum over ω0, can be written as:

∗∏

i

∑

ω̄i≺ωfi

. (3.52)

where the * on the product means that the product runs over i = 1, 2, 3 if h1 = h
and over i = 0, 1, 2, 3 if h1 > h. Note also that, by construction, the summand
in the expression under analysis (i.e. the analogue of the summand in the r.h.s.
of (3.15)) is identically 0 unless χ({ω1, ω2, ω3, ωf∗}) = 1. Then we are free to
multiply the summand in the expression under analysis by χ({ω1, ω2, ω3, ωf∗}).
However we choose to multiply it by a slightly weaker constraint, that is by

χ({ω(k)
1 , ω

(k)
2 , ω

(k)
3 , ωf∗}), where ω

(k)
i is the isotropic sector index on scale k

such that ωi ≺ ω(k)
i (note that by construction ωf∗ is already on scale k).

Having done this, we can bound the resulting expression by replacing all the
modified coupling functions, all the propagators and all the Gram determinants
with their absolute values. As regarding the factor (xf+

1
− yf−

1
) or (xf+

0
−yf−

0
)

appearing in (3.50) or (3.51), we can bound its absolute value by a sum over
the lines l ∈ T ′′ of |xl − yl|, where T ′′ is a suitable subset of the spanning tree
T ′. In particular we can associate each factor |xl − yl| to the corresponding
propagator of the spanning tree T ′. Note that the number of terms in the sum∑
l∈T ′′ is of order n.
Now, we can bound the integral over the absolute values of the modified

coupling functions as in (2.102) (by using (3.18) in place of (2.92)), the integral

62



over the absolute values of the propagators of the spanning tree times the factor∑
l∈T ′′ |xl − yl| by the r.h.s. of (2.101) times a dimensional loss cnγ−k, where

we used that the propagators associated to l ∈ T ′′ are of scale j ≥ k and that,

by (2.61),
∫
dx|x||g(j)ω (x)| ≤ cγ−2j. Moreover, the product of the determinants

times the product of the absolute values of the extracted loop propagators can
be bounded by the product over v of the r.h.s. of (2.100) times a dimensional

gain γh(1+
1
2 11(h1>h))γ

1
2 (h1+h2+h3): the first factor γh comes from the derivative

∂x acting on g
(h)
ω̄1

or on g
(h)
ω̄0

, see Lemma 2.4, while the remaining factors come
from the improved bound on the size of the isotropic propagators with respect
to the anisotropic ones.

After these bounds, the sums over the choices of the extracted loop propaga-
tors (including possibly the sum over f+

0 ) can be bounded by |Pv1 |
∏
w∈v

m
|Pw|3.

We are still left with the sum over the sector indices:

∑

Ω\Ωv0

[ ∗∏

i

∑

ω̄i≺ωi

δω
f
+
i

,ω
f
−
i

][ ∏

v>v0
v∈Vc

χ(Ω̃v,ω̄)
]
χ({ω(k)

1 , ω
(k)
2 , ω

(k)
3 , ωf∗})

[ ∏

l∈T ′

δω+
l
,ω−

l

]
.

(3.53)
We now want to bound (3.53) and to compare the result we shall find with the
bound we would get by proceeding as in Sect.2.8 above, that is with:

cn
∏

v∈Vc
v not e.p.

γ
1
2 (hv−hv′ )(|Pv|−3+211(|Pv|≥10))

∏

v e.p.

γ−
1
2hv . (3.54)

Using a notation completely analogous to the notations of 2.8, see (2.104) and
following equations, we begin with bounding the product of χ functions in (3.53)
as ∏

v>v0
v∈Vc

χ(Ω̃v,ω̄) ≤
∏

v>vm
v∈Vc

χ(Ω̃
(k)
v,ω̄) , (3.55)

that is we simply neglect the constraints associated to the vertices v1, . . . , vm
and we weaken the remaining constraints by replacing sectors on scales ≤ k
with the corresponding sectors on scale k.

Also, we rewrite the sums over the sector indices in the form

∑

Ω\Ωv0

[ ∗∏

i

∑

ω̄i≺ωi

δω
f
+
i

,ω
f
−
i

]
=

=
[ ∗∏

i

∑

ω̄
(k)

i
∈Ōk

]
·
[ ∗∏

i

∑

ω̄i≺ω̄(k)

i

]
·

∗∗∑

Ω
(k)
vm

·
∗∗∑

Ωvm≺Ω
(k)
vm

·
∗∗∑

Ω\Ωvm

(3.56)

where the ∗∗ on the sums mean that we are not summing neither over the sectors
in Ωv0 nor over the sectors ω0, ω1, ω2, ω3. Let us denote by PL the set of field
labels of the half–lines corresponding to the extracted loop propagators (equal
to {f±

1 , f
±
2 , f

±
3 } or to {f±

0 , f
±
1 , f

±
2 , f

±
3 }, depending whether h1 = h or not) and
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by nLi = |PL ∩ Pvi | the number of field labels in PL external to vi. With this
notation, we can bound

[ ∗∏

i

∑

ω̄i≺ω̄(k)

i

]
≤ cγ(k−h)11(h1>h)

3∏

i=1

γ(k−hi)

∗∗∑

Ωvm≺Ω
(k)
vm

≤ cm
m∏

i=1

γ
1
2 (hvi

−hvi−1
)(|Pvi

|−2−nL
i ) = (3.57)

= cmγ−(k−h)11(h1>h)
3∏

i=1

γ−(k−hi)
m∏

i=1

γ
1
2 (hvi

−hvi−1
)(|Pvi

|−2)

Combining the two bounds in (3.57), we see that the global contribution from
the sector sums corresponding to the vertices v1, . . . vm is proportional to∏m
i=1 γ

1
2 (hvi

−hvi−1
)(|Pvi

|−2), to be compared with the corresponding bound∏m
i=1 γ

1
2 (hvi

−hvi−1
)(|Pvi

|−3+211(|Pv |≥10)) obtained with the procedure of Section
2.8, see (3.54). We see that, as regards the sector sums corresponding to the
vertices v1, . . . vm, with respect to the corresponding bound in (3.54) the present

bound has a dimensional loss at most equal to γ
1
2 (k−h).

After having bounded as above the sector sums corresponding to the vertices
v1, . . . vm, we are still left with the sector sums corresponding to the vertices
v > vm, that can be rewritten in the form

[ ∗∏

i

∑

ω̄
(k)
i

∈Ōk

] ∗∗∑

∪v>vmΩ
(k)
v

[ ∏

v>vm

χ(Ω̃
(k)
v,ω̄)

]
χ({ω(k)

1 , ω
(k)
2 , ω

(k)
3 , ωf∗}) ·

[ ∏

l∈T ′

δω+
l
,ω−

l

]
=

∑

Ω
(k)
v
m

\Ωv0

[ ∗∏

i

∑

ω̄
(k)

i
≺ω(k)

i

δω
f
+
i

,ω
f
−
i

]
· (3.58)

·
∏

l∈Tvm

δω+
l
,ω−

l

[ ∏

v∈v
m

Fv(Ω̃
(k)
v,ω̄)

]
χ({ω(k)

1 , ω
(k)
2 , ω

(k)
3 , ωf∗}) .

Now, if h1 = h (i.e. if the only extracted loop lines are f1, f2, f3), defining
Ω(4) = {ω1, ω2, ω3, ωf∗}, we see that we can soon bound (3.58) by an expression
analogue to the r.h.s. of (3.21), so that, repeating the discussion after (3.21),
we find that (3.58) can be bounded by the factor in (3.54) corresponding to
the vertices v > vm times a dimensional loss of γ−k/2|k|. If h1 > h (i.e. if
the extracted loop lines are f0, f1, f2, f3) we bound the sum

∑
ω̄

(k)
0 ≺ω(k)

0

by a

constant times γ−k/2 and we neglect the constraint that the half-lines f+
0 and

f−
0 have the same sector index (on scale k). After this, we are again left with
an expression analogue to the r.h.s. of (3.21), so that we lose a factor γ−k/2|k|
more.

In conclusion we can say that (3.58) can be bounded by a quantity that,
with respect to the factor in (3.54) corresponding to the vertices v > vm, has a
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loss of γ−
1
2 k(1+11(h1>h))|k|.

Combining all the gain and losses discussed in this item we find that the con-
tributions under analysis, with respect to the bounds obtained via the procedure
in Section 2.8, have a global gain of:

cnγ−kγhγ
1
2h11(h1>h)γ

1
2 (h1+h2+h3)|Pv1 |

[ ∏

w∈v
m

|Pw|3
]
·

·γ 1
2 (k−h)γ−

1
2k(1+11(h1>h))|k| = cn|Pv1 |

[ ∏

w∈v
m

|Pw|3
]
· (3.59)

·γh|k|γ 1
2 (k−h)(1−11(h1>h))

3∏

i=1

γ−
1
2 (k−hi) ≤ cnγh|h|

∏

v∈Vc

|Pv|5 ,

where in the last inequality we used the trivial bounds cn ≤ cn, |k| ≤ |h| and
|Pv1 |· ·

[∏
w∈v

m
|Pw|3

]
≤∏v∈Vc

|Pv|5.

(B.1b) L = 2: there are exactly two loop lines connecting P̃v∗ with P̃vm \ P̃v∗ ,
see Fig. 12.

vx vy = v∗l∗
f3

l1

l2
l0

Figure 12: : an example of case (B1.b).

We call l1, l2 the extracted loop lines, f1, f2 the corresponding field labels
in P̃v∗ , h1, h2 their scale labels (assume h ≤ h1 ≤ h2 ≤ k) and ω1, ω2 their
sector labels. In this case we proceed in a way very similar to item (B.1a) above
and we only rapidly repeat the proof of item B.1a adapted to the present case.
The main difference consists in the fact that one of the fields in Pv∗ , call it f3,
belongs to Pv0 , so that its sector label is fixed to be isotropic and equal to ω.

As in item B.1a we expand the propagators of l1, l2 and l
∗ as sums of isotropic

propagators and, depending whether h1 = h or not, we also perform the expan-
sions in (3.50) or (3.51); the example of Fig. 12 refers to the second case.
Focusing on the contributions coming from the interpolated terms in (3.50),
(3.51) (the others trivially admitting a gain of γh), we note that, for any fixed
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configuration of isotropic sectors, the new sums on isotropic sectors can be writ-
ten as in (3.52), where the * on the product now means that the product runs
over i = 1, 2 if h1 = h and over i = 0, 1, 2 if h1 > h. We again choose to multi-

ply the summand in the expression under analysis by χ({ω(k)
1 , ω

(k)
2 , ω

(k)
3 , ωf∗}),

where now ω
(k)
3 must be interpreted as the isotropic sector index on scale k such

that ω ≺ ω(k)
3 .

