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Abstract: A districting problem is formulated as a network partitioning model where each link
has one weight to denote travel time and another weight to denote workload. The objective of
the problem is to minimize the maximum diameter of the districts while equalizing the workload
among the districts. The case of tree networks is addressed and efficient algorithms are developed
when the network is to be partitioned into two or three districts. c© 2002 Wiley Periodicals, Inc. Naval
Research Logistics 49: 143–158, 2002; DOI 10.1002/nav.10003
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1. INTRODUCTION

This paper addresses the problem of districting a network for mobile response units that respond
to continuous demands on the links, which we refer to as Highway Patrol Districting (HPD)
problem. Given a network, the HPD problem is to determine a partition into p districts, each
district being served by a mobile unit. Each link of the network has two weights: One indicates
the length of the link (how far apart are the end points of the link), and the second weight is
proportional to the workload on that link. The maximum response time of a unit in a district is
proportional to the diameter of the district, that is, the maximum distance between two points of the
district. Our problem is to minimize the maximum response time while balancing the workloads
among the districts.

The motivation for the problem arises from the need to allocate response units patrolling on
a highway, responding to incidents such as traffic accidents, helping stalled motorists, catching
speed-law violators, and assisting in alleviating nonrecurring unusual congestion. In particular,
the Arizona Department of Public Safety has been interested in designing response districts and
allocating highway patrol response units to the districts. Arizona divides its highways into fourteen
‘‘districts.’’ Each district is patrolled by a number of patrol units. Location of traffic incidents are
distributed along the links of the network. Based on historical data on traffic volumes and traffic
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accidents, it is reasonable to model the network into link segments so that the probability of an
accident is uniformly distributed along each link. This results in the second weight on each link
that denotes its workload.

Handler and Mirchandani [8] were the first to introduce location models for continuous link
demands, where the objective is to either minimize average travel time (Median Problems) or
minimize the maximum travel time (Center Problems). For tree networks they give an exact
method, and for general networks they consider an approximate discretized version of continuous
demands on links. For general networks Chiu [3] provides exact and heuristic approaches for the
1-median location problem with continuous link demands. Several works, by Sherali et al., deal
with special cases of (both capacitated and uncapacitated) median problem on chain networks and
trees [1, 14, 15, 16] with a continuum of demand placed on the links. Since ‘‘supply’’ of a facility
relates to its maximum workload, the capacitated version of these problems closely relate to our
problem. Sherali [14] and Sherali and Nordai [15, 16] consider the case when the total capacity
of all facilities equals total demand and the problem is to minimize average travel time. Sherali
and Rizzo [17] also investigated the unbalanced case, when the total supply does not equal total
demand. Kim, Sherali, and Park [9] consider the scenario of an emergency/patrol car traveling
along a simple path of a road network while maintaining surveillance of a set of facilities for
possible service response; demands may arise discretely on the nodes and/or continuously along
the links of the network. They address the minimum objective such as the problem of finding a
path that minimizes the weighted sum of distances and the minimax objective of minimizing the
farthest weighted distance between the mobile facility and demands during the travel period of
the facility. We note, however, that the problem of balancing workloads does not play a major
role in these papers.

As the p-Center problem (in particular the ‘‘absolute’’ p-center problem, see [7]) can be stated
as the minimization of the maximum diameter in a partition, it relates to our problem at hand.
The p-Center problem has been well-studied in the literature. It is NP-complete for p not fixed.
However, polynomial algorithms exist that solve the same problem on trees for general values of
p [8, 2, 12]. Related center problems of locating paths [13] and subtrees [10] on trees to minimize
the maximum distance to demands have also been investigated. In particular, in a recent work,
Halman and Tamir [5] study a general class of min–max problems of continuous tree partitioning
problems into components (subtrees) where the size of a component relates to its diameter or its
length.

We consider an undirected tree network T = (V, E, w, l) embedded on a Euclidean plane (in
the following, simply, tree). V is the set of vertices or nodes, E is the set of links or arcs, and
w and l are two integer vectors whose components are the workload wuv and the length luv for
all the links uv ∈ E, respectively. The ratio ρuv = wuv/luv will be called density of the link.
Since we assume the workload to be uniformly distributed along each link, the workload of any
connected portion of a link uv is given by ρuv times the length of the portion. We use the term
point of T to denote either a vertex or an intermediate point of a link of T .

DEFINITION 1: A subforest F of T is any set, possibly nonconnected, of vertices and links
or fractions of links of T .

For instance, F2, in Figure 2(a), is a subforest. Note that we are using a continuous extension
of the concept of subforest F , allowing the links to be divided in any point, so that one link of T
may not entirely belong to subforest F ; i.e., F is formed by a collection of intervals of points in
the continuum set of points of the edges of T . By a leaf we mean an extreme point of a subforest,
either it be a node or an intermediate point. We denote by W (F ) the total workload of subforest
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F . Given two points x and y in F , we indicate by P (x, y) and d(x, y) the path that connects those
two points and its total length, respectively. It may happen that P (x, y) is not entirely contained
in F .

DEFINITION 2: Given a subforest F of a tree T , let P (t1, t2), t1, t2 ∈ F , be a path such that
d(t1, t2) = max{d(x, y) : x ∈ F, y ∈ F}. We refer to

• value d(t1, t2) as the diameter of F and denote this value by D(F ),
• path P (t1, t2) as a diametrical path of F , and
• pair of nodes (t1, t2) as a pair of diametrical endpoints for F .

