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3 IMPMC, Université Paris 6 et 7, CNRS, IPGP, Paris, France
4 Institut für Festkörpertheorie und Optik, Friedrich-Schiller-Universität, Jena, Germany and ETSF

Received 21 July 2009, revised 27 August 2009, accepted 27 August 2009

Published online 6 January 2010

PACS 71.15.Mb, 71.15.�m, 71.15.Qe, 71.20.�b, 78.20.Bh

* Corresponding author: e-mail olivia.pulci@roma2.infn.it, Phone: þ39-06-72594548, Fax: þ39-06-2023507
The microscopic study of complex systems has reached a high

level of accuracy that allows for a deep understanding of their

structure, electronic properties, and optical spectra. The

theoretical investigation of surfaces is nowadays routinely

done within density functional theory, for ground state proper-

ties, and, with a larger computational load, within many-body
perturbation theory, for excited states properties. In this paper

we present and discuss examples of calculations for group IV

two-dimensional systems such as a clean silicon surface, a tin–

germanium interface, graphene, and graphane, pointing out the

importance of a pertinent treatment of many-body effects.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction In the last decades, thanks to the huge
increase in computer power, the theoretical study of the
excited state properties of surfaces and interfaces has
become feasible with a great level of accuracy, also
including many-body effects. The development of the
surface physics field has been driven, among other things,
by the interest in semiconductor technology for electronics.
A key parameter in practical applications is the electronic
gap; hence the accurate knowledge of this property is of
fundamental interest.

A first and most computationally affordable step in the
investigation of the electronic structures of materials is
performed within density functional theory (DFT) [1, 2]. As
we will shortly see, most commonly, the fundamental gap
is obtained as the difference between the energy of the lowest
unoccupied, and highest occupied Kohn–Sham level. Even in
an exact version of DFT, this method misses the contribution
of the derivative discontinuity of the exchange-correlation
energy functional, and, with the commonly used
approximate functionals, systematically underestimates
electronic gaps.

A possible route to estimate quantitatively the electronic
gaps of materials is given by many-body perturbation theory
(MBPT) within the so-called GW approximation for the self-
energy [3]. As it will be shown in the next paragraphs the
results at this level of sophistication are typically in very
good agreement with experiments. The calculations are
however much more demanding [4].

In this paper we want to show how these theoretical tools
can be successfully applied to a variety of two-dimensional
(2D) systems. For this purpose we have chosen specific
systems as prototypes of different physical situations: clean
Si(100)(2� 1), tin–germanium (Sn–Ge) interface, graphene,
and graphane.

Si(100)(2� 1) has been chosen as the representative of
clean semi-conducting surfaces. Here we review its
geometry, electronic, and optical properties, focusing the
attention on the importance of the inclusion of many-body
effects in the description of the single-particle excitation
energies.

As a second reference issue, we will describe the results
concerning the electronic band structure and scanning
tunneling microscopy (STM) simulated images of 1/3
monolayer (ML) Sn/Ge(111) system, representing the first
stage of a metal–semiconductor interface. In particular it will
be shown how many-body effects act differently on the
semiconductor-related states and on the metallic ones. This
fact is very important for the correct simulation of STM
images and allows the determination of the adsorption
geometry.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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At last we will show how many-body calculations can be
applied to the study of the electronic properties of two truly
2D systems such as graphene and graphane. Graphane,
recently synthesized by Elias et al. [5], can be considered as
the hydrogen-passivated graphene. We will show that the
presence of the hydrogen atoms causes dramatic changes in
the electronic structure of the system.

2 Theoretical methods In this section we review the
theoretical methods employed in the calculations presented
here. At first we briefly describe DFT, an exact theory for
ground state calculations, and also a common starting point
for other ab initio methods. Then going beyond standard
DFT to describe excitations in materials, we will introduce,
within the framework of MBPT, the GW approximation for
the self-energy; it is an essential tool for the quantitative
description of electronic properties and band gaps.