Then we bound the product of coupling functions, the integrals over the
propagators of the spanning tree (including the factor

∑
l∈T ′′ |xl−yl|, see item

(B.1a)) and the product of Gram determinants times the product of loop prop-
agators as explained in item B.1a above. With respect to the naive bounds
obtained by proceeding as in Sect. 2.8, we lose a factor nγ−k, because of the
presence of

∑
l∈T ′′ |xl − yl|, and we gain a factor γh(1+

1
2 11(h1>h))γ

1
2 (h1+h2) be-

cause of the presence of the isotropic loop propagators and of the derivative
acting on one isotropic loop propagator. Then, the sum over the choices of the
extracted loop propagators gives a combinatorial factor |Pv1 |

∏
w∈v

m
|Pw|2.

After this, we are left with the sum (3.53) over the sector indices, whose
bound must be compared with the naive bound (3.54). We proceed again
through (3.55) and (3.56) (where now the symbol

∏∗
i must be interpreted as

explained above), then we bound
∏∗
i

∑
ω̄i≺ω̄(k)

i

and
∑∗∗

Ωvm≺Ω
(k)
vm

exactly as in

(3.57), unless for the fact that the product
∏3
i=1 appearing in the r.h.s. of

(3.57) must be replaced by
∏2
i=1. So, exactly as in item B.1a above, the sec-

tor sums corresponding to the vertices v1, . . . , vm have a loss at most equal to
γ

1
2 (k−h) with respect to the corresponding contribution in (3.54). We are still

left with the sum in (3.58) and again, if h1 = h, we can reduce the analysis of
the expression in (3.58) to the analysis of an expression similar to (3.41) of item
A2.1; then we find that such expression can be bounded by the factor in (3.54)
corresponding to the vertices v > vm times a loss of |k|. If h1 > h we bound
the sum

∑
ω̄

(k)
0 ≺ω(k)

0

by cγ−k/2 and we neglect the constraint that the half-lines

contracted in l0 have the same sector index (on scale k); then we are left again
with an expression analogue to (3.41) and we find a loss of a factor |k| more.

Combining all gains and losses we find that the global gain has an expression
similar to (3.59):

cnγ−kγhγ
1
2h11(h1>h)γ

1
2 (h1+h2)|Pv1 |

[ ∏

w∈v
m

|Pw|2
]
γ

1
2 (k−h) ·

·γ− 1
2k(11(h1>h))|k| = cn|Pv1 |

[ ∏

w∈v
m

|Pw|2
]
· (3.60)

·γh|k|γ 1
2 (k−h)(1−11(h1>h))

2∏

i=1

γ−
1
2 (k−hi) ≤ cnγh|h|

∏

v∈Vc

|Pv|5

(B.2a) L = 5: as in the example of Fig. 4, there are exactly five loop lines
connecting P̃v∗ with P̃vm \ P̃v∗ , call them l1, . . . , l5 and denote by f1, . . . , f5, by
h1, . . . , h5 and by ω1 . . . , ω5 their field, scale and sector labels. With no loss of
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generality, we can assume h ≤ h1 ≤ · · ·h5 ≤ k. If h1 = h, then we rewrite the
propagator gh1

ω1
(xf+

1
− yf−

1
) in a form similar to (3.50):

gh1
ω1
(xf+

1
−yf−

1
) = gh1

ω1
(0)+

∑

ω̄1≺ω1

(xf+
1
−yf−

1
)

∫ 1

0

ds∂xg
h1
ω̄1

(
s(xf+

1
−yf−

1
)
)
. (3.61)

If h1 > h, then as in item B.1a above we expand the determinant of G̃v
m

appearing in the analogue of (3.15) along the row corresponding to a field label

f−
0 ∈ P−

v1 \ P−
v0 and we rewrite det G̃v

m
as in (3.51).

Both in the case h1 = h and h1 > h, implementing the rewritings (3.61)

or (3.51), we see that the terms proportional to gh1
ω1
(0) or to g

(h)
ω0 (0) have a

dimensional gain of γh. So, in both cases, let us focus on the contributions
proportional to the interpolated term in (3.60) and (3.51).

We replace all the modified coupling functions, all the propagators and all
the Gram determinants with their absolute values. As before, we can bound
the integral over the absolute values of the modified coupling functions as in
(2.102) (by using (3.18) in place of (2.92)). The integral over the absolute
values of the propagators of the spanning tree times the factor (xf+

1
− yf−

1
)

or (xf+
0
− yf−

0
) is bounded again by the r.h.s. of (2.101) times a dimensional

loss cnγ−k. The product of the determinants times the product of the absolute
values of the extracted loop propagators can be bounded by the product over v
of the r.h.s. of (2.100) times a dimensional gain γ

3
2h, coming from the fact that

the dimensional bound of the derived isotropic propagator on scale h (the one

corresponding to f1 or to f0, depending whether h1 = h or not) is γ
3
2h smaller

than the corresponding bound for an anisotropic propagator on scale h. After
these bounds, the sums over the choices of the loop propagators can be bounded
by |Pv1 |

∏
w∈v

m
|Pw|5.

We are still left with the sum over the sector indices:

∑

Ω\Ωv0

∑

ω̄i∗≺ωi∗

[ ∏

v>v0
v∈Vc

χ(Ω̃v,ω̄)
][ ∏

l∈T ′

δω+
l
,ω−

l

][ ∗∏

i

δω+
i
,ω−

i

]
, (3.62)

where the index i∗ attached to the sector indices in the second sum is i∗ = 1, 0,
depending whether h1 = h or not, and the * on the last product means that the
product ranges over i = 1, 2, 3, 4, 5 or over i = 0, 1, 2, 3, 4, 5, depending whether
h1 = h or not.

We now want to bound (3.62) and to compare the result we shall find with
(3.54). We again bound the product of χ functions as in (3.55). We bound the
sum

∑
ω̄i∗≺ωi∗

by a constant times γ−h/2 and, after this, we rewrite

∑

Ω\Ωv0

[ ∗∏

i

δω+
i
,ω−

i

]
=
[ ∗∏

i

∑

ω
(k)

i
∈Ok

]
·
[ ∗∏

i

∑

ωi≺ω(k)

i

]
·

∗∗∑

Ω
(k)
vm

·
∗∗∑

Ωvm≺Ω
(k)
vm

·
∗∗∑

Ω\Ωvm

(3.63)
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where the ∗∗ on the sums mean that we are not summing neither over the sectors
in Ωv0 nor over the sectors ω0, ω1, . . . , ω5. If we denote by PL the set of field
labels of the half–lines corresponding to the extracted loop propagators (equal
to {f±

1 , . . . , f
±
5 , } or to {f±

0 , f
±
1 , . . . , f

±
5 }, depending whether h1 = h or not)

and by nLi = |PL ∩ Pvi | the number of field labels in PL external to the cluster
vi, we can bound

[ ∗∏

i

∑

ωi≺ω(k)
i

]
≤ cγ 1

2 (k−h)11(h1>h)
5∏

i=1

γ
1
2 (k−hi)

∗∗∑

Ωvm≺Ω
(k)
vm

≤ cm
m∏

i=1

γ
1
2 (hvi

−hvi−1
)(|Pvi

|−2−nL
i ) = (3.64)

= cmγ−(k−h)11(h1>h)
5∏

i=1

γ−(k−hi)
m∏

i=1

γ
1
2 (hvi

−hvi−1
)(|Pvi

|−2)

Combining the two bounds in (3.64), we see that the global contribution from
the sector sums corresponding to the vertices v1, . . . vm is proportional to

∏m
i=1

γ
1
2 (hvi

−hvi−1
)(|Pvi

|−2) γ−
1
2 (k−h)11(h1>h)

∏5
i=1 γ

− 1
2 (k−hi). Comparing this with the

corresponding bound in (3.54), we see that the present bound has a dimensional

gain at least equal to γ−
1
2 (k−h)(11(h1>h)−1)

∏5
i=1 γ

− 1
2 (k−hi).

After having bounded as above the sector sums corresponding to the vertices
v1, . . . vm, we are still left with the sector sums corresponding to the vertices
v > vm, that can be rewritten in the form

[ ∗∏

i

∑

ω
(k)

i
∈Ok

] ∗∗∑

∪v>vmΩ
(k)
v

[ ∏

v>vm

χ(Ω̃
(k)
v,ω̄)

][ ∏

l∈T ′

δω+
l
,ω−

l

]
=

=
∑

Ω
(k)
v
m

\Ωv0

∗∏

i

δω+
i
,ω−

i

∏

l∈Tvm

δω+
l
,ω−

l

[ ∏

v∈v
m

Fv(Ω̃
(k)
v,ω̄)

]
. (3.65)

If we now discard the constraint coming from δω+
f0
,ω−

f0

(whenever present in

(3.65)), we are left with an expression completely analogous to (3.27) so that,
proceeding as in item (A1.2), we find that (3.65) admits a bound that, with
respect to the corresponding bound in (3.54), has a dimensional gain of γk.

Combining all the gain and losses discussed in this item we find that the con-
tributions under analysis, with respect to the bounds obtained via the procedure
in Section 2.8, have a global gain of

cnγ−kγ
3
2h|Pv1 |

[ ∏

w∈v
m

|Pw|5
]
γ−

1
2hγ−

1
2 (k−h)(11(h1>h)−1) ·

·
[ 5∏

i=1

γ−
1
2 (k−hi)

]
γk = cn|Pv1 |

[ ∏

w∈v
m

|Pw|5
]
· (3.66)
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·γhγ− 1
2 (k−h)(11(h1>h)−1)

[ 5∏

i=1

γ−
1
2 (k−hi)

]
≤ cnγh

∏

v∈Vc

|Pv|5 .

(B.2b) L = 4: there are exactly four loop lines connecting P̃v∗ with P̃vm \ P̃v∗ .
We call f1, f2, f3, f4 the field labels of the extracted loop lines, h1, h2, h3, h4
their scale labels (assume h ≤ h1 ≤ · · · ≤ h4 ≤ k) and ω1, ω2, ω3, ω4 their sector
labels. In this case we proceed in a way very similar to item (B.2a) above and
we only rapidly repeat the proof of item B.2a adapted to the present case. The
main difference consists in the fact that one of the fields in Pv∗ , call it f5, belongs
to Pv0 , so that its sector label is fixed to be isotropic and equal to ω.