Note that t1 and t2 are necessarily leaves of T .

DEFINITION 3: Given a diametrical path P (t1, t2) of a tree T , let r1, . . . , rs be its internal
nodes, and let S1, . . . , Ss be the s disjoint subtrees rooted at r1, . . . , rs, respectively, obtained
when the links of the diametrical path P (t1, t2) are removed from T . We call Si a diametrical
subtree and ri its root, for all i = 1, 2, . . . , s.

Figure 1 illustrates Definition 3. In this paper we always use this definition with reference to a
diametrical path of the whole tree T .

DEFINITION 4: A p-partition π = {F1, F2, . . . , Fp} of T is a collection of p disjoint (pos-
sibly nonconnected) subforests whose union is the whole tree. Each subforest is called district.

Note that, given π, a link may be partially included in a district Fi, the rest of the link being
assigned to other districts in π. [See Fig. 2(a): There, e.g., district F2 is formed by the two intervals
between point Q and node 7 of link {6, 7} and between point R and node 8 of link {6, 8}. In this
case the district is not connected.] Let Dπ := maxi=1,...,p{D(Fi)}. The problem of finding the
minimum diameter D∗

p(T ) of a p-partition of T :

D∗
p(T ) = min{Dπ : π is a p-partition of T}

is the well-known p-center problem, on trees. As we already mentioned, it is possible to find
D∗

p(T ) in polynomial time as long as T is a tree (e.g., Frederikson and Johnson [4] provided
an O(|V | log |V |) algorithm.) We use D∗

p instead of D∗
p(T ) whenever this does not generate

confusion.

Figure 1. Diametrical path of T and diametrical subtrees.
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Figure 2. A 3-partition and a 3-cover

DEFINITION 5: A p-partition π = {F1, F2, . . . , Fp} of T is balanced if, for all i = 1,
2, . . . , p, W (Fi) = W (T )/p.

Clearly, there always exists a balanced p-partition of a network (possibly having nonconnected
districts). The problem addressed in this paper is the following:

PROBLEM 6: Given a tree network T = (V, E, w, l), find a p-partition π such that W (Fi) =
1
pW (T ), for all i = 1, . . . , p and Dπ is minimized.

It is useful to introduce the related decision problem:

PROBLEM 7: Given a tree network T = (V, E, w, l) and a rational D̄ such that D∗
p(T ) ≤

D̄ ≤ D(T ), find, if it exists, a p-partition π such that W (Fi) = 1
pW (T ), for all i = 1, . . . , p and

Dπ = D̄.

Clearly, if we are able to solve Problem 7, we can solve also Problem 6 by performing a binary
search over D̄. However, for p = 2 we will see that this is not necessary.

In order to solve Problem 7, it is convenient to introduce the concept of p-cover which is
formally defined below.

DEFINITION 8: A p-cover χ = {F̄1, F̄2, . . . , F̄p} of T is a collection of p connected sub-
forests, named superdistricts, such that: (i) ∪p

i=1F̄i = T ; (ii) each superdistrict F̄i has diameter
D(F̄i) = Dχ, for all i = 1, . . . , p; (iii) each F̄i is maximal, i.e., it is not strictly contained in any
other subforest having the same diameter Dχ.

Figure 2(b) illustrates Definition 8: Here F̄1 contains links {1, 2}, {1, 3}, and {1, 4} plus the
intervals {4, A} and {4, B} of links {4, 5} and {4, 6}, respectively. The basic idea of our approach
is that we first find a suitable p-cover, and then we carve the p districts out of the p-cover.

The above definition implies that superdistricts are connected. Possibly, we may have intervals
of points belonging to more than one superdistrict [e.g., in Fig. 2(b), intervals of points between
node 4 and points A, B, and C belong to all the three superdistricts; point E to both F̄1 and F̄3,
but not to F2].



Agnetis, Mirchandani, and Pacifici: Partitioning of Biweighted Trees 147

Given a p-partition π = {F1, F2, . . . , Fp} and a p-cover χ = {F̄1, F̄2, . . . , F̄p} such that
Fi ⊆ F̄i for all i = 1, 2, . . . , p, we say that π is contained in χ, indicated as π ⊆ χ. This is the
case for the partition and the cover of Figure 2(a) and (b), respectively.

DEFINITION 9: A p-cover χ of T is balanced if it contains a balanced partition.

The paper is organized as follows. In Section 2, we characterize feasible solutions to Problem
7. In Section 3, we analyze Problems 6 and 7 when p = 2. In Section 4, we analyze problem 7
when p = 3. In the Appendix a notation table is given.

2. EXISTENCE OF A BALANCED SOLUTION

In this section we present a characterization of balanced p-covers. In the subsequent sections,
efficient algorithms to actually find such a cover for p = 2 and p = 3 will be described.

The following Theorem 10 gives necessary and sufficient conditions for a p-cover with fixed
diameter Dχ = D̄ to be balanced and consequently for a p-partition with diameter Dπ ≤ D̄ to
be balanced.

THEOREM 10: Given a tree T = (V, E, w, l), a rational D̄ such that D∗
p ≤ D̄ < D(T ), and

a p-cover χ = {F̄1, F̄2, . . . , F̄p} with diameter Dχ ≤ D̄, then χ is balanced if and only if, for
any subset I of the integer numbers {1, 2, . . . , p}, the following condition holds:

|I|
p

W (T ) ≤ W

(⋃
i∈I

F̄i

)
. (1)

PROOF: Let I = {i1, . . . , ir}, 1 ≤ r ≤ p be a nonempty subset of the first p integers and Ī
be its complement Ī = {1, . . . , p}\I .

