
ELSEVIER

Cbmprrter Intqratrd Manufumnrr~ .Svsrem\ Vol. I I. No. I--?, p. 15-24, IYYX
6: lYY8 I~lxxer Science Ltd. All right9 rcsavcd

Printed in ?ireat Bntan

I195 I-524WYX $ -~ xc front matlcr

PII: SO951-5240(98)00005-6

Modeling an assembly line for
configuration and flow management

M Lucertini*$, D Pacciarelli+ and A Pacifici*

“Dipartimento di Informatica, Sistemi e Prod&one, Universitti ‘Tor Vergata: Roma, Italy

‘Dipartimento Discipline Scientifiche: Chimica e Informatica, Universit’a di Roma Tre, Roma, Italy

In its basic form the management control of a flexible production system requires to
assign a set of operations to a set of machines, and to connect machines by a transporta-
tion network, such that a number of constraints is satisfied and some efficiency index is
optimized. The aim of the work is to give a general framework to formulate and model, in
a formal way, different subproblems arising from embedding an assembly process on
different configurations of a flexible production system. Because of the complexity of the
overall problem, it is useful to have simple and well structured layouts and procedures
that help the design and operation of flexible systems. These layouts and procedures
induce additional constraints, due to the products’ and the process’ features. The paper
also investigates the complexity of various subcases of the problem. 0 1998 Elsevier
Science Ltd. All rights reserved

Keywords: flexible assembly systems, combinatorial optimization

Introduction weights correspond to the time needed to perform

Flexible Assembly Systems (FAS) are a class of
automated systems which can be used to improve
productivity in discrete parts manufacturing. For
some contributions on manufacturing models see, for
example’. In its basic form an FAS consists of a finite
set of operations, each having a processing time and
a set of precedence constraints among operations, a
set of machines performing operations and a trans-
portation network. A transportation network can be
modeled as a set of positions in which machines can
be placed, and a set of connections allowing parts to
be moved from one machine to another. Because of
the complexity of these systems, it is useful to have
simple and well structured layouts and procedures
that help the design and operation of FASs. These
layouts and procedures induce additional constraints,
due to the products and the processes features. A set
N of n operations with the corresponding set A of
precedence constraints can be represented as a
weighted acyclic graph G(N, A) (in the following
Assembly Graph), usually a tree, where the node

the operations (assumed to be the same indepen-
dently on the machine used). When an assembly
graph is embedded in a plant layout, with all its
different types of constraints (placement, transporta-
tion, size, weight, information flow, computational,
etc.), even the relatively simple structure of the tree
may produce complex material flow patterns. Usual
efficiency indicators (throughput, completion time,
part transfers, workload balance, etc.) become diffi-
cult to evaluate and even to be formulated in logical
terms or as the optimal solution of a decision
problem expressed in analytical form.

The problem considered is the following: given an
assembly graph, a set of machines and a transporta-
tion network, find the assignments of operations to
machines and machines to physical positions, the
routing of the units among machines and the
sequencing of operations on each machine, such that
a suitable objective function is minimized (number of
part transfer, completion time, cycle time, workload
balance). This problem generalizes several widely
known relevant problems in production optimization:

*Corresponding author. the well known assembly line balancing problem

15

16 Modeling an assembly line for conjiguraion and flow management: M Lucertini et al.

@LB), the tooling, and several routing and sched-
uling problems. In particular, ALB is a traditional
problem in industrial engineering and has been, since
the first formulation by Hengelson et al. in 19542, the
subject of a great number of papers. ALB falls into
the class of NP-hard problems”, therefore most of the
research efforts have been made to develop efficient
heuristics solving large scale ALB problems (see for
example4x5). As shown in Chase’s survey6 and more
recently in7, ‘in spite of hundreds of works on
assembly lines, only a little number of companies
utilizes published techniques to balance their lines’,
as in’. One of the reasons for this fact is that the
models usually adopted to solve the problem suffer
from substantial loss of information. In fact, little
work has been done on modeling the full range of
practical considerations in designing assembly lines.
Moreover, the most common performance indices for
this problem are the makespan and cycle time,
whereas other factors may also heavily affect system
performances. Some of these, such as traffic
problems, transportation network congestion and
set-up costs are often considered as marginal in
Material Flow Management and in Assembly Line
Balancing. There are a lot of meaningful cases in
which the transportation network becomes the real
bottleneck of the plant, due to inefficient part flow
management procedures’. The part transfer minimi-
zation corresponds to a surrogate for taking into
account both traffic problems and set-up costs. Other
possible indices for taking into account traffic
problems are the number of links in the transporta-
tion network needed to satisfy all the material flow
requirements, or the existence of particular structures
in the transportation network which are ‘difficult’ to
manage, such as cycling of parts in the system.