2.1 Density functional theory Density functional
theory aims to solve the many-body ground state problem in
terms of the one-particle electronic density alone. DFT is
based on the Hohenberg and Kohn theorem [1] that states that
once the interaction among the electrons is fixed and
assuming only local potentials acting on the system, all the
ground state properties of an interacting system are unique
functionals of the electronic ground-state density alone.
Taking into account the total energy as a functional of
the ground-state electronic density, the ground state of the
system could be in principle obtained by minimizing this
functional. However, in practice, DFT calculations do not
proceed through a direct total-energy minimization, but
exploit the Kohn and Sham scheme [2] that leads to the set of
self-consistent equations:
� 20
� 1

2
r2

r þ vext þ vH þ vxc

� �
fiðrÞ ¼ eifiðrÞ, (1)
nðrÞ ¼
X

i
fijfiðrÞj

2
, (2)
where vext, vH, and vxc are, respectively, the external,
Hartree, and exchange and correlation potentials and fi is the
occupation number of the state i. This set of self-consistent
equations is obtained mapping the interacting system into a
non-interacting one, and constraining the two systems to
have the same ground-state density. The total energy
functional is thus, smartly, expressed as:
E½n� ¼ TKS½n� þ EH½n� þ
Z

dr nðrÞvextðrÞ

þ Exc½n�: (3)
TKS is the kinetic energy of the non-interacting Kohn–Sham
system,EH is the the Hartree contribution to the total energy,
and Exc is the exchange-correlation energy functional. Exc

corresponds to the remaining part of the total energy, and it
thus contains kinetic energy contributions and exchange-
10 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
correlation effects beyond Hartree. Of course the most
relevant approximations in the effective application of DFT
act on this last term and on its functional derivative with
respect to the density vxc[n].

Often Kohn–Sham eigenvalues ei and eigenfunctions fi

are interpreted as electron addition and removal energies.
This procedure, which is not theoretically established, gives
frequently a qualitative agreement with experiments con-
cerning, for example, band dispersions, however the band
gaps are systematically underestimated and it is crucial to go
beyond DFT in order to successfully describe electronic
properties of materials.

2.2 Many-body perturbation theory – GW
approximation Green’s function theory is particularly
suitable to study electronic properties: in fact, the poles of the
single-particle Green’s function are exactly at the electron
addition and removal energies. For practical calculations, it
is possible to obtain a set of single-particle-like equations by
introducing the concept of quasi-particles (QPs) which can
be viewed as real particles surrounded by their polarization
cloud, due to electron–hole pairs, screening the mutual
interaction. The difference between ‘‘bare’’ particles (sub-
ject only to the Hartree potential) and QPs is accounted for by
a non-local, non-Hermitian, energy-dependent operator that
is the self-energy S. The QP equations are:
H0ðrÞcnðr;vÞ þ
Z

dr0 Sðr; r0;vÞcnðr0;vÞ

¼ EnðvÞcnðr;vÞ, (4)
where H0ðrÞ ¼ � 1
2
r2

r þ vextðrÞ þ vHðrÞ.
S is the product of the Green’s function G, the screened

Coulomb interaction W, and the vertex function G: namely
S¼ iGWG [3]. The knowledge of the exact G, W, and G
requires the self-consistent solution of the Hedin
equations [3], an unfeasible job for realistic systems.
Hence an adequate expression for S has to be found. In the
GW approximation, the vertex corrections are neglected, and
the self-energy is S¼ iGW. It is important to notice that in
this expression we still find the exact G and W. In most
common cases G is given by non-interacting Green’s
function G0, and W is calculated at the RPA level, giving
rise to the so-called G0W0 approximation:
Sð1; 2Þ ¼ iG0ð1; 2ÞW0ð2; 1þÞ: (5)
This expression can also be interpreted as the result of the
first iteration of the closed-set of Hedin equations starting
from a non-interacting scheme, typically the Kohn–Sham
one. Keeping the vertex fixed to a delta-function, a self-
consistent solution for the sub-set of the Hedin’s equation
concerning onlyG,W, andS, can be reached. However, also
in this case, the achievement of full self-consistency is a
intricate and terribly demanding task (e.g., Ref. [6]). What
can be done to ease this task is to keep the QP wave-function
fixed at the non-interacting level and to update the
www.pss-a.com
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Figure 1 (online color at: www.pss-a.com) Fundamental band gap
of different bulk systems calculated at the DFT–LDA and G0W0

level compared to the experimental value. The DFT–LDA
results are always underestimating the gap and lie below the
experimental line. The agreement is restored when self-energy
effects within G0W0 are included.
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Figure 2 Calculated GW band structure for Si(100) (2� 1).
quasiparticle energies in the expression of both G and W, or
only in G (e.g., Ref. [7]).