(Only if.) By Definition 9, if there is a balanced p-cover χ = {F̄1, . . . , F̄p} with diameter Dχ ≤
D̄ then there is also a balanced p-partition π = {F1, . . . , Fp} ⊆ χ having diameter Dπ ≤ D̄. For
any I ⊆ {1, 2, . . . , p}, from Definition 5 of balanced partition, as districts are disjoint and each one
has weight 1

pW (T ), we have W (∪i∈IFi) = |I|
p W (T ). Moreover, as W (∪i∈I F̄i) ≥ W (∪i∈IFi),

necessity is proved.
(If.) We next show that if a cover χ exists, having diameter Dχ ≤ D̄, and satisfying Eq.

(1), then it is possible to find a balanced partition π ⊆ χ, with diameter Dπ ≤ D̄. Given a
p-cover χ = {F̄1, F̄2, . . . , F̄p} of T , it is possible to determine 2p − 1 disjoint, some possibly
empty, subforests of T (see Definition 1) in one-to-one correspondence with all the possible
nonempty subsets of {1, 2, . . . , p}. In particular, letting subset I = {i1, . . . , ir} ⊆ {1, 2, . . . , p},
we associate with I a subforest HI defined as all the points that belong exclusively to all the
superdistricts in I; i.e.,

HI =

(⋂
i∈I

F̄i

) ∖ 
⋃

i∈Ī

F̄i




and we setwI = w(HI). (Figure 3 shows a Venn diagram representing the casep = 3.) Any district
Fi of any p-partition π contained in χ satisfies the following condition: Fi ⊆ F̄i = ∪I∈iHI .
Therefore, points in subforest HI , I = {i1, . . . , ir}, may only belong to r districts of partition
π ⊆ χ, namely, Fi1 , . . . , Fir

. Hence, to design a balanced partition π ⊆ χ we need to ‘‘share’’
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Figure 3. Definition of the seven possible HI and wI when p = 3.

the workload of HI , for all I , among districts Fi1 , . . . , Fir
of π, in such a way that the workloads

of the resulting districts are equal.
For this purpose, we define the following supply-demand problem. We associate districts

F1, . . . , Fp, to a set of p consumers and the 2p − 1 distinct subforests HI ’s to a set of 2p − 1
suppliers. Supplier/subforest HI has capacity wI and supplies district/consumer Fi if and only if
i ∈ I . Demands for all the p consumers are set equal to 1

pW (T ).
Clearly, χ and π are balanced (see Definitions 5 and 9) if and only if the above problem has a

feasible solution. In fact, district Fi is obtained by augmenting subforest H{i} = F̄i\{∪j 6=iF̄j}
by means of a suitable portion of F̄i ∩ {∪j 6=iF̄j}. A flow δ from supplier HI to consumer Fi

(i ∈ I) in the feasible solution of the supply–demand problem indicates that district Fi draws δ
units of workload from subforest HI . A well-known result in network flow theory [11] states that
a supply–demand problem has a feasible solution if and only if, for any subset I of consumers,
the total demand ( |I|

p W (T )) does not exceed the total supply that can be sent to I . In our case
the total amount of commodity which can be sent to I is given by

∑
J⊆{1,...,p}

J∩I 6=∅

wJ = W


⋃

j∈I

F̄j


 (2)

This completes the proof.

3. TWO DISTRICTS

In this section, we consider the case in which T must be partitioned into two districts. We first
address Problem 7, and then turn to Problem 6.

3. 1. Balanced 2-Covers

In this section we address Problem 7 for p = 2.

LEMMA 11: Given a tree T = (V, E, w, l) and a rational D̄ such that D∗
2 ≤ D̄ < D(T ), let

t1 be a diametrical endpoint of T and let u and v be such that d(t1, u) ≤ D̄ and d(t1, v) ≤ D̄.
Then, d(u, v) ≤ D̄.
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PROOF: Consider a diametrical path, as in Definition 3, P (t1, t2) of T (see Fig. 1). For any
diametrical subtree Si of P (t1, t2) rooted in ri, consider a point x ∈ Si. It is easy to see that

d(ri, x) ≤ min{d(t1, ri), d(t2, ri)}. (3)

Consider the set F̄1 of points at distance D̄ or less from t1. We show that the distance between
any two points in F̄1 does not exceed D̄. Let u and v be any two points in F̄1. Suppose first that
u and v belong to two diametrical subtrees, rooted in ru and rv , respectively (possibly ru = rv).
Without loss of generality let d(t1, ru) ≤ d(t1, rv). From Eq. (3), d(u, ru) ≤ d(t1, ru), which
implies d(u, v) ≤ d(u, ru) + d(ru, v) ≤ d(t1, v) ≤ D̄.

LEMMA 12: Given a tree T = (V, E, w, l), and a rational D̄ such that D∗
2 ≤ D̄ < D(T ),

there is a unique cover χ = {F̄1, F̄2} with Dχ = D̄.

PROOF: Consider the set F̄1 (F̄2) of points at distance D̄ or less from t1 (t2). Since, for
i = 1, 2, the set F̄i contains any superdistrict with diameter D̄ including ti (otherwise there
would a pair of points (ti, y) of the superdistrict with d(ti, y) > D̄), from Lemma 11, F̄1 and F̄2
are superdistricts including t1 and t2 respectively, both having diameter D̄ (recall Definition 8).