As in item B.2a, depending whether h1 = h or not, we perform the expan-
sions in (3.61) or in (3.51). We again focus on the contributions coming from
the interpolated terms in (3.61), (3.51) (the others trivially admitting a gain of
γh).

We bound the product of coupling functions, the integrals over the propaga-
tors of the spanning tee (including the factor

∑
l∈T ′′ |xl − yl|, see item (B.1a))

and the product of Gram determinants times the product of loop propagators
as explained in item B.2a above. With respect to the naive bounds obtained
by proceeding as in Sect. 2.8, we lose a factor nγ−k, because of the presence
of
∑

l∈T ′′ |xl − yl|, and we gain a factor γ
3
2h because of the presence of one

derived isotropic loop propagators. The sum over the choices of the extracted
loop propagators gives a combinatorial factor |Pv1 |

∏
w∈v

m
|Pw|4.

After this we are left with the sum (3.62) over the sector indices (where now
the * on the last product means that the product ranges over i = 1, 2, 3, 4 or
over i = 0, 1, 2, 3, 4, depending whether h1 = h or not), whose bound must be
compared with the naive bound (3.54).

We proceed again through (3.55), we bound
∑

ω̄i∗≺ωi∗
by a constant times

γ−h/2 and we consider the rewriting (3.63) (where now the symbol
∏∗
i must

be interpreted as explained above). We bound
∏∗
i

∑
ωi≺ω(k)

i

and
∑∗∗

Ωvm≺Ω
(k)
vm

exactly as in (3.64), unless for the fact that the product
∏5
i=1 appearing in the

r.h.s. of (3.64) must be replaced by
∏4
i=1. So, exactly as in item B.2a above,

the sector sums corresponding to the vertices v1, . . . , vm have a gain at least
equal to γ−

1
2 (k−h)(11(h1>h)−1)

∏4
i=1 γ

− 1
2 (k−hi) with respect to the corresponding

contribution in (3.54). We are still left with the sum in (3.65) and again we
discard the constraint coming from δω+

0 ,ω
−
0
(whenever present in (3.65)); in this

way we are reduced to an expression completely analogous to the one considered
in item (A2.2), see (3.45), and we find that such expression can be bounded by
the factor in (3.54) corresponding to the vertices v > vm times a gain of γk.

Combining all gains and losses we find that the global gain has an expression
similar to (3.66):

cnγ−kγ
3
2h|Pv1 |

[ ∏

w∈v
m

|Pw|4
]
γ−

1
2hγ−

1
2 (k−h)(11(h1>h)−1) ·
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·
[ 4∏

i=1

γ−
1
2 (k−hi)

]
γk = cn|Pv1 |

[ ∏

w∈v
m

|Pw|4
]
· (3.67)

·γhγ− 1
2 (k−h)(11(h1>h)−1)

[ 4∏

i=1

γ−
1
2 (k−hi)

]
≤ cnγh

∏

v∈Vc

|Pv|5 .

(B.3) L = 1; as in the example of Fig. 5, there is exactly one loop line con-
necting P̃v∗ with P̃vm \ P̃v∗ . We call l1 the extracted loop line and f1, h1, ω1

its field, scale and sector labels. Let us rewrite the propagators of l∗ and l1
as sums of isotropic propagators, to be denoted by g

(k)
ω̄f∗ (x) and g

(h1)
ω̄1

(x). Note
that, by momentum conservation and the support properties of the single scale
propagators (see the identity (2.135)), h1 ≥ k − 2, so that it is sufficient to
consider the case h1 = k; the general case will differ only in irrelevant details.
Moreover, the momentum conservation also implies that the summand in the
expression under analysis can be freely multiplied by 11(|ωf∗ − ω1| ≤ 1).

Note also that the determinant det G̃v
m
of the loop lines contracted on scales

h = hv0 , hv1 , . . ., hvm = k, except those contracted in l1, can be factorized in

a form analogous to (3.30), to be denoted by det G̃v∗ · det G̃v
m
\v∗ . Let us

call j∗ ∈ [h, k] the smallest scale among those of the propagators contracted

into det G̃v∗ and j ∈ [h, k] the smallest scale among those of the propagators

contracted into det G̃v
m
\v∗ ; the indices of the vertices with scale j∗ and j will

be called i∗ and i. Note that at least one among j∗ and j is equal to h.
For any choice of l1 and any vertex vi, i = 0, . . . ,m, we can split the set Pvi

as Pvi = P ′
vi ∪ P ′′

vi ∪ Pv0 , where P ′
vi and P ′′

vi are the sets of external lines of vi

contracted in det G̃v∗ and det G̃v
m
\v∗ , respectively. Then we define two trees

τ∗ and τ , by adding to the two subtrees of τ with first vertex vm, the first one
containing v∗ and the other containing [vm\v∗], the vertices vi∗ , . . . , vm−1 and
vi, . . . , vm−1, respectively; see Fig. 13 for an example.

If v ∈ τ∗ and v = vi, i = i∗, . . . ,m, we shall put P ∗
v = P ′

vi ∪{f1, f∗}; if v ∈ τ
and v = vi, i = i, . . . ,m, we shall put P v = P ′′

vi ∪ Pv0 ∪ {f1, f
∗}, f1 and f

∗

being the lines contracted in l1 and l∗ and not belonging to Pv∗ . If v > vm, we
shall put P ∗

v = Pv if v ∈ τ∗, P v = Pv if v ∈ τ . Moreover, we shall call T ∗ the
subset of the spanning tree T associated with all the vertices v ≥ v∗, while T
will be T \{T ∗, l∗}.

Note now that, for any i = 0, . . . ,m, the constraint χ(Ω̃vi,ω̄) is indeed inde-
pendent of the two external lines in Pv0 , since they have the same momentum
and belong both to Pvi . It follows, by taking also in account that there is
a separate conservation of momenta constraint for the sets P ′

vi and P ′′
vi , that

χ(Ω̃vi,ω̄) = χ(Ω(P ′
vi))χ(Ω(P

′′
vi )). Hence it is easy to see that we can bound the

expression under analysis by the following one:

∑

l1

∑

ω̄1,ω̄f∗

11(|ωf∗ − ω(k)
1 | ≤ 1) [v∗] [vm\v∗] sup

x

|g(k)ω̄1
(x)|

∫
dx|g(k)ω̄f∗ (x)| ≤
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Figure 13: : an example of τ∗ and τ .

≤ c|Pv∗ |




∑

v∈v
m
\v∗
|Pv|



 [v∗] [vm\v∗] , (3.68)

where [v∗] and [vm\v∗] have a structure very similar to J
(2)
j∗,m4(v∗)

(τ∗,P∗, T ∗)

with |P ∗
vi∗
| = 2 and J

(4)

j,n−m4(v∗)
(τ ,P, T ) with |P v

i
| = 4, with the following main

differences.

1) The two external legs of vi∗ and two of the four external legs of vi have scale
k instead of j∗ or j.
2) If v ∈ τ∗ and v = vi, i = i∗ + 1, . . . ,m, then the minimum value of |P ∗

v | can
be equal to 4, instead of 6.
3) If v ≤ vm, the external legs involved in the conservation of momentum
constraint are those belonging to P ′

vi (whose number is |P ∗
v | − 2), if v ∈ τ∗, or

those belonging to P ′′
vi (whose number is |P v| − 4), if v ∈ τ .

Let us consider first [vm\v∗]. We begin with bounding the sum over the
sector indices. By extending in an obvious way the previous definitions, we can
write

∏

v>v
i

v∈Vc

χ(Ω̃v,ω̄,ω̄1,ω̄f∗ ) =

m∏

i=i+1

χ(Ω(P ′′(vi))
∏

v>vm
v∈Vc

χ(Ω̃v,ω̄,ω̄1,ω̄f∗ ) , (3.69)

so that, using the item 3) above (together with momentum conservation, which
allows us to eliminate one sector sum in each vertex) and calling Ω̄ext the sector
indices of the legs in Pv

i
, we get

∑

Ω̄\Ω̄ext

∏

v>v
i

v∈Vc

χ(Ω̃v,ω̄,ω̄1,ω̄f∗ ) ≤
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≤
m∏

i=i+1

γ
1
2 (hvi

−hvi−1
)(|Pvi

|−5)
∑

Ω̄(k)\Ω̄(k)
ext

∏

v>vm
v∈Vc

χ(Ω̃
(k)
v,ω̄,ω̄1,ω̄f∗ ) . (3.70)

Let us now consider det G̃v
m
\v∗ ; we can bound it as

| det G̃v
m
\v∗ | ≤



m−1∏

i=i

(
cγ

3
4hvi

)|Pvi+1
|−|Pvi

|


(
cγ

3
4hvm

)Lm

=

=



m−1∏

i=i

γ
3
4 (hvi

−hvm )(|Pvi+1
|−|Pvi

|)



[
c|Pvm|+Lm−4γ

3
4hvmL≤m

]
, (3.71)

where Lm and L≤m denote the number of loop lines contracted on scale hm and
less or equal to hm, respectively.