The aim of this paper is to analyze several widely
used architectures and material flow policies, to point
out some properties useful to design decision rules
and to evaluate the corresponding optimal@ bounds.
In the next section we introduce the notation and a
numerical example. In particular we show that a
solution resulting from a compromise taking into
account both production rate and traffic problems
could be more attractive than the one obtained by
maximizing just one of these two objectives. Then we
give a formal statement of the problem in an optimi-
zation format. In a later section we will present some
general properties concerning the feasibility of a
solution, given certain partial decisions. In a later
section we deal with the problem of optimally
assigning operations to physical machines located in
specified positions.

Statement of the problem

In this section we introduce the notation and give a
formal statement of the problem in an optimization
format.

Problem data

Acyclic assembly graph: G(N, A), where N is the set
of n assembly and/or manufacturing operations. If arc
(i, j)~ A then a machine k is allowed to perform
operation j only when the subassembly resulting from
operation i is available on machine k. Hereafter in
the paper it is assumed that, if no precedence
relationship exists between i and j, these operations
are performed on different subassemblies and can be
executed in parallel.

Set of machines: M, there are m multipurpose
flexible workstations M= 1, 2, . . . m in the following
denoted as ‘machines’. A machine k E A4 can execute
only one operation at a time, preemption is not
allowed. In the case of flexible machines we assume
that the tooling is decided a priori, given the
assembly graph, and no reconfiguration is allowed
during the running of the production process, this
case is referred to in literature as static tool alloca-
tion, see for example”. Therefore each machine can
perform a fixed subset of all the operations.

Graph of existing physical connections: E(P, C). P
is the set of positions where a machine can be placed.
A directed arc (i, j) exists if and only if there is a
physical connection from position i to position j.

Decision variables

Partition of operations in subsets assigned to the
machines: TC = {S,, &, . . . S,}, with 71 E II; II set of
feasible partitions. In the following it is assumed that
each operation can be performed by a fixed subset of
machines and II is simply given as the set of all parti-
tions such that each operation is assigned to an
allowed machine. Given x, each S, corresponds to a
completely specified machine k. In the following, to
simplify the notation, S, also denotes the subgraph of
G induced by the corresponding subset of operations.
Furthermore, a partition rr = {S1, SZ, . . . SJ, such that
each subgraph S, is connected, and will be called
connected partition.

Assignment of the machines to the positions: 1:
M-+P, with 1 E A, set of feasible assignments. In fact
there are, in general, forbidden pairs machine-
position. ;1, E P, i E N, will denote the position
assigned to the machine that performs operation i. Of
course, in each position there may be at most one
machine and therefore if lM1 > (PI, then at most
lP/ machines will be chosen.

Routing of the units on E: p, the function p associ-
ates to each arc (i, j)wI the sequence of machines
visited by the current unit passing from Ai to Aj, if
such a sequence exists. Otherwise, i.e. in case there is
no path from ,J to Aj in E, or 1, = 5, p associates the
empty path to (i, j) EA.

Sequencing operations on the machines: w, the
function w produces, for each machine, a linear
ordering of the operations of each subset Si of rr, for
i= ,...,m. 1

The design of a production system is generally

Modeling an assembly line for conjiguraion and flow management: M Lucertini et al. 17

d, 7 e, 5 g, 6 i, 3 k, 1

Figure 1 The assembly tree.

based on two main inputs (operations to be
performed and machines available), two main sets of
constraints (layout and flow management constraints)
and a main goal (throughput maximization).
Decisions can be conveniently introduced by
imposing 7~ = {S,, SZ, . . . S,} to be a connected or a
non connected partition. It is useful to note that if
partition into connected components is allowed, the
following results are obtained:

l if G is a tree, than the number of part transfers is
minimized and, it is equal to m - 1;

l machine set-up is simplified.

A numerical example

Let us introduce the assembly tree G(N, A) in Figure
1. The 11 operations a, b, . . . , k (with the relative
processing times) must be performed on three
identical machines M,, M,, M3 which can perform all
the operations. The transportation network E(P, C) is
depicted in Figure 2.

A solution minimizing makespan is the one shown
in Figure 3 (solution 1). Here we have 7~ = {{c,d,

Figure 2 The transportation network.

0 M,+P, e2 v”
i_.;

kl

0 Ml-+P3

::‘:
d.7 e,5 g,6 i.3 k,l

Figure 4 Solution 2.

2.5

h,k},{a,e,j},{b,f,g,i}} (each subset of the partition 7~
is represented by a color). ,? assigns machine M, to
position P,, for i = 1,2,3. Function p trivially associ-
ates to each arc (i, ~)EA the arc (n,, ~L,)EC (that in
this case always exists). Function o is depicted in the
Gantt chart in Figure 3. Part transfers are highlighted
by gray bold lines. In this case the makespan and the
cycle time are equal to 24, while the number of part
transfers equals 7. It is easy to verify that all the
solutions minimizing makespan require cycling of
parts in the transportation network.

The case of a solution not requiring part cycling is
depicted in Figure 4. In this case the makespan equals
25. The corresponding cycle time remains equal to
24, therefore it also remains optimum. The number
of part transfers is equal to 4, better than in the
previous case. Notice that, by increasing the
makespan by 1 (from 24 to 25) and without modifying
the throughput, we can reduce the number of part
transfers to 4 (solution 2).