We next show that χ = {F̄1, F̄2} is the only 2-cover having diameter D̄. By contradiction,
suppose there is another cover χ′ = {F̄ ′

1, F̄
′
2} 6= χ, having diameter D̄, where F̄ ′

1 and F̄ ′
2 are the

superdistricts obtained by starting from a different pair of diametrical endpoints (t′1, t
′
2) 6= (t1, t2)

where, with no loss of generality, we let t1 6= t′1. If t2 = t′2, by definition of superdistrict, we
have F̄2 = F̄ ′

2 and therefore F̄1 6= F̄ ′
1. If t2 6= t′2 and F̄1 = F̄ ′

1, then it must be F̄2 6= F̄ ′
2. By

exchanging the role of 1 and 2 we get t1 6= t′1 and F̄ ′
1 6= F̄1. We may henceforth reduce to the

case where t1 6= t′1 and F̄ ′
1 6= F̄1.

Note that t2 6∈ F̄1, since D̄ < D(T ). Also, either t1 or t2 is in F̄ ′
1. Without loss of generality,

let t1 ∈ F̄ ′
1.

It cannot be that F̄1 ⊆ F̄ ′
1 for otherwise F̄1 would not be maximal or D(F̄ ′

1) > D̄ (and
analogously, F̄ ′

1 6⊆ F̄1). Therefore, suppose that a point x ∈ F̄1\F̄ ′
1 exists. (We can handle the

case x ∈ F̄ ′
1\F̄1 similarly.) As x 6∈ F̄ ′

1, it must be d(t′1, x) > D̄ and hence, since d(t1, x) ≤ D̄,
Lemma 11 implies d(t1, t′1) > D̄, which contradicts the fact that t1 ∈ F̄ ′

1.
For p = 2 Theorem 10 becomes:

THEOREM 13: Given a tree T = (V, E, w, l), and a rational D̄ such that D∗
2 ≤ D̄ < D(T ),

the 2-cover χ = {F̄1, F̄2} with diameter D̄χ = D̄ is balanced if and only if

min{W (F̄1), W (F̄2)} ≥ 1
2
W (T ). (4)

The previous Theorem 13 suggests a straightforward algorithm for Problem 7. Given a tree
network T = (V, E, w, l) and a rational D̄, the following algorithm finds a balanced 2-partition
π = {F1, F2} of T , with diameter Dπ = D̄, or it concludes it does not exist.

1. Determine F̄1, F̄2 (by marking the points at distance D̄ from the diametrical
endpoints t1 and t2, respectively), and compute W (F̄1) and W (F̄2).

2. If Condition (4) does not hold, there is no balanced solution, else
3. Let F1 := (F̄1\F̄2) ∪ F , where F is any subforest such that F ⊆ F̄1 ∩ F̄2 and

W (F ) = 1
2W (T ) − W (F̄1\F̄2).
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4. F2 := T\F1.

Note that all the steps can be carried out in time O(|V |) by easily adapting any tree-visit algorithm.
The latter algorithm can be naturally employed for solving Problem 6 using a binary search
for the minimum D̄. If we consider that D∗

2 ≤ D̄ ≤ D(T ), the overall complexity becomes
O(|V | log(D(T )−D∗

2)). In the following section we present an alternative procedure which may
turn out to be more efficient.

3. 2. Finding the Minimum Diameter

Let P (t1, t2) be a diametrical path of T and D̄ be a rational such that D∗
2(T ) ≤ D̄ < D(T ).

Consider the set F1(D̄) of points at distance at most D̄ from t1. We define the bordering set
B1(D̄) as a special set of nodes of T :

B1(D̄) = {v ∈ V such that for all uv ∈ E, d(t1, u) ≤ D̄, d(t1, v) > D̄}.

In other words, the nodes in B1(D̄) are those immediately out of subforest F̄1(D̄) as we move
away from t1.

For a given D̄, we say that a link uv ∈ E crosses the border, if d(t1, u) ≤ D̄ and d(t1, v) > D̄.
We denote by ρ1(D̄) the sum of the densities of the links crossing the border. As D̄ increases,
ρ1(D̄) represents the current marginal increment of the workload W (F̄1).

The algorithm 2 districting (illustrated in Table 1) builds superdistrict F1 including at each
step the nearest v ∈ B1 until W (F1) = 1

2w(T ).

THEOREM 14: The algorithm 2 districting solves Problem 6 for p = 2, in time
O(|V | log |V |).

Table 1. Algorithm 2 districting.

Procedure 2 districting
Input Network T = (V, E, w, l);
Output A minimum diameter balanced 2-partition π = {F1, F2} of T , and Dπ;

1. Compute:
1.1. A pair of diametrical endpoints of T, t1 and t2
1.2. The value D∗

2 , e.g., as in [6]
1.3. The subforests F1 and F2 as the loci of points at distances at most D∗

2 from t1 and
t2, respectively

1.4. Values W (F1) and W (F2), B1(D̄), and ρ1(D̄).
2. Initialize D̄ = D∗

2 and δ := 0.
3. If W (F1) ≤ 1

2W (T ) goto step 4;
else if W (F2) ≤ 1

2W (T ) exchange the role of t1 and t2 and goto step 4;
else set Dπ = D∗

2 and adjust F1 and F2 by suitably assigning points in F1 ∩ F2 to only
one of the two district and goto step 7.