Let us now observe that, if we extract from the bound of [vm\v∗] the first
terms in the r.h.s. of (3.70) and (3.71), we are left with an expression, which
has the same structure of a contribution to the effective potential on scale k
with four external legs of fixed sector of the same scale. By using Lemma 2.7,
this quantity can then be bounded by (c|U |)n−m4(v

∗)
∏
v>vm

(sv!)
−1γδ(|Pv|). On

the other hand, the product of the first terms in the r.h.s. of (3.70) and (3.71)

is equal to
∏
v
i
<v≤vm γ−(1/4)(|Pv|−2). It follows that

[vm\v∗] ≤ (c|U |)n−m4(v
∗)

∏

v
i
<v≤vm

γ−
1
4 (|Pv|−2)

∏

v>vm

1

sv!
γδ(|Pv |) . (3.72)

Let us now consider [v∗]. If v∗ is an endpoint, by using (3.8), we see that
[v∗] ≤ c|U ||k|γ2j∗ . Moreover, since |Pv| ≥ 6 for any v > v0, i = 0 independently
of the value of j∗ and |P v| − 2 = |Pv| if v0 ≤ v ≤ vi∗ , while |P v| = |Pv| if
vi∗ < v ≤ vm. It follows that the r.h.s. of (3.68) can be bounded by

(c|U |)n



∏

v∈v
m

|Pv|



 |k|γ2j∗γ−(j∗−h)
∏

v>v0

1

sv!
γδ(|Pv|) , (3.73)

which can be bounded by the r.h.s. of (3.6) (our goal) times a ”bad factor”
γj∗−h. However we can still improve the previous estimate, by extracting one
propagator of scale h from the determinant of the loop lines belonging to P v1 ,
as in item (B.1a), using (3.50). In this way, the bound (3.73) is multiplied by a
factor c|Pv1 |2(n−m4(v

∗))γ−(k−h) and we are done.
We still have to consider the possibility that v∗ is not an endpoint. If j∗ = k

the problem we have to face is exactly equal to the problem we are studying, so
that we can suppose inductively that the bound (3.6) is satisfied. The induction
is on the number of endpoints and stops when the vertex which takes the role of
v∗ at each step of the inductive procedure is an endpoint. Hence, we get again
the bound (3.73) and we can improve it by a factor c|Pv1 |2(n−m4(v

∗))γ−(k−h),
since i = 0.
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If j∗ < k, the structure of [v∗] is not exactly equal to that of the l.h.s. in
(3.6), because of the remarks 1)-3) after (3.68), but it is enough similar to apply
again the procedure described in item (B). To be more precise, we consider the
highest vertex v ≥ v∗, such that sv > 1, let us call it v∗0 , and we expand as before
the determinant of all the loop lines of scale between hv∗0 and j∗. The terms of
the expansion with L > 1 can be treated as before, since the procedure described
in items (B.1a), (B.1b), (B.2a), (B.2b) does use the momentum constraints on
the scales larger than hv∗

0
, see (3.55). It follows that

[v∗] ≤ (c|U |)m4(v
∗)|k|γ2j∗

∏

vi∗<v≤v∗
γ1−|P∗

v |/4
∏

v>v∗

1

sv!
|Pv|5γδ(|Pv|) . (3.74)

By using (3.72) and (3.74), together with the remarks that at least one among
i and i∗ is equal to h and that |P v|+ |P ∗

v | − 2 = |Pv|, if max{vi, vi∗} < v ≤ vm,
we see that the r.h.s. of (3.68) can be bounded by

(c|U |)n|k|γj∗+h
(
∏

v>vm

|Pv|5
)
∏

v>v0

1

sv!
γδ(|Pv |) , (3.75)

and, if j∗ > h, once again we can improve the bound by a factor c|Pv1 |2(n −
m4(v

∗))γ−(k−h), since i = 0. The final expression will be bounded by the r.h.s.
of (3.6).

It remain to consider the terms in the determinant expansion with L = 0, 1.
It easy to see that, in both cases, we have to extract the dimensional gain from
a term with the same structure of [v∗], but a smaller number of endpoints. So
we can proceed by induction, which ends as soon as the analogue of v∗ is an
endpoint; we omit the details, which would be obvious at this point. We only
stress that in this iteration each vertex acquires, with respect to the bound
(2.97), at most a factor |Pv|5 and that each propagator of the spanning tree T is
multiplied at most one time for factor |xl−yl|, as a consequence of the “tadpole
gain” operation (3.50), so that there is no risk of factorials in the bound.

This concludes the proof of (3.6) with j = 0 under the assumptions (2.92),
(3.18) and (3.8). The validity of (3.6) with j ≥ 1 under the same assumptions is a
trivial generalization of the proof above. In fact, in order to take into account the
factor |x−y|j in the r.h.s. of (3.5), we can bound it by (cn)j−1

∑
l∈T ′′ |xl−yl|j ,

where T ′′ ⊂ T is a path on T such that (x − y) =
∑

l∈T ′′(xl − yl). Each
term |xl − yl|j in this sum can be associated to the corresponding propagator
of l ∈ T : then, when performing the integrations over the propagators of the
spanning tree, each of these terms contributes with a dimensional factor ≤ γ−hj,
see Remarks following Lemma 2.2 and Lemma 2.4. Then, for any integer j ≥ 0,
(3.6) under the assumptions (2.92), (3.18) and (3.8) follows.
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3.2 Proof of the bounds (2.92) and (3.18)

In this section we want to prove that if, given h ≤ 0, for any j > h (2.38)
is satisfied, then (2.92) and (3.18) are true for hi − 1 ≥ h and (3.8) is true
for h ≤ h′ ≤ k ≤ 0. Combining this result with the results discussed above
in Sect.3.1 finally completes the inductive proof of the validity of (2.38) and
of (2.92). Furthermore, this result, together with Theorem 2.1, completes the
proof of convergence of the expansion for the free energy and, together with the
discussion in Section 2.9, finally completes the proof of Theorem 1.1.

Given a set P4 = {f1, f2, f3, f4} of four field labels, a set of sector indices
Ω4 = {ωf ∈ Oj : f ∈ P4} and a set of space–time points x = {xf : f ∈ P4}
labelled by P4, let us begin with proving that, if U0|hβ | = c0 is small enough,
then ∫

dx2dx3dx4|λ̃j,Ω4(x)| ≤ C|U | , j ≥ h (3.76)

implying (2.92) for any tree τ ∈ Th,n, n ≥ 1. We proceed by induction. Note
that for h = 0 the bound just follows from the bounds on the kernels of the
effective potential V(0).

In order to prove (3.76) for j < 0, we substitute into the definition of λ̃j,Ω4 the
beta function equation in the second line of (2.36) (for notational convenience,
in the following we shall drop the dependence of β4

j on (Ej , λj ; · · · ;E0, U)). We
find

λ̃j,Ω4 (x) = F4,j,Ω4
∗ λ0(x) +

0∑

j′=j+1

F4,j,Ω4
∗ β4

j′ (x) (3.77)

where, repeating the same iterative construction leading to the tree expansion
for V(h), see (2.87), and for β2

h, see (3.4), we can represent each term in the sum
in the r.h.s. of (3.77) as:

β4
j′,Ω4

(x) ≡ F4,j,Ω4
∗ β4

j′ (x) =

∞∑

n=2

∑

τ∈Tj′−1,n

∑

P∈Pτ
|Pv0 |=4

∑

T∈T

∑

Ω\Ωv0

[ ∏

v∈Vc

χ(Ωv)
]
·

·F4,j,Ω4
∗
∫
d(xv0 \ x)W

(mod)
τ,P,Ω,T (xv0 ) . (3.78)

Note that the sum in the r.h.s. begins, by construction, with the second order
(n = 2).

In analogy with (2.96), we can define J
(4)
j′,n,Ω4

(τ,P, T ) as the following quan-
tity, representing a bound for the terms appearing in the sum in the r.h.s. of
(3.78):

J
(4)
j′,n,Ω4

(τ,P, T ) =
∑

Ω\Ωv0

· (3.79)

·
[
∏

v

χ(Ωv)

] ∫
dx2dx3dx4 ·

∣∣∣∣F4,j,Ω4
∗
∫
d(xv0 \ x)W

(mod)
τ,P,Ω,T (xv0 )

∣∣∣∣ .
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Assuming inductively the bound (3.76) for j′ > j and repeating the proof of
Lemma 2.7, leading to the first bound in (2.118), we find:

J
(4)
j′,n,Ω4

(τ,P, T ) ≤ (C|U |)n
∏

v∈Vc

1

sv!
γδ(|Pv |)(hv−hv′ ) . (3.80)

Using (3.80) into (3.78), we find |β4
j′,Ω4

(x)| ≤ c|U |2, so that, by (3.77)

|λ̃j,Ω4 (x)| ≤ C0|U |+ c|j||U |2 ≤ C|U | , (3.81)

where in the last passage we used that |j||U | ≤ c0. This completes the proof of
(2.92). The proof of (3.18) is a step by step repetition of the proof above and
we do not repeat it here.

Let us now turn to the proof of (3.8). We begin with considering j = 0.
We again proceed by induction. First, we want to show the validity of (3.8) for
k = 0 and h ≤ h′ ≤ 0, that is we want to prove

∑

ω∈Oh′

∫
d(x1−x4)

∣∣∣∣
∫
dx2dx3 g

(h′)
ω (x2 − x3)λ̃0,Ω̃4

(x1,x2,x3,x4)

∣∣∣∣ ≤ C0|U |γ2h
′

,

(3.82)
where Ω̃4 was defined after (3.8) and λ̃0,Ω̃4

in (3.9). The strategy consists again

in rewriting g
(h′)
ω (x2 − x3) as

g(h
′)

ω (0) + (x2 − x3)
∑

ω̄≺ω

∫ 1

0

ds ∂xg
(h′)
ω̄

(
s(x2 − x3)

)
. (3.83)

We substitute (3.83) into (3.82) and we bound the l.h.s. of (3.82) by the sum of
two terms, corresponding to the two terms in (3.83). Now, the term proportional

to g
(h′)
ω (0) can soon be bounded as in the r.h.s. of (3.82), by Lemma 2.3 and by

the estimate (2.17) for l = 2. The term corresponding to the second addend in
(3.83) can be bounded as

∑

ω̄∈Ōh′

sup
x

|∂xg(h
′)

ω̄ (x)|
∫
dx2dx3dx4|x2 − x3| · |λ̃0,Ω̃4

(x1,x2,x3,x4)| ≤

≤ C′
0|U |2γ−h

′

γ3h
′

, (3.84)

and (3.82) follows.
Now, for any fixed h′ ∈ [h, 0], we inductively suppose that (3.8) is valid for

any k < k ≤ 0, with k ≥ h′, and we prove it for k = k. We insert in the r.h.s.
of (3.8) the beta function equation in the second line of (2.36) and we find that
(3.8) can be bounded by

∑

ω∈Oh′

∫
d(x1 − x4)

∣∣∣∣
∫
dx2dx3 g

(h′)
ω (x2 − x3)λ̃0,Ω̃4

(x1 . . .x4)

∣∣∣∣+ (3.85)

+
0∑

k=k̄+1

∑

ω∈Oh′

∫
d(x1 − x4)

∣∣∣∣
∫
dx2dx3 g

(h′)
ω (x2 − x3)β

4
k,Ω̃4

(x1 . . .x4)

∣∣∣∣ ,
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where β4
k,Ω̃4

(x) admits the same representation (3.78), with Ω4 replaced by Ω̃4.

The term in the first row of (3.85) can be bounded as in (3.82). Repeating the
proof discussed in items (B.1a)–(B.3), it can be realized that the k–th term in
the sum in the second line of (3.85) can be bounded as:

∑

ω∈Oh′

∫
d(x1−x4)

∣∣∣∣
∫
dx2dx3 g

(h′)
ω (x2 − x3)β

4
k,Ω̃4

(x1,x2,x3,x4)

∣∣∣∣ ≤ c|U |
2γ2h

′ |k| .

