
Reliability Analysis of Component-Based

Systems with Multiple Failure Modes

Antonio Filieri1, Carlo Ghezzi1, Vincenzo Grassi2, and Raffaela Mirandola1

1 Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy
{filieri,ghezzi,mirandola}@elet.polimi.it

2 Università di Roma “Tor Vergata”, Viale del Politecnico 1, 00133 Roma, Italy
vgrassi@info.uniroma2.it

Abstract. This paper presents a novel approach to the reliability mod-
eling and analysis of a component-based system that allows dealing
with multiple failure modes and studying the error propagation among
components. The proposed model permits to specify the components
attitude to produce, propagate, transform or mask different failure modes.
These component-level reliability specifications together with informa-
tion about systems global structure allow precise estimation of reliability
properties by means of analytical closed formulas, probabilistic model-
checking or simulation methods. To support the rapid identification of
components that could heavily affect systems reliability, we also show
how our modeling approach easily support the automated estimation of
the system sensitivity to variations in the reliability properties of its com-
ponents. The results of this analysis allow system designers and develop-
ers to identify critical components where it is worth spending additional
improvement efforts.

1 Introduction

In component-based (CB) systems it became quickly evident that the whole is
more than the sum of its parts. Each component of the system can affect global,
perceivable properties of the entire system. A crucial issue in CB development
is the assessment of the quality properties of the whole system starting from
the properties of its components. Methodologies to quickly predict these global
properties, before the actual components integration and system release, can
be used to drive the development process, by supporting architectural decisions
about components assembly and giving indications about critical components
that could deserve customized development efforts. In this paper, we focus on
CB software systems that operate in safety-critical environments, where a rel-
evant quality factor is the system reliability, defined as a probabilistic measure
of the system ability to successfully carry out its own task. To support relia-
bility engineering of such systems, we provide a methodology to analyze their
reliability, starting from information about the reliability properties of their

L. Grunske, R. Reussner, and F. Plasil (Eds.): CBSE 2010, LNCS 6092, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Filieri et al.

components and architectural information about how they are assembled. Using
this information, we show how to get an estimate of the overall system reliabil-
ity and of its sensitivity with respect to variations in the reliability properties of
its components.

Avizienis et al. [1] clearly described the need to deal with multiple differ-
ent failure modes. A single Boolean domain (failure/no failure) is not expressive
enough to represent important pathological behaviors. Moreover, in the same pa-
per the authors also stress the importance of considering the error propagation
process among the system components. Nonetheless, few modeling approaches
deal with error propagation across a component-based system (e.g., [2,3,4]), and,
to the best of our knowledge, none deals with multiple failure modes. On the
contrary, to get a complete figure of the possible failure pathology of the whole
system, our methodology takes into account that components can experience a
number of different failure modes and those failures can propagate in different
ways across the execution flow, possibly spreading up to the application inter-
face. In particular, we also consider the transformation of failure modes across
components. Indeed, a component invoked with an incoming failure mode, could
possibly output a different failure mode. The modeling approach we propose is
expressive enough to represent the failure mode transformation during its prop-
agation through a component.

The proposed approach can be applied at early stages of software design, and
it can provide a fine prediction model which can drive decisions about both
architectural and behavioral aspects. The underlying model is also suitable for
sensitivity analysis that establishes how much the global system reliability (for
each failure mode) depends upon each model parameter. Specifically, not all the
components have the same importance with respect to global reliability, and
improvements in the reliability of certain components produce a larger impact
on the improvement of the global systems reliability.

Besides estimating the system sensitivity, we propose a method to find the
optimal combination of component reliability properties values, that maximizes,
for example, the system reliability (possibly, under constraints related to the cost
of reliability improvements for different components). This gives an additional
support to design and development decisions: for example, it could lead to pre-
fer slightly less reliable but cheaper components, with respect to more reliable
versions. Furthermore, using the optimization results it is possible to obtain the
best combination of values to look for in component selection.

The paper is organized as follows. In Section 2 we introduce the component
and CB architecture models, suitable to describe multiple failure modes and
error propagation. In Section 3 we show how to build a Markov model from these
component and architecture models, while in Section 4 we sketch some useful
analysis techniques, in order to make the most of the information just modeled.
In Section 5, we show through a simple example the practical application of the
presented ideas. In Section 6 we briefly review related work and finally, Section
7 concludes the paper.

Reliability Analysis of CB Systems with Multiple Failure Modes 3

2 System Model

2.1 Basic Concepts

According to [1], a failure is defined as a deviation of the service delivered by a
system from the correct service. An error is the part of the system state that
could lead to the occurrence of a failure, and is caused by the activation of a
fault. The deviation from correct service can be manifested in different ways,
corresponding to different failure modes of the system.

Characterizing the failure modes that may occur in a system is, in general, a
system-dependent activity. Two basic failure modes that can be identified are,
for example: content and timing failures (where, respectively, content of system’s
output and delivery time deviate from the correct ones).

Other failure modes could be defined, for example, by grading basic modes’
severity, or by combining them (e.g., content and timing simoultaneously). Spe-
cial failure modes, when both timing and content are incorrect, are halt failures;
these make system activity, if any, no longer perceptible at the system interface.

Errors can arise both because of silent internal fault, or because of an erroneus
input received through its interface. However, errors in a component not nec-
essarily manifest themselves as component failures. In turn, component failures
not necessarily imply system failures. A component failure occurs only when an
error propagates within the component up to its interface, and a system failure
occurs only when an error propagates through components up to the system
interface. In this propagation path, an error can get masked, e.g., when an erro-
neous value is overwritten before being delivered to the interface. An error can
also get transformed, e.g., content failure received from another component may
cause additional computations, leading to the occurrence of a timing failure.

