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In its basic form the management control of a flexible production system requires to 
assign a set of operations to a set of machines, and to connect machines by a transporta- 
tion network, such that a number of constraints is satisfied and some efficiency index is 
optimized. The aim of the work is to give a general framework to formulate and model, in 
a formal way, different subproblems arising from embedding an assembly process on 
different configurations of a flexible production system. Because of the complexity of the 
overall problem, it is useful to have simple and well structured layouts and procedures 
that help the design and operation of flexible systems. These layouts and procedures 
induce additional constraints, due to the products’ and the process’ features. The paper 
also investigates the complexity of various subcases of the problem. 0 1998 Elsevier 
Science Ltd. All rights reserved 
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Introduction weights correspond to the time needed to perform 

Flexible Assembly Systems (FAS) are a class of 
automated systems which can be used to improve 
productivity in discrete parts manufacturing. For 
some contributions on manufacturing models see, for 
example’. In its basic form an FAS consists of a finite 
set of operations, each having a processing time and 
a set of precedence constraints among operations, a 
set of machines performing operations and a trans- 
portation network. A transportation network can be 
modeled as a set of positions in which machines can 
be placed, and a set of connections allowing parts to 
be moved from one machine to another. Because of 
the complexity of these systems, it is useful to have 
simple and well structured layouts and procedures 
that help the design and operation of FASs. These 
layouts and procedures induce additional constraints, 
due to the products and the processes features. A set 
N of n operations with the corresponding set A of 
precedence constraints can be represented as a 
weighted acyclic graph G(N, A) (in the following 
Assembly Graph), usually a tree, where the node 

the operations (assumed to be the same indepen- 
dently on the machine used). When an assembly 
graph is embedded in a plant layout, with all its 
different types of constraints (placement, transporta- 
tion, size, weight, information flow, computational, 
etc.), even the relatively simple structure of the tree 
may produce complex material flow patterns. Usual 
efficiency indicators (throughput, completion time, 
part transfers, workload balance, etc.) become diffi- 
cult to evaluate and even to be formulated in logical 
terms or as the optimal solution of a decision 
problem expressed in analytical form. 

The problem considered is the following: given an 
assembly graph, a set of machines and a transporta- 
tion network, find the assignments of operations to 
machines and machines to physical positions, the 
routing of the units among machines and the 
sequencing of operations on each machine, such that 
a suitable objective function is minimized (number of 
part transfer, completion time, cycle time, workload 
balance). This problem generalizes several widely 
known relevant problems in production optimization: 

*Corresponding author. the well known assembly line balancing problem 
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@LB), the tooling, and several routing and sched- 
uling problems. In particular, ALB is a traditional 
problem in industrial engineering and has been, since 
the first formulation by Hengelson et al. in 19542, the 
subject of a great number of papers. ALB falls into 
the class of NP-hard problems”, therefore most of the 
research efforts have been made to develop efficient 
heuristics solving large scale ALB problems (see for 
example4x5). As shown in Chase’s survey6 and more 
recently in7, ‘in spite of hundreds of works on 
assembly lines, only a little number of companies 
utilizes published techniques to balance their lines’, 
as in’. One of the reasons for this fact is that the 
models usually adopted to solve the problem suffer 
from substantial loss of information. In fact, little 
work has been done on modeling the full range of 
practical considerations in designing assembly lines. 
Moreover, the most common performance indices for 
this problem are the makespan and cycle time, 
whereas other factors may also heavily affect system 
performances. Some of these, such as traffic 
problems, transportation network congestion and 
set-up costs are often considered as marginal in 
Material Flow Management and in Assembly Line 
Balancing. There are a lot of meaningful cases in 
which the transportation network becomes the real 
bottleneck of the plant, due to inefficient part flow 
management procedures’. The part transfer minimi- 
zation corresponds to a surrogate for taking into 
account both traffic problems and set-up costs. Other 
possible indices for taking into account traffic 
problems are the number of links in the transporta- 
tion network needed to satisfy all the material flow 
requirements, or the existence of particular structures 
in the transportation network which are ‘difficult’ to 
manage, such as cycling of parts in the system. 

The aim of this paper is to analyze several widely 
used architectures and material flow policies, to point 
out some properties useful to design decision rules 
and to evaluate the corresponding optimal@ bounds. 
In the next section we introduce the notation and a 
numerical example. In particular we show that a 
solution resulting from a compromise taking into 
account both production rate and traffic problems 
could be more attractive than the one obtained by 
maximizing just one of these two objectives. Then we 
give a formal statement of the problem in an optimi- 
zation format. In a later section we will present some 
general properties concerning the feasibility of a 
solution, given certain partial decisions. In a later 
section we deal with the problem of optimally 
assigning operations to physical machines located in 
specified positions. 

