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Abstract
The paper deals with JET polarimeter measurements and in particular it presents
a study of the Faraday rotation angle, which is used as a constraint in equilib-
rium codes. This angle can be calculated by means of the rigorous numerical
solution of Stokes equations. A detailed comparison of calculations is carried
out with the time traces of measurements, inside a limited dataset representative
of JET discharges: in general, it is found that the Faraday rotation angle and
Cotton–Mouton phase shift measurements can be represented by the numerical
solution to Stokes equations. To obtain this agreement in particular for Faraday
rotation, a shift of the magnetic surfaces must be included. This results in an
improvement of the position of the magnetic surfaces as calculated by the EFIT
equilibrium code. The approximated linear models normally used can be app-
lied only at low density and current. The Cotton–Mouton is calculated at high
plasma density including the contribution by the Faraday rotation angle. For
high plasma current the non-linear terms in the propagation equations can be im-
portant. These conclusions have some impact on the mathematical form of the
polarimetric constraints (Faraday and Cotton–Mouton) in equilibrium codes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The measurements of polarimetry in tokamak plasmas can give important information on
plasma current and density [1]. In a plasma, in the presence of a magnetic field, the polarization

5 See the appendix of Romanelli F et al 2008 Proc. 22nd IAEA Int. Conf. on Fusion Energy Conference 2008
(Geneva, Switzerland).
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plane of a laser beam propagating along the magnetic field rotates (the Faraday effect).
Whereas, if the laser beam is propagating perpendicular to the magnetic field there is a change in
the ellipticity of the polarization (the Cotton–Mouton effect). In a beam propagating vertically
along a line of sight in a poloidal plane of a tokamak, both effects are present: due to the
topology of the magnetic field in a tokamak there is a component of the magnetic field along
the toroidal axis (which is perpendicular to the beam) and a component of the poloidal magnetic
field (generated by the plasma current) along the propagation line. The polarization of the beam
becomes elliptical because the plasma is birefringent, i.e. the optical properties of the plasma are
described by a dielectric tensor instead of a simple dielectric scalar. As a first approximation,
it is possible to consider the two effects as being independent: specifically, the Faraday effect
depending only on the magnetic field parallel to the beam direction times the plasma density,
while the Cotton–Mouton depends only on the plasma density and the perpendicular (to the
line of sight) magnetic field squared. For example, in low density plasmas this scheme is valid
(see section 2).

Since the structure of the propagation equations of polarization inside the plasma in the
magnetic field of a tokamak couples the Faraday and Cotton–Mouton (see section 2 and 5),
the two effects must be taken into account at the same time, in a rigorous approach to calculate
the change in polarization of a laser beam.

In a previous paper [2], the analysis of Cotton–Mouton measurements was carried out and
the consistency of measurements with the Stokes equation models was assessed. It was shown
that the Cotton–Mouton phase shift angle can be calculated by means of the rigorous solution
of Stokes equations, which define the spatial evolution of the polarization of the laser beam
inside the plasma. The coupling between Faraday and Cotton–Mouton was demonstrated as
being important for large Faraday effects. In fact, to analyse the coupling between Faraday
and Cotton–Mouton a new approximate analytic solution (type II) [2] was introduced. Using
the topology of tokamak magnetic fields, an ordering was found between the components of
the vector �� appearing in the Stokes equations (see section 2), leading to a simplified analytic
solution, which exhibits (i) a sensible dependence of the Cotton–Mouton phase shift upon the
Faraday rotation angle, while (ii) the Faraday rotation is not dependent on Cotton–Mouton
(see comments to (2.12)).

In this paper the analysis of Faraday rotation measurements is carried out, following the
same method developed in [2], using the Stokes equations and their numerical and approximate
solutions. The coupling between Faraday and Cotton–Mouton is further analysed, from the
general point of view, using a new set of non-linear equations derived from the Stokes ones.

The main questions, which are addressed in this paper, are: (i) which is the most
suitable model for the Faraday rotation measurements on JET and the possible improvement
to the equilibrium calculation which can be obtained through the comparison between the
measurements and the numerical solution of Stokes equations (see sections 3 and 4); (ii) how
the coupling acts on Faraday and Cotton–Mouton, i.e. whether the dependence found using the
type II solution is general (see section 5). Both points are relevant to the modelling of Faraday
rotation and Cotton–Mouton effects to be used as constraints in equilibrium codes.

To answer the previous questions, the data from a JET polarimetric system are used: few
discharges are studied which are representative of regimes where the polarimetric effects are
reasonably strong (see tables 1 and 3).

