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Vaccine efficacy (VE) is commonly estimated through proportional hazards modelling of
the time to first infection or disease, even when the event of interest can recur. These
methods can result in biased estimates when VE is heterogeneous across levels of exposure
and susceptibility in subjects. These two factors are important sources of unmeasured
heterogeneity, since they vary within and across areas, and often cannot be individually
quantified. We propose an estimator of VE per exposure that accounts for heterogeneous
susceptibility and exposure for a repeated measures study with binary recurrent
outcomes. The estimator requires only information about the probability distribution
of environmental exposures. Through simulation studies, we compare the properties of
this estimator with proportional hazards estimation under the heterogeneity of exposure.
The methods are applied to a reanalysis of a malaria vaccine trial in Brazil.
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1. Introduction

Vaccine efficacy (VE) is defined as the per cent reduction in the probability or
hazard of disease conferred by the vaccine to an individual. It is typically
estimated based on a marginal, or population-based, parameter, which is an
average of the individual vaccine effects, specific to a geographically and
temporally defined population (Halloran et al. 1991). Commonly, estimates of
VE are based on one minus the hazard ratio from a proportional hazards model
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for time to first event, which can be an infection or disease, even when the disease
under study recurs (Alonso et al. 1994; Bojang et al. 2001; Aponte et al. 2007).
The use of the proportional hazards model in VE studies is widespread owing to
its ease of implementation, interpretation and flexibility regarding the shape of
the baseline hazard over time. An important advantage of proportional hazards
models is that, in balanced randomized trials and under the proportional hazards
assumption, the population VE represents the individual VE (Halloran et al.
1994; Gilbert et al. 1998), which is the causal parameter of interest. This
individual VE in trials represents the experimental or biological effect of the
vaccine and is useful in selecting or comparing the vaccine candidates. The
population VE for the same vaccine could vary for different studies and does not
allow an assessment of the efficacy of the vaccine itself.

Under homogeneity of risk factors of infection or disease in the population or of
the VE itself, proportionality of the hazards may hold true (Vaupel et al. 1979;
Aalen 1988; Hougaard 1995). However, the assumption of homogeneity is often
unrealistic because fundamental risk factors for infectious diseases, such as
individual exposure levels and susceptibilities to the pathogen pre-vaccination,
are likely to be heterogeneous in the population (Struchiner et al. 1994; Halloran
et al. 1995). In this paper we will focus on the heterogeneity due to exposure,
assuming that the heterogeneous susceptibilities can be minimized in the design
or analysis, e.g. by using covariates. Examples of covariates to model
heterogeneous susceptibility include age or other markers of previous exposure
history, such as time living in the area (Baird et al. 1993).

Exposure intensity varies greatly within and across populations and cannot
always be reasonably and accurately quantified through covariates. The intensity
of exposure can vary across individual behavioural characteristics such as
occupation or sexual behaviour and is likely to fluctuate within geographical
regions due to environmental factors (Smith et al. 1995). Under heterogeneity,
proportional hazards analysis of time to first event can underestimate the
individual VE, owing to unmeasured covariates representing prognostic factors
for survival or random heterogeneity (Gail et al. 1984; Struthers & Kalbfleisch
1986; Schumacher et al. 1987; Aalen 1988, 1994; Chastang et al. 1988; Lin & Wei
1989; Omori & Johnson 1993; Schmoor & Schumacher 1997; Henderson & Oman
1999). Basically, unmeasured heterogeneity affects the comparability between
vaccinees and non-vaccinees achieved by randomization in the beginning of the
study. Intuitively, if the vaccine is effective, higher risk (more exposed)
unvaccinated subjects fail faster than vaccinated subjects and are removed
from the risk set.

