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ABSTRACT

We consider the job shop scheduling problem with tvm jobs. We consider a broad
class of non-regular, quasi-convex functions of the completion time of the two jobs. We
show that the optimal solution, for this class of objective functions, can be computed
in O(rlogr + logH) time, where r is the number of operation pairs using the same
machine, and H is the maximum operation processing time.

Nous considerons le probleme de job shop scheduling avec deux jobs. L'objectif est la
minimisation de non-reguliere quasi convexe fonctions de les temps des achevement de
les deux jobs. Lc solution optimal pour ga classe de fonctions peut etre calculee dans
un temps O(r log r +log i/), oil r c'est le nombre d'operation paires utilisant les memes
machine, et H c'est les duree de la maximum operation.

1. INTRODUCTION

This paper deals with the job shop problem when two jobs have to be performed in the
shop. The most efficient solution algorithm for this problem is Brucker's algorithm [4],
which addresses the case in which the objective is the minimization of the makespan.
Sotskov [7] has given a polynomial algorithm for the more general case in which one
wants to minimize an arbitrary regular (i.e., nondecreasing) objective function in the
completion times of the two jobs. In this paper we extend this analysis to include
quasi-convex, nonregular objective functions. Unlike classical results on the job shop
with two jobs, the optimal schedule may not be semi-active. Both the sum and the
maximum of these two objective functions are considered as performance criteria. Our
approach consists in first finding a set of nondominated solutions, i.e., schedules which
are Paretooptimal from the viewpoint of the two jobs, and then searching for an overall
optimum among these solutions. Both steps are carried out in polynomial time, as long
as all processing times are integers.
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Figure 1: Grid representation of a two-jobs job shop, a path, and the corresponding Gantt
chart.

The problem of scheduling two jobs has several applications in the robotics-FMS
area (see for instance [1]). In fact, it models any situation in which two processes,
each consisting of a sequence on nonpreemptive tasks, compete for using a set of shared
resources. The problem is therefore to solve the possible conflicts in the most profitable
way. The case of nonregular objective functions is of interest in just-in-time production,
in which jobs should not be completed too early, to avoid downstream storage. In some
cases, early completions must be avoided for technological reasons, as in the steelmaking-
continuous casting production process. In fact, if the liquid steel is to be delivered at a
certain time t for casting, it must retain a certain temperature, which may go lost if it
is delivered too much time before t [6].

The plan of the paper is as follows. In Section 2, the notation and the preliminary
definitions are introduced. In Section 3, we show that only a limited number of schedules
need to be generated in order to flnd a global optimum. These schedules are conveniently
represented by means of the cartesian scheme illustrated in Section 4. In Section 5 we
concentrate on the aspects of line search related to the class of objective functions
considered here. Finally, in Section 6, some conclusions are drawn.

We will make use of the grid representation used by several researchers [3, 8, 5, 4, 2]
for the job shop problem with two jobs. For this reason we briefly recall it here. Let us
consider two jobs J^ and JB, both available for processing at time t = 0. Jobs J/^ and
JB consist of operations {Ai,..., i4n^ } and {Bi,..., Bno } respectively. The operations
of each job must be performed in sequence. Each operation requires a certain machine
and a given processing time. Operation Ai (Bj) requires time p^i (PBj)- We denote by
T(A) and T{B) the total processing times of the two jobs respectively. If the operations
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Ai and Bj require the same machine, they cannot be done in parallel, i.e., they form an
incompatible pair. Completion time of j o b J / {JB) will be denoted by CA (CB)-

Consider the two-axes plane, the horizontal axis corresponding to job JA and the
vertical to JB- On each axis, the operations of the respective job are indicated by
segments, the lengths being proportional to the corresponding durations. Parallel lines
to these segments result in a grid in the plane (see, e.g.. Figure 1). Let O he the origin
of the axes and D the point {T{A),T{B)), that is, the upper-right point of the grid.
On the grid, the rectangles corresponding to incompatible pairs will be referred to as
obstacles, and we will denote the obstacle by means of the corresponding incompatible
pair. In the pictorial representation of the grid the obstacles are shaded.

Any feasible schedule of the two jobs can be represented on the grid by a path from
O to D consisting of horizontal, vertical and diagonal (45°) segments. The diagonal
path segment in a rectangle implies that both operations are performed concurrently
(using different machines). Clearly, it is not feasible to take a diagonal path through an
obstacle. Horizontal (v-ertical) segments correspond to time periods during which only
•7/1 (JB) is processed, and the other job is waiting for JA (JB) to release the machine.
In this case, a conflict occurs between two incompatible operations.