The JET interfero-polarimeter is a Mach–Zehnder interferometer [1] where the analysis
of the polarimetry has been added; it has a DCN laser working at a wavelength of 195 µm,
and eight channels, four vertical channels crossing the poloidal plane at radial coordinates
R(m) = 1.889, 2.701, 3.039, 3.738; and four horizontal channels crossing the poloidal plane
at different angles. In the following, the data from channels 3 (R = 3.039 m, crossing the
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Table 1. Plasma parameters.

ne min (a) ne max (a)
∫

ne dl Ch3(b) Te min Te max IP

Shot # (1019 m−3) (1019 m−3) (1019 m−2) (keV) (keV) BT (MA) W1 W3

60980 2 3.9 4–9 1.5 3.1 1.6/2.4 2/1.6 0.016 0.25
67777 2.7 12 6–28 2.5 3.5 2.7 2.5 0.11 1.4
75238 3 10 18–20 5 6 2.75 3.4 0.08 1.4

a Measured values of electron density by LIDAR Thomson scattering.
b Line integrated density interval as measured by the FIR interferometer, on channel 3.
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Figure 1. Equilibrium contours for shots #67777 and 75238 and positions of the line of sights of
the JET interfero-polarimeter.

plasma centre) and 4 (R = 3.738 m, approximately tangent to the last closed surface) will be
used (see figure 1).

This paper presents a comprehensive study of the following two aspects.

(I) A detailed analysis of Faraday measurements at JET and comparison with available models
(mostly approximate solutions of the Stokes equations, see section 2). It turns out that
the numerical solutions of Stokes equations are in broad agreement with the Faraday
rotation angle measurements on JET, inside the error bar (which is 0.02◦). In general
to get this agreement, a rigid radial shift of the magnetic surfaces is needed: this is
demonstrated as being useful for the centre as well as edge plasma. A specific study
shows that the comparison between model calculations and measurements leads to a more
refined identification of the radial positions of the magnetic surfaces as predicted by the
EFIT equilibrium code [3]: being the radial resolution of EFIT calculations of the order
of 0.075 m (see section 4), this study leads to a correction of the positions of the magnetic
surfaces in the range 0.02–0.05 m. This evaluation is in broad agreement with soft-x-ray
diagnostics and preliminary measurements made using an infrared camera, in particular

3
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the difference, with respect to EFIT evaluation, of the plasma centre position measured by
soft-X and IR camera measurements of the strike points on the external divertor targets,
is close to the shift of the magnetic surfaces obtained using polarimetry.

(II) A rigorous approach to the interaction between Faraday and Cotton–Mouton (studied in
recent papers, see [2] for details): it is demonstrated that at high density and current, the
Cotton–Mouton must be calculated including the dependence by Faraday rotation.

Since the solutions to the Stokes equations were discussed in [2], the names and
classification of the solutions are retained in this paper, and only a short introduction to Stokes
equations and solutions will be presented, the details are given in [2].

The paper is organized as follows: in section 2, a short summary of the measurements of
the JET polarimetry system is given, together with the Stokes equations and their approximate
solutions: an example of a comparison between Faraday rotation measurements and model
calculations is presented; in section 3, the analysis of Faraday rotation measurements and a
comparison with a rigorous solution of polarimetry propagation equations is used to determine
an improvement of the position of the magnetic surfaces as calculated by EFIT (magnetic
equilibrium code); in section 4, a statistical analysis on large databases of the determination of
the position is presented; in section 5, a theoretical analysis of the coupling between Faraday
and Cotton–Mouton effects and its application to study shots with high density and high plasma
current is presented. The coupling between Faraday and Cotton–Mouton is analysed using a
new set of equations (derived from and equivalent to the Stokes equations) which are useful to
understand how the coupling acts; in section 6, comments are presented on the mathematical
models of Faraday and Cotton–Mouton to be used as constraints in equilibrium codes; in
section 7, the conclusions are presented.

Hereafter a plasma discharge is also named as ‘shot’; and ‘numerical solution’ always
refers to the numerical solution of the Stokes equations (see equation (2.2)), using as input
to the equations, the density profile measured by Thomson scattering and the magnetic fields
calculated by the EFIT equilibrium code [3] (see section 2); the terms ‘Faraday’ (‘Cotton–
Mouton’) will be used often, meaning ‘Faraday rotation angle’ (‘Cotton–Mouton phase shift
angle’) measurements. In the paper the symbols: (i) ϕT and ψT are used for the Cotton–
Mouton phase shift (CM) and Faraday rotation angle (FR), respectively, obtained by numerical
solutions of Stokes equations; (ii) ϕex and ψex are used for the corresponding CM and FR
polarimetric measurements; (iii) ϕTyII and ψTyII are used for the quantities calculated using
formulae (2.12); (iv) Wi (i = 1, 2, 3) are defined in equation (2.7)–(2.9) defining the type I
approximation; (v) W3G is the Gunther Model A approximation, whose explicit expression is
given in [2].