In Fig. 1, it is shown how the inclusion of self-energy
effects at theG0W0 level yields quite accurate results for one-
particle excitations for several simple semiconducting bulk
systems. This holds true also in a larger variety of bulk
systems as shown in Ref. [8], and for semiconductor surfaces
[9]. The mean absolute relative error in the determination of
band gaps of the G0W0 method ranging around 10%, can be
improved to 5% if the eigenenergies values are updated in the
expression of G only [7]. In particular, for most systems, the
underestimation of the band gap is removed and a
quantitative agreement with photo-emission experiments is
achieved for the band structure calculations.

3 Selected case studies All examples presented in
the following have been studied within DFT–local density
approximation (LDA) unless otherwise specified, using DFT
plane-waves pseudopotential codes [10, 11]. GW calcu-
lations [12] have been performed using one-shot G0W0, with
the RPA screening e�1ðq;vÞ calculated within a single
plasmon pole model [13].

3.1 A clean semiconductor surface: Si(100) The
Si(100) surface is the most relevant surface for what
concerns microelectronic devices. As such, its accurate
characterization is of paramount importance. Its atomic
structure is characterized by a c(4� 2) symmetry originating
from silicon dimers alternatively buckled along and
perpendicularly to the dimer rows [14]. At room tempera-
ture, LEED and STM display an apparent 2� 1 order
because of a temperature-induced flip–flop of the dimers.
www.pss-a.com
The results presented here concern the 2� 1 buckled-
dimer geometry. The DFT–LDA calculations, performed on
a 12 atomic layers slab, employ a 15 Ry kinetic energy cut-
off and a 16 k-points sampling of the irreducible Brillouin
zone (BZ). Starting from the optimized geometry, the
electronic band structures and optical properties have been
calculated within the single QP scheme, solving Eq. (4).

The calculatedGW band structure for Si(100) is shown in
Fig. 2. The opening of the surface states gap with respect to
the DFT calculation is about 0.6 eV [15], as for bulk states.
Since the silicon dimers are buckled, the surface states
appearing in the band structure are related to the filled
dangling bond of the silicon atom which moves upwards
(Dup) and to the empty dangling bond of the silicon atom
which moves downwards (Ddown). The results are in good
agreement with previous results obtained by Refs. [16, 17].

Further characterization of the Si(100) surface can be
provided by its optical properties, in particular by its
reflectance anisotropy spectra (RAS) [18], as shown in
Ref. [19]. The RAS is defined as:
DR

R
¼ Ry � Rx

R
; (6)
where Ri is the reflectivity for light polarized along i and R is
the average reflectivity. The idea underlying the reflectance
anisotropy spectroscopy as a tool in surface science is the
following: a cubic crystal is optically isotropic but, at
the surface, this isotropy is in general broken. As a
consequence, the difference in the optical response of a
surface for normal incident light polarized along the two
orthogonal directions is not vanishing. At a first level of
approximation, then, the RAS signal is originated at the
surface and it is a fingerprint of its orientation, reconstruc-
tion, and microscopic geometry. The RAS for light at
normal incidence can be calculated as [20, 21]:
DR

R
¼ 4v

c
Im

4pdahs
yyðvÞ � 4pdahs

xxðvÞ
ebðvÞ � 1

" #
, (7)
where eb is the bulk dielectric function and a is the half slab
polarizability [22] of a slab of width 2d. Within the single
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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� 20
Im½4pahs
ii ðvÞ�

¼ 4p2e2

m2v2Ad

X
k

X
v;c

jpiv;cðkÞj
2

� d½EcðkÞ � EvðkÞ � �hv�; (8)
where piv;cðkÞ is the matrix element of the i-component
(i¼ x, y) of the momentum operator between initial
(valence, v) and final (conduction, c) states at the point k
in the 2D BZ, and A is the slab area. Here, we have used 128
k-points in the BZ, and summed up 50 conduction states.
Being a GW calculations for so many states very
cumbersome, and thanks to the fact that our GW corrections
for the surface states are about 0.6 eV, i.e., the same as for
bulk states, we could use the very same GW correction
(0.6 eV) to all the states. In other words, for this surface we
found that a scissor operator approximation is justified,
hence we have used the calculated GW correction of 0.6 eV
for all the transitions.