Population heterogeneities in exposure intensities can be modelled using
random effects survival methods, including Cox models with random effects
(Hougaard 1995; Halloran et al. 1996; Longini & Halloran 1996). When infection
or disease does not confer long-lasting immunity and may recur, multivariate
survival methods may be used (Hougaard 2000; Therneau & Grambsch 2000).
Multiple events may be analysed with Poisson regression or using a more flexible
approach, such as the marginal model originally proposed by Anderson & Gill
(1982) with variances adjusted for correlations within subjects using robust
variance estimates (Lin & Wei 1989). Analyses of multiple events using the
Anderson—Gill model are expected to correct for bias due to unmeasured
heterogeneity because, since subjects remain in the risk set until the end of
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the study, vaccinated and unvaccinated subjects remain comparable. However,
continuous time survival analysis methods typically require information about
the exact failure times, though often in practice we can only distinguish a
subject’s outcomes in the time interval between consecutive visits (active case
detection). Even when studies combine active case detection with passive case
detection (detection of the event whenever people seek care), many of their
cases are found through active detection and have event time interval censored.
Under those circumstances, although the exact failure time could be
approximated, a repeated measures analysis for a binary outcome represents a
practical alternative to handle the sequential monitoring of subjects, interval-
censored observations, recurrent episodes and non-proportional hazards.

In this paper, we present an estimator for VE given one exposure contact in a
repeated measures analysis with a generalized estimating equations (GEE)
approach, accounting for heterogeneous exposure and susceptibility pre-
vaccination. Although the proposed estimator may be applied to different
vaccines, we focus our model on estimating efficacy for malaria vaccines. Malaria
is a leading cause of child mortality in developing countries (WHO 1995) and is
transmitted by a mosquito vector. The transmission intensity of malaria is highly
variable across and within regions, and highly seasonal (Smith et al. 1995).
Immunity to malaria is partial and does not prevent recurrences of infection or
disease. Currently there are several vaccines in the preclinical test phase (Aide
et al. 2007). For some malaria vaccines, recent randomized trials have been
performed in which the VE is primarily estimated based on the proportional
hazards modelling of time to first event (Alonso et al. 2005; Bejon et al. 2006,
2007). It is not feasible to record exposure to infected mosquito bites received by
each trial subject, and so exposure information typically relies on mosquito
collections in samples of the study area. Case detection methods rely on both
passive case detection, when individuals seek medical treatment, and active case
detection, when houses are visited and individuals are examined at regular time
intervals.

Section 2 presents our general model and estimator of VE. Under some
simplifying assumptions, we propose estimation procedures using standard
commercial software. In §3 we show that, with heterogeneity of exposure to
infection, VE estimates based on the proportional hazards modelling of time to
first event yield biased estimates of the individual VE. We also use simulation
studies to compare our repeated measures estimator of VE with the proportional
hazards model estimator of VE, when the assumption of proportional hazards
holds. In §4, we apply the proposed model to a reanalysis of the data from a
malaria SPf66 vaccine trial carried out in Brazil.

2. Model description

In a VE study, subjects i, for i=1, ..., n, with different susceptibility status are
randomized to vaccination (V;=1) or placebo (V;=0) at the beginning of the
study period. The outcome status (D;;) of each subject (binary) is subsequently
recorded at specific time intervals, j. For vaccines targeting recurrent events,
after an event, a subject treated can re-enter the risk set and present the outcome
again. The probability of presenting the outcome at each interval j depends on
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the specific amount of exposures received (W;;), which arrive with intensity A;;.
Although W;; cannot be measured, 4;; may be estimated in a separate ecological
study or indirectly, allowing one to determine the empirical probability
distribution of exposure. In this scenario, an estimator of VE can be defined
based on the likelihood of

Pridylv;dy} =y Pr{dlv, wy} Priwg; Ay},

wy;

where Pr{ Wy

7 in time interval j. Define a subject’s susceptibility status, or the probability of
presenting the outcome (baseline probability) in one exposure contact as

/\ZJ} is the probability distribution of exposure contacts for subject

pii=1r (ag:z:,;j), where x; are covariates, possibly time varying. Assuming that
susceptibility to the vaccine is reduced by a multiplicative factor g(-),
independent of the susceptibility p; across exposures, we can define the
probability of presenting the outcome given W,; exposures as

Pr{dijh}i,wzj} =1- [1 pl]g( ):| v

The reduction in the probability of disease given one exposure conferred by the
vaccine can be defined as g(ﬁ v;+ 0} i i v), allowing the VE to vary across
subjects and to interact with covarlates