4. Repeat the following:
4.1. D̄ := D̄ + δ, W (F̄1) := W (F̄1) + ρ1(D̄)δ;
4.2. δ := minv∈B1(D̄){d(t1, v) − D̄};
until W (F̄1) + ρ1(D̄)δ ≥ 1

2W (T )
5. δ := 1

ρ1(D̄)
( 1
2W (T )−W (F̄1)); D̄ := D̄ + δ. [δ is the adjustment required to D̄ in order

to reach a workload of 1
2W (T ): note that, due to step 3, δ cannot be negative.]

6. Set F1 as the locus of points at distance at most D̄ from t1, F2 := T\F1, and Dπ = D̄.
7. Return F̄1 and F̄2.
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PROOF: Let us consider Step 1 first. Any value not greater than D∗
2 would be a suitable initial

value for D̄. In particular, D∗
2 may be computed in O(|V |) time (for instance, as in [6]) and this

choice does not increase the overall procedure complexity. By performing a tree visit, we can
compute all the distances d(t1, v) in O(|V |). Thereafter, we can rank the nodes in nondecreasing
order of d(t1, v) in O(|V | log |V |). The set B1(D̄) can be computed simply by checking the
distance d(t1, v) of all nodes v adjacent to nodes u such that d(t1, u) ≤ D̄. If d(t1, v) > D̄, we
put v in B1(D̄). Concurrently, the workload W (F1) [where F1 is the locus of points u of T such
that d(t1, u) ≤ D̄], and the initial value of ρ1(D̄) can be computed. The latter computations cost
O(|V |).

Let us evaluate the computation cost of updating B1(D̄) and ρ1(D̄) in Step 4. As D̄ increases,
B1(D̄) varies. Every time this step is executed, at least one node leaves B1(D̄). Consider the set
of nodes s such that δ = d(t1, s) − D̄. Let us be the arc incident s such that d(t1, u) < d(t1, s).
All the nodes v such that sv ∈ E enter B1(D̄). We maintain B1(D̄) ordered with respect to
distances from t1, and hence each insertion requires O(log |V |) time. Notice that if we consider
all the executions of Step 4.2, no node ever enters B1(·) twice, and since B1(·) is ordered, δ can be
computed in constant time in Step 4.2, so that the overall complexity of Step 2 is O(|V | log |V |)
and the thesis follows.

4. THREE DISTRICTS

In this section, we consider the case in which T must be partitioned into three districts. We
limit ourselves to addressing Problem 7. As discussed in Section 3.1 for the case p = 2, the
latter algorithm can be exploited, combined with a binary search over the possible values of
superdistricts diameter D̄, in order to get an algorithm solving Problem 7.

4. 1. Balanced 3-Covers

From Theorem 10, we derive the following conditions:

THEOREM 15: Given a tree T = (V, E, w, l), a rational D̄ such that D∗
3 ≤ D̄ < D(T ), the

3-cover χ = {F̄1, F̄2, F̄3} having diameter Dχ = D̄, is balanced if and only if

W (F̄i) ≥ 1
3
W (T ), i = 1, 2, 3, (5)

W (F̄i ∪ F̄j) ≥ 2
3
W (T ), i, j = 1, 2, 3, i 6= j. (6)

Hereafter, we show how to efficiently compute a balanced 3-cover χ = {F̄1, F̄2, F̄3} of T
with Dχ = D̄, if it exists. First of all notice that if P (t1, t2) is a diametrical path of T (recall
Definition 3), and a 3-cover χ = {F̄1, F̄2, F̄3} exists having diameter D̄, with D̄ < D(T ),
then t1 and t2 belong to two different superdistricts, say t1 ∈ F̄1 and t2 ∈ F̄2. As shown in
Lemma 12, for i = 1, 2, F̄i is the set of points of T whose distance from ti does not exceed
D̄, then F̄1 and F̄2 are unique. Moreover, it is clear that T\{F̄1 ∪ F̄2} ⊆ F̄3. Let T̄ be the
tree obtained connecting the components of T\{F̄1 ∪ F̄2} using the links of T . More formally,
T̄ = {∪P (x, y) : x, y ∈ T\{F̄1 ∪ F̄2}}. Hence, F̄3 must also contain T̄ .

In the next section we describe a procedure for finding a balanced 3-cover (recall Definition
9) of diameter D̄. Basically, once F̄1 and F̄2 are determined, F̄3 must be such that T̄ ⊆ F̄3 and
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Figure 4. The tree T̄ .

the conditions of Theorem 15 are satisfied. By Definition 8 of p-cover, F̄3 is a maximal subforest
having diameter D(F̄3) = D̄ and therefore there is a single point at distance at most D̄/2 from
all the points of F̄3, which is its 1-center. Thus, F̄3 is completely defined once we locate its
1-center x.

Our algorithm first identifies the candidate set C of points where the 1-center x of F̄3 can be
placed in order to have T̄ ⊆ F̄3. The algorithm efficiently enumerates the solutions obtained by
locating the 1-center of F̄3 in a point x ∈ C and evaluates whether the conditions of Theorem 15
hold. The procedure stops as soon as those conditions are satisfied or it concludes that no balanced
3-cover having diameter Dχ ≤ D̄ exists.