Figure 3 displays a comparison between experimental
and calculated RAS for Si(100). The experiments have been
described in Ref. [23]. The spectrum is dominated at high
energy (4.4 eV) by a positive structure associated with the E2

critical point; transitions at E0
0 and E1 are responsible for the

structure observed around 3.4 eV. The energies of the critical
points are indicated in Fig. 3. Around 1.5 eV, a negative
structure is observed in the experimental spectrum as well as
in the calculated one. This structure is associated with
transition between p and p� surface states delocalized along
the dimer rows and it is due to the contribution of a positive
intra-dimer transition and a stronger inter-negative one [24].
In the absence of QP corrections the theoretical spectra
would be shifted by approximately 0.6 eV to lower energies.
1.5 2 2.5 3 3.5 4
-0.01

0.005

0
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Energy (eV)
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Thus, from the comparison of the spectra in Fig. 3, we see
how the inclusion of QP energies is essential to obtain a
quantitative agreement with experiments [25].

3.2 A metal–semiconductor interface: a-Sn/
Ge(111) The 1/3 ML Sn/Ge(111) system (the a-phase) is
characterized by Sn ad-atoms regularly located on one out of
three T4 sites of the bulk terminated Ge(111) surface,
resulting in a (

ffiffiffi
3

p
�

ffiffiffi
3

p
)R308 reconstruction. Particular

interest for this phase arose after the discovery of a gradual
and reversible phase transition to a 3� 3 reconstruction
below �220 K [26]. This transition, initially explained as a
charge density wave (CDW) formation below a critical
temperature, was later interpreted through a ‘‘dynamical
fluctuation’’ model [27, 28], suggesting that the 3� 3
reconstruction is the ground state and the

ffiffiffi
3

p
�

ffiffiffi
3

p

reconstruction, observed at room temperature, results from
thermally activated rapid vertical oscillations of the Sn
atoms.

The exact structure of the 3� 3 reconstruction at low
temperature (LT, 20 K< T< 220 K) has been a matter of
debate. Indeed, the apparent existence of two types of Sn ad-
atoms, indicated by core level photo-emission spectroscopy
[29], is compatible with two possible configurations of the
surface: one with two Sn ad-atoms in a higher position with
respect to the third one (two ad-atoms up, one down, 2U1D
for brevity hereafter) and the opposite configuration, one ad-
atom up, two down (1U2D). STM results alone cannot tell
whether the surface configuration is 1U2D or 2U1D, because
imaging empty or filled electronic states results in a
honeycomb (an apparent 2U1D) image or a complementary
hexagonal (an apparent 1U2D) one, respectively [26, 30],
pointing to a dominant electronic rather than geometric
origin of the image contrast. In order to understand which is
the actual system configuration, surface-sensitive structural
techniques [31–35], Sn-4d core level photoemission
4.5 5

4.5 5

E2

a)

b) Figure 3 Comparison between calculated
(a) and experimental (b) RAS of Si(100).

www.pss-a.com
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spectroscopy [29, 36, 37], non-contact AFM investigations
[38], theoretical calculations [27, 30, 39–42] were applied,
producing conflicting results.

We focus here on the LT-phase structure simulating
STM images as a function of the applied voltage. First-
principles calculations for the Sn/Ge(111) surface have been
carried out using a repeated slab geometry consisting of six
Ge layers of nine atoms each, saturated by H atoms on the
bottom layer and with Sn ad-atoms on top. The geometry has
been optimized within DFT in the LDA and in the
generalized gradient approximation (GGA) [43]. In agree-
ment with previous results [44], the tests we performed at the
local spin density approximation (LSDA) level do not lead to
substantial changes. Hence, we have neglected the spin
degrees of freedom. Calculations of electron eigen-energies
have been performed within a DFTþGW approach to allow
a close comparison of theoretical and experimental results.
STM images have been simulated using the Tersoff–
Hamann model [45], as energy-integrated GW-corrected
[46] local density of states at a fixed height above the sample,
using an average tip-sample distance of 5 Å.