To analyze the reliability of a component-based system, we should take into
account the whole set of factors outlined above, that can lead to the manifesta-
tion of a failure. At component level, this requires to estimate the likelihood that
a given failure mode manifests itself at the component interface because of an
internal fault, or by the propagation of the same (or different) failure mode re-
ceived at the component input interface. At system level, we should consider the
possible propagation paths through components, and their respective likelihood.

In the next subsection, we present a reliability model for component-based
systems that provides a representation of this information.

2.2 Reliability Model of Component-Based System

It is well understood that, to support component-based development, each com-
ponent should be equipped with information about its functional properties that
permit it to interact with other components. This information includes, for ex-
ample, a specification of the services required or provided by the component,
and this is often referred to as the component constructive interface [5]. Several
component models have been proposed in the recent past [6], characterized by
slightly different definitions of the constructive interface.

4 A. Filieri et al.

To support reasoning about nonfunctional properties like reliability, additional
information should be provided, expressed through a suitable analytic interface.
The model presented in this section defines a reliability-oriented analytic in-
terface. In this model, we assume that each component (and hence the system
built from those components) is characterized by N different failure modes. Each
mode r, (1 ≤ r ≤ N) could be one of the basic modes outlined in the previ-
ous subsection, or a combination of some of them, or any other special purpose
failure mode. For the sake of uniformity, we also introduce an additional failure
mode (failure mode 0), which corresponds to the delivery of a correct service.

Component model. A component Ci is modeled as:

– an input port ipi;
– a set of output ports Oi ={opik};
– an operational model defined by the probabilities: pi(k) (∀opik ∈ Oi), where

each pi(k) is defined as:
pi(k) = Pr{Ci produces an output on port opik ∈ Oi|Ci received an input
on its input port}
It holds:

∑
opik∈Oi

pi(k) = 1;
– a failure model defined by the probabilities:

fi(r, s)(0 ≤ r ≤ N, 0 ≤ s ≤ N), where each fi(r, s) is defined as:
fi(r, s) = Pr{Ci produces an output with failure mode s|Ci received an
input with failure mode r}
It holds:

∑N
s=0 fi(r, s) = 1

In this model, it is intended that transfer of both data and control takes place
through the input and output ports: Ci receives data and control (activation
stimuli) through its input port, and produces data and activation stimuli (control
transfers) towards other components through its output ports. The operational
model gives a stochastic characterization of the usage profile of other components
when Ci is active. Each pi(k) probability can be interpreted as the fraction of
all the data and control transfers that take place through the output port opik

of Ci, over all the data and control transfers generated by Ci.
Analogously, the failure model gives a stochastic characterization of the fail-

ure pathology of Ci. Figure 1 presents a graphical representation of component
model’s parameters.

The fi(r, s) probabilities can be used as a basis to define interesting reliabil-
ity properties of a software component. Some examples of these properties are
proposed in the following:

– Internal failure probability with respect to failure mode s, s > 0, is the
probability fi(0, s).

– Robustness with respect to error mode r (r > 0, i.e. not correct) is the
probability fi(r, 0).

– Susceptibility with respect to error mode r (r > 0) is the probability
1 − fi(r, 0).

Reliability Analysis of CB Systems with Multiple Failure Modes 5

r

s2
fi(r, s2)

Ci

r

s1
fi(r, s1)

Ci

pi(1)

pi(2)
Ci

(a) (b)

Fig. 1. Component model: (a) probabilistic transfer of control from input port to
output port, and (b) probabilistic propagation of failure mode r from input port to
output port

– Proclivity with respect to failure mode s is the probability
∑

r βr · fi(r, s),
where βr is the probability of receiving an input mode r.

These formal, human-understandable properties allow the easy formalization of
requirements on single components together with easy-to-understand feedbacks
to developers.

Finally, we point out that, with respect to component models whose construc-
tive interface specifies multiple input ports for each component, this analytic
interface definition can be interpreted in two ways:

– It abstracts from the actual presence of multiple input ports in a real com-
ponent, by collapsing them into a single port. From this viewpoint, both the
operational and failure model of this abstract component represents a sort
of average profile of the real component behavior.

– It actually corresponds to a projection of a real component with respect to
one of its input ports. From this viewpoint, a real component is modeled by a
set of these abstract components, where each element of the set models the
real component behavior conditioned on having received control and data
through a specific input port.

For the sake of simplicity, in the following we will always use the term ”compo-
nent”, without specifying according to which of these two viewpoints it should
be interpreted.

Architecture model. An architecture A is modeled as:

– a set of components: C = {C0, C1, ...CM} with their analytic interfaces;
– a mapping : mapA :

⋃M
i=0 Oi →

⋃M
i=0{ipi}.

Given an output port opik of a component Ci, mapA(opik) defines which input
port the output port opik is attached to.

In this architecture definition, C1, C2, . . . CM−1 are intended to correspond
to components used to build the application modeled by A. C0 and CM play
instead a special role. They are fictitious components used to model the start of
the application modeled by A and the final result produced by the application.
C0 has as many output ports as the possible entry points of the application

6 A. Filieri et al.

modeled by A. Moreover, the C0 input port is not connected to any of the
output ports of the A components. CM has only one input port, and no output
port. Given an output port opok ∈ O0, mapA(op0k) = ipi means that Ci is a
possible component from which the application starts its execution. Analogously,
given an output port opik ∈ Oi(1 ≤ i ≤ M − 1), mapA(op0k) = ipM means that
Ci is a possible component that produces the final result of the application.