Statement of the problem 

In this section we introduce the notation and give a 
formal statement of the problem in an optimization 
format. 

Problem data 

Acyclic assembly graph: G(N, A), where N is the set 
of n assembly and/or manufacturing operations. If arc 
(i, j)~ A then a machine k is allowed to perform 
operation j only when the subassembly resulting from 
operation i is available on machine k. Hereafter in 
the paper it is assumed that, if no precedence 
relationship exists between i and j, these operations 
are performed on different subassemblies and can be 
executed in parallel. 

Set of machines: M, there are m multipurpose 
flexible workstations M= 1, 2, . . . m in the following 
denoted as ‘machines’. A machine k E A4 can execute 
only one operation at a time, preemption is not 
allowed. In the case of flexible machines we assume 
that the tooling is decided a priori, given the 
assembly graph, and no reconfiguration is allowed 
during the running of the production process, this 
case is referred to in literature as static tool alloca- 
tion, see for example”. Therefore each machine can 
perform a fixed subset of all the operations. 

Graph of existing physical connections: E(P, C). P 
is the set of positions where a machine can be placed. 
A directed arc (i, j) exists if and only if there is a 
physical connection from position i to position j. 

Decision variables 

Partition of operations in subsets assigned to the 
machines: TC = {S,, &, . . . S,}, with 71 E II; II set of 
feasible partitions. In the following it is assumed that 
each operation can be performed by a fixed subset of 
machines and II is simply given as the set of all parti- 
tions such that each operation is assigned to an 
allowed machine. Given x, each S, corresponds to a 
completely specified machine k. In the following, to 
simplify the notation, S, also denotes the subgraph of 
G induced by the corresponding subset of operations. 
Furthermore, a partition rr = {S1, SZ, . . . SJ, such that 
each subgraph S, is connected, and will be called 
connected partition. 

Assignment of the machines to the positions: 1: 
M-+P, with 1 E A, set of feasible assignments. In fact 
there are, in general, forbidden pairs machine- 
position. ;1, E P, i E N, will denote the position 
assigned to the machine that performs operation i. Of 
course, in each position there may be at most one 
machine and therefore if lM1 > (PI, then at most 
lP/ machines will be chosen. 

Routing of the units on E: p, the function p associ- 
ates to each arc (i, j)wI the sequence of machines 
visited by the current unit passing from Ai to Aj, if 
such a sequence exists. Otherwise, i.e. in case there is 
no path from ,J to Aj in E, or 1, = 5, p associates the 
empty path to (i, j) EA. 

Sequencing operations on the machines: w, the 
function w produces, for each machine, a linear 
ordering of the operations of each subset Si of rr, for 
i= ,...,m. 1 

The design of a production system is generally 
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Figure 1 The assembly tree. 

based on two main inputs (operations to be 
performed and machines available), two main sets of 
constraints (layout and flow management constraints) 
and a main goal (throughput maximization). 
Decisions can be conveniently introduced by 
imposing 7~ = {S,, SZ, . . . S,} to be a connected or a 
non connected partition. It is useful to note that if 
partition into connected components is allowed, the 
following results are obtained: 

l if G is a tree, than the number of part transfers is 
minimized and, it is equal to m - 1; 

l machine set-up is simplified. 

A numerical example 

Let us introduce the assembly tree G(N, A) in Figure 
1. The 11 operations a, b, . . . , k (with the relative 
processing times) must be performed on three 
identical machines M,, M,, M3 which can perform all 
the operations. The transportation network E(P, C) is 
depicted in Figure 2. 

A solution minimizing makespan is the one shown 
in Figure 3 (solution 1). Here we have 7~ = {{c,d, 

Figure 2 The transportation network. 
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Figure 4 Solution 2. 
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h,k},{a,e,j},{b,f,g,i}} (each subset of the partition 7~ 
is represented by a color). ,? assigns machine M, to 
position P,, for i = 1,2,3. Function p trivially associ- 
ates to each arc (i, ~)EA the arc (n,, ~L,)EC (that in 
this case always exists). Function o is depicted in the 
Gantt chart in Figure 3. Part transfers are highlighted 
by gray bold lines. In this case the makespan and the 
cycle time are equal to 24, while the number of part 
transfers equals 7. It is easy to verify that all the 
solutions minimizing makespan require cycling of 
parts in the transportation network. 

The case of a solution not requiring part cycling is 
depicted in Figure 4. In this case the makespan equals 
25. The corresponding cycle time remains equal to 
24, therefore it also remains optimum. The number 
of part transfers is equal to 4, better than in the 
previous case. Notice that, by increasing the 
makespan by 1 (from 24 to 25) and without modifying 
the throughput, we can reduce the number of part 
transfers to 4 (solution 2). 