In Figure 5 an assignment minimizing the number
of part transfers is depicted (solution 3). In this case
the cycle time increases to 27, makespan is 28,
whereas the number of part transfers is lowered to 2.
In Table 1 the numerical results for the above
example are summarized.

As shown in Table 1 the solution minimizing only
one performance index (solution 1 minimizes

0 M1+P3 at” l2 9"'"

:::‘r;
e, 5 g. 6 i, 3 k, 1

Figure 5 Solution 3. Figure 3 Solution 1.

18 Modeling an assembly line for confguraion and flow management: A4 Lucertini et al.

Table 1 Performance of different solutions

Used Part
Cycle Part arcs of cycling

Instance Makespan time transfers ft4E in E

Solution 1 24 24 4 Yes
Solution 2 25 24 : 3 No
Solution3 28 27 2 2 No

makespan, solution 3 minimizes part transfer
number) are not efficient with respect to the other, in
particular, solution 1 leads to the necessity for part
cycling in the transportation network, i.e. it may
cause congestion in the transportation network.
Nevertheless the solution minimizing traffic problems
(solution 3) is not efficient with respect to the
production rate. From an overall point of view a
better solution is solution 2, which is a compromise
among all the different performance indices.

General problem

Hereafter, a general statement of the problem (in the
following referred to as GP) is given:
Given: G(N, A), E(P, C);
Find: TC, II, p, o;
Such that:

1. the solution is feasible
2. a suitable mix of the following quantities is

minimized:

(a) cycle time
(b) completion time
(c) number of part transfers

By feasible solution we mean:

1. All the single decisions are individually feasible
with respect to the initial constraints, i.e. each
operation is assigned to a compatible machine and
each machine is assigned to a compatible position,
routing and sequencing do not violate the prece-
dence relations expressed by the graphs E(P,C)
and G(N, A) respectively.

2. The global solution is feasible, i.e. the single
decisions are compatible with each other.

Clearly, the minimization of the cycle time corre-
sponds to the maximization of the production rate of
the plant. This is often equivalent to the minimization
of the bottleneck machine workload. Nevertheless it
is often verified in practice that it is the case that
many different solutions exist, producing approxima-
tely the same cycle time. In this case, other goals can
be taken into account, such as the makespan or the
part transfers minimization.

The minimization of the number of part transfers
has currently received little attention in literature. In
fact, this objective is not significant if transportation
and set-up times are small with respect to the
processing times. This is the case when a transporta-
tion network does not introduce delays due to the

traffic congestion problems (i.e. the number of part
transfers is small and flows are ‘well structured’). On
the other hand, in the case of complex material flow
patterns, it is often possible to bound a priori the
number of part transfers by looking for connected
partitions, although this is not always feasible. In
these cases part transfer minimization becomes signi-
ficant (see “,“).

GP generalizes a wide set of decision problems at
different levels of aggregation and with different
time-spans. In practice, the conditions allowing for a
solution of the whole problem are seldom verified. In
a hierarchical approach some subproblems of GP are
usually solved, where only a subset of decision
variables are considered, while the others are either
fixed or considered at a lower hierarchical level in the
next stage of the solution procedure.

Let us distinguish three basic cases.
The first case is when rc is the only decision to be

taken, while A is given and (p, o) are considered a
postetioti. This corresponds to the case of a given
flexible plant able to produce different types of
products, typically within given families.The problem
consists of assigning operations to existing machines.

The second case is when L is the only decision to
be taken, while rr is given and (p, w) are considered a
post&on’. This corresponds to the case of the design
of a plant with dedicated machines, typically for large
product rates of a small set of products. In this case
the infrastructure to support the production (and
often the transportation subsystem) are given and the
problem is to assign clusters of operations, corre-
sponding to existing machines to given positions of
the plant.

The third case is when (p, o) are the only decisions
to be taken, while (71, 2) are given. This corresponds
to the well known scheduling problems. Depending
on rc and ,J we can obtain job-shop, flow-shop or
more general problems. In later sections we will deal
with the first two cases.

Feasibility properties

In this section we discuss some important questions
concerning the existence of a feasible solution of GP,
the evaluation of its performances and, in general,
the relationships between a certain decision and the
performances of the resulting solutions.

In the following we will show that the first problem
can be decomposed by operating separately on a
subset of the decision variables rr, A, p, o rather than
on the overall problem. Next we will show how these
problems can be approached by representing the
decisions rr, 1, p, w by suitably modifying the
assembly graph G(N, A), i.e. by adding precedence
constraints and dummy operations. In fact, any time a
decision is taken, a new set of constraints is added to
the problem data. On the resulting graph it is
possible to easily evaluate performance indices such
as the completion time, the cycle time and the part
transfer number.