Calculations were performed on the two possible 3� 3
reconstructions starting from initial configurations having a
vertical buckling of 0.4 Å for both 1U2D and 2U1D systems.
In both cases the relaxation converged to the same energy
minimum, corresponding to a 1U2D model with a vertical
buckling of 0.36 Å between up and down Sn ad-atoms. We
also considered a metastable 2U1D model having a vertical
buckling of 0.20 Å (a value close to the structural results
reported in Ref. [35]) for comparing the resulting band
structure and STM images with the ones derived from the
stable 1U2D configuration. As we said previously, DFT,
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being a ground-state theory, in principle cannot provide
information on excited-state properties as electronic band
structures. The quantities that can correctly be compared
with experiments are instead QP energies, that can be
computed in the GW approximation. In many cases, DFT
turns out to provide a good description of excited states, in
particular when dealing with metals, where screening is very
effective and GW corrections should be small. However, the
Sn/Ge(111) system is not simply a metal but a metal/
semiconductor interface. It is therefore reasonable to expect
a non-trivial behavior of screening that should be in this case
largely space dependent, because of both the structural and
the electronic inhomogeneity of the system. We therefore
calculated QP energies in theGW approximation. As a result,
we found that the surface states bands, related to the Sn ad-
atoms, are just slightly affected by self-energy effects (DFT
and GW eigenvalues differ between �0.15 and 0.05 eV),
whereas corrections for the states related to Ge are in the
range �0:3=0:5 eV. The GW surface band structures
calculated along high-symmetry directions of the 3� 3
surface Brillouin zone are reported in the insets of Fig. 4a and
4b for the 1U2D and the 2U1D configurations, respectively.
The three surface bands are associated to the three Sn
dangling bonds: the ‘‘up’’ ad-atoms are characterized by a
filled dangling bond while the ‘‘down’’ ad-atoms have
partially occupied ones [44]. This is seen, for example, from
the GW projected density of states (PDOS) at the three types
of Sn ad-atoms reported in Fig. 4a and 4b. Consequently, the
two upper surface bands for the 1U2D geometry are
associated to 2D ad-atoms and the third band at lower
energy to 1U ad-atoms. Conversely, the 2U1D band structure
reported in Fig. 4b shows that the two lower bands describe
om
om
m

1.61.2

m
om
om

a)

b)

Figure 4 (online color at: www.pss-a.com)
GW projected density of states at up and down
tin ad-atoms for the 1U2D (a) and 2U1D (b)
configurations. The insets show the respective
GW surface band structures along high-
symmetry directions of the 3� 3 SBZ.

� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 Simulated 5� 3 nm2 STM
images for the 1U2D (a) and 2U1D (b)
configurations as a function of the bias
voltage.

Figure 6 (online color at: www.pss-a.com) Graphene (left panel)
and graphane (right panel) structures. Top view in the upper pictures
and side view in the lower pictures.
2U ad-atoms and the third one located at higher energy
describes D ad-atoms. Such PDOS curves suggest that STM
images obtained with very small bias voltages should mainly
show the two D ad-atoms in the 1U2D case and the two U in
the 2U1D case, resulting in both cases in a honeycomb
pattern. This hypothesis is confirmed by simulating STM
images for the 1U2D and the 2U1D reconstructions (reported
in Fig. 5a and 5b, respectively) as a function of the bias
voltage V, thus performing a sort of surface electronic
spectroscopy [47]. Indeed, in both cases the simulated
images obtained at bias voltages lower than 0.2 V show a
honeycomb pattern in both empty and filled states.
Increasing the bias voltage, in the 1U2D case (Fig. 5a), the
filled states images gradually revert to the expected
hexagonal pattern, passing through an apparent

ffiffiffi
3

p
�

ffiffiffi
3

p

reconstruction at about 0.27 V, while the empty states images
preserve the honeycomb pattern. As a result, the calculated
images between 0.5 and 1.0 V show the well-known
complementary honeycomb and hexagonal patterns (for
empty and filled states, respectively) reported in many
papers. Interestingly enough, a further unexpected transition
from honeycomb to hexagonal is observed in the empty
states images at higher bias voltage, resulting in both the
filled and empty states simulated images at 2.0 V displaying a
hexagonal pattern. The 2U1D simulated STM images
reported in Fig. 5b show an opposite behavior: increasing
the bias voltage above 0.2 V, the honeycomb to hexagonal
transition occurs in the empty states images, crossing the
apparently flat reconstruction at about 0.28 V, while the
honeycomb pattern is maintained in the filled states images.
Further increasing the bias voltage, a new hexagonal to
honeycomb transition is observed in the empty states series,
resulting in a honeycomb pattern for both empty and filled
states images.

