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Abstract. The Tomonaga model describes interacting 1D fermions with a linear
dispersion relation and a bandwidth cut-off, which destroys local gauge invariance
and makes the model not solvable. We rigorously obtain its Schwinger functions
by combining renormalization group analysis with Ward identities and a set of
‘correction identities’, which relate the correction terms to formal Ward identities
(due to cut-offs) with some Schwinger functions. Contrary to previous cases,
the use of the Luttinger model exact solution is completely avoided. Therefore
this should be considered the first proof of what has been so far a conjecture:
1D interacting fermions can be constructed on the basis of a non-perturbative
analysis independent of any exact solutions (of models which could be shown
to have essentially the same beta function) and entirely based on a functional
integral approach. The same method allows us to construct essentially all 1D
Luttinger liquid models.
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1. Introduction

A well known problem in quantum field theory (QFT) is the basic conflict between
regularizations and Ward identities (WI) based on local gauge symmetries. Dimensional
regularization [11] apparently solves such a problem, but it seems inadequate for producing
non-perturbative1 results. In a (Wilsonian) renormalization group (RG) approach, which
is the best suited for getting non-perturbative results, such a conflict appears quite
naturally; the functional integration is done by integrating fields of decreasing momentum
scale, and hence one has to introduce suitable momentum cut-offs, which destroy the local
gauge invariance necessary for deriving WI at any stage of the RG approach. On the other
hand, if one does not use WI, the RG approach can be effective only for constructing trivial
theories. QFT methods are used also in statistical physics; in such a case the problem
is even more dramatic, as local gauge symmetry is broken even in the original model by
natural cut-offs like a crystalline lattice or nonlinear bands.

The aim of this letter is to present the first example of rigorous implementation of
WI based on local gauge invariance in a RG scheme. In particular we will obtain a
general proof of Luttinger liquid behaviour (in the sense of [7] or [1]) for essentially all
models of interacting spinless fermions for d = 1. Of course the WI that we find at any
stage of the RG approach are different to the formal ones, because of the presence of
correction terms due to the cut-offs; such corrections apparently rob WI of their utility,
which is their ability to give a non-trivial relation between different Schwinger functions.
However, the new ingredient is a set of correction identities, relating the corrections to
the formal WI with some Schwinger functions (up to smaller terms); this allows us to
‘close the equations’ and to reduce the number of independent running coupling constants.
Detailed proofs of our statements are quite technical and will be published elsewhere [3]; we
explain in this paper the main ideas. We will consider here for simplicity the Tomonaga
model [10], which is the simplest non-solvable interacting Fermi system for d = 1; it
describes two kinds of (spinless) fermions (represented by two anticommuting operators
a±

k,ω, ω = ±) interacting with a local potential; they have a linear dispersion relation
and their momenta k are restricted to two regions around the two Fermi points by a
bandwidth cut-off. The linear dispersion relation is simply a ‘linearization’ of a realistic

1 By non-perturbative we mean that convergence of the power series can be proved.
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dispersion relation close to the two Fermi points, and the cut-off is imposed in order to
avoid ‘spurious’ ultraviolet divergences. The reason is the presence of the bandwidth cut-
off, which destroys many symmetries (conformal or local gauge invariance) which lie at
the basis of many ‘exact’ methods; this is the same kind of difficulty one finds in generic
more realistic Luttinger liquids. First of all, no solution using the Bethe ansatz has been
found. In addition, the powerful techniques of bosonization cannot be applied; the reason
is that the operators ρω(p) = (1/L)