2. Stokes equations and their approximate solutions

The considered geometry includes the propagation of a laser beam along a vertical chord (taken
as the z-axis) in a poloidal plane of a tokamak. The toroidal magnetic field ( �Bt) is taken along
the y-axis, while the component of the poloidal magnetic field perpendicular to the propagation
z-axis is taken along the x-axis (identical to the radial axis). The angle of the electric field
vector of the input wave with �Bt is 45◦, to maximize the Cotton–Mouton phase shift angle or
the ellipticity of the wave.

The polarization of a beam can be described using the Stokes vector �s, whose components
are expressed in terms of the ellipticity angle (χ) and Faraday angle (ψ), or in terms of the
ratio of the hortogonal components of the laser beam electric field (the ratio Ey/Ex = tan α)

and their phase shift angle (ϕ).

4
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The equations defining the Stokes vector �s = (s1, s2, s3) [2, 4, 5], in terms of (χ, ψ) and
(α, ϕ) are

s1 = cos(2χ) cos(2ψ) = cos(2α),

s2 = cos(2χ) sin(2ψ) = sin(2α) cos(ϕ),

s3 = sin(2χ) = sin(2α) sin(ϕ),

s2
1 + s2

2 + s2
3 = 1.

(2.1)

In terms of the polarization ellipse, ψ (the Faraday rotation angle) is the azimuth of the
polarization ellipse (0 � ψ � π), χ is the ellipticity angle given by tan χ = ±b/a

(−π/4 � χ � π/4), where the major semiaxis of the polarization ellipse is a and the
minor semiaxis is b, and the plus sign is taken for clockwise rotation of the wave electric field,
looking towards the radiation source.

The previous equations are valid when the absorption of the wave is negligible (see [8])
so that the Stokes vector is described by only three components (two of them are independent,
see (2.1)).

The JET polarimeter system measures primarily (i) two components of the electric field
(Ex and Ey , in a plane orthogonal to the propagation direction) of the laser beam emerging
from the plasma as well as (ii) the phase shift (ϕ) between these components. So the primary
measurements are

tan α = Ey

Ex

and ϕ.

In principle, the JET polarimetric system gives the possibility of determining directly the values
of the components of the Stokes vector, using the measurements of α and ϕ and definitions (2.1).

The Faraday rotation angle and ellipticity (defined as ε = tan χ) are obtained from
equation (2.1):

tan 2ψ = tan 2α cos ϕ,

tan 2χ = s3√
1 − s2

3

.

The spatial evolution along the z-axis of the polarization of a beam is given by the Stokes
equation:

d�s
dZ

= �� × �s (2.2)

where
�� = ka(�1, �2, �3) and �1 = C1n(B2

t − B2
x ), �2 = 2C1nBxBt, �3 − C3nBz

(2.3)

where Bt is the toroidal magnetic field (Tesla), Bz is the component of the poloidal magnetic
field along the propagation axis, Bx is the component of poloidal magnetic field orthogonal to
the propagation axis (the ratio Bx/Bt � 10−1, so neglecting Bx implies an error �1% in the
evaluation of �1), n is the electron density (m−3), C1 = 1.8 × 10−22 and C3 = 2 × 10−20,
calculated for the laser wavelength of λ = 195 µm, and Z = z/ka is the normalized coordinate
along a vertical chord, where k is the elongation anda is the minor radius. The relations between
the Faraday rotation ψ and the Cotton–Mouton phase shift ϕ angles and the corresponding
components of Stokes vector follow from (2.1):

s2

s1
= tan 2ψ (2.4)

s3

s2
= tan ϕ. (2.5)

5
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Table 2. Error bars of measurements used in the calculations.

Diagnostic system Measured quantity Symbol Error bar

Polarimeter Faraday rotation ψ 0.2◦

Polarimeter Cotton–Mouton phase shift ϕ 2◦

LIDAR Thomson scattering Line-integral plasma density
∫

ne dL 10%
LIDAR TS Plasma density profile ne 5%
LIDAR TS Plasma temperature profile Te 10%

Equation (2.2) is solved, with the initial condition (i.e. the Stokes vector of the input
wave):

�sinput = (0, 1, 0) (2.6)

corresponding to a 45◦ angle between the electric field vector of the input wave and �Bt . This
arrangement is optimized for Cotton–Mouton measurements.

In this work data related to the channels 3 and 4 are presented: the data exhibit a reasonably
good signal to noise ratio and the geometry to be analysed is relatively simple. Figure 1 shows
for shots #67777 and #75238 the equilibrium contours and the positions of the line of sights
of the vertical and horizontal channels of the polarimeter, channel 3 is the vertical line at
R = 3.039 m, while (vertical) channel 4 has the radial coordinate at R = 3.738 m.