The analysis of the trends for the two models shows that
the bias dependence of the simulated STM images of the
1U2D configuration is very similar to that reported in
experiments [48, 49], whereas the 2U1D series is definitely
not compatible with what observed in actual STM images.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
This conclusively points out a 1U2D configuration for the
a-Sn/Ge(111) surface.

3.3 2D systems: graphene and graphane In the
previous paragraphs we have seen how the determination of
the electronic properties of a prototype surface and interface
can be theoretically probed through DFT and MBPT
techniques. Here we focus our attention on the truly 2D
systems graphene and graphane. Thanks to its unique
physical properties (for a review see, e.g., Ref. [50]),
graphene is the star of the moment. Possible applications of
graphene in electronic nanodevices make it desirable to
render graphene semiconducting. Chemical functionaliza-
tion seems to be the natural pathway to reach this goal.
Recently [5, 51], hydrogenation of graphene has been
achieved, giving rise to the so-called ‘‘graphane.’’ A change
of hybridization from sp2 (graphene) to to sp3 (graphane) is
obtained (see Fig. 6) with a shrinking of the experimental C–
C bond [5]. Interestingly enough, the existence of graphane
www.pss-a.com
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Figure 7 (online color at: www.pss-a.com)
Graphene (left panel) and graphane (right
panel) DFT electronic band structure. The
red dashed line is the vacuum level. In graph-
ane, the DFT gap is 3.5 eV, the GW gap is
5.7 eV.
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Figure 8 (online color at: www.pss-a.com) DFT-RPA imaginary
part of the dielectric function of graphene (red dashed line) and
graphane (black continuous line).
has been first hypothesized thanks to ab initio calculations
[52] and then synthesized [5, 51]. We have performed DFT–
GGA [53] ab initio calculations of the geometry and
electronic band structure of graphane [54]. Our calculations,
in agreement with those of Sofo et al. [52], find a widening of
the C–C bond length from 1.42 Å (graphene) to 1.54 Å
(graphane). The value of 1.54 Å corresponds to the C–C
distance in bulk diamond, consistently with the sp3

hybridization, whereas the value 1.42 Å is also the C–C
bond length in graphite, consistently with the sp2 hybridiz-
ation. This trend is opposite to what found in experiments [5]
where graphane appears to exhibit a shrinkage of the lattice
constant compared to graphene, as revealed by a structural
analysis performed by transmission electron microscopy
of hydrogenated graphene membranes. A possible
explanation for this contradiction has been given by
Legoas et al. [55] who show how breaking the H atoms up
and down alternating pattern of ideal graphane, which is
likely to happen in experiments, can lead to lattice
contraction.

The electronic band structure of graphane is shown in
Fig. 7, and compared with that of graphene. A clear metal–
insulator transition, driven by H adsorption, appears, with the
opening of a direct electronic gap at G. Our DFT value for
the gap is 3.5 eV. GW corrections [56] strongly increase the
fundamental gap of graphane giving a QP gap of 5.7 eV. It is
also interesting to point out a dramatic change in the electron
affinity, which goes from 4.2 eV in the metallic phase
(graphene) to 1.2 eV in the insulator phase. Actually, a
further reduction of the electron affinity results from GW
calculations, giving a value as small as 0.2 eV. It seems
hence that at odds with diamond-surfaces, graphene does
not exhibit a negative electron affinity upon hydrogenation.
More refined calculations are needed to confirm this
point.
www.pss-a.com
Finally, also the optical properties [57] of graphene show
a dramatic change upon hydrogen adsorption (Fig. 8), with
almost a complementarity in the absorption spectra.
Although the DFT electronic gap of graphane is around
3.5 eV, optical absorption is almost 0 till 7 eV. Analysis of
the peaks reveal that the first peak is mainly due to transitions
around G, and the second peak to transitions around M.
However in these calculations QP and excitonic effects, that
can be quite important, have not been included [58].

4 Conclusions In conclusion we have shown how
many-body effects, introduced within the GW approxi-
mation to the self-energy are crucial in the quantitative
description of electronic properties of 2D systems. Their
relevance is readily visible in all the different cases under
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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study covering a wide range of physical situations from a
typical clean semiconducting surface (Si(001)2� 1), a
metal–semiconductor interface Sn/Ge, and finally truly 2D
systems such as graphene and graphane.
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