(3.86)
Inserting the bounds (3.82) and (3.86) into (3.85) we find that (3.8) with k = k
can be bounded by

C0|U |γ2h
′

+ c|U |2γ2h′
0∑

k=k̄+1

|k| ≤ C|U |γ2h′ |k| , (3.87)

where in the last passage we used that |U ||k| ≤ c0. So, (3.8) is proved in the
case j = 0.

As regards the case j ≥ 1, we can once more proceed by induction. The
term with k = 0 and h ≤ h′ ≤ 0 and j ≥ 1 can be bounded exactly as in (3.82),
with C0 replaced by some C0,j . The term with k = k, supposing inductively
that (3.8) is valid for any k > k, can be bounded by an expression analogous to
(3.85), with a factor |x1 − x4|j more appearing under the integration. Via the
same strategy used to prove (3.82), we can prove that the analogue of the term
in the first line of (3.85) can be bounded by C0,j |U |2γ2h

′

; the reason for the
factor |U |2 replacing the factor |U | in (3.82) is that the function λ0(x) is local
(hence with vanishing derivative) unless for terms of order |U |2 coming from the
ultraviolet integration.

Similarly, the analogue of the k–th term in the sum in the second line of
(3.85) can be bounded by the r.h.s. of (3.86) (with c replaced by some new
constant cj) times a dimensional factor γ−jk (obtained exactly as described at
the end of section 3.2 above). Substituting such bounds in the analogue of (3.85)
we find that (3.8) with k = k and j ≥ 1 can be bounded as

C0,j |U |2γ2h
′

+ cj |U |2γ2h
′

0∑

k=k̄+1

|k|γ−jk ≤ Cj |U |2|k|γ2h
′−jk̄ . (3.88)

So the proof of (3.8) is complete and, together with it, the proof of convergence
of the expansion for the free energy and for the two point Schwinger function is
complete. In particular this concludes the proof of Theorem 1.1.

A The ultraviolet integration

In this Appendix we prove (2.17). By definition, W
(0)
2l = limN→∞W

[0,N ]
2l , where

W
[0,N ]
2l are the kernels of the theory with effective potential V [0,N ], defined by
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an equation similar to (2.14), with ET1 replaced by the truncated expectation
with propagator

g(1,≤N)(x) =

N∑

j=0

g(1,j)(x) , (A.1)

where

g(1,j)(x) =
1

L2β

∑

k∈Dβ,L

f1(k)hj(k0)
e−ikx

−ik0 + ε0(~k)− µ
, (A.2)

with h0(k0) = H0(|k0|) and hj(k0) = H0(γ
−j |k0|)−H0(γ

−j+1|k0|).
Note that limN→∞ g(1,≤N)(x) = g(+1)(x) and that, for any integer K ≥ 0,

g(1,j)(x) satisfies the bound

|g(1,j)(x)| ≤ CK
1 + (γj |x0|+ |~x|)K

, , (A.3)

where |x0| has to be thought as the distance from the origin on the one dimen-
sional torus of size β, while |~x| is the distance on the two dimensional torus of
size L2.

We associate with any propagator g(1,j)(x) a Grassmann field ψ(1,j) and a
Gaussian integration P (dψ(1,j)) with propagator g(1,j)(x). Using repeatedly the
addition principle (2.13), we can rewrite V(0) as:

V(0)(φ) + L2βF0 = (A.4)

= − lim
N→∞

log

∫
P (dψ(1,0))P (dψ(1,1)) · · ·P (dψ(1,N))e−V (ψ(1,≤N)+φ) .

We can integrate iteratively the fields on scale N,N − 1, . . . , k + 1, k ≥ 0, and
after each integration, using iteratively an identity like (2.14), we can rewrite
the r.h.s. of (A.4) in terms of a new effective potential V(k,N):

(A.4) = lim
N→∞

{
L2β

N∑

j=k+1

Ej − (A.5)

− log

∫
P (dψ(1,0))P (dψ(1,1)) · · ·P (dψ(1,k))e−V(k,N)(ψ(1,≤k)+φ)

}
,

with V(k,N) admitting a representation similar to (2.16), with kernels denoted

W
(k,N)
2l ; the constants Ej are determined by the conditions V(j−1,N)(0) = 0.

Note that the possibility of rewriting the effective potential on scale 0 in the form

(2.16), with W
(k,N)
2l independent of the spin labels, follows from the symmetries

listed after (2.10) and the remark that P (dψ(+1)) itself is invariant under the
same symmetries. Note also that V(0) = V(−1,N) and F0 =

∑∞
j=0 Ej .

By proceeding as in Section 2.6, one can see that the contribution of or-
der n in U to V(k,N)(ψ) and the corresponding kernels can be written as a
sum over a family T(k,N),n of trees τ of suitable tree values V(k,N)(τ ;ψ) or

W
(k,N)
2l (τ ;x1, σ1, ε1; . . . ;x2l, σ2l, ε2l), each of them computable as a product of
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truncated expectations ET(1,j) (i.e. of truncated expectations associated to the

propagators g(1,j) of (A.2)). The definition of T(k,N),n is similar to the definition
introduced in Section 2.6 above with the following modifications:

1) a tree τ ∈ T(k,N),n has vertices v associated with scale labels k + 1 ≤ hv ≤
N + 1, while the root r has scale k;

2) all the endpoints are “of type U”, that is are associated to a contribution
V (ψ), see (2.9);

3) in analogy with definition 1 in §(3.1) of [BGM], we call χ–vertices the vertices
v of τ such that the set of internal lines Iv is not empty; Vχ(τ) will denote
the set of all χ–vertices of τ .;

4) if v is an endpoint, its scale is hv̄ + 1, if v̄ is the χ–vertex immediately
preceding v.

The values W
(k,N)
2l (τ ;x1, σ1, ε1; . . . ;x2l, σ2l, ε2l) can be computed via the

iterative rules described in §(2.4) of [BGM] (with some obvious modifications
needed to adapt the rules to the present case) and can be bounded via the
same strategy described in detail in §(2.7) of [BGM]. Using the dimensional
bound (A.3), it is easy to realize that the contribution from a tree τ ∈ T(k,N),n

associated with a kernel with 2l external legs can be bounded, if we also fix the

set Pv of external lines in each vertex and call W
(k,N)
2l (τ ;P) the corresponding

kernel, as:

1

L2β

∫
dx1 · · · dx2l|W (k,N)

2l (τ ;P;x1, σ1, ε1; . . . ;x2l, σ2l, ε2l)| ≤

≤ Cn|U |nγ−k(n−1+ntad)
∏

v∈Vχ

γ−(hv−hv′ )(nv−1+ntad
v ) , (A.6)

where v′ is the χ–vertex immediately preceding v on τ , nv is the number of
endpoints following v on τ , ntad is the total number of tadpoles on τ (i.e. the
number of trivial χ–vertices v with nv = 1) and ntadv is the number of tadpoles
following v on τ .

Remark In deriving (A.6) an explicit computation of the tadpole contributions
is needed. In particular one has to realize that a parity cancellation implies
that the tadpole contribution associated with the subtree rooted on a trivial
χ–vertex v of scale hv with nv = 1 can be bounded by Cγ−hv (instead of the
naive dimensional bound C).

Note that the “internal dimensions” (nv − 1 + ntadv ) are all > 1, so that the
sum over P and τ of (A.6) gives rise in the usual way to a bound L2β(C|U |)n.
The insertion in the integral of the factor

∏
1≤i<j≤2l |~xi − ~xj |mij will produce

the same type of bound, with Cn+m, m =
∑
mij , in place of Cn, so that (2.17)

follows, for U small enough.
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B Proof of Lemma 3.1

Given h ≤ 0 and an isotropic sector index of scale h, ω ∈ Oh, let us call Sh,ω the
corresponding isotropic s–sector (here we choose a notation as close as possible
to that introduced in [BGM] for the anisotropic sectors, see (2.72) of [BGM]).

Let assign ω1 ≡ ωf1 ∈ Oh and let us call Ah(ω1;ω2, ω3, ω4) the set of se-
quences (ω2, ω3, ω4) in Oh ×Oh ×Oh such that

there exists a sequence of vectors (~k1, ~k2, ~k3, ~k4) s.t.
~ki ∈ Sh,ωi

and
∑4

i=1
~ki = ~0.

We want to prove that

|Ah(ω1;ω2, ω3, ω4)| ≤ Cγ−h|h| , (B.1)

for some constant C > 0. Let θi be the center of the θ–interval which the polar
angle of ~p has to belong to, if ~p ∈ Sh,ωi

. For any pair (i, j), i, j = 1, 2, 3, 4, we
define:

φi,j = min{||θi − θj ||, π − ||θi − θj ||} , (B.2)

where || · || is the distance on the torus. By a reordering of the sectors, we can
always impose the condition:

max{φ1,3, φ1,4} ≤ φ1,2 . (B.3)

In fact, callingA∗
h(ω1;ω2, ω3, ω4) the subset of Ah(ω1;ω2, ω3, ω4) with ω2, ω3, ω4

satisfying condition (B.3), it holds:

|Ah(ω1;ω2, ω3, ω4)| ≤ 3 |A∗
h(ω1;ω2, ω3, ω4)| . (B.4)

So, we describe how to bound |A∗
h(ω1;ω2, ω3, ω4)|. With no loss of generality,

we shall assume φ1,2 ≤ π/2 (the case φ1,2 ≥ π/2 can be reduced to φ1,2 ≤ π/2,
by the reflection symmetry of the Fermi surface).

We first note that, given any positive constant κ0, if we define

A<(κ0) = {(ω2, ω3, ω4) ∈ A∗
h(ω1;ω2, ω3, ω4) : |φ1,2| ≤ πκ0γ

h
2 } , (B.5)

we have:
|A<(κ0)| ≤ 96κ20γ

−h . (B.6)

In fact, for any choice of φ1,2 = πkγh, |k| = 0, 1, . . . , [κ0γ
−h

2 ] ≡ N(κ0), by
condition (B.3) we have that ω3 can be chosen at most in |k|+2 different ways.
Finally, once ω2 and ω3 are fixed, by momentum conservation ω4 is fixed in
a finite number of sectors (and it is easy to realize that such number is ≤ 8).