4. 2. Locating the Center of F̄ 3

Observe that if e is a leaf of T̄ , then either e is a leaf of T\{F̄1 ∪ F̄2} or e is a point at distance
D̄ from t1 or t2 on a diametrical path P (t1, t2). (See Fig. 4.) We denote by C the set of points of
T at distance at most D̄/2 from all the points in T̄ . Clearly, the 1-center of F̄3 must belong to C.

LEMMA 16: C is connected.

PROOF: If C 6= ∅, let x and y be two points in C and z ∈ P (x, y). For all t ∈ T̄ we have
d(z, t) ≤ max{d(x, t), d(y, t)} ≤ D̄/2. Hence z belongs to C.

Figure 5. Illustration of Theorem 17.
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Consider the set K = P (t1, t2) ∩ C [where P (t1, t2) is a diametrical path of T ]. In what
follows, if K = ∅, we denote by x̂ the point of C that is closest to P (t1, t2). Given a point x ∈ T ,
we denote by F̄3(x) the superdistrict having 1-center at x, i.e., F̄3(x) is the maximal subforest of
T with diameter D(F̄3) = D̄ having its 1-center at x.

THEOREM 17: If a balanced 3-cover χ = {F̄1, F̄2, F̄3} of T exists having diameter D̄, then
there is one such that t1 ∈ F̄1, t2 ∈ F̄2, and

• if K 6= ∅, the 1-center of F̄3 is located on the diametrical path P (t1, t2),
• if K = ∅, the 1-center of F̄3 is located at x̂.

PROOF: Suppose χ = {F̄1, F̄2, F̄3} is a balanced 3-cover of T having diameter D̄, such that
ti ∈ F̄i, i = 1, 2. Suppose that the 1-center of F̄3 is a point q not lying on P (t1, t2). Let r be
the root of the diametrical subtree S containing q, and let e be a deepest leaf of S, i.e., a node
such that d(r, e) = maxx∈S{d(r, x)}. Let x be any point of P (q, r) such that x ∈ C (possibly
x = q). Since C is connected, P (q, x) ⊆ C (see Fig. 5). Again, F̄3(x) is defined as the maximal
subforest of T with diameter D(F̄3) = D̄ having its 1-center in x (while the center of F̄3 is q). In
order to show that F̄3 ⊆ F̄3(x), we consider an arbitrary point y ∈ F̄3 and show that y ∈ F̄3(x).
We consider two subcases:

(i) d(y, q) < d(y, x). This implies that y ∈ S and d(r, y) > d(r, x). Suppose first
that S ∩ T̄ 6= ∅. In this case, e belongs to T̄ . In fact, if e ∈ F̄1\T̄ (or e ∈ F̄2\T̄ ),
then the whole subtree S belongs to F̄1 (or F̄2) and therefore S ∩ T̄ = ∅. Since
e ∈ T̄ and since x ∈ C, F̄3(x) covers e and therefore point y. Suppose now
S∩T̄ = ∅. This means that S is completely covered by either F̄1 or F̄2. Without
loss of generality, let us suppose S is covered by F̄1. If F̄3(x) does not cover
point y, then d(r, e) ≥ d(x, y) > D̄/2. On the other hand, since P (t1, t2)
is a diametrical path, d(r, t1) ≥ d(e, r). But this implies that d(t1, e) > D̄,
contradicting the hypothesis that S ⊆ F̄1.

(ii) d(y, q) ≥ d(y, x). In this case, since y ∈ F̄3, then d(y, q) ≤ 1
2D̄ and hence

d(y, x) ≤ 1
2D̄, i.e., y ∈ F̄3(x).

Since F̄3 ⊆ F̄3(x), W (F̄3) ≤ W (F̄3(x)), and W (F̄3∪F̄i) ≤ W (F̄3(x)∪F̄i) for i = 1, 2. This
means that moving the 1-center of F̄3 from q towards the diametrical path still yields a balanced
cover. If K 6= ∅, we can choose x = r. If K = ∅, note that, since C is connected, P (x̂, q) ⊆ C,
and, due to the definition of x̂, x̂ ∈ P (q, r). Hence, we can choose x = x̂ and this completes the
proof.

4. 3. An Algorithm for Finding a Balanced 3-Cover

The set K can be characterized as the set of points of P (t1, t2) whose distance from any leaf
of T̄ does not exceed 1

2D̄. If K 6= ∅, it is easy to pinpoint the two extremes of K along the
diametrical path: Call them k1 and k2. In a similar fashion to what was done for p = 2, we will
move the 1-center of F̄3 from k1 to k2 along K until either the conditions of Theorem 15 are met
or k2 is reached.

Given a point x ∈ K, we need again to define the bordering set of points of the superdistrict
F̄3(x) centered at x. This time it is convenient to distinguish the bordering sets of the superdistrict
F̄3(x) lying on the two opposite sides of the tree with respect to x. To this aim, consider the two
subtrees obtained by cutting T at x. Let T1 (T2) be the subtree containing k1 (k2). We define
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Figure 6. Illustration of bordering sets. The circled u and v nodes are the left and right bordering sets,
respectively.

the left bordering set BL
3 (x) as the set of nodes lying immediately inside F̄3(x) on the T1 side,

i.e., BL
3 (x) = {u ∈ T1|uv ∈ E, d(x, u) < 1

2D̄, d(x, v) ≥ 1
2D̄}. We say that a link uv ∈ T1

crosses the left border of F̄3(x) if d(x, u) < 1
2D̄ and d(x, v) ≥ 1

2D̄. Analogously, we define the
right bordering set BR

3 (x) as the set of nodes lying immediately outside F̄3(x) on the T2 side,
i.e., BR