Different functions can be chosen to model f, g and A and different probability
distributions to model Pr{ww AU} If fand g are exponential functions (log link
model), we can write the expression for the probability of disease for the ith
subject at the jth interval given vaccination status as

Pr{dij = 1]v, Lijs 0‘751‘7‘3,1}

= Z{l— —exp(aljzvlj + Biv; + 65 i v)]w”}Pr{wij;Aij}. (2.1)

Wy

The resulting contribution to the likelihood of the ith subject at the jth time
interval becomes

L;= Z {1 — [1 —exp(a;gwij + B,v; + 6533@1;2.)]%}6!:;7

Wy

X {[1 —exp(ata; + Bv; + oha;v)] "} " Priw; ;).

Several simplifying assumptions can be made. For instance, if we let Wz] be
independently Poisson (4;) distributed and s=1— exp(a x;+ Bv;+ ok ;i Tij v)
then

Pr{dlj = 1|Ui7 mm o, 6, 6, A} =1— EW [SW],
where Ey [SW] is the generating function of a Poisson random variable.
Algebraic manipulation reduces equation (2.1) to

In(—In(1—=Pr{d; = 1|v, z;; &, 8;,6,A})) = log(2, )+a i T T B, + 6} TV

Thus, the probability of disease for the ith subject at the jth interval is linked to
the parameters by a complementary log—log link function, allowing the
estimation of VE through standard statistical software. In this model, the
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probability distribution of exposure contacts may also be allowed to vary over
time and across covariate levels by 4;; = A(y;gzij). For instance, in the case of the
malaria vaccine, the intensity of exposure can be estimated based on an
ecological study of the number of infectious bites received by subjects at different
months (or seasons) of the year and whether or not the subject uses a bed net.

In the above models, the individual VE or VE in one exposure contact varies
across subjects and intervals and can be expressed by

. Pr{d” = 1|'UZ' = 1,'11)” = I,m”,a,ﬂ, 6,1}
Pr{dU = 1|Ui = O,w,-j = I,mi]‘;a,ﬁ, 6,A}

VEWU:l = 1 = 1 —exp(ﬁ + 6£$2j)

In the absence of interaction between the vaccine and covariates (6=0), the VE
given one exposure contact is homogeneous across subjects, even when the
baseline probability of an event or susceptibility in one exposure contact is
varying. VE varies in the range (0, 1] when the vaccine is beneficial.

The population VE or VE marginal on exposure can be expressed as

Pr{dlj = ].|’UZ = 1,33”,“, ﬁ,é,l}

VE=1-—
Pr{d” = 1’/01 = O, aflj,a, ﬁ,é,l}
—1— Zw,-] Pr{dij = l‘lui = 17 mij; aaﬂaaal}Plr’{wij;Aij}
wa Pr{d@' = 1]v; =0, 53@'30‘,5,571}]37’{%7;115}
i 1— exp{—)tl-j exp{aichcij +8;+ 65:1@}} .

1— exp{—klj exp{a%mzj}}

Straightforward extensions of this model could involve random effects or
Markov covariates (Diggle et al. 1994). The appropriateness of each of these
approaches is related to the existence of heterogeneity other than that caused by
exposure, i.e. heterogeneity in susceptibility not measured by the modelled
covariates and heterogeneity in the VE per exposure. Alternative approaches will
lead to different interpretation of the VE in one exposure.

Throughout this paper, we will model the marginal probability of disease given
exposure. The marginal models assume that event history during the study
period does not affect the susceptibility per exposure. To model the repeated
measures, we will use GEE methods (Liang & Zeger 1986; Zeger & Liang 1986).
When there is no additional random heterogeneity, 1—exp(f) represents the
individual VE per exposure.