The operational model associated with C0, (given by the probabilities p0(k)′s)
can thus be used to model the stochastic uncertainty about the application entry
point and the user failure profile. The application termination is instead modeled
by the occurrence of a transfer of control to CM . Given the special nature of C0

and CM , their failure model is defined as:

f0(r, r) = fM (r, r) = 1 (0 ≤ r ≤ N),
f0(r, s) = fM (r, s) = 0 (0 ≤ r ≤ N, 0 ≤ s ≤ N, r �= s),

which means that C0 and CM do not modify the failure modes they receive.
Let us define the following architecture level probabilities:
FA(r, s)(0 ≤ r ≤ N, 0 ≤ s ≤ N), where each AA(r, s) is defined as:
FA(r, s) = Pr{A terminates with failure mode s|A has been activated with

failure mode r}
Similar to the component-level properties defined above, we can use the FA(r, s)

probabilities as a basis to define application-level reliability properties, such as:

– Reliability, is the probability FA(0, 0).
– Robustness with respect to error mode r (r > 0, i.e. not correct) is the

probability FA(r, 0).
– Susceptibility with respect to error mode r (r > 0) is the probability

1 − FA(r, 0).
– Proclivity with respect to failure mode s is the probability

∑
r βr ·FA(r, s),

where βr is the probability of receiving an input mode r

The component and architecture models presented above allow the definition of
a reliability-oriented abstract view of a CB system that provides the starting
point for our analysis methodology. This view corresponds to what is referred to
in [5] as a analytic assembly of components. To carry out reliability analysis, a
constructive assembly of actual software components should be mapped to this
analytic assembly though a suitable analytic interpretation. It is our opinion
that defining this analytic interpretation is quite easy for most of the existing
component models. However, explicitly defining it for some component model is
beyond the scope of this paper.

3 Markov Model of System Behavior

In this section, we show how, given a set of components C = C0, C1, ...CM with
their respective analytic interfaces and an architecture model A as defined in the
previous section, we can build a discrete time Markov process (DTMC) modeling
the overall system behavior. This model can then be used to analyze reliability

Reliability Analysis of CB Systems with Multiple Failure Modes 7

properties of the system. For the sake of clarity, we split in two steps the DTMC
construction: as first step, we build a DTMC providing an abstract model of
the system execution process. Then we expand this DTMC into another DTMC
that also includes information about the failure occurrence and propagation.

Execution process model. We build a DTMC GA with state space:
NGA = {c0, c1, . . . cM}

where each state ci corresponds to a components Ci used in the A definition,
and represents the system state where component Ci has received control and
data from some other component. A state transition from ci models a transfer of
data and control to some other component. The transition probabilities qGA(i, j)
from state ci to state cj (0 ≤ i < M), (0 < j ≤ M) are defined as follows.

Let us define the subset Oi(A, j) ⊆ Oi: Oi(A, j) = {opik|mapA(opik) ∈ Ij}.
Hence, Oi(A, j) is the subset of the output ports of Ci connected to the input
port of Cj in the architecture A. Given the definition of Oi(A, j), we calculate
the probabilities qA(i, j) as follows:

qA(i, j) =
∑

opik∈Oi(j)
pi(k)

Each qA(i, j) represents the total fraction of data and control transfers through
any port from Ci to Cj , over the total number of data and control transfers from
Ci. We point out that qA(i, j) > 0 if and only if Oi(A, j) �= ∅.
Given these definitions, c0 is the initial state of GA since, by construction, there
is no transition entering this state, and cM is the final absorbing state of GA.

Finally, we point out that, for the same set of components with their associated
failure and operational models, different ways of connecting them (i.e., different
architectures) lead to the definition of different GA’s (see figure 2 for two different
architectures A1 and A2).

Failure and execution process model. GA only models the execution pro-
cess as a sequence of data and control transfers among the system components,
without considering the possible occurrence and propagation of errors (in other
words, it models the behavior of a failure-free system). To include also this as-
pect, we build from GA a new DTMC HA. The state space of HA consists of a
set NHA , defined as follows.

First, for each ci ∈ NGA we build two sets: IMi = {imi0, imi1, · · · , imiN}
and OMi = {omi0, omi1, · · · , omiN}. An element imir ∈ IMi represents the
system state where component Ci has received data and control from another
component with error mode r (0 ≤ r ≤ N). An element omir ∈ OMi represents
the system state where component Ci is going to transfer data and control to
other components with failure mode s (0 ≤ s ≤ N). Then, HA’state space is:

NHA =
⋃M

i=0(IMi

⋃
OMi)

Hence, each state ci ∈ NGA can be seen as a ”macro-state” that is expanded
into 2(N + 1) states in NHA to take into account both the execution and the
error propagation processes (see fig. 3 for the case N = 2).

The transition probabilities pA(x, y)(x ∈ NHA , y ∈ NHA) are defined as
follows:

8 A. Filieri et al.

Fig. 2. Mapping from the execution process model to DTMC

I0

I1

O2

O1

O0

I2

fi(0,0)

fi(2,2)

fi(1,2)

fi(0,2)

Ci

Ci
op11ip1

Fig. 3. Component’s macro-state expansion

1. pA(x, y) = fi(r, s) if x = imir, y = omis(imir ∈ IMi, omis ∈ OMi, 0 ≤ i ≤
M, 0 ≤ r, s ≤ N);

2. pA(x, y) = qA(i, j) if x = omis, y = imjs(omis ∈ OMi, imjs ∈ IMj, 0 ≤
i, j ≤ M, 0 ≤ s ≤ N);

3. pA(x, x) = 1 if if x = imMs(imMs ∈ IMM);
4. pA(x, y) = 0 otherwise.

Case 1 above corresponds to a transition occurring within the same macro-state,
and models how a given component Ci propagates to its output a failure mode
received at its input, according to the failure model specified in the Ci analytic
interface. We point out that we are able to represent both the case where a fail-
ure mode r is propagated ”as is” (when fi(r, r) = 1), and the case where it is
transformed into another mode (when fi(r, r) < 1). Case 2 corresponds to a tran-
sition occurring between two different macro-states, and models the control and
error transfer process from a component Ci to a component Cj : if a failure mode

Reliability Analysis of CB Systems with Multiple Failure Modes 9

s manifests itself at the Ci output interface, it is transferred to the input inter-
face of Cj according to the qA(i, j) probability (which has been calculated from
the operational model specified in the Ci analytic interface, and the definition
of the architecture A). Case 3 corresponds to the definition of the set of states
IMM as the set of final absorbing states of the DTMC HA: thus, entering a state
imMs ∈ IMM models the application termination with failure mode s.