3 (x) = {v ∈ T2|uv ∈ E, d(x, u) ≤ 1
2D̄, d(x, v) > 1

2D̄}, and we say that a link uv ∈ T2
crosses the right border of F̄3(x) if d(x, u) ≤ 1

2D and d(x, v) > 1
2D̄. (See Fig. 6.) Finally the sum

of the densities of the links of BL
3 (x) is denoted by ρL

3 (x), and of BR
3 (x) by ρR

3 (x). The algorithm
returns a balanced cover of diameter D̄, if it exists. Starting from k1, as the 1-center x of F̄3(x)
moves towards k2, we check the current values of W (F̄3(x)), W (F̄1 ∪ F̄3(x)), W (F̄2 ∪ F̄3(x)).
Actually, the algorithm takes advantage of the following straightforward fact:

LEMMA 18: If all the links have positive workloads, then as x moves from k1 to k2, W (F̄1 ∪
F̄3(x)) is increasing and W (F̄2 ∪ F̄3(x)) is decreasing.

Unlike W (F̄1 ∪ F̄3(x)) and W (F̄2 ∪ F̄3(x)), as x moves from k1 to k2, W (F̄3(x)) increases
or decreases depending on the relative weights of the links which F̄3(x) reaches (on the side of
T2) or leaves (on the side of T1). See Figure 7.

We can define two points x1 ∈ K and x2 ∈ K such that W (F̄1 ∪ F̄3(x1)) = 2
3W (T ) and

W (F̄2 ∪ F̄3(x2)) = 2
3W (T ), respectively. Due to Lemma 18, if d(t1, x1) ≤ d(t1, x2), then only

the points of P (x1, x2) ∩ K are such that conditions (6) are satisfied. If d(t1, x1) > d(t1, x2),
then no feasible solution exists. As illustrated in Figure 7, the slopes of the lines representing the
weights W (F̄1∪F̄3(x)), W (F̄2∪F̄3(x)), and W (F̄3(x)) as x varies are given by ρR

3 (x),−ρL
3 (x),

and ρR
3 (x)−ρL

3 (x), respectively. In particular, BL
3 (x) may change only in a discrete set of points

XL = {x ∈ K|d(u, x) = 1
2D̄, u is a node of T1} and, analogously, BR

3 (x) may change only in
a discrete set of points XR = {x ∈ K|d(x, v) = 1

2D̄, u is a node of T2}.
It is easy to see that, in order to find a point x yielding a balanced cover, we only need to consider

a discrete set of values, namely X = XL ∪ XR ∪ {x1, x2}. The algorithm 3 cover does this
in polynomial time. The algorithm is summarized in Table 2. Here, for notation simplicity, we
indicate by x + δ the point obtained moving x by δ towards k2 along K, and by x − δ towards k1
along K.
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THEOREM 19: The algorithm 3 cover solves Problem 7 for p = 3, in time O(|V | log |V |).

PROOF: By similar considerations to those in the proof of Lemma 11, the computation of
points k1 and k2, the superdistricts F̄1 and F̄2 as well as the workloads W (F̄1 ∪ F̄3(k1)), W (F̄2 ∪
F̄3(k1)), and W (F̄3(k1)) can be computed in O(n) by a tree visit algorithm. Steps 2–3 locate
point x1. We move along P (t1, t2) until W (F̄1 ∪ F̄3(k1)) = 2/3W (T ). Due to Lemma 18, we
can proceed from k1 towards k2 without ever visiting the same node twice, and hence we can do it
in O(|V | log |V |), since this is identical to what done for Lemma 11 for p = 2. Similarly, in Steps
4–5 point x2 is located, with the same complexity. Steps 6–7 check if we can already conclude
our search, and can be done in constant time. At this point, the 1-center can only be located
between x1 and x2. Step 9 searches the interval [x1, x2] for a point x such that the condition (5)
W (F̄3(x)) ≥ 1

3W (T ) is met. In Step 8(b), we advance x to the next point in X . This can still
be done in O(|V | log |V |). If we get to x2 without ever satisfying condition (5), then no feasible
solution exists.

REMARK 20: The algorithm 3 cover, combined with a binary search over possible values
of D̄, implies that Problem 6, for p = 3, is solvable in time O(|V | log |V | log(D(T ) − D∗

3)).

5. CONCLUSIONS

Motivated by a districting problem for highway patrol units, we introduced a new network
partitioning problem where the network links have two weights. We addressed the special case
where the network is a tree and developed efficient algorithms to partition the network into two or
three districts. Two possible extensions of the model considered in this paper are general networks
and tree networks with more than three districts.

Getting efficient algorithms for general networks is much more complicated, because even
without the ‘‘workload’’ weight, when we have the classical p-center model, the problem is
NP-complete when p is not fixed.

Figure 7. Workloads W (·) as x varies. (The dotted lines denote the discrete set of points where the slopes
change.
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Table 2. Algorithm 3 cover.