The values of the vector �� = ka(�1, �2, �3) are obtained [2] using the values of �B
as calculated by the EFIT equilibrium reconstruction and the LIDAR Thomson scattering
measurements of plasma density (n) projected along the line of sight of the vertical channels
on the basis of the reconstructed equilibrium.

The values of �B in the following sections are determined by EFIT using mainly external
(to the plasma) magnetic measurements. The question is about the accuracy of the evaluation
of the magnetic field given by EFIT, and its effect on the accuracy of the calculations of Faraday
rotation by solving the Stokes equations. This question is linked to the accuracy of the EFIT
determination of the current profile and the related safety factor spatial profile. The accuracy of
the safety factor evaluations made by EFIT could be estimated	q(0)/q(0) � 20–30% [12, 13],
where q(0) is the safety factor at the plasma centre. The effect of the accuracy of the current
profile on the interpretation of polarimetric measurements can be evaluated noting that channel
3 has a line of sight passing through the magnetic centre where the poloidal magnetic field
(Bp) is inverting the sign (being Bp = 0 at the magnetic centre) so the determination of
the Faraday is mostly influenced by the values of Bp at mid-radius where the accuracy is
relatively improved and the error bar could be estimated in 	Bp/Bp(mid-radius) � 10%,
leading to an estimation of the accuracy of 	�i(i = 1, 2, 3)/�i � 15% (if the accuracy on
the measurements of the plasma density profile, see table 2, is included). To link this evaluation
to the accuracy on the calculation of Stokes vector we note that the Stokes equations (2.2) can be
written as

d�s
dZ

= M · �s,
where M is a matrix containing �i . The formal solution can be expressed as si =
exp(

∫
Mij dZ) · s0j which implies that the error bar on the values of the Stokes vector can be

evaluated as 	s/s � max(	M/M) � 	�i(i = 1, 2, 3)/�i ∼ 15%. The accuracy on the
equilibrium calculation has the effect on the calculation of the Faraday rotation angle leading to
the rough evaluation of 	ψ/ψ ∼ 	s/s � 15% (using equation (2.4), and the approximation
of tan 2ψ ∼ 2ψ).

6
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The type I solution [2, 5] is obtained as the first term of a series expansion in Wi =∫
�i dz,W 2

i � 1 (i = 1, 2, 3), to the solution of the system of ordinary differential equations
(2.2), together with the initial condition (2.6). In this approximation the relations between the
Stokes vector, the Faraday rotation ψ and Cotton–Mouton phase shift angle ϕ are given by

s1 = −W3 = C3

∫
neBz dz = 1/ tan 2ψ, (2.7)

s2 = 1 − (W 2
1 + W 2

3 )/2 ≈ 1, (2.8)

s3 = W1 = C1

∫
B2

t ne dz = tan ϕ. (2.9)

Relations (2.7) and (2.9) are the key equations used for evaluating the polarimetric
measurements linking the Faraday rotation to the component of the poloidal magnetic field
along the direction of propagation of the laser beam (and then to the plasma current profile), and
the Cotton–Mouton phase shift angle to the line integral of the electron density. The expressions
in (2.7) and (2.9) are valid only for W 2

i � 1: for large Faraday and Cotton–Mouton angles
(see also in the following the discussion on type II approximation) other methods must be used
to find solutions to the Stokes equations. The term ‘linear approximation’ will be used in this
paper with reference to formulae (2.7)–(2.9).

The physical meaning of the type I approximation can be appreciated, if we consider
the situation where the transverse components of the magnetic field are not present (i.e.
Bt = Bx = 0 in (2.3), and �1 = �2 = 0), and there is a magnetic field Bz in the direction
of beam propagation. This is the case of a ‘pure’ Faraday rotation. Solving the Stokes
equations (2.2) with the initial conditions (2.6) leads to the solutions:

s1 = cos 2ψ = cos(2ψ0 + W3),

s2 = sin 2ψ = sin(2ψ0 + W3),

s3 = sin 2χ0 = 0,

the Faraday rotation is then obtained from the previous equations:

2ψ = 2ψ0 + W3. (2.10)

It can be verified that the previous formula leads to (2.7) (type I) at the same level of the
approximation (i.e. W3 � 1, in practice W3 � π/6 = 0.5). The ‘pure’ Faraday rotation is
represented by W3/2.

The ‘pure Cotton–Mouton’ can be derived from the solutions of Stokes equations
considering the case of Bz = Bx = 0, i.e. �3 = 0 = �2:

s1 = s10 = 0,

s2 = sin 2α0 cos ϕ = sin 2α0 cos(ϕ0 + W1) = cos(ϕ0 + W1),

s3 = sin 2α0 sin ϕ = sin 2α0 sin(ϕ0 + W1) = sin(ϕ0 + W1).

The ‘pure Cotton–Mouton’ is then represented by W1; in fact from the previous equations we
obtain

ϕ = ϕ0 + W1.