In Figure 5 an assignment minimizing the number 
of part transfers is depicted (solution 3). In this case 
the cycle time increases to 27, makespan is 28, 
whereas the number of part transfers is lowered to 2. 
In Table 1 the numerical results for the above 
example are summarized. 

As shown in Table 1 the solution minimizing only 
one performance index (solution 1 minimizes 

0 M1+P3 at” l2 9"'" 

:::‘r; 
e, 5 g. 6 i, 3 k, 1 

Figure 5 Solution 3. Figure 3 Solution 1. 
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Table 1 Performance of different solutions 

Used Part 
Cycle Part arcs of cycling 

Instance Makespan time transfers ft4E in E 

Solution 1 24 24 4 Yes 
Solution 2 25 24 : 3 No 
Solution3 28 27 2 2 No 

makespan, solution 3 minimizes part transfer 
number) are not efficient with respect to the other, in 
particular, solution 1 leads to the necessity for part 
cycling in the transportation network, i.e. it may 
cause congestion in the transportation network. 
Nevertheless the solution minimizing traffic problems 
(solution 3) is not efficient with respect to the 
production rate. From an overall point of view a 
better solution is solution 2, which is a compromise 
among all the different performance indices. 

General problem 

Hereafter, a general statement of the problem (in the 
following referred to as GP) is given: 
Given: G(N, A), E(P, C); 
Find: TC, II, p, o; 
Such that: 

1. the solution is feasible 
2. a suitable mix of the following quantities is 

minimized: 

(a) cycle time 
(b) completion time 
(c) number of part transfers 

By feasible solution we mean: 

1. All the single decisions are individually feasible 
with respect to the initial constraints, i.e. each 
operation is assigned to a compatible machine and 
each machine is assigned to a compatible position, 
routing and sequencing do not violate the prece- 
dence relations expressed by the graphs E(P,C) 
and G(N, A) respectively. 

2. The global solution is feasible, i.e. the single 
decisions are compatible with each other. 

Clearly, the minimization of the cycle time corre- 
sponds to the maximization of the production rate of 
the plant. This is often equivalent to the minimization 
of the bottleneck machine workload. Nevertheless it 
is often verified in practice that it is the case that 
many different solutions exist, producing approxima- 
tely the same cycle time. In this case, other goals can 
be taken into account, such as the makespan or the 
part transfers minimization. 

The minimization of the number of part transfers 
has currently received little attention in literature. In 
fact, this objective is not significant if transportation 
and set-up times are small with respect to the 
processing times. This is the case when a transporta- 
tion network does not introduce delays due to the 

traffic congestion problems (i.e. the number of part 
transfers is small and flows are ‘well structured’). On 
the other hand, in the case of complex material flow 
patterns, it is often possible to bound a priori the 
number of part transfers by looking for connected 
partitions, although this is not always feasible. In 
these cases part transfer minimization becomes signi- 
ficant (see “,“). 

GP generalizes a wide set of decision problems at 
different levels of aggregation and with different 
time-spans. In practice, the conditions allowing for a 
solution of the whole problem are seldom verified. In 
a hierarchical approach some subproblems of GP are 
usually solved, where only a subset of decision 
variables are considered, while the others are either 
fixed or considered at a lower hierarchical level in the 
next stage of the solution procedure. 

Let us distinguish three basic cases. 
The first case is when rc is the only decision to be 

taken, while A is given and (p, o) are considered a 
postetioti. This corresponds to the case of a given 
flexible plant able to produce different types of 
products, typically within given families.The problem 
consists of assigning operations to existing machines. 

The second case is when L is the only decision to 
be taken, while rr is given and (p, w) are considered a 
post&on’. This corresponds to the case of the design 
of a plant with dedicated machines, typically for large 
product rates of a small set of products. In this case 
the infrastructure to support the production (and 
often the transportation subsystem) are given and the 
problem is to assign clusters of operations, corre- 
sponding to existing machines to given positions of 
the plant. 

The third case is when (p, o) are the only decisions 
to be taken, while (71, 2) are given. This corresponds 
to the well known scheduling problems. Depending 
on rc and ,J we can obtain job-shop, flow-shop or 
more general problems. In later sections we will deal 
with the first two cases. 

Feasibility properties 

In this section we discuss some important questions 
concerning the existence of a feasible solution of GP, 
the evaluation of its performances and, in general, 
the relationships between a certain decision and the 
performances of the resulting solutions. 