3. Assessing bias of our repeated measures model and the proportional
hazards model under heterogeneous exposure intensities

In this section we show that VE based on one minus the hazard ratio of the
first episode is a biased estimate of the VE per exposure (the individual VE or
causal parameter of interest), when the assumption of proportional hazards
is violated due to heterogeneous exposures to infection. We studied two scenarios
of heterogeneous exposure: the first generated by the mixture of two Poisson
distributions and the second by a continuous mixture of Poisson distributions.
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Using simulations, we also compared VE estimated through our repeated
measures model to that estimated through proportional hazards under a
heterogeneous and continuous intensity of exposure.

In the first exposure heterogeneity scenario, the population was assumed to be
subdivided in two groups (X;=0/1). We allowed these two groups to receive
exposures according to Poisson distributions, with means 4, and A, respectively.
Under these assumptions, the interarrival times of each disease episode given the
number of exposures received in the interval followed an exponential distribution,
homogeneous across time, with mean 1/Aopg(Bv;) when X;=0 and 1/4;pg(Bv;)
when X;=1, where p is the baseline probability that one exposure causes an event
and g(Bv;) represents the reduction in the probability of an event in one exposure
contact conferred by the vaccine. The proportion of individuals in each of the two
groups varied from 5 to 95%. Half of the subjects in each group were vaccinated
with a vaccine with individual efficacy of 50%, to mimic a perfectly balanced
randomized trial. The resulting distribution of exposure contacts was thus a
mixture of two Poisson distributions with mean and variance equal to

B(W,) = A= Pr(X, = 0)2 + Pr(X, = 1)A,,
V(Wy) = Pr(X; = 0)[A + (2 —2)°] + Pr(X; = 1)[A + (4 —1)*].

When the exposure was based on a two-point distribution figure 1(a), the
hazard was plotted based on

wf(tilv; pr, 0, 4) + (1 —m)f(ti]v; py, 6, )
wS(t;|v; pr, 0, A) + (1 —7)S(t;|vs; pa, 6, A)
(

wAp 0" exp(—Ap,0"t;) + (1 —m)Apy0" exp(—Ap,0"it;)
mexp(—Ap0Vit;) + (1 —m) exp(—Ap,0"it;)

In the second exposure heterogeneity scenario, we assumed that half of the
subjects were vaccinated with a vaccine of individual efficacy of 50%. The
intensity of exposure for each subject (4;) followed a gamma distribution with
mean A and variance 1/v, leading to an overdispersed Poisson distribution for
exposure with mean A and variance A¢ (¢=(y+1)/v). The parameters A and y
were chosen to match the mean and variance of the two group problems described
above. The interarrival times of each disease episode given the number of
exposures received in the interval, for subject i, were exponentially distributed
with mean 1/4;pg(Bv;).

When the exposure was based on a mixture of Poisson distributions (negative
binomial, figure 1b), the hazard was plotted based on

f(tilvis p, 0, 4,)f(4;) dA,
h(t;|vi; 0,2, p) = I f(tilvis p, 6, 25)f (3) A2
Jo S(tilvi; p, 0, 2)f(A;) da
_ 7 0" exp(—8 ) Ty exp(—y2) diy
J5" exp(=0"pAity) [y* /T Qo )]~ exp(—v2,) d2

_ pl"iAy
v + pd"it;
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Figure 1. Population VE based on the hazard ratio comparing vaccinated with unvaccinated
subjects as a function of time and individual VE of 50%. (a) Exposure was generated assuming
a mixing distribution of two Poisson distributions with means A;=12 and A;=2, with the
probability of occurrence of A, from 0.1 to 0.9, as specified. Triple dot-dashed line, 0.1; dashed line,
0.3; dot-dashed line, 0.5; dotted line, 0.7; solid line, 0.9. (b) Exposure was generated assuming a
continuous mixture of Poisson distributions (negative binomial) with different means and variances
(means and variances were chosen to mimic the mean and variance of the two point distribution).
Triple dot-dashed line, mean=11 and variance =20; dashed line, mean=9 and variance=30; dot-
dashed line, mean=7 and variance=32; dotted line, mean=>5 and variance=26; solid line,
mean=3 and variance=12.