Procedure Find 3-cover
Input Network T = (V, E, w, l), diameter D̄ such that K 6= ∅;
Output A balanced 3-cover χ = {F̄1, F̄2, F̄3} of T with diameter Dχ = D̄, if it exists;

1. Find points k1 and k2 along the diametrical path P (t1, t2);
2. Compute superdistricts F̄1, F̄2 and the workloads W (F̄1 ∪ F̄3(k1)), W (F̄2 ∪

F̄3(k1)), W (F̄3(k1));
3. δ := 0, x := k1;
4. While W (F̄1 ∪ F̄3(x + δ)) < 2

3W (T ) do

(i) x := x + δ;
(ii) δ := minv∈BR

3 (x){d(x, v) − 1
2 D̄}.

5. δ := max{0, 1
ρR
3

( 2
3W (T ) − W (F̄1 ∪ F̄3(x)))}; x1 := x + δ; δ := 0; x := k2;

6. While W (F̄2 ∪ F̄3(x − δ)) < 2
3W (T ) do

(i) x := x − δ;
(ii) δ := minu∈BL

3 (x){ 1
2 D̄ − d(u, x)}.

7. δ := max{0, 1
ρL
3

( 2
3W (T ) − W (F̄2 ∪ F̄3(x)))}; x2 := x − δ;

8. If d(t1, x1) > d(t1, x2), then STOP (no feasible solution exists);
9. If W (F̄3(x2) ≥ 1

3W (T ) then STOP ({F̄1, F̄2, F̄3(x2)} is a balanced cover);
10. δ := 0; x := x1; found := FALSE;
11. While (x < x2) and found = FALSE do if W (F̄3(x)) ≥ 1

3W (T ) then found := TRUE
else

(i) δ := min{minv∈BR
3 (x){d(x, v) − 1

2 D̄}, minu∈BL
3 (x){ 1

2 D̄ − d(u, x)}};

(ii) x := x + δ;
12. If found = TRUE then {F̄1, F̄2, F̄3(x)} is a balanced cover else, no feasible solution

exists;
13. STOP

Restricting to tree networks with fixed p, the problem appears significantly more complex for
p > 3 than the p = 3 case addressed in Section 4. In fact, the reason why we efficiently solved the
p = 3 case is because the first two centers can be easily located, and then the third center requires
only a search over a line. If p = 4, we can still locate the first two centers. However, the candidate
set for the other two centers is not necessarily a line, but rather a subforest where two points are
to be found. Hence, the weights wI depend now on two parameters. It is not clear whether such
2-dimensional set can be searched in polynomial time. One might think of further decomposing
this problem, and finding an effective way of obtaining exact 4-partitions. This is a challenging
topic for future research. Also, another area of future research is to develop heuristics with good
guaranteed worst-case bounds.

Another question concerns how to improve complexity of an algorithm for Problem 6 when
p = 3. In Section 4 we solve Problem 7 in time O(|V | log |V |) and noticed (Remark 20) that
Problem 6 can be solved in time O(|V | log |V | log(D(T ) − D∗

3)).

APPENDIX: NOTATION

T = (V, E, w, l) : tree network, nodes, links, workload and length vectors (Sect. 1.).
ρuv = wuv

luv
: density of link uv ∈ E (Sect. 1.).

P (x, y), d(x, y) : path and distance between two points x and y of the network (Sect. 1.).
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W (F ), D(F ) : total workload and diameter of subforest F (Def. 3, Sect. 1.).
t1, t2 : diametrical endpoints (Def. 3, Sect. 1.).
Si, ri, i = 1, 2, . . . s : diametrical subtrees and their roots (Def. 3, Sect. 1.).
π = {F1, . . . , Fp} : p-partition, districts (Def. 4, Sect. 1.).
Dπ = maxi=1,...,p D(Fi) : partition diameter (Sect. 1.).
D∗

p : minimum diameter of a (possibly not balanced) p-partition, i.e., the minimum objective value of p-center problem
(Sect. 1.).
χ = {F̄1, . . . , F̄p} : p-cover, superdistricts (Def. 8, Sect. 1.).
Dχ = D(F̄i), i = 1, . . . , p : superdistrict diameter (Def. 8, Sect. 1.).
wi1i2...ik

: weight of the portion of the tree that can be entirely shared only among districts Fi1 , Fi2 , . . . Fik
(Sect. 2.).

Bj , ρj , i = 1, 2 : bordering set of superdistrict F̄i, sum of densities of links crossing the border (Sect. 3.2.).
T̄ : subtree of T obtained connecting the components of T\{F̄1 ∪ F̄2} (Sect. 4.1.).
C : set of points of T at distance at most 1

2 D̄ from all the points of T̄ (Sect. 4.2.).
K : P (t1, t2) ∩ C (Sect. 4.2.).
x̂ : closest point of C to P (t1, t2) when K = ∅ (Sect. 4.2.).
F̄3(x) : set of points of T whose distance from x ∈ C is at most 1

2 D̄ (Sect. 4.3.).
k1, k2 : extremes of K (Sect. 4.3.).
T1, T2 : subtrees of T obtained by cutting T at x ∈ K (Sect. 4.3.).
BL

3 (x), ρL
3 (x), x ∈ K : left bordering set of superdistrict F̄3(x), sum of densities of links crossing the left border (Sect.

4.3.).
BR

3 (x), ρR
3 (x), x ∈ K : right bordering set of superdistrict F̄3(x), sum of densities of links crossing the left border

(Sect. 4.3.).
x1, x2 ∈ K : points of K such that W (F̄1 ∪ F̄3(x1)) = 2

3W (T ) and W (F̄2 ∪ F̄3(x2)) = 2
3W (T ), respectively

(sect. 4.3.).
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