In the following we will show that the first problem 
can be decomposed by operating separately on a 
subset of the decision variables rr, A, p, o rather than 
on the overall problem. Next we will show how these 
problems can be approached by representing the 
decisions rr, 1, p, w by suitably modifying the 
assembly graph G(N, A), i.e. by adding precedence 
constraints and dummy operations. In fact, any time a 
decision is taken, a new set of constraints is added to 
the problem data. On the resulting graph it is 
possible to easily evaluate performance indices such 
as the completion time, the cycle time and the part 
transfer number. 
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More precisely, given z and 3, 

l The routing decision p can be taken into account 
as denoted in the following: a routing is feasible if 
and only if: 

V(i, j) E A either EL, 

= 3>, or 3 a path on E from 1; to 1, (I) 

Let us call intermediate machines all the machines 
of the sequence (if any) which are different from pi 
and a. We can distinguish three cases: 

1. No path exists from 2, to &, in this case there is 
no feasible part transfer; we can represent this 
fact by adding to the graph G(N, A) the 
following set of arcs: 

L = ( j, i): 3 a path on G from i to j, 

lp a path on E from 1; to A,. (2) 

As a consequence of the definition of L, condi- 
tion (1) is equivalent to the condition L = 0. 

2. If I, = 5, then no part transfer is needed and the 
sequence is still void. 

3. If &#A, and there is a path from li to Jj, then a 
shortest path between the two machines is 
chosen: in particular if there is a directed 
connection then the sequence is formed by the 
two end-point machines only. If the sequence 
contains more than two machines, we must 
introduce a new set of k(i,j) dummy operations 
with zero processing time assigned to each inter- 
mediate machine. If we denote with x:,, x:,, . . . 
tici.” the dummy operations associated to the arc 1. I 
(i,j), it is possible to build a new operation 
graph from G(N, A), by denoting with N’ and A’ 
the new sets of nodes and arcs respectively: 

N’= (NLJxl;,l <h<k(i, j) EA} (3) 

A’ = (,;A i (y;;),@ X2 _) 

k(i, j) = O 

‘I’ ‘, , . . ., (XT’./), j) k(i,j) #O i 

(4) 

A new partition Z’ = {S,, S2, . . . . SL} is now intro- 
duced, due to the dummy operations introduced by p. 
It is clear that S: is the union of S, and the set of 
dummy operations assigned by p to the machine i. 

l The sequencing decision w introduces a set 0 of 
precedence constraints between operations 
assigned to the same machine. These constraints 
simply correspond to add new arcs to the graph in 
such a way that m different linear orderings (one 
for each machine) are produced, i.e. for each pair 
(i, j) of operations assigned to the same machine, 
including dummy operations introduced in (3), 
either i precedes j or vice versa. Notice that not all 
the sequences lead to a feasible solution. 

Eventually, let us denote with feasibility graph 

G’(N’,D) the graph where N’ is the new set of nodes, 

introduced in (3), and D =A’ULUO. Let us 
consider any arc (i, j) ED. We associate to this arc a 
weight equal to the transfer time from i,, to 1,. Of 
course, in the case of iii = ,?, the arc weight will be 
equal to zero. It is straightforward to verify the 
following: 

Remark 3.1. Any given solution (71, R, p, o) is 
feasible for GP ifund only if G’(N’, D) is acyclic. 

Moreover, the different objective functions intro- 
duced in the general problem can be easily computed 
on the feasibility graph G’. In fact: 

Part transfer number is given by the sum of the 
arcs cut by the partition 7~’ in the graph G’(N’, A’). 
Completion time is given by the longest path (given 
as the sum of node and arc weights) on the graph 
G’. 
The cycle time equals the longest path between two 
nodes assigned to the same machine. 

Note that if G’ contains cycles the longest path is 
co. A necessary and sufficient condition for G’ to be 
acyclic, and thus for a solution to be acyclic is given 
in the following theorem. 

Theorem 3.2. Given any acyclic graph G(N A), for 
any n E II, I& E A then there exist p, o such that 
G’(N’, D) is acyclic if and only if the condition (1) is 
verified. 

Proof. Necessity is trivial. In fact, by construction, 
G’ acyclic implies L = 0 which is in turn equivalent to 
condition (1). 

As sufficiency is concerned, we shall prove that if 
71 E II, A E A and the condition (1) is satisfied then it 
is possible to find p and o such that G’ is acyclic. 

Let G”(N’, A’) denote the graph obtained from G, 
after the decisions 7c and 1. If condition (1) is satisfied 
for each arc (i, j) EA, either 1, = iY or there is a path 
from A, to I7 in E. Therefore there is always a routing 
p such that G” is acyclic. 

Consider now a topological order on G”(N’, A’) 
(this always exists, since G” is acyclic) and number 
accordingly the nodes. For each pair (i, j) of nodes of 
N’, such that i<j, there is no path from j to i. A 
feasible w can be simply obtained by sequencing the 
operations of N’ assigned to the same machine, 
respecting the topological order. This choice cannot 
induce cycles in G’. 0 

Remark 3.3. As feasibility is concerned, we are 
allowed to ignore the decisions p, o, in fact, proof of 
Theorem 3.2 suggests an algorithm to easily find such 
decisions, given rc and 1 satisfying condition (1). 