Figure 1 plots the VE over time based on hazard ratios under these two
scenarios. In a study with one year follow-up time, the population VE is always
lower than the biological VE or VE per exposure (50%). After two years, VE
based on hazard ratios could substantially underestimate the true (and constant
over time) effect of the vaccine. The difference between the individual and the
population vaccine efficacies is higher when most subjects have higher intensity
of exposure (1) or when the heterogeneity is large. The hazard of the mixing
distribution generated by a binary intensity of exposure is similar to that
generated by a continuous intensity of exposure, except when the mean of the
mixing distribution is low. Similar numerical results were found by Schmoor &
Schumacher (1997).

For both exposure scenarios, we generated datasets of 250 simulations with
1200 study subjects. Subjects were followed for 720 days and then censored
(type I censoring only). For the repeated measures analysis, subjects were
allowed to re-enter the study after each failure. We assigned vaccine to 50% of
the study subjects and then sampled exposure using the corresponding
distribution. The probability of infection per bite, p, was chosen to average a
cumulative probability of disease over the two years in unvaccinated subjects of
approximately 40% and VE was chosen to be 50%.

In all simulations, time was subdivided into intervals as if the subjects had
been observed every 30 days. A binary outcome random variable was created,
D,;, which was equal to 1 if the ith subject developed the outcome during the
corresponding time period j. With these data, we fitted proportional hazards
models for time to first event, frailty or random effect survival modelling time to
first event (Gaussian frailty), our repeated measures model for all events using a
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Figure 2. Comparison of the per cent bias in VE under heterogeneity of the intensity of exposure,
as a function of the expected value of the mixing distribution of exposure, in 250 simulations each
with a sample size of 1200 subjects. VE was estimated via modelling of time to first
infection/disease (using proportional hazard and Gaussian frailty models), via modelling of time
to all infection/disease (using Anderson-Gill model) and via a repeated measures model with a
complementary log-log link and GEE approach. Exposure was generated assuming a continuous
mixture of Poisson distributions with the specified mean intensity A (and variance ¢A). Dashed line,
first event frailty model; dot-dashed line, repeated measures; dotted line, Anderson—Gill; solid line,
first event proportional hazard.

complementary log—log link function and GEE, and a marginal multiple events
survival model for continuous time to event, i.e. the Anderson—Gill model. All
simulations and analyses were performed in Sprus v. 8.0 (Insightful Corporation,
Seattle). Estimation for the repeated measures model was implemented using the
complementary log—log link and GEEs, assuming an independence working
covariance matrix, using the gee function from the correlatedData library.
Estimation for all survival models was implemented using the coxzph function
with the cluster function for the Anderson—Gill model and with the frailty
function for the random effects survival model. Wald Cls were calculated based
on the estimated standard errors.

When heterogeneity in the intensity of exposure varied continuously, the
proportional hazards VE estimated without or with a random effect was biased.
Our repeated measures estimator of individual efficacy performed substantially
better and had negligible bias (figure 2). Results with our estimator and the
Anderson—Gill approach were comparable. Discrepancies between our method
and the Anderson—Gill approach are likely to be due to the discretization of time.
While VE estimated by our method is based on the ratio of cumulative hazards
over the specified time period, VE estimated by the Anderson—Gill method is
based on the ratio of instantaneous hazards over the time period. Overall, our
repeated measures model constituted a valid alternative to the Anderson—Gill
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approach, and in fact would be a more appropriate method to analyse data in
which information about time to event is known in discrete time intervals
(interval censoring). Moreover, although our estimator was based on discrete
time to event, the half-widths of the 95% Wald CI of the estimator proposed here
and that from the Anderson—Gill method were very similar. The difference was
negligible in all simulation scenarios and at most 0.001.

4. Reanalysis of a malaria vaccine trial

We reanalyse the Brazilian trial of the SPf66 vaccine (Urdaneta et al. 1998) to
compare the VE estimated through proportional hazards analysis (of first event
only) with the VE estimated through our repeated measures estimator (of first
and second events) implemented with a GEE approach. The SP{66 vaccine was
expected only to protect vaccinees from disease, without affecting transmission
(Graves et al. 1998; Graves & Gelband 2001).