We also remark that the set IM0 = {im00, im01, · · · , im0N} corresponds to
the set of the initial states of HA as, by construction, no transition is possible
towards these states: starting from a state im0r ∈ IM0 models the application
activation with failure mode r.

3.1 Modeling Issues

Both the operational and failure models are based on the assumption that sys-
tem’s execution respects the Markov property (which in turn implies that com-
ponents’ failures are independent). In practical terms this means that each time
control and data are transferred to Ci from other components, the Ci opera-
tional and failure behaviors are independent of its past history. The Markovian
assumption is a limitation to the application scope of our approach. Nevertheless,
many real-life applications have been proved to respect the Markov assumption,
from business transaction and telephone switching systems, to the basis mem-
ory management strategies [7]. The Markovian issue is deeper treated in [8],
where it is also recalled that an higher order Markov chain, the one in which
the next execution step depends non only on the last but on the previous n
steps, can be mapped to a first order Markov chain. Thus, our approach can be
adapted to any finite order Markov chain, increasing the applicability horizon of
the methodology to a large number of real-life systems.

Another interesting issue related to the defined reliability properties concerns
how to estimate fi(r, s). The problem can be splitted in two phases. The first
phase concerns observability: to measure e fi(r, s), we must be able to identify
error modes r and s. Identification can be based both on code instrumentation or
on communication channels monitoring or in any other effective ad-hoc way [8].
The second phase concerns how to obtain parameters estimation. There is not
an always valid methodology to face the problem. Most of the approaches are
based on setting up tests in order to obtain a statistically significant amount of
measurements upon which parameters estimation can be based [9,10]. In some
case it is possible to shorten the testing time by adopting accelerated testing
procedures, which are able to stress the most interesting parts and aspects of a
system execution in order to obtain a large amount of data in a short testing
time [11]. After getting measurements, the next step is the estimation of reli-
ability parameters. This issue is more related to Statistics, even if the ability
of embedding some Software Engineering knowledge in the process of sampling
and estimation produces better results [12]. For the sake of completeness, there
are also cases where it could be infeasible to quantify software reliability prop-
erties because of the nature of system runs which, for example, may be too
long to allow the execution of a large enough test set [13]. As a final remark,

10 A. Filieri et al.

components reuse may allow the exploitation of historical data upon which reli-
ability properties estimation can be based.

4 Analysis

The transition matrix PA = [pA(x, y)] associated with the DTMC HA con-
structed in Section 2 represents the probability of moving in one step from state
x ∈ NHA to state y ∈ NHA . It has the following canonical form:

PA =
[
QA RA

0 I

]

The submatrix QA is a square matrix representing one-step transitions among
the HA transient states only. The submatrix RA represents instead the one-step
transitions from these transient states to the set of absorbing states IMM =
{imM0, imM1, · · · , imMN}. I is an identity matrix of size (N + 1) × (N + 1).
Let us now define the matrix VA = [vA(x, y)] (x ∈ (NGA − IMM , y ∈ IMM),
whose vA(x, y) entry is defined as:

vA(x, y) = Pr{HA is absorbed in state y|HA starts in state x}.
Given the meaning of the states in HA, we can readily see that the application-
level reliability properties defined in Section 2 can be expressed in terms of the
VA matrix, since it holds:

FA(r, s) = vA(x, y), with x = im0r and y = imMs.
In the following, we show how to calculate the VA matrix from PA matrix,

which allows to calculate the application-level reliability properties. Moreover,
we also show how to carry out further sensitivity and optimization analysis.

From the DTMC theory and matrix calculus [14], we know that matrix VA

can be calculated as:
VA = WARA where WA = (I − QA)−1.

We remark that component-level reliability properties (i.e., fi(r, s) probabilities)
correspond to specific entries of the QA matrix, and hence directly affect WA val-
ues. Also, by construction, the matrix RA is independent from these component-
level properties, thus in order to establish a relation between application-level
and component-level properties it suffices to study the matrix WA.
WA is the inverse of the matrix I − QA, hence from linear algebra [15]:

wA(x, y) = (−1)x+y |My,x|
|I − QA|

where |My,x| is the minor of (I − QA)(y, x) and |I − QA| is the determinant of
I − QA.

Let us give a look at matrices I −QA and My,x. First of all, My,x is obtained
from I −QA by removing the y-th row and the x-th column. Thus its structure
is quite similar to the one of I − QA, just omitting one row and one column.
An entry (I − QA)(i, j) (as well as My,x(i, j) when i �= y and j �= x) represents
the probability of moving from state i to state j of the DTMC. We recall that
each state models either entering or leaving a component with a given failure

Reliability Analysis of CB Systems with Multiple Failure Modes 11

mode. Let i correspond to the state when the system enters component Ck with
incoming failure mode r). Entries on row i of I−QA (and My,x, when applicable)
will be all zeros, but a small set of them. Namely, each entry (I − QA)(i, j) will
possibly be not null if and only if either i = j (because of the identity matrix
I) or j corresponds to the state where component Ck, invoked with incoming
failure mode r, is producing an output failure mode s: (I − QA)(i, j) = fk(r, s).

We want to exploit this structure of the matrices I − QA and My,x to make
explicit the relation between elements (I − QA)(i, j) and component-level reli-
ability properties fi(r, s)’s. Due to the previously mentioned fact that matrix
RA is independent of the fi(r, s)’s, we will be able to extend this relation to the
system-level properties FA(r, s) easily.