Remark 3.3 allows us to focus our attention on the 
decisions 1. and 71, in particular, we are introducing 
the following two problems: 

l 

l 

Given x E II, find /I E A such that condition (1) 
holds. We denote this problem by FP,. 
Given 1, E A, find 7~ E n such that condition (1) 
holds. We denote this problem by FP, Since 1 is 
given, machines are fixed in certain positions so 
that problem FP;. consists in finding an assignment 
of operations to machines in such a way that 
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operations are compatible with the machines they 
are assigned to and condition (1) holds. 

Feasibility given 1 

If G is a tree, by far the most usual situation, FP, can 
be solved in polynomial time with the algorithm 
FPOP (FP assignment of Operations to Positions) 
sketched in the Figure 6. We denote by r the root of 
G. Quantity a(i, k) will be equal to 1 [0] if there is 
[not] a feasible solution in the subtree of G rooted in 
i with the condition that operation i is assigned to 
machine k. Let M, denote the set of machines able to 
perform operation i, and P,, i EN, the set of prede- 
cessors of i. It is easy to find a feasible assignment of 
operations to positions, once a(i, k) are known for 
each i EN, k EM by a backward visit of the graph G. 

Theorem 3.4. If G(N, A) is a tree, then FPOP either 
finds a solution of FP, or prove infeasibility in 0(m2n) 
time units. 

Proof, We will prove the theorem by induction on 
the depth of the tree. We state by inductive 
hypothesis that FPOP applies for a tree with depth 
lesser or equal to k (the depth of a directed tree is 
the cardinality of its longest path in terms of number 
of arcs) and then we will show how FPOP holds for 
another tree with depth equal to (k + 1). It is easy to 
verify that FPOP applies when k = 0. We know by 
Theorem 3.2 that there is a feasible solution if and 
only if rc E n and condition (1) holds. Thus a(i, k) = 1 
if and only if k EM, and for each (j, i) EA, there 
exists h EM such that a(j, h) = 1 and there exists the 
path from h to k in E. 

If we consider a (k+ 1)-deep tree, the procedure 
FPOP applies for all the subtrees rooted in j, where 
j E P,. Suppose there is a feasible solution for each of 
these subtrees: we can write a(r, k) = 1 if and only if 

k E Mi and (1) holds for each (j, r) EA. The last one is 
the condition expressed by FPOP, thus valid also for 
(k + 1)-depth tree. 

Step (a) of the procedure requires 0( [PiI x m xm) 
time. Therefore the total cost is: 

C;!,lP,l xm xm 

i.e. O(m*n). The proposition follows. 

(7) 

It is easy to show - following the proof - that, ,pf 
E contains a spanning path, i.e. a directed path that 
contains all the nodes, the complexity of FPOP could 
be reduced to O(n’). 

Feasibility given 7~ 

We are now giving some complexity results on FP,. In 
this section we restrict ourselves to the case of each 
machine compatible with each position. Given rr E II, 
x = {Sl, . ..) S,J it is possible to define a transporta- 
tion graph T(M, R), where R = {(h, k):(i,j) EA, i ES,, 

j E $1. 
Theorem 3.5. FP, is NP-complete even in the case of 

T(M, R) and E(e C) both trees, and if every machine is 
compatible with every position. 

Proof. In order to prove the NP-completeness of 
FP, we make use of the following NP-complete 
problem. 3-PARTITIONING (3P): Given a set A of 
3m elements, a bound B E Z+ and a size s(a) E Z+ for 
each a EA such that B/4 <s(a) <B/2 and such that 
znEAs(a) = mB, can A be partitioned into m disjoint 
setsA,,A,, . . . . A, such that, for 1 <i I m, XasAis(a) = B 
(note that each A, must therefore contain exactly 
three elements from A)? This problem is 
NP-complete in the strong sense13. The strong 
NP-completeness implies the existence of a 
polynomial function p such that the problem 3P, 
restricted to only those instances i that satisfy 

MaxM %@-engthKl), is still NP-complete (see l3 for 

Procedure FPOP 

Input: Assembly tree G(iV, A), set of compatible machines Mi for each operation i, A: pition of each 
machine in E. 

Output: A feasible assignment, if any, Xi for each operation i. 

1. For each leaf i E IV, let: 

a&h) := 
1 ifhcMi; 
0 otherwise. (5) 

2. Repeat the following until the root T is the only node left in Gz 

(a) Consider any node i such that all its predecessors are leaves of G. Then for each k E M 
let: 

a&k) := 1 if(kEMi)and@jEP?, 3h:o(j,h)=land~3thfromhtoIcinE); 
0 otherwise. 