In the Brazilian SPf66 vaccine trial, 58% of the study population had
immigrated to the trial area in the two years prior to the trial, suggesting
heterogeneous susceptibility to malaria among the study subjects. Although no
mosquito surveys were performed in the trial area during the trial period, studies
in nearby regions indicated that the intensity of exposure in the region ranged
from 0.4 to 2.1 infected mosquito bites/person/night, depending on the season
(Klein & Lima 1990; Urdaneta et al. 1996). A total of 800 individuals were
randomized to vaccination (400) or placebo (400) and 572 (287 vaccinees versus
285 non-vaccinees) received three doses. As 32 of these individuals were lost to
follow-up immediately after the third dose, the final analysis includes 540 study
subjects. The study lasted 18 months after the third dose and recorded first and
second malaria episodes.

Among the 540 subjects, 161 had one episode of falciparum malaria (the type
of malaria with higher morbidity), and among those 44 presented with a second
episode. The original trial analysed time to first infection/disease episode
through life-table methods, with the hazard for each group estimated as the ratio
of the number of cases at the end of the follow-up period to the person—time at
risk. The trial reported a crude VE of 14.1% (95% CI of [—17.0, 36.9%]) for the
first episode of malaria.

We performed a survival analysis for first episode using proportional hazards
models, and a repeated measures analysis for first and second episodes, in
monthly intervals, with GEEs using a working independence covariance
assumption. In the repeated measures analysis, we assumed that the intensity
of exposure (1) was constant over time and, based on the previous entomological
studies done in the area, equal to 30 infected bites/person/month. For this
example, we chose three categorical covariates: vaccination; time living in the
trial area; and age.

For each model, the estimated vaccine effect was low and did not reach
statistical significance (table 1). Individuals who had lived in the area for more
than two years had a lower susceptibility or probability of infection per
exposure contact than those who were living in the area for two years or less.
Neither the main effect of age nor its interaction with VE was significant in any
analyses, indicating that baseline susceptibility and VE were relatively
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Table 1. Point and CI estimates of VE and possible predictors of individual susceptibility, based on
a survival analysis with proportional hazards model (using first episode only as outcome), and a
repeated measures analysis with GEE of the Brazilian SPf66 malaria vaccine trial. Covariates
include vaccination status, years living in the trial area prior to the trial and age.

proportional hazards models GEE models”
variable 1P 2" 1’ 2"
P(D| W=1, — — 0.12 (0.09, 0.14)  0.11 (0.08, 0.14)
V=0) (%)
VE (%) 12.5 (—19.3, 35.8) 13.6 (—17.8,36.6) 10.1 (—20.3, 32.8) 10.8 (—19.7, 33.4)

RR(time in area
>2 versus < 2 0.61 (0.44, 0.84)  0.61 (0.44, 0.85)  0.61 (0.44, 0.83)  0.61 (0.45, 0.84)
| w=1)

RR(age >20
versus age — 1.17 (0.86, 1.60)  — 1.12 (0.83, 1.51)
< 20| W=1)

“Standard errors of GEE models were calculated with robust variance estimators assuming
a working independence covariance matrix. "Models: model 1, In(—In(1—Pr{dyv;,z;}))=
In{A=30}+ay+ By v;+ aol(time in area,>2); model 2, In(—In(l1—Pr{d;v;,=;}))=In{A=30}+
o+ B1v;+ axl(time in area;>2) + azl(age;>20).

homogeneous across age groups. Adjusting for age or time living in the area did
not appreciably change the point estimates of VE, suggesting no confounding
due to these factors.

Overall, these results confirm the lack of VE found by Urdaneta et al. (1998).
Currently, alternative delivery systems for the SPf66 vaccine are under
investigation to improve the immunogenicity of the vaccine.

5. Discussion

The repeated measures model presented in this paper constitutes a practical way to
estimate the individual VE or the VE conditional on exposure when the intensity of
exposure is heterogeneous, even when the only knowledge about exposure relies on
the estimated intensity of exposure from an environmental study. The estimator
proposed here requires only a coarse estimate of the density of exposure. The
repeated measures model offers a flexible and convenient way of handling
heterogeneity in susceptibility and in the VE per exposure contact through
covariates and random effects. Under unmeasured heterogeneity of the intensity of
exposure in the population, our repeated measures model results in more accurate
and more robust estimates of VE than the proportional hazards modelling of time to
first event and offers an alternative to multiple events survival methods when the
time interval of events rather than the exact event time is known.