Then |A<(κ0)| is bounded by 8
∑N(κ0)
k=−N(κ0)

(|k|+2) = 8[N(κ0)+2][N(κ0)+3] ≤
96κ20γ

−h and (B.6) follows.
Then, in order to prove (B.1), it is sufficient to prove that a similar bound is

valid for the setA>(κ0) ≡ A∗
h(ω1;ω2, ω3, ω4)\A<(κ0). We start with computing
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the number N of pairs of angles (θ3, θ4) compatible with a given choice of θ1, θ2

s.t. π/2 ≥ φ1,2 ≥ πκ0γ
h/2. Since ~p

(h)
F (θ) = −~p(h)F (θ + π), if we write θ3, θ4 in

the form: θi + π + πniγ
h, i = 1, 2, it is clear that N can be bounded by twice

the number of pairs ~n = (n1, n2) of integers compatible with the condition

2∑

i=1

[
~p
(h)
F (θi + πniγ

h)− ~p(h)F (θi)
]
= γh~r with |~r| ≤ R , (B.7)

for some O(1) constant R. (B.7) can be rewritten in the form:

~r = ~f(~n) ≡ γ−h
2∑

i=1

[
~p
(h)
F (θi + πniγ

h)− ~p(h)F (θi)
]
, (B.8)

with ~f twice differentiable. We now want to apply Dini’s implicit function
theorem in order to invert (B.8) in a neighborhood of ~n = ~r = ~0 (that is an

“unperturbed” solution to (B.8)). Let A
def
= (Df(0))−1 and ||A|| its norm. A

simple application of Dini’s Theorem implies that, if ~n varies in a ball Bρ(~0)

around ~0 of radius ρ so small that

||D~f(~n)−D~f(~0)|| ≤ 1

4||A|| , ∀~n ∈ Bρ(~0) , (B.9)

and σ < ρ/(2||A||), then for any ~r ∈ Bσ(~0) we can invert (C.6) as

~n = ~g(~r), ~r ∈ Bσ(~0), σ <
ρ

2||A|| , (B.10)

with ~g twice differentiable and such that the image of Bσ(~0) through ~g is con-
tained in Bρ(~0). In order to have the condition |~r| ≤ R in (B.7) verified together
with the condition |~r| ≤ ρ

2||A|| in (B.10), we can choose

ρ
def
= 2||A||R . (B.11)

We now want to compute ||A|| and check (B.9). Using (7.3) and (7.6) of [BGM]

and calling s′i ≡ s′(θi + πγhni), we see that the Jacobian of ~f(~n), in the basis
~nh(θ1), ~τh(θ1), is:

D~f(~n) = π



s′1 sin

(
α(θ1)− α(θ1 + πγhn1)

)
s′2 sin

(
α(θ1)− α(θ2 + πγhn2)

)

s′1 cos
(
α(θ1)− α(θ1 + πγhn1)

)
s′2 cos

(
α(θ1)− α(θ2 + πγhn2)

)




(B.12)

so that detD~f(~0) = π2s′(θ1)s′(θ2) sin
(
α(θ2) − α(θ1)

)
. Hence, recalling the

definition of A (see the lines preceding (B.9)) and the property c1||θ1 − θ2|| ≤
||α(θ1)− α(θ2)|| ≤ c2||θ1 − θ2|| (see (7.5) of [BGM] and section 2 of the present
paper), we have:

C1

| sin(θ1 − θ2)|
≤ ||A|| ≤ C2

| sin(θ1 − θ2)|
. (B.13)
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Using the bound (B.13), we now want to check that the definition of ρ in (B.11) is
compatible with (B.9). We first note that, since s′(θ) is differentiable, the l.h.s.
of (B.9) is bounded by cγh|~n| ≤ cγhρ = 2cR||A||γh, for some O(1) constant
c > 0. So, (B.9) holds if 8cR||A||2γh ≤ 1 and, by (B.13), this is surely true if

8cRC2
2

γh

sin2(θ1 − θ2)
≤ 1 . (B.14)

We now recall that, since we are assuming that ||θ1 − θ2|| ≥ πκ0γ
h/2, it holds:

| sin(θ1− θ2)| ≥ 2
π ||θ1− θ2|| ≥ 2κ0γ

h/2. This means that (B.14) is satisfied if κ0
is big enough, that is if

κ20 ≥ 2cRC2
2 ; (B.15)

for instance we can choose κ0 ≡ C2

√
2cR.

With these choices, we finally have that (B.8) can be inverted into (B.10)
and, if |~r| ≤ R, then |~n| ≤ 2||A||R ≤ 2C2R

| sin(θ1−θ2)| . This means in particular that,

for any choice of θ2 = θ1 + πkγh, [κ0γ
−h

2 ] ≤ |k| ≤ [γ
−h

2 ], ω3 can be chosen in at

most 4C2R
| sin(πkγh)| different ways. Once both ω2 and ω3 are chosen, by momentum

conservation ω4 is essentially fixed (it can be chosen in finite number of ways,
and one can realize that this number is ≤ 8). Then the number of elements of
A> can be bounded as:

|A>(κ0)| ≤ 2

[ γ
−h

2 ]∑

k=[κ0γ
−h

2 ]

16C2R

kγh
≤
[
16C2R log γ

]
γ−h|h| . (B.16)

Combining (B.16) with (B.6) we get (B.1).

C Improved proofs of geometric lemmas

In this Appendix we want to prove the following Lemma (called Sector Counting
Lemma).

Lemma C.1 Let h′, h, L be integers such that h′ ≤ h ≤ 0 and L ≥ 4. Given

ω
(h′)
1 , . . ., ω

(h′)
L ∈ Oh′ and ω

(h)
2 , . . . , ω

(h)
L ∈ Oh, let us define Ω

(h′)
L = {ω(h′)

i }Li=1,

Ω
(h′)
L−1 = {ω

(h′)
i }Li=2 and Ω

(h)
L−1 = {ω

(h)
i }Li=2. Then, for any choice of ω

(h′)
1 , it is

∑

Ω
(h′)

L−1
≺Ω

(h)

L−1

χ(Ω
(h′)
L ) ≤ cLγ 1

2 (h−h
′)(L−3) , (C.1)

uniformly in ω
(h′)
1 and in Ω

(h)
L−1. The symbol ≺ must be interpreted as explained

after (2.109).

In [BGM] a slightly different version of Lemma C.1 was proved, see Lemma
(3.1) of [BGM]. The main differences between the Lemma C.1 and the one proved
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in [BGM] are the following: in [BGM] the case of a fixed C∞ Fermi surface was
considered, while here we are studying the case of a C2 Fermi surface, changing
step by step of O(|U ||h|γ2h).

By a critical rereading of the proof of Lemma 3.1 of [BGM], see Section 7
of [BGM], it can be realized that the proof in [BGM] can be easily adapted
to the case of a C∞ Fermi surface, changing step by step of O(|U ||h|γ2h). In
order to see this it must be taken into account that, as already noted after
(2.89), given an s-sector Sh,ω on scale h, there are exactly γ

1
2 (h−h

′) s-sectors on
scale h′ strictly contained into it, and their centers θh′,ω′ are independent of the

specific shape of the Fermi surface. Moreover the fact that ~p
(h′)
F (θ) is convex

(uniformly in h′) must be used. Keeping these two remarks in mind, the proof
of Lemma C.1 above in the case of a C∞ Fermi surface, changing step by step of
O(|U ||h|γ2h), is easily obtained by replacing any ~pF (θ) appearing in the proof

in Section 7 of [BGM] by ~p
(h′)
F (θ).

While the fact that the Fermi surface was fixed was not really used in the
proof in Section 7 of [BGM], the fact that it was chosen as a C∞ curve was used
here and there and it is not so straightforward to adapt the proof of [BGM] to
the present C2 case. However by a careful rereading of Section 7 of [BGM], it
can be realized that the only places where the C2 regularity of ~pF (θ) was used
were the proofs of Lemma 7.1 and of Lemma 7.5, where some error terms were
bounded by the third derivatives of ~pF (θ). In this section we want to reproduce
the proofs of this two Lemmas in a more careful way and the result will be that
the proofs also work in the case that the Fermi surface is C2, and not more
regular than this. This in particular implies the validity of Lemma C.1 above.

In the following we refer for notation to Section 7 of [BGM], but we shall
drop everywhere the dependence on e. Moreover, all the quantities ~pF (θ), u(θ),
s(θ), ~n(θ), ~τ (θ) appearing below do depend on h′: ~pF (θ) must be interpreted

as equal to ~p
(h′)
F (θ) and all the other quantities are obtained from ~p

(h′)
F (θ) via

the definitions in Section 7 of [BGM]. We chose to drop the dependence on h′

in order to unify the notation with that of Section 7 of [BGM].

C.1 Proof of Lemma 7.1 of [BGM].

We want to prove that 0 < c1 ≤ α′(θ) ≤ c2, where, if cosα = (u cos θ +
u′ sin θ)/s′ > 0,

α(θ) = f(θ) ≡ arcsin
{ 1

s′(θ)

[
u(θ) sin θ − u′(θ) cos θ

]}
, (C.2)

otherwise α(θ) = π − f(θ). By explicitly performing the derivative, we find:

f ′(θ) =
− s

′′(θ)
s′(θ)

[
u(θ) sin θ − u′(θ) cos θ

]
+
[
2u′(θ) sin θ + (u(θ)− u′′(θ)) cos θ

]

s′(θ)
√

1− 1
(s′(θ))2

[
u(θ) sin θ − u′(θ) cos θ

]2

(C.3)
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Using that s′(θ) =
√
u2(θ) + (u′(θ))2, we see that the denominator in (C.3) is

equal to
√
u2(θ) + (u′(θ))2 − u2(θ) sin2 θ − (u′(θ))2 cos2 θ + 2u(θ)u′(θ) sin θ cos θ =

=
∣∣∣u(θ) cos θ + u′(θ) sin θ

∣∣∣ = s′(θ)| cosα(θ)| . (C.4)

Using that s′′(θ) = uu′+u′u′′√
u2+(u′)2

, we can rewrite the numerator in (C.3) as:

[
− (uu′ + u′u′′)

u2 + (u′)2
(u sin θ − u′ cos θ) + 2u′ sin θ + (u− u′′) cos θ

]
=

=
1

[u2 + (u′)2]

[
− (uu′ + u′u′′)(u sin θ − u′ cos θ) +

+(2u′ sin θ + (u− u′′) cos θ)(u2 + (u′)2)
]
=

=
1

[u2 + (u′)2]

[
sin θ

(
2(u′)3 + u2u′ − uu′u′′

)
+ (C.5)

+ cos θ
(
2u(u′)2 + u3 − u2u′′

)]
=

=
1

[u2 + (u′)2]
(u′ sin θ + u cos θ)

(
2(u′)2 + u2 − uu′′

)
=

=
s′(θ)3

r(θ)[u2 + (u′)2]
(u′ sin θ + u cos θ) =

s′(θ)2 cosα(θ)

r(θ)
,

where, in the last identity, we used the identity [2(u′)2+u2−uu′′] = (s′(θ))3/r(θ),
which is an easy consequence of (7.3) and (7.4) of [BGM]. It follows that
α′(θ) = s′(θ)/r(θ), that is bounded away from 0, by hypothesis.