(6) 
(b) Delete from G all the predecessors of node i. 

3. FPA has a solution if and only if 3h E M, such that a(h,r) = 1. 

Figure 6 Sketch of procedure FPOP. 
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the proofs and the definitions of Max[l] and 
Length[q). The problem FP, is as follows: FP,: Given 
K E II, find 3, E A such that condition (1) is satisfied. 
Instance of FP, as follows: let T(M,R) and E(P,C) be 
both rooted trees. A rooted tree is a tree in which, 
for each subtree, the root is a successor of every node 
of the subtree. In particular, we consider the special 
case in which the rooted tree T(M, R) [E(P, C)] is 
composed by the root connected with 3m [m] chains. 
For each instance of 3P let us define an instance of 
FP, by associating to each a EA a chain of T(M,R), 
composed by s(a) nodes, while each chain of E is 
composed by B nodes, as shown in Figure 7. 

It is straightforward to observe that any instance of 
3P is a yes-instance if and only if the corresponding 
instance of FP, is a yes-instance. Moreover, the 
reduction is polynomial since we can limit ourselves 
to the case of Max[l]~p(Length[q). Therefore FP, is 
NP-complete. It is also straightforward to verify that 
FP, is not a number problem (see [GJ79] for the 
definition of number problem), therefore FP, is 
NP-complete in the strong sense. 0 

It is useful to consider the condensation of the 
graphs T(M,R) and E(P, C) as defined in 14. We say 
strong component of a graph is any maximal strongly 
connected subgraph. Let C,, Cz, . . ., C,, be the strong 
components of a graph G(N, A). The condensation of 
G(N, A) is a graph G*(N*, A*) having the strong 
components of G as its nodes, and an arc from C, to 
C, exists whenever there is at least an arc from a node 
of C, to a node of C, (see Figure 8). 

Of course a condensed graph is always acyclic. 
Moreover the nodes are given weights equal to the 
cardinality IC, 1 of the corresponding strong compo- 
nent. In particular we denote by v(i), i E M* and w(j), 
j E P* the node weights in the graphs T*(M*, R*) and 
E*(P*,C*), respectively. Obviously the following 
equalities hold: 

C!‘!;‘v(i) = CyYiw(j) = m. (8) 

As a straightforward consequence of the definition 
above, a necessary condition for the existence of a 
solution of FP, is the following one. 

Remark 3.6. A solution qf FP, exists onb if 

IM”I 2 IP*l. 
A simple ‘fill-up’ heuristic for FP, is illustrated in 

Figure 9. 
Clearly, if this heuristic is repeated for all the 

possible topological orders of both T*(M*, R*) and 
E*(P*,C*), then we are guaranteed to find a feasible 
solution, if it exists. Nonetheless, in some cases we 
are guaranteed to find a feasible solution by applying 
the heuristic to only one order. In fact, if both 
T*(M*, R*) and E*(P*,C*) contain a spanning path, 
then there exists only one topological order for each 
graph, and we are done. Moreover, when E” contains 
a spanning path, and v(i) = 1 for each i EM* then, it 
is easy to see that, for any topological order induced 
by T*, the fill-up heuristic finds a solution of FP,, or 
proves infeasibility. 

On the other hand, if the condition v(i) = 1 for 
each i E M* does not hold, the problem falls in the 
class of NP-complete problems, as shown below. 

Theorem 3.7. FP, is NP-complete, even in the case of 
T* tree, E* path and each machine compatible with 
each position. 

Proof We will reduce 3-PARTITIONING to our 
problem. Given any instance of 3P, such that B is 
bounded by a polynomial function in m, we can 
associate the following instance of FP,: let T*(M, R) 
be a star with 3m leaves, for each a EA we associate a 
leave of T* with weight s(a). Let E*(P,C) be a path 
with m nodes, each of weight B. Clearly a solution of 
3P exists if and only if the corresponding solution of 
FP, exists. Let us remark that the number of nodes n 
of the original graph T equals 3mB, therefore the 
reduction is polynomial. This completes the proof. n 

Optimization properties 

In this section, we deal with the problem of finding 
one or more optimal decisions for some polynomial 
cases of (GP), being a fixed subset of the decision 
variables. 

In particular we consider the problem (GP) in the 
case of G tree, E containing a spanning path, each 

Figure 7 An instance of FP,. 
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Figure 8 A graph and its condensation. 

machine compatible with each position, and given 
7r= {S,, . ..) S,} connected, as defined in the second 
section. In this case it is possible to find in 
polynomial time a solution o*,Iz*,p* such that the 
completion time, i.e. the time necessary to complete 
all the operations, is minimized. 