The upper-left and lower-right vertices of obstacle (Ai,Bj) will be referred to as
NW{Ai, Bj) and SE{Ai, Bj) respectiwly. Note that a path hitting the obstacle {Ai, Bj)
passes through cither NWlAiyBj) OT SE{Ai,Bj).

The makespan corresponding to a feasible path is given by T{A) plus the total length
of the vertical segments of the path (or, equivalently, by T{B) plus the total length of
the horizontal segments.) Hence, in order to minimize the makespan, the path must go
diagonally whenever possible.

2. PROBLEM FORMULATION AND MINIMUM-SPAN SCHEDULES

In the problem addressed in this paper, each job has an associated ^uasi-conrer function
fi(Ci), i = A, B, of its completion time (A function f{x) : 3? —> K is quasi-convex if for
each x,ye^,Xe [0,1], /(Ax-f (1 -X)y) < max{/(x), f{y)}.) We indicate with dA and
dB the globally minimum point for fAiCA) and fB{CB) respectively. Typically d/\ and
ds can be interpreted as due dates, and fi{Ci) as earliness/tardiness costs.

Let the cost pair associated with a schedule a be (//i {CA), JB(CB)), and the cost pair
associated with a schedule a' be ( / A ( C ; I ) , / B ( C B ) ) . The cost pair {fA{CA)jB{CB))
dominates the cost pair ( / / I (C;I) , /B(C^)) iUAiC'A) > fA{CA),fB{C'B)> IB{CB), and
at least one of the two inequalities is strict.

We define a nondominated schedule as one for which there is no other schedule
dominating it.

The problems we consider can be stated as:

Problem 1 Given two jobs JA and JB and respective quasi-convex cost functions JA^CA)
and fB{CB), find a feasible schedule such that fA{CA) + fBi^B) is minimum.

Problem 2 Given two jobs JA and JB and respective quasi-convex cost functions fA^pA)
and fB{CB), find a feasible schedule such that n\ax{fA{CA),fB{C!B)} is minimum.

It is seen easily that in both problems an optimal schedule is among the set of nondom-
inated schedules. We define the span of a schedule as the time between the beginning
of the first operation and the end of the last operation of the schedule. A minimum
span schedule is a schedule whose span is minimum. A minimum makespan schedule is
a minimum span schedule where the first operation starts at time t = 0.
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For any given schedule, we call offset the difference k between the completion times
of the two jobs:

k = CB-CA. (1)

A fc-offset schedule is a schedule having offset k. A minimum span fc-ofifset schedule is
a A:-offset schedule whose span is minimum. A minimum makespan fc-offset schedule
(from now on, fc-mms) is a minimum span A;-oflset schedule where the first operation
starts at time t = 0. We denote by C^ (k) and CB (k) the completion times of the two
jobs in a fc-mms. Any minimum span fc-offset schedule can be obtained by postponing
a fc-mms, that is, by increasing the starting time of all operations by the same amount.
Also, we can always increase |fc| by postponing the last operation of the last completed
job.

With reference to the grid representation of the problem, given a feasible fc-offset
schedule, the point Dk in which the corresponding path encounters the edge of the grid
for the first time will be called meeting point. When fc >O,Dk = {T{A), T{B) - k) lies
on the right edge of the grid at distance fc from point D (see point Dk^ in Figure 2).
When k<Q,Dk = {T{A) + k,T{B)) lies on the upper edge of the grid, at distance |fc|
from point D (see point Dk^ in Figure 2). Hence, a shortest path among those having
meeting point Dk, represents a fc-mms.

In the next section we show that in order to find the nondominated schedules, all we
need is to compute a fc-mms for O{r) values of fc, where r is the number of incompatible
pairs.

3. SPECIAL VALUES OF fc: BREAKPOINTS AND JUMPS

Gonsider a value of fc, and the corresponding meeting point Dk on the grid. Let us start
drawing a 45° line towards south-west, and stop the first time that either an obstacle
{Ai, Bj) or the edge of the grid is hit. In the former case, we say that {Ai, Bj) is the last
obstacle associated with fc, and denote it as Cl{k). Note that if the path corresponding
to a fc-offset schedule passes through NW{Q{k)) or SE{fl{k)), no other confiicts occur
after the last obstacle. If starting from Dk and going south-west, the edge of the grid
is hit, a fc-mms exists without confiicts, and we associate the void last obstacle to fc.

A particular role is played by those values of fc for which Q{k) changes, i.e., fi(fc—e) ̂
n(fc + e), for some arbitrarily small € > 0. We call breakpoints these values of fc, and
we refer to the two obstacles as Q{k~) and fi(fc'*') respectively. Hence, the breakpoints
fci < fc2 < • • • partition 3? into a set / of intervals Ip = (fcp, fcp+i) such that the same
last obstacle is associated with all the values of fc in the same interval.