∑
k a+

k+p,ωa−
k,ω do not verify bosonic commutation

relations, that is [ρω(p), ρω′(p′)] �= (pL/2π)δω,ω′δp,p′. Note that, if the bandwidth cut-off
is removed and a smooth short range interaction is considered, one gets a famous variant
of the Tomonaga model, the Luttinger model. After filling the ‘Dirac sea’ of unphysical
states with negative energy, the operators ρω(p) verify the exact commutation relation
[ρω(p), ρω′(p′)] = (pL/2π)δω,ω′δp,p′, and this immediately implies that the model can be
solved [8]. As the bosonization method cannot really be applied to the Tomonaga model,
its analysis was approached by other methods. Since a naive perturbation expansion is
plagued by logarithmic divergences, perturbative RG methods [9] have been used to resum
the perturbative series. However the flow of the running coupling constants is bounded
only as a consequence of cancellations in the beta function, which were only checked at the
third order ; hence the results are, all the same, essentially perturbative. In [2, 4] several
1D Luttinger liquids were rigorously constructed, including the Tomonaga model; the
observables are expressed as a convergent expansion in the running coupling constants,
which remain in the domain of convergence as a consequence of a remarkable property, the
vanishing of the beta function, deduced from the exact solution of the Luttinger model.
However a major question remained open: is it possible to construct 1D Luttinger liquids
without any use of exact solutions, only combining renormalization group methods and
Ward identities? This question is quite relevant, as exact solutions are peculiar to 1D
while the RG approach combined with WI is a general method which can be applied in
principle in any dimension. Of course this goal is much more ambitious; instead of using
the RG approach to prove that generic 1D interacting fermions are ‘close’ to the Luttinger
model and then using non-trivial properties deduced from the exact solution, we want to
show that, only employing the RG approach and WI, one can construct 1D non-solvable
fermion models. In the physical literature it is claimed—see for instance [5, 6]—that this
is really possible, by getting a set of closed equations combining Dyson equations and
WI; however such analysis is not rigorous and, in any case, can be applied only to models
without cut-offs. We show in this paper that such ‘closure’ is really possible, even in the
presence of cut-offs, so obtaining the first example of complete construction of a non-trivial
theory just by implementing WI in a RG approach.

2. Grassmann formulation of the Tomonaga model

The generating functional of the Schwinger functions of the Tomonaga model is given by
the following Grassmann integral:

W(φ, J) = log

∫

P (dψ) exp

(

−V (ψ) +
∑

ω

∫

dx

[

Jx,ωψ+
x,ωψ−

x,ω +
∑

ε

φ+ε
x,ωψ−ε

x,ω

])

(1)
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where Jx,ω, φ±
x,ω are external fields, ψ±

k,ω, ω = ± are Grassmann variables, P (dψ) is a
fermionic Gaussian integration with propagator

gω(x − y) =

∫

dk eik(x−y) χ(k)

−ik0 + ωk
(2)

where x = (x0, x), k = (k0, k),
∫

dk = 1
βL

∑
k, χ(k) a cut-off function and

V (ψ) = λ

∫

dxψ+
x,+ψ−

x,+ψ+
x,−ψ−

x,−. (3)

The cut-off χ(k) is chosen in the following way; if χ0(t) is a smooth compact support
function equal to 1 for 0 < t < 1 and vanishing for t ≥ γ > 1, we define fi(k) =
χ0(γ

−i|k|)−χ0(γ
−i+1|k|) (with support in γi−1 ≤ |k| ≤ γi+1) and χ(k) =

∑0
i=h fi(k); then

χ(k) has support between γh−1 (the infrared (IR) cut-off, h ≤ 0) and γ (the ultraviolet
(UV) cut-off ). The Schwinger functions of the Tomonaga model are found by removing
the IR cut-off (h → −∞) while keeping the UV cut-off fixed. Note that we have also
imposed an energy cut-off, in addition to the bandwidth cut-off; this is done only for
notational convenience and can be easily avoided. The Schwinger functions relevant in
the subsequent discussion are defined in the following way:

G2,1
ω (x;y, z) =

∂

∂Jx,ω

∂2

∂φ+
y,+∂φ−

z,+

W(φ, J)|J=0,φ=0

G4
ω(x1,x2,x3,x4) =

∂4W
∂φ+

x1,ω∂φ−
x2,ω∂φ+

x3,−ω∂φ−
x4,−ω

∣
∣
∣
∣
J=0,φ=0

G2
ω(y, z) =

∂2

∂φ+
y,ω∂φ−

z,ω

W(φ, J)|J=0,φ=0.

(4)

By Taylor expanding e−V , one sees that the Schwinger functions are expressed as power
series in λ; such series are indeed convergent, as a consequence of the Gram–Hadamard
bound for fermionic expectations, but a naive bound only allows one to get a convergence
radius which shrinks to 0 as h → −∞, that is when the IR cut-off is removed. The
problem is to show that it is possible to rewrite the Schwinger functions in terms of
suitable effective couplings, so that the new expansions (which are not series expansions)
can be bounded uniformly in the infrared cut-off.

