▶ PAOLO LIPPARINI, Ordinal compactness.

Mathematics Dept., Università di Tor Vergata, Matteo Viale della Ricerca Scientifica, I-00133 Rome, Italy. (http://www.mat.uniroma2.it/~lipparin/)

We extend to ordinal numbers the more usual compactness notion defined in terms of cardinal numbers.

DEFINITION 1. Suppose that X is a nonempty set and that τ is a nonempty family of subsets of X. If α and β are nonzero ordinal numbers, we say that (X, τ) is $[\beta, \alpha]$ -compact if and only if the following holds.

Whenever $(O_{\delta})_{\delta \in \alpha}$ is a sequence of members of τ such that $\bigcup_{\delta \in \alpha} O_{\delta} = X$, then there is $H \subseteq \alpha$ with order type $\langle \beta$ and such that $\bigcup_{\delta \in H} O_{\delta} = X$.

When α and β are both cardinals, X is a topological space, and τ is the topology on X, we get back the classical cardinal compactness notion. See [1] for references.

We show that ordinal compactness is a much more varied notion than cardinal compactness. We prove a great deal of results of the form "Every $[\beta, \alpha]$ -compact space is $[\beta', \alpha']$ -compact", for various ordinals β , α , β' and α' . Usually, we are able to furnish counterexamples showing that such results are the best possible ones.

[1] J. E. VAUGHAN, Some properties related to [a,b]-compactness, Fundamenta Mathematicae, vol. 87 (1975), pp. 251-260.