To this end we compute the numerator and denominator determinants through
Laplace expansion with respect to the row corresponding to the set of properties
fk(r, s). For matrix I − QA we obtain an expressions like the following one:

det(I − QA) =
∑

j

(I − QA)(i, j) · αij

where αij represents the cofactor of the entry (I − QA)(i, j).
The same procedure can be applied to matrix My,x. Due to the I −QA’s and

My,x’s structure discussed above, we get: det(I−QA)=func(fk(r, s1), fk(r, s2)...)
and det(My,x) = function(fk(r, s1), fk(r, s2)...). Thus the elements of WA can
be redefined as well as function of the parameters fk(r, s)’s.

Thanks to the fact that FA(r, s) is a function of WA, we are able to formalize
the system level reliability properties as function of any set of component-level
properties. In the following, we focus on the system reliability, defined as FA(0, 0).

Sensitivity Analysis and Optimization. To determine which property most heav-
ily affect the global reliability, we compute its sensitivity. It corresponds to the
partial derivative of the function FA(0, 0) with respect to each local property of
each component Ci

∂FA(0, 0)
∂fi(r, s)

Besides estimating a sensitivity index, expressing explicitly FA(0, 0) as a func-
tion of the fk(r, s) parameters, allows finding the optimal combination of com-
ponents reliability properties’ values. Indeed, it could happen that under given
design and development constraints, it could be better to set some fi(r, s) to
a value less than the trivial one (i.e., fi(0, 0) = 1). In this respect, we remark
that, due to the geometry of the transition matrix representing system’s behav-
ior, it is possible to reiterate the Laplace expansion for the computation of more
cofactors. This leads to a representation of the reliability function where the
dependency on interesting component-level properties is made explicit. Such a
function has the shape of a fraction of polynomials and can be considered as the
objective function to be maximized in a non-linear constrained optimization.

12 A. Filieri et al.

The set of constraints to be applied has to include, but not to be limited to,
making all the complementary probabilities sum up to 1. Any other special pur-
pose constraint can be added, e.g. expressing the fact that over certain thresholds
some properties could be too expensive to be obtained. Also, the objective function
can be extended to cope with other design goals. For example development costs
can be used as coefficient to be applied to certain properties in order to make their
growth more or less likely. Alternatively, the optimization problem can be restated
as a multiobjective optimization, maximizing reliability and minimizing a related
cost function. Trade-off between reliability improvement and development costs
is an open problem. Special situations may require ad-hoc estimations for costs
and their fitness to reality is mainly based on architects’ experience. To see some
examples of generalized cost functions related to software reliability issues refer
to [16].

A typical optimization problem to find the best combination of reliability
property values looks like this:

⎧
⎨

⎩

max FA(0, 0)
subject to probability constraints
subject to design constraints

Performing sensitivity analysis and determining optimal property set can be very
valuable. The former can be mainly applied to produce developer feedbacks: if
the largest value of ∂FA(0,0)

∂fi(r,s)
is referred to the property f1(1, 0) of component C1,

the feedback to the developer is the advise:
”Increase C1’s Robustness with respect to incoming error mode 1”.
Thanks to the user-friendly formalization of reliability properties proposed in

Section 2, any advice can be explained to the developer without the need to
significantly improve her/his skills in mathematical probability, thus improving
the learning curve of the development team.

By using the optimization results, the best combination of reliability property
values can be used as a target to look for in component selection by both a
human designer or a self-adaptive system. For this purpose, the introduction of
a proper distance metrics based on the set of interesting local properties can
allow an automatic ranking of all the possible alternatives, making fast and
easier picking the best available choice.

5 Example Application

In this section we present a short proof of concept to show an application of our
novel methodology. We use for this purpose a small system consisting of three
components. The first component (C1) plays the role of dispatcher for all the
incoming requests, and is the only entry point of the system. The dispatcher
analyzes the incoming requests and sends them to the server (C2). Depending
on the specific operation requested, the server can accomplish the job by itself
or it can issue some requests for more operations. In the first case, server’s
outputs have to pass through a service guard (C3) before reaching the user. In

Reliability Analysis of CB Systems with Multiple Failure Modes 13

Fig. 4. Example application’s architecture

Fig. 5. Markov process derived from the example application

the second case, server’s requests get forwarded again to the dispatcher in order
to be scheduled for execution. The server guard has the task to analyze server’s
output to ensure it does not carry any confidential detail: if the guard notices
something illegal, it sends back the job to the dispatcher to be processed again,
otherwise it delivers the result to the user.

The architecture of the system is sketched in Figure 4. We recall that in our
model a transition stands for the transfer of control and data from a component
to another. The probabilities expressing the operational model of each compo-
nent are shown in bold face font in correspondence of the directional arrow of
each connection.

In this example we consider only two failure modes (denoted by 1 and 2,
respectively), beside the correct execution (failure mode 0), in order to keep it
simple. A partial view (without all the parameters) of the derived Markov process
is represented in Figure 5. Vertical dashed lines were added as virtual delimiters
between local and global execution, that is, the area entitled Cx represents the
failure process ongoing while Cx holds the control. Arrows across delimiters
represents the transfer of control between components. To keep it readable, only
some parameters discussed in Section 3 are placed on the graph coherently with
the mapping procedure explained in Section 2.

The special node before C0 added to the DTMC HA models the expected
profile of starting failure modes for the system activation. The probability given
to each starting failure mode is also shown in figure.

14 A. Filieri et al.

In order to analyze the impact of components’ reliability properties on the
global system reliability, let us firstly specify the component-level properties
which are retained relevant for the system under exam:

– Reliability (R): the probability that the component Ci does not produce
any erroneous output, given it was invoked without incoming errors (fi(0, 0)).