Under the ideal conditions ϕ0 = 0, so ϕ = W1.
The physical meaning of W1 and W3 is related to ‘pure’ Cotton–Mouton and Faraday

rotation, respectively, in a context where the two effects can be considered separately,
independent and small.

7
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More general approximate solutions [2] to equation (2.2) can be found, observing that the
following inequalities between the components of the vector �� hold for tokamak plasmas:

|�3| � �1 > |�2|. (2.11)

As a consequence of condition (2.10), the terms with component �2 can be neglected
in the Stokes equations (2.2) and terms in �1s3 neglected with respect to �3s1, in these
approximations the Stokes equations can be integrated analytically, and the expressions (type II
solutions) for the Faraday angle and Cotton–Mouton phase shift can be obtained [2]:

s2

s1
(z) = tan 2ψ = − 1

tan(W3)
= tan(W3 + 2∗π/4),

s3

s2
(z) = tan ϕ =

∫ +z

−z
dy�1(y) cos(W3(y))

cos(W3(z))
. (2.12)

A clear trend present in formulae (2.12) is that the Cotton–Mouton phase shift increases
with W3 (for values corresponding to JET data) (see section 3 and figure 6). In practice
for Faraday rotation angles ψ − ψ0 � 12◦ (the initial angle is ψ0 = π/4, see (2.6)),
1 � cos(W3) � 0.9 and tan ϕ ≈ W1, within an approximation of 10%, whereas for Faraday
angles ψ − ψ0 � 12◦ the Cotton–Mouton increases due to the enhancement linked with
Faraday rotation (W3 � 2π/15 = 0.4).

In the following discussion concerning the comparison between measurements and model
calculations, the Guenther Model A [4] will be cited as well: a discussion of the details of this
model is given in [2, 5]. This model is the analytic solution of Stokes equations in the limit of
�3/�1 ∼ Bz/B

2
x = K = constant.

Examples of the calculations of the Faraday effect can be produced, starting from data of
shots representative of JET typical operational space. Table 1 gives a choice of three shots with
parameters from low density/low current, to high density/high current. Table 2 summarizes
the values of the experimental errors in the measurements used in the Stokes equations.

We start with a low density shot (#60980): the case of ‘pure’ Faraday effect. In particular,
type I is expected to fit well the data and this is due to the low value of the Faraday
angle and corresponding W3. Figure 2(a) shows the numerical solution of Stokes equations
(1/ tan 2ψT), together with the Faraday measurements (1/ tan 2ψex) for shot #60980: the
numerical solution agrees with measurements within the error bar, which for Faraday rotation
angle is 	ψ = 0.004 rad(0.22◦). The data shown on the plot are taken every 840 ms. A
χ2/n = 0.9 (n is the number of data) is calculated: the model fits well the data. Figure 2(b)
shows the plasma parameters of shot #60980: time evolution of the line integrated electron
density on channel 3 measured by the interferometer, maximum temperature as measured by
LIDAR Thomson scattering, toroidal magnetic field and plasma current. The strong dynamics
of the polarimeter at time = 15 s is reflected by the variation of the interferometer.

Figure 3 shows the comparison between Faraday measurements and the approximate
solutions (type I (2.7-9), type II (2.12) and Guenther Model A (W3G)) for the low density
shot #60980. All the models are in agreement with the measurements, with different levels
of accuracy: the values of the χ2/n = 1.33 (type II), 1.46 (type I) and 0.0025 (Guenther
Model A). The Guenther Model A fits well the data.

Effects on polarization state due to dichroism (differential absorption of the characteristic
waves propagating inside plasma) were analysed (see [8]): for JET plasma parameters the
absorption of the injected wave is negligible and calculations show that the order of magnitude
of the matrix elements corresponding to dichroism are a factor of 10−9 with respect to values
of �1,3, appearing in the Stokes equations.

8
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Figure 2. (a) Faraday rotation measurement (continuous line, shot #60980, channel 3) is plotted
together with the calculated values (‘∗’ symbol) using the numerical solution of Stokes equations.
Plasma parameters are given in table 1. Agreement within the error bars. (b) Plasma parameters
of shot #60980, from top: measurements of line integrated density by the interferometer channel
3 shot #60980; Electron temperature measured by LIDAR Thomson scattering; plasma current
(MA); toroidal magnetic field (T).