Since 7c is connected, each subgraph of G induced 
byS,,,h=l,..., m is a tree. Therefore for each h = 1, 
. . ., m there is a node r(&), root of the subtree 
induced by S,. If there is a directed path from a node 
j E S, to a node i E Sk, k#h, then Y(&) belongs to this 
path. Hence, the completion time C,, of operation 
y(,S,,), for each h = 1, . . ., m, corresponds to the 
completion time of all the operations assigned to 
machine h. Let us introduce a release date 5 for each 
node j of the subgraph: 

rj = 0 if j has no predecessors 

~rj 2 ri+Pi if j is preceded by i E N’ 

rj 2 C, if j is the successor of machine k (9) 

Here pi denotes the processing time of operation i. 
Notice that, as soon as the operations assigned to a 
machine are scheduled, the release dates will change 
according to (4), because new arcs are added to the 
set A’. Since dummy operations must be scheduled 
they will affect the completion time. A lower bound 
for the values of release dates and completion times 
can be found in the hypothesis, that no dummy 

operation exists or they do not affect the system 
behaviour. 

As we are restricting our attention to the case of 
E(P,C) containing a spanning path, we will deal with 
two main different scenarios. In the first case we 
consider a complete acyclic digraph E(P,C). In the 
second case we are concerned with a line, i.e. a 
digraph E(P, C) where C = {(h, h+ l), h = 1, . . . , 

lq - 11. 
We will show that any intermediate situation can 

be viewed within these two scenarios. 
We suppose the nodes of E are numbered 

according to the (only) topological order, then 
C = {(i, j): i <j}. 

Case 1: E is a complete acyclic graph. In this case 
the problem of minimizing the makespan is trivial: 
any feasible assignment 1 (see theorem on feasibility 
3.2) is optimal. The decision p* simply consists of 
assigning no dummy operations; in fact for each pair 
of position h, k, either there is a directed connection 
or there is no path connecting them. Once il has been 
decided, the remaining problem is to schedule opera- 
tions with given release dates, on one machine, in 
order to minimize completion times, so that LO* is 
given by processing first the operations with earliest 
release dates (ERD rule). The procedure R-dates 
(described in Figure 10) finds co* together with the 
smallest release dates for each operation i EN and 
completion times for each machine, which satisfy eqn 
(4). Eventually, the values of completion times will be 
equal to the release dates of their successors. Of 
course, the makespan is equal to max {C,, . . . , CJ. 

Case 2: E is a line. Also in this case we can achieve 
the same value of makespan, as shown in Theorem 
4.1. In fact, the simple dynamic programming 
procedure MIN_MAKESPAN described in Figure 11, 
assigns machines to positions in such a way that 
dummy operations do not affect the overall 
makespan, i.e. each dummy operation always finds a 
machine available. 

Clearly the makespan obtained in Case 1 is a lower 
bound of the optimal solution for any graph E, since 
there are no dummy operations to be scheduled. 

Procedure Fill-Up 

Input: Wheighted graphs T*(M’, R*) and E’(P*, C’). 

Output: A solution of FP,. 

1. Assign an index to each node of T*(M*, R*) and E*(P) C’) equal to its position in a top 
logical order (therefore the node in the last position has the maximum index). 

2. Repeat the following until either a solution is found or not: 

(a) Chocee the node i of T’ (M*, R’) , not yet assigned, with maximum index and the node 
j of E* (P’ , C’), with maximum index and weight strictly greater than zero. 

(b) If w(i) > w(j) th en no solution is found, else the node i is assigned to position j and: 
w(j) := w(j) -v(i). 

Figure 9 Sketch of ‘fill-up’ heuristic. 
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Procedure Mates 

Input: assembly tree G(N, A) with operations processing times, connected partition 7r and corresponding 

graph T(M, R) . 
Output: decision w, values of minimum completion times Ch, for each subset of operations Sh (h = 

1 ,.**, m). 

1. Initialize release dates values: vi = 0 for each i E N. 

2. Let L = {current leaves of T}. 

3. If L is empty STOP. 

4. For each h E L do the following: 

(a) Compute Ch by scheduling operations with an ERD rule (decision u.) 

(b) Let T, := C,,, where 2 E N is the successor of Sh. 

5. Update T, by deleting all the current leaves: A4 := M \ L. 

6. Go to 2. 

Figure 10 Procedure R-dates. 

Theorem 4.1. If G(N, A) is a tree, E(E: C) contains a 
spanning path and x is given and connected, then the 
problem of finding a solution(w*, A*, p*) minimizing 
the makespan, is polynomial. 