– Robustness (with respect to error mode r, Br): the probability that the
component Ci, invoked with incoming failure mode r, will produce a correct
output (fi(r, 0)).

– Internal Failure (with mode s, Fs): the probability that the component Ci,
invoked without any erroneous incoming pattern, will produce an erroneous
output pattern with mode s (fi(0, s)).

– Switching (from mode r to mode s with r, s > 0, Srs): the probability
that the component Ci will produce an outgoing failure mode s, given an
incoming error mode s (fi(r, s)).

Reliability estimation. In table 1 we show an estimation of the overall reliability
(last row of the table), for three different set of values assigned to the reliability
properties of each component of the system (corresponding to columns Initial,
Cost 1000, Cost 1200). Column Initial refers to an initial attribution of values to
the component parameters. The other two columns report values calculated by
optimization analysis, as explained below. The reliability values were computed
by means of the formula explained in section 4 and validated by simulation.

Sensitivity analysis. As explained in Section 4, sensitivity analysis is a good
mean to identify where to enforce improvement effort in order to obtain the larger
growth of the overall reliability. Sensitivity analysis is an established method to
evaluate the impact of local properties on the global system [17,2]. Nevertheless,
thanks to the fact that our methodology can deal with multiple error-modes and
their propagation and transformation, a designer can obtain finer information
not only about where to operate refinement, but also what and how he/she
has to improve. Indeed, our methodology allows to estimate the sensitivity to a
specific failure transformation or propagation as well as the the internal failure
probability, thus obtaining accurate results on every aspect of a CB system.

However, we point out that results of sensitivity analysis should be carefully
considered, when we differentiate with respect to multiple correlated parameters
fi(r, s) (we recall that

∑
s fi(r, s) = 1). In this case suggested variations of a

parameter imply a change in the correlated ones, and this could affect the final
result in different ways. Thus sensitivity results have to be considered as useful
advices to be considered by a human expert.

The column labeled by Sensitivity in table 1 shows results of sensitivity analy-
sis in our example, calculated around the initial set of parameter values (column
Initial). We note that the only component that directly delivers outputs to the
user is the service guard C3. The overall system reliability has the highest sen-
sitivity with respect to f3(r, 0) for all the possible r. This is not at all surprisingly

Reliability Analysis of CB Systems with Multiple Failure Modes 15

in this small example, but it could be very useful in large systems. Also notice
that the 80% of the incoming requests reaches the dispatcher without any error
pattern, thus the set of properties related to this situation was expected to have
an high sensitivity index as it is.

Optimal configuration. A novel contribution of this paper is the possibility to
identify in a automatic way the best values for component-level reliability prop-
erties in order to improve the overall reliability. These values can be useful in
setting design plans and goals, or even in self-adaptive component-based systems
where components must be selected to maximize the system QoS, in this case
reliability. In this latter case, it could be effective to have referential goal values
during the selection process.

To make not trivial the optimization of the model parameters, some con-
straints must be introduced. They could come, for example, from component
availability on the market, as it could be unreasonable, in general, to ask for a
component that will never fail. Other constraints could come from cost consider-
ations. Component quality is expensive and component price could be a function
more or less steep of some of its parameters. Other special purpose constraints
could be in place for specific contexts.

In this example we introduce the following two constraints:

– Cost. Each property has its own improvement cost function. Let x represents
any component’s property, in this example we set a ”price” of 800x3 for all

Table 1. Analysis Results

Component Property Initial Sensitivity Cost 1000 Cost 1200
C1 R 0.94 3.3089 0.2595 0.2647
C1 F1 0.03 3.1958 0.3014 0.3002
C1 F2 0.03 3.0325 0.4390 0.4351
C1 B1 0.05 2.5692 0.4306 0.4261
C1 S11 0.92 2.4813 0.2851 0.2873
C1 S12 0.03 2.3546 0.2842 0.2866
C1 B2 0.70 1.8937 0.2955 0.2936
C1 S21 0.00 1.8290 0.3527 0.3535
C1 S22 0.30 1.7356 0.3518 0.3529
C2 R 0.64 4.4781 0.2020 0.2041
C2 F1 0.13 4.4404 0.4350 0.4320
C2 F2 0.23 4.1232 0.3630 0.3639
C2 B1 0.03 2.5620 0.2609 0.2350
C2 S11 0.84 2.3960 0.3696 0.3825
C2 S12 0.13 2.2248 0.3694 0.3824
C2 B2 0.03 0.7744 0.2961 0.2730
C2 S21 0.13 0.7242 0.3147 0.3288
C2 S22 0.84 0.6725 0.3891 0.3983
C3 R 0.96 0.4484 0.7727 0.8240
C3 F1 0.02 0.0583 0.0883 0.0834
C3 F2 0.02 0.0588 0.1391 0.0927
C3 B1 0.65 0.4100 0.8649 0.9035
C3 S11 0.169 0.0533 0.0364 0.0391
C3 S12 0.181 0.0538 0.0988 0.0575
C3 B2 0.05 0.2965 0.8660 0.9043
C3 S21 0.336 0.0386 0.0358 0.0386
C3 S22 0.614 0.0389 0.0982 0.0570
Reliability 0.6163 0.8419 0.8849

16 A. Filieri et al.

the component’s reliability properties, 500x5 for all the robustness properties
and 200x3 for all the switching properties. This means that, for example,
robustness is cheaper than reliability in the worst case, but the effective cost
of robustness grows quite faster approaching higher values of x.

– Quality of service. We require that the system will not terminate with
failure mode 1 for more than the 5% of the requests for the considered
profile of starting failure modes (i.e., we require that for failure mode 1 the
proclivity property defined in Section 2 takes a value less than 5%).

Even for the small system considered in this example, optimization results are
not trivial to guess. In table 1 we show optimization results for global cost up
to 1000 and 1200 cost units.