The next proposition shows a simple but important property of fc-mms schedules,
when fc is a breakpoint.

Proposition 1 Consider a schedule a in which the jobs have com.pletion times CA and
CB- There exists a breakpoint fc, such that C>i(fc) < CA, and CB{k) < CB-

Proof

Given the schedule a, and the completion times CA and CB, let fc = CB — CA- Glearly
if a is not a fc-mms there will be a fc-mms such that C>i(fc) < CA and CB{k) < CB- If
fc-mms is not a semi-active schedule we can make it semi-active by shifting operations
backward, possibly changing its offset to fc, thus obtaining C7/i(fc) < CA and CB{k) <
CB- From the last confiict ahead, the resulting schedule is therefore associated to a
path P going from either A^W(fi(fc+)) or 5E(f2(fc-)) to D-^ with a 45° line, without
horizontal or vertical segments. Hence, fc is a breakpoint, and the thesis follows. •
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D

Figure 2: Paths P^. P^, P and P in the proof of Theorem 1.

Some breakpoints deserve special attention. Let /p-i = (fcp_i,fcp) G / , with kp-i > 0,
and let (Au,Bv) = Q{k), for all k e Ip-i. If u = n î (i.e., the last obstacle borders
with the right edge of the grid), kp is called positive jump. Let / , = (fc,,fc,+i) € / ,
with A;,+i < 0, and let (̂ 4;, Bj) = fi(fc), for all k e Ig. If j = UB (i.e., the last obstacle
borders with the upper edge of the grid), kg is called negative jump. Finally, consider
Is = iks,k,.^.i) with A;, < 0 and k^+i > 0. If n(fc) = iAnj^,Bng) for all k e h, then fc,
and ks+i are called negative jump and positive jump respectively. Note that in this case
no A;-offset schedules exist for kg < k < fc^^i. In other words, a breakpoint fcp > 0 is a
positive jump if n{k~) borders with the right edge of the grid, and breakpoint fc, < 0
is a negative jump if fi(A;+) borders with the upper edge of the grid.

The next theorem shows the relation between the values of the job completion times
in minimum makespan fc-oflset schedules, for different values of k, when fc is a break-
point.

Theorem 1 Let kp and kg be two breakpoints, with kg > kp. The following inequalities
hold:

(t) Ifkp and fcp+i are not both positive jumps then CBQCP) <

(«) Ifkg-i and kg are not both negative jumps then CA(,kp) >

Proof

For a given path on the grid, the value of CB is given by T(B) plus the total length of
the horizontal segments. Consider the two shortest paths on the grid corresponding to
A:p-mms and A;,-mms, and call them P^ and P^ respectively. (Figure 2 shows the case
in which fcp is a negative breakpoint and A;, is a positive jump.)
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Figure 3: Path Pin the proof of Theorem 1 when Â  is a positive jump.

We first consider statement (i). Let {Ai,Bj) be the last obstacle met by path P^.
Assume first that kp is not a positive jump. If P^ passes through NW{Ai,Bj) (i.e.,
{Ai, Bj) = n(A;+), as in Figure 2), we call P the path following P^ up to the completion
of operation Ai-\, then going vertically until it meets P ' and henceforth following P^
until D. If, on the other hand, P^ passes through SE{Ai,Bj) (i.e., {Ai,Bj) = Q{k~)),
call P the path following P^ up to the completion of operation Ai, then going vertically
until it meets P \ at point SE{Ai,Bj), and henceforth following P^ until D. Suppose
now that kp is a positive jump, and kp.^i is not. Since kp.^.\ is not a jump, Q{k^) does
not border with the right edge of the grid, and hence no obstacle intersects the segment
from Dkp to the point H = {T{A) - An,,,T{B) - kp - A^j,). In this case, we call P
the path following P^ up to the completion of operation An^-u then going vertically
up to point 77, henceforth going north-east at 45° to reach point Dk^ and finally going
vertically until D (Figure 3). Note that in all the cases considered P is a fcp-offset
schedule.

Let CB be the value of CB associated with the path P. Since, up to meeting point
Dfcp, P does not contain any more horizontal segments than P^, CB is not greater than
CB{kq). On the other hand, P defines a A-yofTset schedule, and hence CB is greater
than or equal to CB{kp). This implies CB{kp) < CB{kq).