Modeling an assembly line for configuraion and flow management: M Lucertini et al. 19

More precisely, given z and 3,

l The routing decision p can be taken into account
as denoted in the following: a routing is feasible if
and only if:

V(i, j) E A either EL,

= 3>, or 3 a path on E from 1; to 1, (I)

Let us call intermediate machines all the machines
of the sequence (if any) which are different from pi
and a. We can distinguish three cases:

1. No path exists from 2, to &, in this case there is
no feasible part transfer; we can represent this
fact by adding to the graph G(N, A) the
following set of arcs:

L = (j, i): 3 a path on G from i to j,

lp a path on E from 1; to A,. (2)

As a consequence of the definition of L, condi-
tion (1) is equivalent to the condition L = 0.

2. If I, = 5, then no part transfer is needed and the
sequence is still void.

3. If &#A, and there is a path from li to Jj, then a
shortest path between the two machines is
chosen: in particular if there is a directed
connection then the sequence is formed by the
two end-point machines only. If the sequence
contains more than two machines, we must
introduce a new set of k(i,j) dummy operations
with zero processing time assigned to each inter-
mediate machine. If we denote with x:,, x:,, . . .
tici.” the dummy operations associated to the arc 1. I
(i,j), it is possible to build a new operation
graph from G(N, A), by denoting with N’ and A’
the new sets of nodes and arcs respectively:

N’= (NLJxl;,l <h<k(i, j) EA} (3)

A’ = (,;A i (y;;),@ X2 _)

k(i, j) = O

‘I’ ‘, , . . ., (XT’./), j) k(i,j) #O i

(4)

A new partition Z’ = {S,, S2, SL} is now intro-
duced, due to the dummy operations introduced by p.
It is clear that S: is the union of S, and the set of
dummy operations assigned by p to the machine i.

l The sequencing decision w introduces a set 0 of
precedence constraints between operations
assigned to the same machine. These constraints
simply correspond to add new arcs to the graph in
such a way that m different linear orderings (one
for each machine) are produced, i.e. for each pair
(i, j) of operations assigned to the same machine,
including dummy operations introduced in (3),
either i precedes j or vice versa. Notice that not all
the sequences lead to a feasible solution.

Eventually, let us denote with feasibility graph

G’(N’,D) the graph where N’ is the new set of nodes,

introduced in (3), and D =A’ULUO. Let us
consider any arc (i, j) ED. We associate to this arc a
weight equal to the transfer time from i,, to 1,. Of
course, in the case of iii = ,?, the arc weight will be
equal to zero. It is straightforward to verify the
following:

Remark 3.1. Any given solution (71, R, p, o) is
feasible for GP ifund only if G’(N’, D) is acyclic.

Moreover, the different objective functions intro-
duced in the general problem can be easily computed
on the feasibility graph G’. In fact:

Part transfer number is given by the sum of the
arcs cut by the partition 7~’ in the graph G’(N’, A’).
Completion time is given by the longest path (given
as the sum of node and arc weights) on the graph
G’.
The cycle time equals the longest path between two
nodes assigned to the same machine.

Note that if G’ contains cycles the longest path is
co. A necessary and sufficient condition for G’ to be
acyclic, and thus for a solution to be acyclic is given
in the following theorem.

Theorem 3.2. Given any acyclic graph G(N A), for
any n E II, I& E A then there exist p, o such that
G’(N’, D) is acyclic if and only if the condition (1) is
verified.

Proof. Necessity is trivial. In fact, by construction,
G’ acyclic implies L = 0 which is in turn equivalent to
condition (1).

As sufficiency is concerned, we shall prove that if
71 E II, A E A and the condition (1) is satisfied then it
is possible to find p and o such that G’ is acyclic.

Let G”(N’, A’) denote the graph obtained from G,
after the decisions 7c and 1. If condition (1) is satisfied
for each arc (i, j) EA, either 1, = iY or there is a path
from A, to I7 in E. Therefore there is always a routing
p such that G” is acyclic.

Consider now a topological order on G”(N’, A’)
(this always exists, since G” is acyclic) and number
accordingly the nodes. For each pair (i, j) of nodes of
N’, such that i<j, there is no path from j to i. A
feasible w can be simply obtained by sequencing the
operations of N’ assigned to the same machine,
respecting the topological order. This choice cannot
induce cycles in G’. 0

Remark 3.3. As feasibility is concerned, we are
allowed to ignore the decisions p, o, in fact, proof of
Theorem 3.2 suggests an algorithm to easily find such
decisions, given rc and 1 satisfying condition (1).

Remark 3.3 allows us to focus our attention on the
decisions 1. and 71, in particular, we are introducing
the following two problems:

l

l

Given x E II, find /I E A such that condition (1)
holds. We denote this problem by FP,.
Given 1, E A, find 7~ E n such that condition (1)
holds. We denote this problem by FP, Since 1 is
given, machines are fixed in certain positions so
that problem FP;. consists in finding an assignment
of operations to machines in such a way that

20 Modeling an assemb& line for configzuaion and flow management: M Lucertini et al.

operations are compatible with the machines they
are assigned to and condition (1) holds.