3. Faraday rotation measurements and EFIT equilibrium evaluation

The calculation of the Faraday rotation angle using the Stokes model is very sensitive to the
components of the magnetic field used in the numerical solution of equation (2.1): it is less

9
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Figure 3. Faraday rotation. A complete comparison (and agreement) between the models
and measurements is presented for shot #60980, channel 3. From the top the comparison of
measurements with the type II approximation, the ‘linear’ W3 approximation, and the Guenther
Model A.

sensitive to the density profile. In this sense the comparison between calculations and data can
be used to check the accuracy of the equilibrium calculations. The argument can be motivated
in detail as follows. The vector ��(z, x) appearing in the Stokes equations depends upon the
values of the magnetic field components ( �B(z, x)) and plasma density spatial profiles (ne(z, x))

(x is the radial direction). However, there is a different sensitivity upon �B(z, x) and ne(z, x).
The plasma density changes slowly in the radial direction, so ne(z, x) ≈ ne(z, x + dx) if
dx/a � 1, while the magnetic field changes substantially �B(z, x) �= �B(z, x + dx). For
example in shot #76846 for a dx = 0.07 m the plasma density profile ne(z, x) does not change
but the Bz(z, x) changes by more than 50% at the plasma centre.

Figure 4 shows the calculations of the Faraday rotation for the high density shot #67777
corresponding to channel 3. The values of the spatial profile of Bz(z, Rchannel) (Rchannel is
the radial coordinate of the vertical chord and z the coordinate along the chord) given by
the equilibrium calculation are critical for the determination of the Faraday rotation: we find
that the equilibrium in agreement with the measurements of polarimetry corresponds to a
shift DR = 0.035 m of the magnetic surfaces in the direction of high-field side. Under
these conditions we find that all the models (also the ‘linear’ model W3) are in agreement
with the measurements. The same procedure must be applied to the calculations related to
channel 4 which is the outermost vertical channel with coordinate R = 3.74 m, leading to
a shift DR = 0.04 m (for shot #67777). This is not expected because the equilibrium is
supposed to be accurate at plasma edge, where the magnetic sensors are placed. Data related
to channel 4 are shown in figure 5 from the top: the first plot shows a comparison between the
numerical calculations and measurements, the second plot shows the measurements compared
with type II model and the third shows the comparison between the measurements and type I
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Figure 4. Faraday rotation. Similar to figure 3, but for the high density shot #67777, channel 3:
the third figure from the top reports the calculation of W3 (the linear approximation) and of W3G
(Guenther Model A): here the agreement between data and models is obtained by a rigid shift of
the magnetic surfaces DR = 0.035 m. The data are in agreement with all the models, in particular
with the ‘linear’ W3 model.

and Guenther Model A. In practice, the numerical model and type II are in agreement with
data, while type I and the Guenther Model A underestimate the Faraday measurements. The
Faraday measurements give quite a large rotation (as it can be expected) on channel 4 of the
order of 23◦, and a value of W3 ≈ 1: we find in fact that type I (which is a measurement of
‘pure Faraday’ rotation) is not a good approximation. This experimental finding confirms the
conclusions drawn from the type II model in section 2.

The equilibrium used in the previous calculations is evaluated including only magnetic
measurements, the question arises as to whether an equilibrium evaluated using constraints
from polarimetry could improve the prediction of Faraday rotation as calculated by the Stokes
equations, without needing a shift. To answer this question an equilibrium was generated by
EFIT where the minimization was obtained including the constraint of Faraday rotation, but
a shift of 0.035 m was still needed to reconcile the measurement with the calculations. One
possible reason is that the mathematical form of the polarimetry constraint used in the EFIT
code is a simplified type I approximation (see equation (2.10)) corresponding to the ‘pure
Faraday effect’: for large Faraday rotations this approximation is marginal.

The question is now whether the shift of the magnetic surfaces would decrease using
an equilibrium (considered more precise) generated by EFIT constrained with internal
measurements.

To study further this problem comparisons between data and calculations were carried
out for shot #76846(BT/Ip = 1.7T/1.4 MA, ne = 5.5 × 1019 m−3, Te = 4.5 keV), with
two types of equilibria: (i) the EFIT equilibrium obtained using only magnetic measurements
(IEFIT); (ii) the EFIT equilibrium obtained using constraints which include motional Stark
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Figure 5. Faraday rotation. Comparison between models and data for shot #67777, channel 4:
from the top the comparison of measurements with numerical solution, the type II approximation,
the ‘linear’ W3 approximation and the Guenther Model A. Agreement between data and the Stokes
numerical solutions and the type II approximation is found operating a rigid shift of 0.04 m of the
magnetic surfaces. The approximate values of W3 (and Guenther Model A) slightly underestimate
the measurement.

effect (MSE) measurements and pressure measurements (performed by the high resolution
Thomson scattering (HRTS) system) (EFTM). Figure 6(a) shows the comparison between
calculations and data using IEFIT, and figure 6(b) shows the results of comparison when
the shift DR = 0.045 m is introduced, using the IEFIT equilibrium. Figure 6(c) shows the
comparison (between Faraday data and calculations) using the constrained equilibrium EFTM:
it can be noted that using EFTM an improvement is obtained, but this is not enough to obtain an
agreement between measurements and calculations. The agreement is found only introducing
a rigid shift of the magnetic surfaces of DR = 0.02 m when EFTM is used (see figure 6(d)).
Figure 6 corresponds to measurements of channel 3.