Proof. If E is a line, the procedures R-DATES and 
MIN_MAKESPAN find a makespan equal to the lower 
bound obtained in the case of E complete acyclic 
graph. Therefore the solution is optimal. In any other 
case, we can obtain the same makespan. As regards 
the complexity of the procedures, it is easy to 
compute it in 0(n2) both for R-DATES and 
MIN_MAKESPAN. This completes the proof. 0 

Remark 4.2. Theorem 4.1 shows that makespan 
cannot be reduced by simply adding arcs to the 
spanning path. 

If we minimize cycle time, we have a different 
complexity for the case of connected partition and 
the case of general partition 7~. It is easy to verify 
that, if 7~ is connected, then the cycle time minimiza- 
tion can be achieved by looking for a partition z 
minimizing the workload of the busiest machine. For 

this purpose there exist efficient (polynomial) 
algorithms finding such a partition on paths and 
trees’5x’6. 

Furthermore, the problem of scheduling IZ jobs on 
one machine, with given release dates, acyclic prece- 
dence constraints, to find the minimum completion 
time, is polynomial”. 

Table 2 summarizes the complexity results 
concerning the optimization problem when E is a 
line. 

Conclusions 

The paper outlines and analyzes a unified framework 
for designing (or re-designing) the configuration of a 
given production plant and the corresponding 
network of material flows. The integrated approach 
could produce substantial advantages in many 
practical cases. However, the decision model falls 
into the format of a large scale integer programming 
model, often too difficult to solve for real size appli- 

Procedure Minslakespan 

Input: graphs T(M,R) (tree) and E(P,C) (line), values Ch of completion times for each subset of 
operations assigned to a machine h E M. (IA41 = IPI.) 

Output: feasible assignment A’ minimizing makespan. 

1. Assign the root T of T to the last position of the line: A*(T) := m. 

2. Sort the l&l predecesso rs of the root in increasing order of completion time (C1 5 Cz 5 . . . 5 

CIi%O. 

3. For each h E P, perform Minmakespan for the subtree of T rooted in h (call it STh) on the part 

of the line E from position 2 + c:it ISTil to position 1 + & IST’il. 

Figure 11 Sketch of procedure Min-makespan. 
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Table 2 Complexity results 

Objective Polynomial NP-complete 

Feasibility Given: 1, G tree, E path, 
Find:rr feasible. 
(Theorem 3.4) 

Part Given: rr, T tree, E path. 
transfers Find: 1 optimal. ” 

Completion Given: n connected, G 
time tree, E containing a 

spanning path. Find: 
1, p, 0 optimal. 
(Theorem 4.1) 

Given:x,T* tree, E* 
path. Find: 3, feasible. 
(Theorem 3.7) 

Given: rr, T tree, E tree. 
Find: 1 feasible. 
(Theorem 3.5) 

Given: rr, T acyclic, E 
path. Find: 1, 
optimal.” 

Given: R, d, p. Find: o 
optimal. ” 

cations. In such cases it is possible to follow a greedy- 
like approach and to determine a value of the 
decision variables applying a sequence of different 
criteria. In a first step, we will find the value of rc or J 
on the ground of practical considerations. n can 
sometimes be obtained in the process-plant 
integrated design phase by clustering operations on a 
set of good existing machines. A can be sometimes 
obtained in the machine layout phase on the ground 
of machine-positions feasibility constraints. In a 
second step, we can solve one of the decision 
modules presented in the paper finding either 2 or rc 
(models FP, or FP, respectively). Finally, in a third 
step, we can find the scheduling (w, A) by some 
simple heuristic, in the way most managers do, or by 
some more sophisticated methods. This mix of 
practical considerations, optimization technique for 
configuration and flow management scheduling 
techniques, has been proved to be effective in many 
practical cases. 

In the large production case, typical of car compo- 
nents and electronic units productions, most of the 
operations are assigned to dedicated machines in the 
design phase and only few handling operations can be 
done in different ways by different machines. 
Moreover, the strong precedence constraints among 
operations, introduce corresponding constraints 
among machine and positions. 

In the FMS case, incomplete flexible machines 
(machines without tools) are already in position. In 
this case the problem of assigning machines to 
positions is in reality an assignment of tools to 
positions, generally with only a few feasible assign- 
ments. The operations to machines assignment 
problem is, in this case, the critical point of the 
production strategy. As we can see by those 

examples, most of the real problems do not fall 
completely into the FP, or FP, format, but a wide set 
of decision variables do. The unified model helps in 
finding the right way to approach those mixed 
problems, and enlightens the modeling solution 
problems. 

A next stage in the research work will be devoted 
to the analysis of relevant applications in order to 
verify the benefits of this systematic framework to 
approach decision problems up to now solved on the 
ground of ‘practical considerations’. 
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