Feasibility given 1

If G is a tree, by far the most usual situation, FP, can
be solved in polynomial time with the algorithm
FPOP (FP assignment of Operations to Positions)
sketched in the Figure 6. We denote by r the root of
G. Quantity a(i, k) will be equal to 1 [0] if there is
[not] a feasible solution in the subtree of G rooted in
i with the condition that operation i is assigned to
machine k. Let M, denote the set of machines able to
perform operation i, and P,, i EN, the set of prede-
cessors of i. It is easy to find a feasible assignment of
operations to positions, once a(i, k) are known for
each i EN, k EM by a backward visit of the graph G.

Theorem 3.4. If G(N, A) is a tree, then FPOP either
finds a solution of FP, or prove infeasibility in 0(m2n)
time units.

Proof, We will prove the theorem by induction on
the depth of the tree. We state by inductive
hypothesis that FPOP applies for a tree with depth
lesser or equal to k (the depth of a directed tree is
the cardinality of its longest path in terms of number
of arcs) and then we will show how FPOP holds for
another tree with depth equal to (k + 1). It is easy to
verify that FPOP applies when k = 0. We know by
Theorem 3.2 that there is a feasible solution if and
only if rc E n and condition (1) holds. Thus a(i, k) = 1
if and only if k EM, and for each (j, i) EA, there
exists h EM such that a(j, h) = 1 and there exists the
path from h to k in E.

If we consider a (k+ 1)-deep tree, the procedure
FPOP applies for all the subtrees rooted in j, where
j E P,. Suppose there is a feasible solution for each of
these subtrees: we can write a(r, k) = 1 if and only if

k E Mi and (1) holds for each (j, r) EA. The last one is
the condition expressed by FPOP, thus valid also for
(k + 1)-depth tree.

Step (a) of the procedure requires 0([PiI x m xm)
time. Therefore the total cost is:

C;!,lP,l xm xm

i.e. O(m*n). The proposition follows.

(7)

It is easy to show - following the proof - that, ,pf
E contains a spanning path, i.e. a directed path that
contains all the nodes, the complexity of FPOP could
be reduced to O(n’).

Feasibility given 7~

We are now giving some complexity results on FP,. In
this section we restrict ourselves to the case of each
machine compatible with each position. Given rr E II,
x = {Sl, . ..) S,J it is possible to define a transporta-
tion graph T(M, R), where R = {(h, k):(i,j) EA, i ES,,

j E $1.
Theorem 3.5. FP, is NP-complete even in the case of

T(M, R) and E(e C) both trees, and if every machine is
compatible with every position.

Proof. In order to prove the NP-completeness of
FP, we make use of the following NP-complete
problem. 3-PARTITIONING (3P): Given a set A of
3m elements, a bound B E Z+ and a size s(a) E Z+ for
each a EA such that B/4 <s(a) <B/2 and such that
znEAs(a) = mB, can A be partitioned into m disjoint
setsA,,A,, A, such that, for 1 <i I m, XasAis(a) = B
(note that each A, must therefore contain exactly
three elements from A)? This problem is
NP-complete in the strong sense13. The strong
NP-completeness implies the existence of a
polynomial function p such that the problem 3P,
restricted to only those instances i that satisfy

MaxM %@-engthKl), is still NP-complete (see l3 for

Procedure FPOP

Input: Assembly tree G(iV, A), set of compatible machines Mi for each operation i, A: pition of each
machine in E.

Output: A feasible assignment, if any, Xi for each operation i.

1. For each leaf i E IV, let:

a&h) :=
1 ifhcMi;
0 otherwise. (5)

2. Repeat the following until the root T is the only node left in Gz

(a) Consider any node i such that all its predecessors are leaves of G. Then for each k E M
let:

a&k) := 1 if(kEMi)and@jEP?, 3h:o(j,h)=land~3thfromhtoIcinE);
0 otherwise.

(6)
(b) Delete from G all the predecessors of node i.

3. FPA has a solution if and only if 3h E M, such that a(h,r) = 1.

Figure 6 Sketch of procedure FPOP.

Modeling an assembly line for conjiguraion and flow management: M Lucertini et al. 21

the proofs and the definitions of Max[l] and
Length[q). The problem FP, is as follows: FP,: Given
K E II, find 3, E A such that condition (1) is satisfied.
Instance of FP, as follows: let T(M,R) and E(P,C) be
both rooted trees. A rooted tree is a tree in which,
for each subtree, the root is a successor of every node
of the subtree. In particular, we consider the special
case in which the rooted tree T(M, R) [E(P, C)] is
composed by the root connected with 3m [m] chains.
For each instance of 3P let us define an instance of
FP, by associating to each a EA a chain of T(M,R),
composed by s(a) nodes, while each chain of E is
composed by B nodes, as shown in Figure 7.

It is straightforward to observe that any instance of
3P is a yes-instance if and only if the corresponding
instance of FP, is a yes-instance. Moreover, the
reduction is polynomial since we can limit ourselves
to the case of Max[l]~p(Length[q). Therefore FP, is
NP-complete. It is also straightforward to verify that
FP, is not a number problem (see [GJ79] for the
definition of number problem), therefore FP, is
NP-complete in the strong sense. 0

It is useful to consider the condensation of the
graphs T(M,R) and E(P, C) as defined in 14. We say
strong component of a graph is any maximal strongly
connected subgraph. Let C,, Cz, . . ., C,, be the strong
components of a graph G(N, A). The condensation of
G(N, A) is a graph G*(N*, A*) having the strong
components of G as its nodes, and an arc from C, to
C, exists whenever there is at least an arc from a node
of C, to a node of C, (see Figure 8).