By symmetrical arguments, it is possible to prove statement {ii). Let {A^,, By) be
the last obstacle met by path P ^ Assume first that kq is not a negative jump. If P^
passes through NW{A^,By) (i.e., {Au,B,,) = n{k+)), we call P the path following P^
up to the completion of operation Bv, then going horizontally until it meets P^ and
henceforth following P^ until D. If, on the other hand, P^ passes through SE{Au,Bv)
(i.e., {Au, By) = n(^•~)), call P the path following P ' up to the completion of operation
By-i, then going horizontally until it meets P^ and henceforth following P^ until D.
Suppose now that kq is a negative jump, and fc,_i is not. Since fc,_i is not a jump,
Q{k~) does not border with the upper edge of the grid, and hence no obstacle intersects
the segment from Dk^ to the point H' = {T{A) — kq — Bnjj,T(B) — Bnt,)- In this case,
we call P the path following P^ up to the completion of operation Bn^-i, then going
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horizontally up to point H', henceforth going north-east at 45° to reach point Dk and
finally going horizontally until D. Note that in all the cases considered P is a kq-o^set
schedule. Le_t CA be the value of CA associated with the path P. Since, up to meeting
point Z?jt,, P does not contain any more vertical segments than P^, CA is not greater
than CA (kp). On the other hand, P defines a A;,-offset schedule, and hence CA is greater
than or equal to CAikq). This implies CA(kq) < CA{kp). •

A straightforivard but important consequence of Theorem 1 is expressed by the following
corollary.

Corollziry 1 Let kp and kp-^-i be two consecutive breakpoints, kp < fcp+i, with kp not
a negative jump and kp^\ not a positive jump. Then, there arc no feasible schedules
having completion times CA and CB such that CA < CA{kp) and CB < CB{kp^i).

Proof

By contradiction, assume that a schedule c exists having completion times CA and CB
such that CA < CA{kp) and CB < CB{kp^i). From Proposition 1, there must be a
breakpoint k, such that CU(^) < CA, and CB(k) < CB- Hence, k differs from kp and
k

If fc > fcp+i, from Theorem 1 we have CB(A;P+I) <CB{k), and therefore CB < CB{k).
\{ k < kp, from Theorem 1 we have CA{kp) < CA{k), and therefore CA < CA^k). In
both cases a contradiction follows. •

As long as the conditions of Corollary 1 hold, for kp < k < kp+i, no fc-mms can have
both CA and CB smaller than CA{kp) and CB{kp+i) respectively. On the other hand,
it can be easily shown that a A;-mms with CA = CA{kp) and CB < C'B(^P+I) can be
obtained from a A:p-mms by delaying operation Bm,- (See Figure 4(a).) Similarly, a
fc-mms with CB = CB{kp+i) and CA < CA{kp) can he obtained from a fcp+i-mms
by delaying operation Anj^- In any case, delaying these operations does not cause any
confiict because n(A;+) (= ^{k~^i)) is the last obstacle in any k-mms for kp < k < fcp+i,
and it does not border with the edge of the grid.

The situation is somewhat different when conditions of Corollary 1 do not hold.

Proposition 2 Let kp and kp+i be two consecutive breakpoints, kp < fcp+i.

(t) Ifkp+i is a positive jump, then CA{k) = C/i(fcp) for kp<k < fcp+i.

(«) Ifkpisa negative jump, then CB{k) = CB{kp+i) for kp<k< kp+i-

Proof

(i) Consider a positive jump kp^i. It is possible to obtain a fc-mms, fcp < fc < kp-^.^, with
CA = CA(kp) and CB < C'B(fcp+i), by delaying operation Bm, in a fcp-mms. On the
other hand, let (AnJ^,Bj) = fl{k~.^i). In any schedule in which Anji is performed before
Bj, the offset is at least Yl'h^jPBh = fcp+i. So if we want a fc-mms with fcp < fc < fcp^.i,
the path must pass through NW{Anyi, Bj), but the smallest value of CA in a schedule
passing through NW{An^,Bj) is C>i(fcp). (See Figure 4(b).) Part (n) follows from
symmetrical considerations. •

In conclusion, in order to compute a fc-mms for any value of fc, it is sufficient to consider
only the minimum makespan fc-offset schedules when fc is a breakpoint. This information
can be obtained in O(r log r) (where r is the number of obstacles) by easily adapting
the grid scanning procedure performed by Brucker's algorithm.
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Figure 4: C>i(fc) and CB{k) between two consecutive breakpoints (a) and between a break-
point and a positive jump (b).

Note that for any breakpoint fc, a fc-mms is semi-active. In fact, in such a schedule
no task can be started earlier. For all the other values of fc, any fc-mms is not semi-
active, since the path on the grid from the last obstacle to the meeting point includes a
horizontal or a vertical segment.

It is important to observe that the property expressed in Theorem 1 (and hence
Corollary 1) does not hold for consecutive jumps.