From equation (1) one can immediately derive Ward identities from the chiral gauge
transformation ψ±

x,− → ψ±
x,−, ψ±

x,+ → e±αxψ±
x,+; one gets, see figure 1,

D+(p)Ĝ2,1
+ (p,k,q) = Ĝ2

+(q) − Ĝ2
+(k) + ∆̂2,1

+ (p,k,q) (5)

where ∆2,1
+ (p,k,q) is given by

∫

dkC+(k,k − p)〈ψ̂+
k,+ψ̂−

k−p,+; ψ̂−
k,+ψ̂+

q,+〉T (6)

with Cω(k,q) = [χ−1(k) − 1]Dω(k) − [χ−1(q) − 1]Dω(q) and Dω(k) = −ik0 + ωk.
Note that the above WI differs from the formal one for the presence of the correction
term ∆2,1

+ (p,k,q); such a term is not negligible, as its series expansion is logarithmically

diverging as was the series for the Schwinger functions itself. The correction term ∆̂2,1
+ is

non-vanishing even if both UV and IR cut-offs are removed; this is not too surprising as
it is well known that WI based on chiral gauge transformations in QFT are plagued by
anomalies.

doi:10.1088/1742-5468/2005/04/L04001 4

http://dx.doi.org/10.1088/1742-5468/2005/04/L04001


J.S
tat.M

ech.
(2005)

L04001

Rigorous analysis of the Tomonaga model by means of Ward identities and the renormalization group

Ĝ2,1
+

D+ (p )

k q

p = k – q

= Ĝ2
+

q

q

 Ĝ2
+

k

k

+– ˆ ∆ 2,1
+

k q

p

Figure 1. The Ward identity (5); the small circle represents C+.

3. Renormalization group analysis

We evaluate the Grassmann integral equation (1) by an exact RG procedure, described
in detail elsewhere [4]. The Grassmann integration is expressed as the product of
many independent integrations, by using the addition property for Grassmann integrals

P (dψ) =
∏0

i=h P (dψ(i)), with P (dψ(i)) a fermionic integration with propagator g
(i)
ω (k) =

f (i)(k)/Dω(k). Let us consider first for simplicity the integration of the partition
function, given by the log argument in equation (1), with J = φ = 0; after the fields
ψ(0), ψ(−1), . . . , ψ(i), i > h are integrated we get

∫

PZi
(ψ(≤i))e−V (i)(

√
Ziψ(≤i)) =

∫

PZi
(ψ(≤i))e−LV (i)(

√
Ziψ(≤i))−RV (i)(

√
Ziψ≤i) (7)

where
∫

PZi
(ψ≤i) is the Grassmann integration with propagator

1

Zi
g(≤i)

ω (x − y) =
1

Zi

i∑

j=h

∫

dk eik(x−y) f (j)(k)

−ik0 + ωk
. (8)

Moreover V (i), the effective potential at scale i, is given by a sum of integrals of monomials
of any order in the ψk,ω variables, times suitable kernels (functions of the fermionic
momenta); L is the localization operator, whose action is to replace the kernels multiplying
quartic or quadratic monomials with their zeroth- or first-order Taylor expansion around
(0, 0), respectively; finally R = 1 −L. Then we get

LV(i)(ψ) = li

∫

dxψ+
+,xψ

−
+,xψ

+
−,xψ

−
−,x + zi

∑

ω=±1

∫

dxψ+
ω,x(∂x0 + iω∂x)ψ

−
ω,x (9)

and both terms are dimensionally marginal in the RG sense. Calling the first addend in
equation (9) λiFλ(ψ) and moving the quadratic part from the interaction to the integration
in equation (7) we get an expression equivalent to the following one (see [4] for a precise
definition):
∫

PZi−1
(ψ(≤i))e−liFλ(

√
Ziψ≤i)−RV (i)(

√
Ziψ≤i)

≡
∫

PZi−1
(ψ(≤i−1))