Of course a condensed graph is always acyclic.
Moreover the nodes are given weights equal to the
cardinality IC, 1 of the corresponding strong compo-
nent. In particular we denote by v(i), i E M* and w(j),
j E P* the node weights in the graphs T*(M*, R*) and
E*(P*,C*), respectively. Obviously the following
equalities hold:

C!‘!;‘v(i) = CyYiw(j) = m. (8)

As a straightforward consequence of the definition
above, a necessary condition for the existence of a
solution of FP, is the following one.

Remark 3.6. A solution qf FP, exists onb if

IM”I 2 IP*l.
A simple ‘fill-up’ heuristic for FP, is illustrated in

Figure 9.
Clearly, if this heuristic is repeated for all the

possible topological orders of both T*(M*, R*) and
E*(P*,C*), then we are guaranteed to find a feasible
solution, if it exists. Nonetheless, in some cases we
are guaranteed to find a feasible solution by applying
the heuristic to only one order. In fact, if both
T*(M*, R*) and E*(P*,C*) contain a spanning path,
then there exists only one topological order for each
graph, and we are done. Moreover, when E” contains
a spanning path, and v(i) = 1 for each i EM* then, it
is easy to see that, for any topological order induced
by T*, the fill-up heuristic finds a solution of FP,, or
proves infeasibility.

On the other hand, if the condition v(i) = 1 for
each i E M* does not hold, the problem falls in the
class of NP-complete problems, as shown below.

Theorem 3.7. FP, is NP-complete, even in the case of
T* tree, E* path and each machine compatible with
each position.

Proof We will reduce 3-PARTITIONING to our
problem. Given any instance of 3P, such that B is
bounded by a polynomial function in m, we can
associate the following instance of FP,: let T*(M, R)
be a star with 3m leaves, for each a EA we associate a
leave of T* with weight s(a). Let E*(P,C) be a path
with m nodes, each of weight B. Clearly a solution of
3P exists if and only if the corresponding solution of
FP, exists. Let us remark that the number of nodes n
of the original graph T equals 3mB, therefore the
reduction is polynomial. This completes the proof. n

Optimization properties

In this section, we deal with the problem of finding
one or more optimal decisions for some polynomial
cases of (GP), being a fixed subset of the decision
variables.

In particular we consider the problem (GP) in the
case of G tree, E containing a spanning path, each

Figure 7 An instance of FP,.

22 Modeling an assembly line for con$&uraion and flow management: M Lucertini et al.

Figure 8 A graph and its condensation.

machine compatible with each position, and given
7r= {S,, . ..) S,} connected, as defined in the second
section. In this case it is possible to find in
polynomial time a solution o*,Iz*,p* such that the
completion time, i.e. the time necessary to complete
all the operations, is minimized.

Since 7c is connected, each subgraph of G induced
byS,,,h=l,..., m is a tree. Therefore for each h = 1,
. . ., m there is a node r(&), root of the subtree
induced by S,. If there is a directed path from a node
j E S, to a node i E Sk, k#h, then Y(&) belongs to this
path. Hence, the completion time C,, of operation
y(,S,,), for each h = 1, . . ., m, corresponds to the
completion time of all the operations assigned to
machine h. Let us introduce a release date 5 for each
node j of the subgraph:

rj = 0 if j has no predecessors

~rj 2 ri+Pi if j is preceded by i E N’

rj 2 C, if j is the successor of machine k (9)

Here pi denotes the processing time of operation i.
Notice that, as soon as the operations assigned to a
machine are scheduled, the release dates will change
according to (4), because new arcs are added to the
set A’. Since dummy operations must be scheduled
they will affect the completion time. A lower bound
for the values of release dates and completion times
can be found in the hypothesis, that no dummy

operation exists or they do not affect the system
behaviour.

As we are restricting our attention to the case of
E(P,C) containing a spanning path, we will deal with
two main different scenarios. In the first case we
consider a complete acyclic digraph E(P,C). In the
second case we are concerned with a line, i.e. a
digraph E(P, C) where C = {(h, h+ l), h = 1, . . . ,

lq - 11.
We will show that any intermediate situation can

be viewed within these two scenarios.
We suppose the nodes of E are numbered

according to the (only) topological order, then
C = {(i, j): i <j}.

Case 1: E is a complete acyclic graph. In this case
the problem of minimizing the makespan is trivial:
any feasible assignment 1 (see theorem on feasibility
3.2) is optimal. The decision p* simply consists of
assigning no dummy operations; in fact for each pair
of position h, k, either there is a directed connection
or there is no path connecting them. Once il has been
decided, the remaining problem is to schedule opera-
tions with given release dates, on one machine, in
order to minimize completion times, so that LO* is
given by processing first the operations with earliest
release dates (ERD rule). The procedure R-dates
(described in Figure 10) finds co* together with the
smallest release dates for each operation i EN and
completion times for each machine, which satisfy eqn
(4). Eventually, the values of completion times will be
equal to the release dates of their successors. Of
course, the makespan is equal to max {C,, . . . , CJ.