Remark 1 Let kp and fcp^-i be two consecutive positive jumps, fcp^-i > fcp. Then,
CB(fcp+i) may actually be smaller than CB{kp)- (A symmetrical result holds if kp is a
negative jump.)

The following example illustrates Remark 1.

Example 1 Consider the following jobs JA and JB, where (pxi,^j) denotes that the
i-th operation for job Jx requires processing time pxi on machine MJ: JA = (7, Mi)
(30,Ma) (33,Ms) (15,Mi), JB = (5, M3) (9,Mi) (8, M3) (5,M2) (6,M3) (6,M2) (1,Mi)
(5, Ms) (4,M2) (5,Ml) (1,M2) (3,M,) (5,M2) (7,Mi).

It is easy to verify that kp = 7 and fc, = 21 arc consecutive jumps and CB{kq) = 124 <
CB(fcp) = 128. (See Figure 5.)

4. NONDOMINATED SCHEDULES IN THE {CA,CB) PLANE

Recalling our definition of the scheduling problem (Section 2), in what follows d/ and
dB will be referred to as due dates, and fi{Ci) as earliness/tardiness costs. Clearly,
the penalty for being tardy is nondecreasing with completion time and the penalty for
being early is nonincreasing with completion time. This leads us to define the following
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(129,136)

d. - 129

Figure 5: Set of nondominated points for Example 1 with dA = 129 and dB = 120.

zones in the {CA,CB) plane:

Hereafter, we characterize the points on the {CA,CB) plane which correspond to non-
dominated schedules. Let an ideal schedule be such that both jobs finish exactly at their
due dates dA and dB- Obviously, an ideal schedule exists if and only if a {dB —dyi)-mms
exists and has length less or equal to max{d>i,dB}. In what follows we will assume that
an ideal schedule does not exist.

Proposition 3 Let {CA, CB) be a point on the {CA,CB) plane corresponding to a fea-
sible schedule o. Then, a dominates any schedule corresponding to points {CA,CB) in
the follovjing cases:

1- CA<CA,CB<CB, and {CA,CB) is in zone Zi,

2. CA<CA,CB>CB, and {CA,CB) is in zone

3- CA > CA,CB < CB, and {CA,CB) is in zone

4- CA > CACB > CB, and {CA, CB) is in zone

4.1 Zone Zi

This zone does not contain nondominated schedules. In fact, a feasible schedule having
(with CA, CB) as completion times {CA,CB G ZI) is dominated by a schedule having
either CA = d>i or CB = dB and the same offset. This is obtained by simply shifting
both jobs forward by min{d^-CU,cfB-C'B}- Hence, Zr does not contmn nondominated
schedules.
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4-2 Zone
In this zone, both jobs are late and hence objective functions are regular. From Corollary
1 all nondominated schedules in Z[v are among fc-mms's corresponding to breakpoints
or jumps.

4-3 Zones Zu and
Let now consider Zone Zu. Obviously, a symmetrical discussion holds for Zm by
exchanging the role of the two jobs JA and JB- Let fc° be the smallest offset such
that there are feasible schedules in Zu and let fc^ be the smallest breakpoint such that
fci > fc^o.

From Corollary 1, it follows that, if fc^ is a breakpoint and not a jump, then any
fc^-mms dominates all the schedules with offset fc > fcMn Zu- On the other hand, a
fc^-mms is itself dominated by any schedule corresponding to the point (d/i, CB^k^)) on
the {CA, CB) plane (note that CB(fc )̂ - d/i = fc°).

Suppose now fc^ is a jump. Let us first examine the case fc^ < 0 (i.e., C/i(fc^) >
C'B(fc )̂)- In this case, since an ideal schedule does not exist, by delaying An^ in a
fc^-mms we can get a feasible schedule corresponding to the point {dA,CB{k^)) on the
{CA, CB) plane. This schedule is a fc°-mms and dominates all other schedules in zone
Zii. Let now fc^ > 0. We first show that in this case fc^ = fc°. Let fc be the largest
breakpoint smaller than fc^. By definition of fc^, it follows that CA (fc) > d/i • From
Proposition 2 we ha-v-e that CAik°) = Cyi(fc), and therefore fc° would not lie in zone
Zfi, a contradiction. (See point (121,128) in Figure 5).

We next obserw that the point (d/i, CBik^)) does not correspond to a feasible sched-
ule (of course unless C>i(fĉ ) = d/i). In fact, since the path on the grid corresponding to
a fc^-mms passes below an obstacle {Any^,Bj), we cannot increase CA without increasing
CB by the same amount.