When unmeasured heterogeneity leads to the failure of the proportional
hazards assumption, survival analysis with frailty models for time to first event
have been proposed to estimate the marginal or population-based VE under
heterogeneity (Halloran et al. 1996; Longini & Halloran 1996). However, frailty
single event models may also provide biased estimates of the individual VE, as
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shown here. As Hougaard (1991) remarks, single event frailty models are
sensitive to the choice of the frailty distribution. Thus, many VE studies having
recurrent events would be more appropriately analysed through multivariate
methods, such as continuous time multivariate survival or repeated measures
analysis. The methods assessed here are more robust than Poisson models that
have been used by vaccine studies to handle multiple events (Alonso et al. 2005;
Bejon et al. 2006). Poisson models rely on exponentially distributed interarrival
times and, thus, yield only unbiased estimates of the individual VE when the
assumption of proportional hazards is valid.

Although we specified our estimator for a Poisson distributed exposure, an
alternative mixture of distributions for exposure, such as the negative binomial,
could also be easily handled. In addition, an intensity of exposure varying over time
and across subgroups of the population could be easily incorporated into the model.
Assuming that exposures are Poisson distributed simplified the implementation of
the model due to the resulting complementary log—log link function for the
marginal probability of the outcome. Different motivations for complementary
log—log models have been described (Collett 1991), including the discrete
proportional hazards model. Therefore, our model to estimate VE can also be
viewed as a multivariate version of the proportional hazards model, in which robust
variances can be obtained through standard approaches such as GEEs. Frailties or
random effects in susceptibility or in the log-transformed exposure can easily be
incorporated within our longitudinal or repeated analysis framework.

We did not assess here the impact on the repeated measures estimator of
having an exposure or susceptibility heterogeneously changing over time. A
heterogeneous time-decreasing susceptibility could be the result of subjects’
susceptibility decreasing conditionally on a recent event. Under these
circumstances, our estimator could possibly be biased. However, including a
covariate to represent recent event history, such as in a conditional Markov
model, would probably correct most of this bias.

Since many vaccines may be given to prevent or delay diseases that recur, such
as malaria, otitis media in pneumococcal infection or recurrent manifestations of
perennial infections, such as the herpes or HIV virus, the proposed repeated
measures estimator may be widely applicable. Our estimator is appropriate for
the data collection mechanism of VE studies, since case detection at pre-specified
time points often does not allow ascertainment of the exact failure time. Further
developments of the general model proposed here could be made towards the
estimation of individual VE when the infection/disease does not recur using a
semi-parametric approach as suggested by van der Laan & Robins (2003).
Extension to designs that collect detailed exposure information on a small
validation set of participants and crude exposure information on all participants
could be based on the semi-parametric methods of Golm et al. (1999). The model
could also be extended to include estimation of ‘strain’-specific VE, as suggested
by Gilbert et al. (1998), by classifying each event caused by a specific strain as a
different outcome.

Given the results presented here, we recommend that primary analysis of
vaccine trials with recurrent events should consider methods based on recurrent
events, such as our repeated measures model, and not just the proportional
hazards models for time to first event. It is probable that modelling time to first
event yields biased estimates of individual VE. The VE estimated when
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modelling time to first event represents a parameter that varies with the
transmission intensity in the trial site and the duration of the trial and, thus,
does not allow vaccines to be judged. The repeated measures estimator proposed
not only provides nearly unbiased estimates of the actual parameter of interest,
individual VE, but also is an appropriate method to analyse data collected at
discrete time intervals.

The malaria vaccine trial reanalysed in this paper was initiated after approval from the Ministry of
Health, Brazil, and the local authorities. Written consent was obtained from every patient.
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the Fogarty International Institute of the National Institute of Health grant no. 5 D43 TW 000918.
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