Thus using a more refined equilibrium such as EFTM, which includes internal
measurements (MSE and pressure profiles) as constraints, leads to a reduction in the shift of
the magnetic surfaces (DR = 0.02 m instead of DR = 0.04 m) needed to reconcile polarimetry
model and measurements.

In more detail, the previous figures show that: (i) the comparison between the calculations
and measurements of Faraday rotation can give important information about the accuracy of
equilibrium calculations; (ii) the comparison can be used to improve the calculations of the
position of the equilibrium surfaces: in practice, the calculation of the Faraday rotation angle
using the Stokes model is useful to evaluate how to shift the flux surfaces to improve the
evaluation of the equilibrium.

An evaluation of refraction effects leads to maximum values of 0.004 m of a beam
deflection for a ray path of 4 m inside plasma at plasma density n = 0.5 × 1020 m−3, this
means that the shift found cannot be caused by refraction effects.

12
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Figure 6. (a) Faraday rotation. Comparison between measurements (continuous line) and results of
the numerical solution of Stokes equations (dashed line with stars) for shot #76846, where the shift
of magnetic surfaces DR = 0. The EFIT equilibrium (which includes magnetic measurements)
is used without constraints (EQ IEFIT). (b) Faraday rotation. Comparison between measurements
(continuous line) and results of the numerical solution of Stokes equations (dashed line with stars)
for shot #76846, where the shift of magnetic surfaces DR = 0.045 m. The EFIT equilibrium is
used without constraints (EQ IEFIT). (c) Faraday rotation. Comparison between measurements
(continuous line) and results of the numerical solution of Stokes equations (dashed line with stars)
for shot #76846, where the shift of magnetic surfaces DR = 0. The EFIT equilibrium is used with
constraints including motional Stark effect (MSE) and pressure profile measurements (EFTM).
(d) Faraday rotation. Comparison between measurements (continuous line) and results of the
numerical solution of Stokes equations (dashed line with stars) for shot #76846, where the shift of
magnetic surfaces DR = 0.02 m. The EFIT equilibrium is used with constraints including MSE
and Thomson scattering pressure profile measurements (EFTM).

To verify the consistency of the correction to the equilibrium obtained by analysis of
polarimetry and measurements of other diagnostics, we have analysed the measurements of
the strike points using IR cameras and the position of the plasma centre measured by soft-X.

The shifts of magnetic surfaces evaluated are consistent with measurements of the IR
camera of the strike points on the external divertor targets: preliminary evaluations lead to
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Table 3. Dataset used to study the dependence of the shift upon plasma parameters: nmax—
maximum electron density in units of 1020 m−3; IP—plasma current in MA; BT—toroidal magnetic
field in Tesla.

nmax IP BT

70053a 1.35 3.56 3.14
70222a 1.22 3 2.99
70238 0.97 2.55 2.63
70646a 0.93 2.28 2.18
70691 0.9 1.85 2.26
68515a 0.9 1.73 1.83
68741a 0.87 1.73 1.83
70004a 0.63 2.52 2.55
70206 0.41 1.22 1.9
70275 0.5 1.95 3.09
70312 0.43 1.62 2.96
70084 0.38 1.8 3.36
70558 0.28 2 2.31
70336 0.6 1.9 3
70548a 0.6 2 2.7

a shots included in the analysis reported in figure 7.

a difference of 0.02–0.05 m between the evaluation of position carried out by EFIT and the
measurement made using the IR camera [9].

A comparison of plasma centre position measurements using soft-x-ray peak emission
and EFIT evaluation for shot #67777 was carried out: the average difference, in the time
window [17,21] s, between EFIT and soft-X is DR = 0.048 m = R(EFIT)-R(soft-X) [10].
This difference is consistent with the shift evaluated for shot #67777, using the comparison
between the numerical code and the Faraday rotation angle measurements.

The same comparison was carried out for seven shots chosen in table 3 (varying current
and density) and in figure 7 the difference between the plasma centre measured by soft-X and
calculated by EFIT (Rsxr − Rmhd) is plotted together the shifts calculated using polarimetry
measurements, for seven shots whose plasma parameters are reported in table 3. The result
shows that there is a consistency (within the error of the measurements) between the calculations
of the shifts and the measurements of the difference R(soft-X)-R(mhd). In figure 7 the shift
(and its error bar) was calculated minimizing the χ2 between measurements and calculation.