Consider now the segment Li having endpoints (C/i(fc^),CB(fc')) and (d/i,d/i +fc')
(briefiy, Li = [{CA{k^),CB{k^)),{dA,dA + fc^)])- Indeed, all the points of Li lying in
Zone Z{i correspond to nondominated schedules (obtained simply by moving fc^-mms
forward).

Recalling Remark 1, there may be other nondominated schedules with offset fc >
fc^. In fact, let fc be the smallest breakpoint such that fc > fc^ We may have
other jumps, at fc = k'^,k^,.-- ,k'> with fc^ < fc'^ < fc-^ < . . . < fc-' < fc' such that
CB{k^) > CB{k'^) > ---> CB{k''). We define the semi-open segments Li = [(CB(fc*) -
k\CB{k%{CBik'-'^) - k\CBik'-'^)), for i = 2,---,q. In Figure 5 we represent the
points corresponding to fc-mms's in the {CA,CB) plane for fc increasing from fc^ to fc'.
From Proposition 2, as fc increases between two jumps, CA remains constant. Hence,
Proposition 3 implies that the portions of segments L i , . . . , L, lying in zone Zu corre-
spond to all the nondominated schedules in zone Z//.

4-4 The nondom.inated set
From the discussion carried out in the previous sections, it turns out that the offset of

any nondominated schedule belongs to one of the following sets of values:

1. breakpoints,

2. values fc such that Cyi(fc) = d/i or CB{k) = dB-
Note that the schedules corresponding to the first and the third set are fc-mms, and
therefore a single schedule is associated with each value of fc. This does not hold in
general for the second set of values. In fact, when fc is a jump, all the points of a
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Figure 6: Set Af when dj\ = 53 and d^ = 55.

segment in zone Zn or Zm may correspond to nondominated schedules, all having the
same offset k (recall Section 4.3). We call E the union of the above three sets.

Example 2 Consider the following jobs J^ andJB: JA = {(10, M2), (12, M3), (6, Mi),
(4,M2), (6,Mi), (6,M2), (8,Mi)};
JB = {(4,M3), (6,Ml), (4,M2), (2,M3), (8,M2), (2,M3), (6, Mi), (4,M3), (6,M2),

Breakpoints are k = -38, -10, 10, I4, 30 with corresponding points
Pi = (92,54), P2 = (70,60), P3 = (60,70), P4 = (56,70), Ps = (52,82). Jumps
are k = -30, -20, -8, 4, 28 with corresponding points PQ = (86,56), P7 = (78,58),
Pg = (70,62), Pg = (64,68), Pio = (54,82). Note that no feasible schedule exists having
offset - 8 < fc < 4.

Let us determine the set // of points corresponding to nondominated schedules for
different values of the due dates d^ and dB. Recall that fc° is the minimum offset such
that there is a feasible schedule in Zn. Symmetrically, let ls° be the maximum offset
such that there is a feasible schedule in

= 53, dB = 55. In this case, J\f includes points P2, P4 (corresponding to break-
points) and P6, P7, Pg (corresponding to jumps). Moreover, A/" contains the
points (92,55), which dominates Pio and (53,82), which dominates Pi. These
two points lie on the borders Za/Ziv and Zm/Ziv respectively. Note that M
consists of a discrete set of points. In Figure 6, the shaded line indicates the points
corresponding to fc-mms, for fc varying from —00 to +00.
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(64,68)

[(54,82)(55,83)]

(70,60)

(78,58)

70 80 90

Figure 7: Set Af when dA = 55 and dB = 59.

M(72,64)(74,66)]

1 1
72 80 90

Figure 8. Set / / when dA = 72 and dB = 66.

55, dB = 59. In this case, Af includes points P2, P4 (breakpoints) and Pg Ou
Moreover, Af contains the segments [(54,82), (55,83)] and [(78,58), (79,59)] corre-
sponding to minimum span fc-offset schedules for fc = fc° = 28 and fc = 1̂° = —30,
respectively. (See Figure 7.)
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! (72,60)

[ (78,58)
i
i

^"^
60 4< = 72 80 90

Figure 9: Set ^f when when d>i = 72 and ds = 58.

72, ds = 66. Here, point Ps falls in Zi and all the other breakpoints and jumps
in Zri U Ziii. The set ^f only consists of segments. Namely, [(64,68), (72,76)]
in Zii, and [(72,64), (74,66)] in Zm, corresponding to minimum span fc-offset
schedules for fc = fc° = 4 and k = i° = - 8 , respectively Note that (72,64)
dominates P8.(See Figure 8.)

dA = 72, dB = 58. In this case all the breakpoints and jumj)s fall in ZnUZrn. The set
Af only consists of two points, i.e., P7 and point (72,60) for which fc = fc° = —12
and (7/1 (-12) = d/i. Observe that all the points of the segment [(78,58), (88,58)]
correspond to fc-mms's, with -30 < fc < —20 but P7 dominates them all. (See
Figure 9.)