6 Related Work

To the best of our knowledge, no other paper have tackled the issue of stochastic
analysis of reliability for CB systems, taking into account multiple failure modes
and their propagation inside the system. Nevertheless there are a number of
works strongly related to this. In the following we present a selection of related
works to show on what our solution stands, and which is the starting point of this
research. We classify the papers according to their topic as: architecture-based
reliability analysis and error propagation analysis.

Architecture-based reliability analysis. Surveys on architecture-based reliability
analysis can be found in [18,8]. However, albeit error propagation is an impor-
tant element in the chain that leads to a system failure, all existing approaches
ignore it. In these approaches, the only considered parameters are the internal
failure probability of each component and the interaction probabilities, with the
underlying assumption that any error that arises in a component immediately
manifest itself as an application failure, or equivalently that it always propagates
(i.e. with probability one) up to the application outputs. Hereafter, we shortly
describe some of the works that mostly influenced the proposed/adopted solu-
tion. One of the first approaches to reliability that takes distance from debugging
has been proposed in 1980 [7]. The approach got named from user-oriented reli-
ability, which is defined as the probability that the program will give the correct
output with a typical set of input data from the execution environment. The
user-oriented approach is now the more widely adopted and it justifies the adop-
tion of probabilistic methods as long as the system reliability depends on the
probability that a fault gets activated during a run. The reliability of a system
is computed as a function of both the reliability of its components and their
frequency distribution of utilization, where the system is described by as a set of
interacting modules which evolves as a stochastic Markov Process and the usage
frequencies can be obtained from the structural description. In [19] the authors
explore the possibility of transforming architecture expressed in three popular

Reliability Analysis of CB Systems with Multiple Failure Modes 17

architectural styles into discrete Markov chains to be then analyzed by means
of the approach proposed in [7]. Parameterized specification contracts, usage
profile and reliability of required components as constituent factors for reliabil-
ity analysis have been presented in [20]. Specifically, they consider components
reliability as a combination of internal constant factors, such as reliability of
the method body code, and variable factors, such as the reliability of external
method calls. An approach for automatic reliability estimation in the context
of self-assembling service-oriented computing taking into account relevant issues
like compositionality and dependency on external resources has been proposed
in [21].

Error propagation analysis. The concept of error propagation probability as the
probability that an error, arising somewhere in the system, propagates through
components, possibly up to the user interfaces has been introduced in [2]. The
methodology in [2] assumes a single failure mode and provides tools to analyze
how sensible the system is with respect to both failure and error propagation
probability of each of its components. In [3], the authors proposed a notion of
error permeability for modules as a basic characterization of modules’ attitude to
propagate errors. Also in this case, a single, non-halting failure mode is consid-
ered. Moreover, it is proposed a method for the identification of which modules
are more likely exposed to propagated errors and which modules more likely pro-
duce severe consequences on the global system, considering the propagation path
of their own failure. In [22,23,24] approaches based on fault injection to estimate
the error propagation characteristics of a software system during testing are pre-
sented. In the context of safety some works exist dealing with multiple failure
modes, see for example [25]. However they don’t present any kind of stochastic
analysis but only an examination of their possible propagation patterns.

With regard to the estimate of the propagation path probabilities, the basic
information exploited by all the architecture-based methodologies is the prob-
ability that component i directly interacts with component j. At early design
stages, where only models of the system are available, this information can be
derived from software artifacts (e.g. UML interaction diagrams), possibly an-
notated with probabilistic data about the possible execution and interaction
patterns [26]. A review and discussion of methodologies for the interaction prob-
ability estimate can be found in [8]. A more recent method has been discussed in
[27], where a Hidden Markov model is used to cope with the imperfect knowledge
about the component behavior. Once the interaction probabilities are known, the
probability of the different error propagation paths can be estimated under the
assumption that errors propagate through component interactions.

An important advantage of architectural analysis of reliability is the possi-
bility of studying the sensitivity of the system reliability to the reliability of
each component, as said in the Introduction. Although this advantage is widely
recognized (e.g., [28]), few model-based approaches for computing the sensitiv-
ity of the system reliability with respect to each component reliability have
been developed [7,17]. A basic work for the sensitivity analysis of the reliability
with respect to some system parameter was presented in [29], but it does not

18 A. Filieri et al.

address specifically architectural issues. Moreover, all these models do not take
into account the error propagation attribute and different failure modes.

7 Conclusions

In this paper we presented a novel approach to the reliability modeling and
analysis of a component-based system that allows dealing with multiple fail-
ure modes and studying the error propagation among components. To support
the rapid identification of components that could heavily affect system’s relia-
bility, we have also shown how our modeling approach can easily support the
automated estimation of the system sensitivity to variations in the reliability
properties of its components. Furthermore, we proposed a method to find the
optimal combination of component reliability properties’ values, that maximizes,
for example, the system reliability. The results of these analyses support the de-
sign and development decisions in the identification of the critical components
for the overall system reliability.

The methodology proposed in this paper can be extended along several direc-
tions. A first direction concerns supporting the integration of our approach in the
software development process. To this end, a mapping should be defined between
the constructive interfaces of a component model and the analytic interfaces de-
fined in our methodology, possibly using automated model-driven techniques.
We also plan to extend our model to be able to deal with both black-box and
white-box components.

A second direction concerns the overcoming of some of the modeling limita-
tions of our methodology. A first limitation comes from the underlying assump-
tion of a sequential execution model, where control and data can be transferred
from one component to another one, but not to many components. Currently,
this does not allow modeling applications with parallel execution patterns. We
are working towards an extension of our approach to deal also with this kind of
patterns. Another possible limitation comes from the assumption of the Markov
property for the component behavior. We have discussed this issue in section
3.1. Anyway, we are planning to investigate in real experiments the degree of
approximation introduced by this assumption. We are also planning to investi-
gate to what extent the approximation can be improved by introducing in our
model some kind of dependence on past history, as outlined in section 3.1.