C.2 Proof of Lemma 7.5 of [BGM].

With the definitions introduced in the proof of Lemma 7.5, we can rewrite (7.24)
of [BGM] as:

(
r̃1
r̃2

)
= f(x1, x2) = (C.6)

=
1

η

(
φ−1

[
[~pF (θ1η)− ~pF (θ1)] · ~n(θ1) + [~pF (θ2η)− ~pF (θ2)] · ~n(θ1)

]

[~pF (θ1η)− ~pF (θ1)] · ~τ (θ1) + [~pF (θ2η)− ~pF (θ2)] · ~τ (θ1)

)

where θiη ≡ θi + ηxi.
The equation r̃ = f(x) admits an unperturbed solution 0 = f(0) and we want

to apply Dini’s theorem to invert the equation as x = g(r̃) in a neighborhood
of r̃ = 0.

The Jacobian matrix of f is:

Df(x) =




φ−1~n(θ1)∂θ~pF (θ1η) φ−1~n(θ1)∂θ~pF (θ2η)

~τ(θ1)∂θ~pF (θ1η) ~τ(θ1)∂θ~pF (θ2η)



 (C.7)

83



and, using (7.3) of [BGM], we can rewrite:

Df(x) =



s′(θ1η)φ−1~n(θ1)~τ (θ1η) s′(θ2η)φ−1~n(θ1)~τ (θ2η)

s′(θ1η)~τ (θ1)~τ (θ1η) s′(θ2η)~τ (θ1)~τ (θ2η)


 (C.8)

By using (7.6) of [BGM], we can also write:

Df(x) = (C.9)


− s

′(θ1η)
φ sin

(
α(θ1η)− α(θ1)

)
− s

′(θ2η)
φ sin

(
α(θ2η)− α(θ1)

)

s′(θ1η) cos
(
α(θ1η)− α(θ1)

)
s′(θ2η) cos

(
α(θ2η)− α(θ1)

)




In particular, the Jacobian determinant at x = 0 is

detDf(0) = s′(θ1)s
′(θ2)φ

−1 sin(α(θ2)− α(θ1)) , (C.10)

which is bounded above and below by O(1) constants. As a consequence, there

exists A
def
= (Df(0))−1 and its norm ||A|| is a O(1) constant.

Now, a simple application of Dini’s Theorem implies that, if ρ is so small
that

||Df(x)−Df(0)|| ≤ 1

4||A|| , ∀x ∈ Bρ(0) (C.11)

and r < ρ/(2||A||), then we can invert uniquely (C.6) for any r̃ ∈ Br(0) as

x = g(r̃) (C.12)

and the image of Br(0) through g is contained in Bρ(0). So, let us compute
||Df(x)−Df(0)|| in our case. We have that Df(x)−Df(0) is given by:




−φ−1s′(θ1η)· −φ−1s′(θ2η) sin
(
α(θ2η)− α(θ1)

)

· sin
(
α(θ1η)− α(θ1)

)
+φ−1s′(θ2) sin

(
α(θ2)− α(θ1)

)

s′(θ1η)· s′(θ2η) cos
(
α(θ2η)− α(θ1)

)

· cos
(
α(θ1η)− α(θ1)

)
− s′(θ1) −s′(θ2) cos

(
α(θ2)− α(θ1)

)




(C.13)

and its norm is bounded by C(c2 + η)|x|, where c2 was defined in lemma 7.5 of
[BGM] and C is constant depending only on the second derivative of s(θ) and
the first derivative of α(θ), that is at most on second derivatives of u(θ). Now,
choosing c2 sufficiently small, we can say that for (C.11) is satisfied with ρ = 1
and (C.12) holds for any |r̃| ≤ c, where c is a suitable O(1) constant.

D Proof of Lemma 2.6

Consider the sector sum (2.117), where the sum runs over the sector indices

in Ω\Ω(F )
ext and, given f1, . . . , fF ∈ Pv0 , we defined Ω

(F )
ext = {ωfi}Fi=1. We want
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to prove that, if F = 3 or F = 5, the sum in (2.117) can be bounded by the
expression in the r.h.s. of (2.104), i.e. by the bound for the sector sum with
F = 1, times a dimensional gain of γh/2 or γh, depending whether F = 3 or
F = 5.

First of all, let us note that, if τ is a trivial tree or τ ∈ Th,1 and |Pv0 | = 4,
the bound we want to prove is obvious. In fact, in these cases only F = 3 is
allowed and, if ω1, . . . , ω4 ∈ Oh and Ω4 = {ω1, . . . , ω4}, it is

∑

ω1∈Oh

χ(Ω4) ≤ c , (D.1)

simply by momentum conservation. Another simple consequence of momentum
conservation is the following.

Lemma D.1 Let h′, h, L, F be integers such that h′ ≤ h ≤ 0, L ≥ 4 and

1 ≤ F ≤ L − 1. Given ω
(h′)
1 , . . . , ω

(h′)
L ∈ Oh′ and ω

(h)
1 , . . . , ω

(h)
F ∈ Oh, let us

define Ω
(h′)
L = {ω(h′)

i }Li=1, Ω
(h′)
L−F = {ω(h′)

i }Li=F+1 and Ω
(h)
L−F = {ω(h)

i }Li=F+1.

Then, for any choice of ω
(h′)
1 , . . . , ω

(h′)
F ∈ Oh′ it is

∑

Ω
(h′)

L−F
≺Ω

(h)

L−F

χ(Ω
(h′)
L ) ≤ cLγ 1

2 (h−h
′)(L−F−1). (D.2)

Proof. If F = L − 1 the statement of the Lemma is a simple consequence of
momentum conservation. If F < L− 1, then we can bound (D.2) by

∑

ω
(h′)

F+2
≺ω(h)

F+2

· · ·
∑

ω
(h′)

L
≺ω(h)

L

· sup
ω
(h′)
i

∈O
h′

i6=F+1

[ ∑

ω
(h′)

F+1
≺ω(h)

F+1

χ(Ωh
′

L )
]
. (D.3)

Now, the last sum can be bounded as
∑

ω
(h′)
1 ≺ω(h)

1

χ(Ωh
′

L ) ≤ cL, simply by mo-

mentum conservation. After this bound, we see that the remaining sums con-
tribute with a factor γ

1
2 (h−h

′)(L−F−1) and the Lemma is proved.

D.1 The case F = 3.

We start with the analysis of the case F = 3. We assume that the number of
endpoints n of the tree is n ≥ 2, the case n = 1 being already treated, see (D.1).

As in Sect.2.8, we denote by ṽ0 the first c–vertex following the root and we
call h0 its scale. Then, we bound the product of χ–functions in (2.117) as in
(2.107) and, using the latter estimate, we bound (2.117) by the r.h.s. of (2.109),
where the * on the sums must be interpreted as meaning that all the sectors

index in Ω
(3)
ext must not be summed over. With this interpretation of the * on the

sum and using Lemma D.1 for 4 ≤ L ≤ 8 and the trivial bound γ(h0−h)(L−3)/2

for L ≥ 10, we perform the bound analogue to (2.109):

∗∑

Ω
(h)

ṽ0
≺Ω

(h0)

ṽ0

χ(Ω
(h)
ṽ0

) ≤ cγ 1
2 (h0−h)[|Pṽ0 |−4+11(|Pṽ0 |>10)] , (D.4)
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and we see that, with respect to (2.109), we gain at least a factor γ
1
2 (h−h0).

Now, proceeding through the analogues of (2.110) and (2.111), we rewrite the
left over expression in the same form as the r.h.s. of (2.111):

∑

Ω
(h0)

ṽ0
\Ω(3)

ext

∏

v∈ṽ0

Fv(Ω
(h0)
v )

∏

l∈Tṽ0

δω+
l
,ω−

l
. (D.5)

We now distinguish three possible cases.

(1) If the lines with field labels f1, f2, f3 are all incident to the same vertex
vx ∈ ṽ0, we choose vx as the root of Tṽ

0
and, “pruning Tṽ

0
of its leaves”, one

after the other, via the same procedure described after (2.111), we can bound
(D.5) by the analogue of (2.115) that takes the form:

sup
Ω

(3)
ext

∑

Ω
(h0)
vx \Ω(3)

ext

Fvx(Ω
(h0)
vx )

∏

v∈ṽ
0
\vx

sup
ω∗

v

∑

Ω
(h0)
v \ω∗

v

Fv(Ω
(h0)
v ) (D.6)

where ω∗
v is defined as after (2.115). Now, each factor in the product over

v ∈ ṽ0\vx can be bounded exactly as explained after (2.115), that is as in
(2.116) if v is an endpoint or, if it is not, by the r.h.s. of (2.109), with (h0 − h)
replaced by (hv − h0) and |Pṽ0 | replaced by |Pv|. As regarding the first factor
in (D.6), if vx is an endpoint, it can be bounded by constant, that is it gives a
contribution γh0/2 smaller than the corresponding (2.116); in this case, combin-

ing this gain with the gain γ
1
2 (h−h0) found above, see (D.4) and the following

comment, the desired dimensional gain is found. If vx is not an endpoint, we

are still left with sup
Ω

(3)
ext

∑
Ω

(h0)
vx \Ω(3)

ext

Fvx(Ω
(h0)
vx ) and we still have to establish

whether this factor admits a dimensional gain with respect to the corresponding
factor in (2.115). We shall discuss this below, after item (3).