A different case is Example 1 in Section 2, letting the due dates be d^ = 129 and
dB = 120. Figure 5 shows the points corresponding to nondominated schedules. We
have fc° = fc^ = 7 corresponding to point (121,128) in the {CA,CB) plane. The nondom-
inated schedules in Zu correspond to three segments, Li = [(121,128), (129,136)], L2 =
[(103,124), (107,128)) and L3 = [(89,120), (93,124)). Notice that L3 is obtained by re-
moving from segment [(87,118), (93,124)) the portion belonging to zone Zj. Also, note
that the jump (117,132) € Z// is dominated (by (121,128)). In accordance with Theo-
rem 1, observe that the point (125,110), corresponding to the jump fc = —15, is located
south-east of the jump (121,128) for fc = 7. The jump fc = —15 lies in zone Zi, and
determines the segment Li = [(129,114), (135,120)] of nondominated points in zone
Zfii. The point (125,85) corresponding to breakpoint fc = —40 (not shown in the fig-
ure) lies in zone Zi and is dominated by the lower endpoint of segment L\. There are
no breakpoints or jumps in zone

5. MINIMIZATION OVER NONDOMINATED SCHEDULES
In this section we consider the minimization of the cost functions defined in Problem 1:

and Problem 2:

Here we assume that CA and CB can take on only integer values.
If an ideal schedule exists, it is optimal for both problems. In the remainder of the

section we assume that such a schedule does not exist. Clearly, we can limit ourselves
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Figure 10: Curves g{CB) and 7 ( C B )

to search for an optimal schedule among the nondominated schedules JV for the given
pair {fA{CA)]fB{CB))-

As we showed in Section 4.4, the set ^f in general consists of some discrete points
(in zone Zfv) plus a set of line segments (in zones Zn and Zm). Once the function
F{CA , CB) has been evaluated at the discrete points of A/" in zone Z[v, '̂ 'e must compute
the minimum of F{CA, CB) on the line segments of zones Zu and Zm. This means
that a one-dimensional nonlinear optimization problem must be solved for each segment

On the other hand, the relevant special case in which fA{CA) and fB{CB) are
convex can be solved very efficiently. For this case we illustrate how to efficiently find
the minimum oi F{CA,CB) on the segments of zone Zu; an analogous discussion holds
for zone Zm-

Recall from Section 4.3 that we may have segments of nondominated points Li, L2,
..-,Lg with corresponding offset values fc\fc^,...,fc'. We need to optimize over these
segments.

Note that CB varies continuously between CB{k'') and dyj + fc^ (see Figure 5), while
CA has discontinuities when jumping from a segment to the next. Moreover, observe
that for each CB such that CB{k'') < CB < dA + fcS there is a unique CA such that
{CA,CB) e A**. Hence, we can express F{CA,CB) in J\f in terms of CB only, namely,
let g{CB) = F{CA, CB) with (Cyi,CB) 6 Li U L2 U. . . U L,.

Note that, even if JA{CA) and fB{CB) are convex, the function g{CB) is in general
non-convex due to the discontinuities of F when jumping from a segment to the next
(see Figure 10). Nevertheless, we next show how to efficiently minimize g{CB)-

More precisely, for CB = CB{k^), i = 2,...,q, the function g has a discontinuity.
Let a; be the value of the gap occurring at fc% i.e.
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Let 7 ( C B ) be the function obtained from g as follows: for CB(A;^) < Cs < dA +
^{CB) = 5 ( C B ) ; for CB{k') <CB< CB{k'-^), i = %...,q, '^{CB) = 9{CB)-T!h
The function 7 ( C B ) is obtained from g removing the gaps, thus obtaining a continuous
curve (see Figure 10).

Theorem 2 The function 7 ( C B ) « convex for CB e [CB(A:'),rf/i + k^].

Proof

We need to show that for any two values x and y such that CB{k'') <x<y<dA + k^,
7(Aa: + (1 - X)y) < X'r{x) + (1 - A)7(y) for each A e [0,11. If CB(A;*) <x<y<
CB{k^~^) for some i, i.e., x and y belong to the same segment, the thesis follows from
the convexity of F. Let us therefore consider the case in which x and y belong to
different segments. We can limit ourselves to the case in v/hich such segments are
consecutive, i.e., CB(A;'"'"^) < a; < CB{k') < y < C'BC^'"^) for some i. Consider the
cords u and v from 7(x) to 7(CB(A;')) and from 7(CB(A;*)) to 7(1/) respectively (see
Figure 10). Clearly, since 7 is convex in the interior of each segment, 7 lies below u and
V. If we denote by z the cord from 7(1) to 7(j/), we need to show that 7 lies below z.
Due to the convexity of F, one has

which implies that the cords u and v lie below z. •

Hence, the following can be shown easily:

Corollary 2 The minimum of g{CB) is attained either for CB{k*), i = 1,... ,q or for
a value of CB that minimizes

As a consequence of this result, we can find the value CB that minimizes 7 by means
of a simple binary search over the interval CB{k'') < CB < d>i + A;̂ .