∫

PZi−1
(ψ(i))e−λiFλ(

√
Zi−1ψ≤i)−RV (i)(

√
Ziψ≤i) (10)

where Zi−1 = Zi(1 + zi) and λi = (Zi/Zi−1)
2li. The integration over ψ(i), with propagator

Z−1
i−1g

(i)
ω (x−y), can be done using the invariance of exponentials property and we get that
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the last integral in the rhs of equation (10) has the form e−V(i−1)(ψ(≤i−1)); the procedure
can be then iterated. The integration of the generating functional W of equation (1) is
done in a similar way; in the effective potential there appear terms depending also on φ or
J , and L acts non-trivially on the terms bilinear in ψ and linear in J ; the resulting local

terms are of the form Z
(2)
i Jψ+

ω ψ−
ω , the coupling Z

(2)
i being the density renormalization. A

crucial result, proved in [4] using the Gram–Hadamard bound for determinants applied
to the fermionic truncated expectations, is the following:

The Schwinger functions are expressed as expansions in the running coupling
constants (rcc) {λj}j=0,−1,...,h, which are convergent uniformly in the IR cut-off,
if supj≥h |λj| is small enough.

The RG integration procedure gives a resummation of the naive series expansion;
instead of a power series in λ (whose convergence radius is apparently vanishing as
h → −∞), we have found a new expansion in terms of {λj}j=0,−1,...,h, which is not a
power expansion but is convergent uniformly in the IR cut-off. Such an expansion implies
that the Schwinger functions are indeed analytic in the original coupling (with a radius of
convergence depending on the external momenta and going to zero at the singular points)
and provides very detailed information on their asymptotic behaviour. For instance we
get, in the limit h = −∞ and assuming that supj |λj| ≤ C|λ|, for |x − y| ≥ 1

G2
ω(x,y) =

gω(x − y)

|x − y|η (1 + λA(x,y)) (11)

with η = aλ2 + O(λ3), a > 0 and |A(x,y)| ≤ C. The main problem at this stage is then:
what ensures that {λj}j=0,−1,...,h are bounded and O(λ) uniformly in the IR cut-off h?

4. Dyson and Ward identities

The property that the rcc λj remain small for any j is not trivial at all. The rcc verify
a recursive equation whose rhs is called a beta function; one can verify by an explicit
computation that, up to two loops, dramatic cancellations are present; however, if at
higher orders the cancellations were not present, the rcc could increase without limit
making the analysis meaningless. One needs then a non-perturbative argument. First
note that the rcc λj for j > h are identical in the model with or without an IR cut-
off; this is a simple consequence of our compact support decomposition. Then finding a
relation between the Schwinger functions at momenta computed at the cut-off scale γh in
the model with IR cut-off γh−1, we get a relation between the rcc at scale h for the model
without a cut-off scale. In a sense, we are using the idea of the multiplicative RG in the
context of the Wilsonian RG.

As Ĝ4, computed at momenta at the cut-off scale, is proportional to λh, that is, see [3],

Ĝ4(k̄1, k̄2, k̄3, k̄4) = (λh/Z
2
h)γ−4h(1 + O(λ̄h)), where |k̄i| = γh and λ̄h = supj≥h|λj|, it is

natural to write a Dyson equation for G4, see figure 2:

−Ĝ4
+(k1,k2,k3,k4) = λĝ−(k4)

[

Ĝ2
−(k3)Ĝ

2,1
+ (k1 − k2,k1,k2)

+

∫

dp Ĝ4,1
+ (p;k1,k2,k3,k4 − p)

]

. (12)

doi:10.1088/1742-5468/2005/04/L04001 6
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Ĝ4
+

k1+ k2
+

k3

 
k4

 

=

Ĝ2,1
+

Ĝ2
– 

k1+
k2

+

k4 k1 – k2
+ +

k3– 

k3
 

+

Ĝ4,1
+

k1

+
k2

+
k3

 

k4
– 

– 

– – 
k4

– 
– p

 
p
+

–

Figure 2. Graphical representation of the Dyson equation.