Case 2: E is a line. Also in this case we can achieve
the same value of makespan, as shown in Theorem
4.1. In fact, the simple dynamic programming
procedure MIN_MAKESPAN described in Figure 11,
assigns machines to positions in such a way that
dummy operations do not affect the overall
makespan, i.e. each dummy operation always finds a
machine available.

Clearly the makespan obtained in Case 1 is a lower
bound of the optimal solution for any graph E, since
there are no dummy operations to be scheduled.

Procedure Fill-Up

Input: Wheighted graphs T*(M’, R*) and E’(P*, C’).

Output: A solution of FP,.

1. Assign an index to each node of T*(M*, R*) and E*(P) C’) equal to its position in a top
logical order (therefore the node in the last position has the maximum index).

2. Repeat the following until either a solution is found or not:

(a) Chocee the node i of T’ (M*, R’) , not yet assigned, with maximum index and the node
j of E* (P’ , C’), with maximum index and weight strictly greater than zero.

(b) If w(i) > w(j) th en no solution is found, else the node i is assigned to position j and:
w(j) := w(j) -v(i).

Figure 9 Sketch of ‘fill-up’ heuristic.

Modeling an assembly line for configuraion and flow management: M Lucertini et al. 23

Procedure Mates

Input: assembly tree G(N, A) with operations processing times, connected partition 7r and corresponding

graph T(M, R) .
Output: decision w, values of minimum completion times Ch, for each subset of operations Sh (h =

1 ,.**, m).

1. Initialize release dates values: vi = 0 for each i E N.

2. Let L = {current leaves of T}.

3. If L is empty STOP.

4. For each h E L do the following:

(a) Compute Ch by scheduling operations with an ERD rule (decision u.)

(b) Let T, := C,,, where 2 E N is the successor of Sh.

5. Update T, by deleting all the current leaves: A4 := M \ L.

6. Go to 2.

Figure 10 Procedure R-dates.

Theorem 4.1. If G(N, A) is a tree, E(E: C) contains a
spanning path and x is given and connected, then the
problem of finding a solution(w*, A*, p*) minimizing
the makespan, is polynomial.

Proof. If E is a line, the procedures R-DATES and
MIN_MAKESPAN find a makespan equal to the lower
bound obtained in the case of E complete acyclic
graph. Therefore the solution is optimal. In any other
case, we can obtain the same makespan. As regards
the complexity of the procedures, it is easy to
compute it in 0(n2) both for R-DATES and
MIN_MAKESPAN. This completes the proof. 0

Remark 4.2. Theorem 4.1 shows that makespan
cannot be reduced by simply adding arcs to the
spanning path.

If we minimize cycle time, we have a different
complexity for the case of connected partition and
the case of general partition 7~. It is easy to verify
that, if 7~ is connected, then the cycle time minimiza-
tion can be achieved by looking for a partition z
minimizing the workload of the busiest machine. For

this purpose there exist efficient (polynomial)
algorithms finding such a partition on paths and
trees’5x’6.

Furthermore, the problem of scheduling IZ jobs on
one machine, with given release dates, acyclic prece-
dence constraints, to find the minimum completion
time, is polynomial”.

Table 2 summarizes the complexity results
concerning the optimization problem when E is a
line.

Conclusions

The paper outlines and analyzes a unified framework
for designing (or re-designing) the configuration of a
given production plant and the corresponding
network of material flows. The integrated approach
could produce substantial advantages in many
practical cases. However, the decision model falls
into the format of a large scale integer programming
model, often too difficult to solve for real size appli-

Procedure Minslakespan

Input: graphs T(M,R) (tree) and E(P,C) (line), values Ch of completion times for each subset of
operations assigned to a machine h E M. (IA41 = IPI.)

Output: feasible assignment A’ minimizing makespan.

1. Assign the root T of T to the last position of the line: A*(T) := m.

2. Sort the l&l predecesso rs of the root in increasing order of completion time (C1 5 Cz 5 . . . 5

CIi%O.

3. For each h E P, perform Minmakespan for the subtree of T rooted in h (call it STh) on the part

of the line E from position 2 + c:it ISTil to position 1 + & IST’il.

Figure 11 Sketch of procedure Min-makespan.

24 Modeling an assembly line for conjiguraion and flow management: M Lucertini et al.

Table 2 Complexity results

Objective Polynomial NP-complete

Feasibility Given: 1, G tree, E path,
Find:rr feasible.
(Theorem 3.4)

Part Given: rr, T tree, E path.
transfers Find: 1 optimal. ”

Completion Given: n connected, G
time tree, E containing a

spanning path. Find:
1, p, 0 optimal.
(Theorem 4.1)

Given:x,T* tree, E*
path. Find: 3, feasible.
(Theorem 3.7)

Given: rr, T tree, E tree.
Find: 1 feasible.
(Theorem 3.5)

Given: rr, T acyclic, E
path. Find: 1,
optimal.”