Finally, we are aware that the effectiveness of the proposed approach should
be assessed by an empirical validation, and we are planning for this purpose a
comprehensive set of real experiments.

Acknowledgments

Work partially supported by the Italian PRIN project D-ASAP and by the EU
projects Q-ImPrESS (FP7 215013) and SMScom (IDEAS 227077).

Reliability Analysis of CB Systems with Multiple Failure Modes 19

References

1. Avižienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy
of dependable and secure computing. IEEE JDSC 1(1), 11–33 (2004)

2. Cortellessa, V., Grassi, V.: A modeling approach to analyze the impact of er-
ror propagation on reliability of component-based systems. In: Schmidt, H.W.,
Crnković, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608,
p. 140. Springer, Heidelberg (2007)

3. Hiller, M., Jhumka, A., Suri, N.: Epic: Profiling the propagation and effect of data
errors in software. IEEE Transactions Computers 53(5), 512–530 (2004)

4. Ammar, H., Nassar, D., Abdelmoez, W., Shereshevsky, M., Mili, A.: A framework
for experimental error propagation analysis of software architecture specifications.
In: Proc. of International Symposium on Software Reliability Engineering. IEEE,
Los Alamitos (2002)

5. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Enabling predictable assembly.
Journal of Systems and Software 65(3), 185–198 (2003)

6. Lau, K., Wang, Z.: Software component models. IEEE Transactions Software En-
gineering 33(10), 709–724 (2007)

7. Cheung, R.C.: A user-oriented software reliability model. IEEE Trans. Softw.
Eng. 6(2), 118–125 (1980)

8. Goseva-Popstojanova, K., Trivedi, K.: Architecture based approach to reliability
assessment of software systems. Performance Evaluation 45(2-3), 179–204 (2001)

9. Nelson, E.: Estimating software reliability from test data. Microelectronics Relia-
bility 17(1), 67–73 (1978)

10. Horgan, J., Mathur, A.: Software testing and reliability. The Handbook of Software
Reliability Engineering, 531–565 (1996)

11. Meeker, W., Escobar, L.: A review of recent research and current issues in
accelerated testing. International Statistical Review/Revue Internationale de
Statistique 61(1), 147–168 (1993)

12. Podgurski, A., Masri, W., McCleese, Y., Wolff, F.G., Yang, C.: Estimation of soft-
ware reliability by stratified sampling. ACM Transactions Software Engineering
Methodology 8(3), 263–283 (1999)

13. Butler, R.W., Finelli, G.B.: The infeasibility of experimental quantification of life-
critical software reliability. In: SIGSOFT 1991: Proceedings of the conference on
Software for Citical Systems, pp. 66–76. ACM, New York (1991)

14. Cinlar, E.: Introduction to stochastic processes, Englewood Cliffs (1975)
15. Katsumi, N.: Fundamentals of linear algebra. McGraw-Hill, New York (1966)
16. Pham, H.: Software reliability and cost models: Perspectives, comparison, and prac-

tice. European Journal of Operational Research 149(3), 475–489 (2003)
17. Gokhale, S., Trivedi, K.: Reliability prediction and sensitivity analysis based on

software architecture. In: ISSRE, pp. 64–78. IEEE Computer Society, Los Alamitos
(2002)

18. Immonen, A., Niemel, E.: Survey of reliability and availability prediction methods
from the viewpoint of software architecture. Software and Systems Modeling 7(1),
49–65 (2008)

19. Wang, W., Wu, Y., Chen, M.: An architecture-based software reliability model. In:
Pacific Rim International Symposium on Dependable Computing, vol. 0, p. 143.
IEEE, Los Alamitos (1999)

20. Reussner, R., Schmidt, H., Poernomo, I.: Reliability prediction for component-
based software architectures. Journal of Systems and Software 66(3), 241–252
(2003)

20 A. Filieri et al.

21. Grassi, V.: Architecture-based dependability prediction for service-oriented com-
puting. In: Proceedings of the WADS Workshop, Citeseer (2004)

22. Abdelmoez, W., Nassar, D., Shereshevsky, M., Gradetsky, N., Gunnalan, R., Am-
mar, H., Yu, B., Mili, A.: Error propagation in software architectures. In: MET-
RICS 2004, Washington, DC, USA, pp. 384–393. IEEE Computer Society Press,
Los Alamitos (2004)

23. Voas, J.: Error propagation analysis for cots systems. Computing and Control
Engineering Journal 8(6), 269–272 (1997)

24. Voas, J.: Pie: A dynamic failure-based technique. IEEE Trans. Software Eng. 18(8),
717–727 (1992)

25. Grunske, L., Han, J.: A comparative study into architecture-based safety evaluation
methodologies using aadl’s error annex and failure propagation models. In: HASE,
pp. 283–292. IEEE Computer Society, Los Alamitos (2008)

26. Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment of uml based
software models. In: Workshop on Software and Performance, pp. 302–309 (2002)

27. Roshandel, R.: Calculating architectural reliability via modeling and analysis. In:
ICSE, pp. 69–71. IEEE Computer Society, Los Alamitos (2004)

28. Gokhale, S., Wong, W., Horgan, J., Trivedi, K.: An analytical approach to
architecture-based software performance and reliability prediction. Perform.
Eval. 58(4) (2004)

29. Blake, J., Reibman, A., Trivedi, K.: Sensitivity analysis of reliability and performa-
bility measures for multiprocessor systems. In: SIGMETRICS, pp. 177–186 (1988)

	Reliability Analysis of Component-Based Systems with Multiple Failure Modes
	Introduction
	System Model
	Basic Concepts
	Reliability Model of Component-Based System

	Markov Model of System Behavior
	Modeling Issues

	Analysis
	Example Application
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