The lhs of equation (12) is proportional to λh, while the rhs is proportional to λ;
however, if we do not take into account cancellations, we get from equation (12) simply

|λh| ≤ Ch|λ|, with Ch → ∞ as h → −∞. We can however express Ĝ2,1
+ and Ĝ4,1

+ in terms

of Ĝ2
+ and Ĝ4

+ by means of WI (5) and

D+(p)G4,1
+ (p,k1,k2,k3,k4 − p) = G4

+(k1 − p,k2,k3,k4 − p)

− G4
+(k1,k2 + p,k3,k4 − p) + ∆4,1

+ . (13)

If the formal WI were true (that is if ∆̂2,1
+ and ∆̂4,1

+ were vanishing), by inserting the
formal WI in (12) one would get at once, just by dimensional analysis, λh = λ + O(λ2).

However ∆̂2,1
+ and ∆̂4,1

+ are not negligible at all; their naive power series expansion is even
log diverging and this seems to completely rob the WI of their utility (one cannot ‘close
the equations’). Luckily there are other remarkable relations, which we call correction

identities, connecting the correction term ∆̂2,1
+ , ∆̂4,1

+ to the Schwinger functions; for

instance ∆̂2,1
+ can be written as, see figure 3,

∆̂2,1
+ (p,k,q) = ν+D+(p)Ĝ2,1

+ + ν−D−(p)Ĝ2,1
− + Ĥ2,1

+ (p,k,q) (14)

where ν+, ν− are O(λ), uniformly in h, and Ĥ2,1
+ (p,k,q) can be obtained from a functional

integral W̃ very similar to (1), with the difference that the term proportional to J in the
exponent is replaced by

∫

dp dkC+(k,k − p)Ĵpψ+
k,+ψ+

k−p,+ −
∑

ω

νω

∫

dp dk Ĵpψ+
k,ωψ+

k−p,ω. (15)

The multiscale integration of W̃ (such that H2,1
+ = (∂/∂Jx,ω)(∂2/∂φ+

y,+∂φ−
z,+)W̃(φ, J)|0,0)

is done in a similar way to the one used for (1) in section 3, described in
detail in [3] and based on the peculiar properties of C+(k+,k−), in particular that
C+(k+,k−)g(i)(k+)g(j)(k−) is vanishing unless i or j are equal to 0 or h (that is, the

infrared or ultraviolet cut-off scale). New marginal terms νj,ω

∫
dp dk Ĵpψ

(≤j)+
k,ω ψ

(≤j)−
k−p,ω,

ω = ±, are generated in the integration procedure, and the νω are fixed so that
νj,ω = O(λγϑj) with 0 < ϑ < 1. At the end the bound |Ĥ2,1

+ (p̄, k̄, q̄)| ≤ Cλ̄h(γ
2h/Zh)

is found. The physical meaning of the first two terms or the third one in the correction
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 ̂ 2,1
+

=

ν + D∆ + Ĝ2,1
+ ν – D– Ĝ2,1

–

+ +

Ĥ 2,1
+

Figure 3. Graphical representation of the correction identity; the filled point
represents equation (15).

G̃4
+

k1+ k2
+

– –

–

–
–

–

k3

 
k4

 

=

Ĥ 4,1
+

k1

+
k2

+
k3

 

k4
 

k4  p
 

p
+

Figure 4. The Dyson equation (19); the filled point represents T1 +
∑

ω Tω.

identity equation (14) is completely different. The first two terms are related to the chiral
anomaly, which produces a correction to the formal WI even if χ = 1 and the model
reduces to a QFT model; in fact, if the cut-offs are removed, ν± tends to a non-vanishing
limit. On the other hand, the third term takes into account the presence of finite cut-offs,
and it is vanishing on removing them at fixed external momenta. If we insert the correction
identity (14) in the WI (5), we find (1−ν+)D+(p)Ĝ2,1

+ −ν−D−(p)Ĝ2,1
− = Ĝ2

+(q)−Ĝ2
+(k)+

Ĥ2,1
+ . A WI holds also for G2,1

− , that is (1− ν ′
−)D−(p)G2,1

− − ν ′
+D−(p)G2,1

+ = H2,1
− , and by

using that G2(k̄) = γ−hZ−1
h (1 + O(λ̄h)) and that |Ĥ2,1

± | ≤ Cλ̄hZ
−1
h γ−2h, we get that the

first addend of the rhs of the Dyson equation is given by λγ−4hZ−2
h (1 + O(λ̄h)), which is

the ‘good bound’ one needs.
The analysis of the second addend of the rhs of (12) is more complex. Also the

correction ∆̂4,1
+ to the WI equation (16) verifies a correction identity, as we proved in [4]:

∆̂4,1
+ = ν+D+(p)Ĝ4,1

+ + ν−D−(p)Ĝ4,1
− + Ĥ4,1

+ . (16)

One has then to combine the WI (13), the one for Ĝ4,1
− and the correction identities (16)

and ∆̂4,1
− = ν ′

+D+(p)Ĝ4,1
+ + ν ′

−D−(p)Ĝ4,1
− + Ĥ4,1

− . After some algebra one gets

D+(p)Ĝ4,1
+

1 + A
(p,k1,k2,k3,k4 − p) = Ĥ4,1 + Ĝ4

+(k1 − p,k2,k3,k4 − p)

− Ĝ4
+(k1,k2 + p,k3,k4 − p) + B[Ĝ4

+(k1,k3 − p,k4 − p)

− Ĝ4
+(k1,k2,k3,k4)] (17)
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where Ĥ4,1 = Ĥ4,1
+ + BĤ4,1

− , A = −ν+ − (ν−ν ′
+)/(1− ν ′

−) and B = ν−/(1− ν ′
−). Inserting

this expression in the second addend of the rhs of (12), we get several terms; the term

involving Ĝ4
+(k1,k2,k3,k4) is vanishing, while all the other terms involving Ĝ4

+ verify the

dimensional bound |λg(k̄4)
∫

dp Ĝ4
+D+(p)−1| ≤ λ̄2

hZ
−2
h γ−4h. The terms requiring a subtle

analysis are the terms

g(k4)

∫

dp Ĥ4,1
± D+(p)−1. (18)

Their analysis is done by writing for them another Dyson equation (see figure 4):

g−(k4)

∫

dp Ĥ4,1
+ D+(p)−1 = G̃4

+ (19)

where G̃4
+ = ∂4

∂φ+
+∂φ−

+∂φ+
−∂J

W̃ |0 and W̃ is similar to W of equation (1), with
∫

dx Jψ+ψ− in

the exponent replaced by T1 +
∑

ω νωTω, where

T1 =

∫

dk dp
C+(k,k − p)

D+(p)
ψ+

k,+ψ−
k−p,+ψ+

k4−p,−Jk4 ĝ−(k4)n (20)

Tω =

∫

dk dp
Dω(p)

D+(p)
ψ+

k,ωψ−
k−p,ωψ+

k4−p,−Jk4 ĝ−(k4). (21)

The role of equation (19) is to relate the integral of Ĥ4,1
+ to a Grassmann integral similar

to the one for Ĝ4 with a ‘special’ external line coming from the ‘special’ vertex associated
with T1 +

∑
ω νωTω. Also G̃4 can be studied via a multiscale integration similar to the one

in section 2; we refer the reader to [3] for the technical details. The presence of the special
external line has the effect that new marginal terms appear, with which new running
coupling constants must be associated; in particular a new running coupling constant
multiplying a monomial trilinear in ψ appears, which we call λ̃i, and the analysis of its
flow could be a problem; however, by using again the properties of the function Cω, it
can be shown that it is essentially proportional to λi, that is |λ̃i − αλi| ≤ Cλ̄hγ

ϑi. Then

one gets for G̃4 a bound very similar to the one for Ĝ4, except that λh is replaced by
λ̃h and there is no wavefunction renormalization associated with the external line with
momentum k4, i.e. there is a Z−1

h missing; we can however identify two classes of terms

in the expansion of G̃4, one in which the special external line comes out from a λ̃i vertex,
and the other one such that it comes out from z̃i, the local parts of the terms with two
external lines (linear in ψ); by summing such terms one gets the bound Cλ̄2

hγ
−4hZ−2

h , and
this allows us to complete the proof that λh = λ+O(λ2) for any h. Hence the expansions
for the Schwinger functions are convergent, as explained in section 3, and equation (11)
holds.
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