Actually, we can restrict the search to only two consecutive segments. In fact, let
us first compute the value of 7 at all the jumps, and let CB{k*') correspond to the
breakpoint which attsdns the minimum (this takes 0{nB) time). Due to the convex-
ity of 7, the minimum of ^{CB) is either in the segment [CB(fc''),CB(fc''~^)) or in
[(7ij(fc*''*" )̂,CB(fc*'))- Therefore the binary search needs to be conducted over these
two intervals only.

Let us briefiy discuss the complexity of the binary search. Let HB indicate the
maximum processing time of job JB, that is HB = niaXt{pBi}. Observing that the
length of a segment Li cannot exceed HB + PA.TIAI the width of the interval which
must be searched in order to find the minimum of 7 ( C B ) does not exceed HB + PA.ny^
Assuming that the value of '){CB) for any given CB can be computed in constant time,
the minimum can be found in time O(log(HB + P/i.n^))- Similarly, the width of any
interval that needs to be searched in zone Zm does not exceed HA + PB.nnt where
HA = maxi{pAi}, and the minimum can be found in time C{\og{HA +PB,nB))-

In conclusion, the computational complexity to find an optimal schedule is O{r log r-|-
logHA + log HB), which is polynomial (although not strongly polynomial) in the size
of the problem instance.

Note that the whole discussion carried out for F sum of convex functions is still
x-alid as long as the following properties hold:

minF{CA,CB) = F{dA,GB) for all CB
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{CA,

(129,
(121,
(107,
(103,

CB)

136)
128)
128)
124)

9
256
64.8
66.2
66.2

7
256
64.8
64.8
64.8

Table 1:

minF(CA,CB) =

In particular, this is the case of Problem 2, with
functions.

for all

being general quasi-convex

CA) cmdExample 3 Consider the two jobs from Example 1. Let the functions
fB{CB) 6e defined as:

2.2 Cx

fB{CB) =

and consider F{CA,

12(107-<
0.1(129 - CA)
\2{CA -129)
10(120 - CB)"^
{CB -120)2

107 <CA< 129
CA > 129

<120
>120 (3)

Since there are no breakpoints in zone Z/v, to find an optimal schedule we must search
along the segments L\,L2,Lz in Zu and L\ in Ziu (see Figure 5).

In the set Li UL2 UZ/3, CB ranges between 120 and 136. In order to get 7, we need
to compute the values ai and a2. From (2), we have

We then compute the values given in Table 1:
Since 7 did not decrease moving from the point (121,128) to the point (103,124),

we can conclude that the minimum of 7 occurs at some CB € [124,128) U [128,136] and,
hence, we need not compute g and 7 at other candidate points in zone Zu (i-e., points
(93,124) and (89,120)). This minimum occurs at C^ = 126, yielding g{C's) - 62.2 and
7(C^) = g{C*Q)—a\ = 62.2 — 1.4 = 60.8, and we can conclude that the optimal schedule
in zone Zu is the one corresponding to the point (105,126). Notice that this schedule is
not a minimum makespan fc-offset schedule, but it is a minimum span fc-offset schedule
(with fc = 21).

We now consider the line segment L\ = [(129,114), (135,120)] in zone Zui- In this
case, since there are no jumps, we can directly minimize g on this segment:

F{CA,CB) = - 129) + 10(120 -

becomes, since fc = —15,

g{CB) = 12(CB - 114) -1-10(120 -

This function has its minimum at C'^ = 119.4, where g{C'Q) = 70.8.
Comparing the best schedules in zones Zu and Zm, we conclude that the optimal

solution is obtained at the point (105,126).
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6. CONCLUSIONS

In this paper we analyzed the complexity of the job shop problem with two jobs and a
rather general class of objective functions. The complexity of the problem is substan-
tially the same of the classical makespan minimization problem, as long as we accept a
term which is linear in the number of bits required to encode the problem instance.

Further research in this area will address both theoretical extensions and practical
applications. More theoretical work is needed to address even more general objective
functions, e.g. functions depending also on the completion time of intermediate opera-
tions.
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