(2) If two of the lines with field labels in {f1, f2, f3}, say f1, f2, are incident
to the same vertex vx, while f3 is incident to a distinct vertex vy ∈ ṽ0, we
identify the path lx,y on Tṽ0 connecting vx and vy, we denote by Tx the subtree
of Tṽ0 rooted on vx and with no lines in common with lx,y and by ṽx0 ⊂ ṽ0 the
set of vertices in Tx (note that possibly Tx is trivial, that is ṽx0 = {vx}). In
analogy with (2.112), we define

Fṽ
0
\ṽx0 (Ω

(h0)
ṽ0\ṽx0

)
def
=

∏

v∈ṽ
0
\ṽx0

Fv(Ω
(h0)
v )

∏

l∈Tṽ0\{Tx∪l∗x}
δω+

l
,ω−

l
,

Fṽx
0
(Ω

(h0)
ṽx0

)
def
=
∏

v∈ṽx0

Fv(Ω
(h0)
v )

∏

l∈Tx

δω+
l
,ω−

l
, (D.7)

where l∗x denotes the line of Tṽ0\Tx incident to vx (f∗
x and ω∗

x will be its field
and sector indices); we can rewrite (D.5) as
∑

ω∗,+
x ,ω∗,−

x

δω∗,+
x ,ω∗,−

x

∑

Ωṽx

0
\{ω1,ω2,ω∗

x
}
Fṽx0 (Ω

(h0)
ṽx0

)
∑

Ω
(h0)

ṽ0\ṽx
0
\{ω∗

x
,ω3}

Fṽ0\ṽx0 (Ω
(h0)
ṽ
0
\ṽx0

) ≤
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≤ sup
ω1,ω2,ω∗

x

[ ∑

Ωṽx

0
\{ω1,ω2,ω∗

x
}
Fṽx

0
(Ω

(h0)
ṽx0

)
]
· sup
ω3

[ ∑

Ω
(h0)

ṽ0\ṽx
0
\{ω3}

Fṽ
0
\ṽx0 (Ω

(h0)
ṽ
0
\ṽx0

)
]
. (D.8)

Now, the second factor in (D.8) can be bounded following the same procedure
described in Section 2.8 and we do not find neither a gain nor a loss with respect
to the estimates in Section 2.8. The first factor can be studied as in item (1)
above and, if vx is an endpoint, we gain γh0/2 with respect to the estimates
in Section 2.8; in this case, combining this gain with the gain γ

1
2 (h−h0) found

above, the desired dimensional gain is found. If vx is not an endpoint, we are still

left with sup
Ω

(3)
ext

∑
Ω

(h0)
vx \Ω(3)

ext

Fvx(Ω
(h0)
vx ) and we still have to establish whether

this factor admits a dimensional gain with respect to the corresponding factor
in (2.115). We shall discuss this below, after item (3).

(3) If the lines with field labels f1, f2, f3 are all incident to different vertices
in ṽ0, call them vx, vy, vz, we again identify the path lx,y on Tṽ0 connecting vx
and vy and we define Tx and ṽx0 as in item (2). With no loss of generality we
can assume that vz ∈ ṽx0 : it is in fact easy to realize that, if vz 6∈ ṽx0 , we can
always permute the symbols vx, vy, vz in such a way that, after the permutation,
vz ∈ ṽx0 . Repeating the discussion in item (2) we can again bound the expres-
sion under analysis by the r.h.s. of (D.8), in which now the first factor has the
same structure as the term studied in item (2) (it corresponds to a sector sum
in which two of the lines corresponding to external fixed sectors are incident to
vx, while the third one is incident to a different vertex, vz). So, by the proof in
item (2), we find that, if vx is an endpoint, we soon find the desired dimensional

gain, otherwise we are still left with sup
Ω

(3)
ext

∑
Ω

(h0)
vx \Ω(3)

ext

Fvx(Ω
(h0)
vx ) and we still

have to establish whether this factor admits a dimensional gain with respect to
the corresponding factor in (2.115).

In all cases discussed above, either vx is an endpoint, in which case the de-
sired dimensional bound is found, or it is not, and we are left with an expression
completely analogous to the initial one, with the external scale h replaced by h0.
Then it is clear that we can iteratively enter the structure of vx following the
same procedure described in items (1)–(3) above and, proceeding by induction,
we find the desired gain.

D.2 The case F = 5.

Let us now consider F = 5. Using the same notations as in Section D.1 and
following the same procedure, we bound the product of χ–functions in (2.117)
as in (2.107) and, using the latter estimate, we bound (2.117) by the r.h.s. of
(2.109), where the * on the sums must be interpreted as meaning that all the

sectors index in Ω
(5)
ext must not be summed over. With this interpretation of the
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* on the sum, we perform the bound analogue to (2.109) and (D.4):

∗∑

Ω
(h)

ṽ0
≺Ω

(h0)

ṽ0

χ(Ω
(h)
ṽ0

) ≤ cγ 1
2 (h0−h)[|Pṽ0 |−6+11(|Pṽ0 |>10)] , (D.9)

and we see that, with respect to (2.109), we gain at least a factor γ(h−h0). We
now rewrite the left over expression in the a form similar to (D.5):

∑

Ω
(h0)

ṽ
0

\Ω(5)
ext

∏

v∈ṽ
0

Fv(Ω
(h0)
v )

∏

l∈Tṽ0

δω+
l
,ω−

l
. (D.10)

We now distinguish three possible cases.

(1) If the lines with field labels f1, f2, f3, f4, f5 are all incident to the same
vertex vx ∈ ṽ0, we choose vx as the root of Tṽ

0
and, proceeding as in item (1)

of Section D.1, we are left with the analogue of (D.6):

sup
Ω

(5)
ext

∑

Ω
(h0)
vx \Ω(5)

ext

Fvx(Ω
(h0)
vx )

∏

v∈ṽ
0
\vx

sup
ω∗

v

∑

Ω
(h0)
v \ω∗

v

Fv(Ω
(h0)
v ) (D.11)

As discussed in item (1) of Section D.1, each factor in the product over v ∈ ṽ0\vx
is not associated to any gain or loss (it can be bounded as in Section 2.8). Note
that now vx cannot be an endpoint (it has at least 6 external lines), so we

are still left with sup
Ω

(5)
ext

∑
Ω

(h0)
vx \Ω(3)

ext

Fvx(Ω
(h0)
vx ) and we still have to establish

whether this factor admits a dimensional gain with respect to the corresponding
factor in (2.115). We shall discuss this below, after item (3).

(2) Calling vx1 , . . . , vx5 the vertices to which the lines l1, . . . , l5 labelled by
f1, . . . f5 are incident to, if vx1 , . . . , vx5 are not all coinciding, we can assume
without loss of generality that vx1 6= vx5 and we can consider the path lx1,x5 on
Tṽ0 connecting vx1 and vx5 . Given l∗ ∈ lx1,x5 , we call T1 and T2 the two disjoint
subtrees of Tṽ0 obtained by disconnecting from Tṽ0 the line l∗: we assume that
T1 is anchored to vx1 and T2 is anchored to vx5 . We call ṽ10, ṽ

2
0 the two disjoint

subsets of ṽ0 connected by the lines of T1, T2 respectively.
We now further distinguish two more subcases.

(2.a) If there is a way of choosing l∗ ∈ lx1,x5 so that three among the lines in
{l1, . . . , l5} are incident to T1 and two of them are incident to T2 (or viceversa),
we can assume without loss of generality that f1, f2, f3 are incident to T1 and
f4, f5 are incident to T2. In this case, in analogy with the definition (D.7), we
define

Fṽ10(Ω
(h0)

ṽ10
)
def
=
∏

v∈ṽ10

Fv(Ω
(h0)
v )

∏

l∈T1

δω+
l
,ω−

l
,

Fṽ20(Ω
(h0)

ṽ20
)
def
=
∏

v∈ṽ20

Fv(Ω
(h0)
v )

∏

l∈T2

δω+
l
,ω−

l
, (D.12)
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and, calling ω∗ the sector index of l∗, we rewrite (D.10) as:

∑

ω+
∗ ,ω

−
∗

δω+
∗ ,ω

−
∗

∑

Ω
ṽ1
0
\{ω1,ω2,ω3,ω∗}

Fṽ10(Ω
(h0)

ṽ10
)

∑

Ω
(h0)

ṽ2
0

\{ω∗,ω4,ω5}

Fṽ20(Ω
(h0)

ṽ20
) ≤ (D.13)

≤ sup
ω1,ω2,ω3,

[ ∑

Ω
ṽ1
0
\{ω1,ω2,ω3}

Fṽ10(Ω
(h0)

ṽ10
)
]
· sup
ω∗,ω4,ω5

[ ∑

Ω
(h0)

ṽ2
0

\{ω∗,ω4,ω5}

Fṽ20(Ω
(h0)

ṽ20
)
]
.

Now both factors can be bounded as in Section D.1 and we get a gain γh0/2

from both, and in this case the desired dimensional gain is found.
(2.b) If any choice of l∗ ∈ lx1,x5 is such that four among the lines in {l1, . . . , l5}
are incident to T1 and only one of them is incident to T2 (or viceversa), we can
assume without loss of generality that f1, f2, f3, f4 are incident to T1 and f5 is
incident to T2. In this case, with the same definitions (D.12) and calling ω∗ the
sector index of l∗, we can rewrite (D.10) as:

∑

ω+
∗ ,ω

−
∗

δω+
∗ ,ω

−
∗

∑

Ω
ṽ1
0
\{ω1,ω2,ω3,ω4,ω∗}

Fṽ10(Ω
(h0)

ṽ10
)

∑

Ω
(h0)

ṽ2
0

\{ω∗,ω5}

Fṽ20(Ω
(h0)

ṽ20
) ≤ (D.14)

≤ sup
ω1,ω2,ω3,ω4,ω∗

[ ∑

Ω
ṽ1
0
\{ω1,ω2,ω3,ω4,ω∗}

Fṽ10(Ω
(h0)

ṽ10
)
]
· sup
ω5

[ ∑

Ω
(h0)

ṽ2
0

\{ω5}

Fṽ20(Ω
(h0)

ṽ20
)
]
.

Now the second factor can be bounded exactly as in Section 2.8 and then it is
not associated to any gain or loss. The first factor has again the same structure
as (D.10) and we can again bound it following the same procedure described in
items (1), (2.a) and (2.b) above. Following iteratively the procedure, either we
get the desired dimensional gain (if we recover the case of (2.a) above) or we
are left with an expression analogue to (D.11).

But the first factor in (D.11) has exactly the same structure as (D.10), with
th external scale h replaced by h0. Then it is clear that we can iteratively enter
the structure of vx following the same procedure described in items (1)–(2.b)
above and, proceeding by induction, we find the desired gain. This concludes
the proof of Lemma 2.6.
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