Given: R, d, p. Find: o
optimal. ”

cations. In such cases it is possible to follow a greedy-
like approach and to determine a value of the
decision variables applying a sequence of different
criteria. In a first step, we will find the value of rc or J
on the ground of practical considerations. n can
sometimes be obtained in the process-plant
integrated design phase by clustering operations on a
set of good existing machines. A can be sometimes
obtained in the machine layout phase on the ground
of machine-positions feasibility constraints. In a
second step, we can solve one of the decision
modules presented in the paper finding either 2 or rc
(models FP, or FP, respectively). Finally, in a third
step, we can find the scheduling (w, A) by some
simple heuristic, in the way most managers do, or by
some more sophisticated methods. This mix of
practical considerations, optimization technique for
configuration and flow management scheduling
techniques, has been proved to be effective in many
practical cases.

In the large production case, typical of car compo-
nents and electronic units productions, most of the
operations are assigned to dedicated machines in the
design phase and only few handling operations can be
done in different ways by different machines.
Moreover, the strong precedence constraints among
operations, introduce corresponding constraints
among machine and positions.

In the FMS case, incomplete flexible machines
(machines without tools) are already in position. In
this case the problem of assigning machines to
positions is in reality an assignment of tools to
positions, generally with only a few feasible assign-
ments. The operations to machines assignment
problem is, in this case, the critical point of the
production strategy. As we can see by those

examples, most of the real problems do not fall
completely into the FP, or FP, format, but a wide set
of decision variables do. The unified model helps in
finding the right way to approach those mixed
problems, and enlightens the modeling solution
problems.

A next stage in the research work will be devoted
to the analysis of relevant applications in order to
verify the benefits of this systematic framework to
approach decision problems up to now solved on the
ground of ‘practical considerations’.

References
Askin RG and Standridge CR Modeling and analysis of
manufacturing systems. John Wiley and Sons, New York, 1993.
Helgeson WB, Salveson ME and Smith WW ‘How to balance
an assemblv line’, Management Report no. Z New Caraan, Carr
Press, Division for Advanced Manaiement, 1654.
Gutjahr, A. and Nemhauser, GL ‘An algorithm for the line
balancing moblem’. Management Science Vol 11 No 2 (1964)
308-315- -
Baybars, I ‘A survey of exact algorithms for the simple
assemblv line balancing oroblem’. Management Science Vol 32
(1986) 909-932 - 1 ’ ”
Ghosh, S and Gagnon, RJ ‘A comprehensive literature review
and analysis of the design, balancing and scheduling of
assembly systems’, International Journal of Production Research
Vo127 No 4 (1989) 637-670
Chase, RB ‘Survey of paced assembly lines’, Industrial
Engineering Vol 6 (1974)
Johnson, RV ‘Optimally balancing large assembly lines with
FABLE’, Management Science Vo134 No 2 (1988) 240-253
Monden Y. Toyota production system. Norcross, GAIndustrial
Engineering and Management Press.
Agnetis A, Lucertini M, Nicoletti S, Nicol’o F, Oriolo G,
Pacciarelli D, Pacifici A, Pesaro E and Rossi F ‘Scheduling
flexible flow lines in an automobile assembly plant’, European
Journal of Operational Research Vol 97 (1997) 348-362.

10 Berrada, M and Stecke, KE ‘A branch and bound approach for
workstations load balancing in flexible manufacturing systems’,
Management Science Vo132 (1986) 1316-1335

11 Lucertini M, Pacciarelli D and Pacifici A ‘Layouts in assembly
problems’, Proceedings of the 1994 Japan-USA. Symposium on
Flexible Automation, Kobe (Japan), 11-18 Jury 1994.

12 Lucertini, M, Pacciareili, D and Pacifici, A ‘Optimal flow
management inflexible assembly systems: the minimal part
transfer problem’, Systems Science Vo122 No 2 (1996) 69-80

13 Garey MR and Johnson DS. Commuters and intractability.
Freeman, 1979.

14 Harary F Graph theory. Addison-Wesley, Reading, 1969.
15 Becker, RI, Per-l, Y and Schach. SR ‘A shifting aleorithm for

min-max tree partitioning’, J.A.C.M. Vo129 (19y82) 58-67
16 Becker, RI and Perl, Y ‘A shifting algorithm for tree parti-

tioning with general weighting functions’, Journal of Algotithms
vo14 (1983) 101-120

17 Lawler, EL ‘Optimal sequencing of a single machine subject to
~~_\~rce constraints’, Management Science Vol 19 (1973)

18 Adolphson, RC and Hu, A ‘Optimal linear ordering’, SIAM
Journal ofApplied Mathematics Vo125 No 3 (1973) 403-423

19 Even S and khiloach Y ‘NP-completeness of several arrange-
ment problems’, Report n. 43, Haifa, Israel: Dept of Computer
Science, 1975.