The accuracy of the EFIT equilibrium reconstruction has been analysed in [12] in the
context of the determination of the safety factor spatial profile using the equilibrium code
constrained by MSE and pressure profile measurements, with the addition of Faraday rotation
angle constraint. A type I solution simplified constraint, i.e. ψ = ∫

n �B · d�l is used in EFIT
(the line integral is along the chord, ψ is the measured Faraday angle, n is the density profile
and B is the magnetic field vector) properly for a shot where the Faraday rotation is very low,
ψ = 3◦. It is worth remembering that the simplified constraint is used in EFIT in general, and
is not limited at low values of Faraday rotation angles.

4. Statistical analysis of the ‘shift’ of the magnetic surfaces

To determine the dependence of the calculated shift upon plasma parameters, a statistical
analysis was carried out on a large database of shots including measurements of years 2003–
2007, confirming the procedure outlined for shot #67777. In particular, a (reduced) database
was built (see table 3) to study the dependence upon the main plasma parameters (plasma
density, current and toroidal magnetic field), of the shift of the magnetic surfaces needed to
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Figure 7. The difference between the plasma centre measured by soft-X and calculated by EFIT
(Rsxr − Rmhd) plotted together the shifts calculated using polarimetry measurements, for seven
shots whose plasma parameters are reported in table 3.

reconcile the Faraday measurements with the calculations. The study was limited to data of
channel 3. The equilibrium used was EFIT with magnetic measurements only.

For each shot (see table 3), the shift was determined by the minimization of the χ2,
developed using the Faraday measurements and the corresponding values obtained by solving
the Stokes equations.

The result of the analysis is shown in figures 8(a)–(c): figure 8(a) is a plot of the shift
versus the maximum line-averaged electron density measured by LIDAR Thomson scattering;
figure 8(b) is a plot of the shift versus the plasma current; and figure 8(c) shows the shift versus
the ratio BT /IP (toroidal magnetic field/plasma current).

An extensive statistical analysis (based on validated shots belonging to campaigns of years
2007–2009) on the shift was carried out for the measurements of channel 4 (the outermost
vertical channel with coordinate R = 3.74 m). In the calculations of the Stokes equations the
density profile used were measured by the HRTS, which has a spatial resolution at edge of the
order of 0.015 m. The average shift calculated was of the order of DR = 0.02 m.

The calculated shift, ranging in the interval DR = 0.01–0.05 m, does not exhibit any
strong dependence upon plasma parameters. We conclude from these findings that the shift
needed is due to the accuracy of the EFIT equilibrium calculations, in terms of space resolution:
this is limited by the dimension of the elements of the grid used by EFIT [6]: the element has
a dimension dZ × dR = 0.126 × 0.075 m2, (dZ (dR) is the dimension in the vertical(radial)
direction). The shift then found in this study is consistent with the radial space resolution of
the EFIT calculations.

From these data it is important to realize that the comparison between calculation and
measurement of Faraday rotation can lead to an improvement of the evaluation of the position
of the magnetic surfaces.

To confirm that the EFIT calculations can be affected by a certain systematic uncertainty,
a comparison of the average radial location of the lower outer strike point as predicted by EFIT
and XLOC was done, using a large database of 460 shots chosen in years 2003–2007.
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Figure 8. (a) The shift (m) versus the maximum line-averaged electron density measured by
LIDAR Thomson scattering in units of 1020 m−3. (See table 2 for the plasma parameters of the
shots considered.) (b) The shift (m) versus the plasma current IP (MA). (c) The shift versus the
ratio BT /IP (toroidal magnetic field/plasma current).

The code XLOC [7] is a simplified equilibrium code which is used for the determination
of the X-point location and strike points of the open field lines derived from the X-point on
the divertor tiles.

The result obtained after this comparison is that EFIT predicts a position of the lower outer
strike point systematically in excess of 0.06 m with respect to XLOC calculations, confirming
the shift in the same direction detected using the polarimetry analysis.

5. Theoretical analysis of the coupling between Faraday and Cotton–Mouton effects
and application to study shots at high density and high plasma current

In section 1 the mutual interaction between Faraday rotation and the Cotton–Mouton was
discussed in the context of the type II approximation.

Moving to a more general analysis, we start from the Stokes equations (2.2) to derive equa-
tions where the coupling terms between Faraday and Cotton–Mouton can be clearly identified.
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Defining

F = s1

s2
= 1

tan 2ψ
and C = s3

s2
= tan ϕ

from the Stokes equations (2.2) the following system can be derived:

dF

dZ
= −�3 − �3F

2 + �1FC + �2C, (5.1)

dC

dZ
= �1 + �1C

2 − �3FC − �2F. (5.2)

System (5.1)–(5.2), which is exactly equivalent to the Stokes model, can be considered
as a generalized Volterra-like problem, with non-constant coefficients. The propagation
of polarization in a plasma (without absorption) can be described using a first order non-
linear differential system in two variables: plasma polarimetry is intrinsically described by a
bidimensional dynamical system, so chaotic behaviour cannot be realized [11].

The type II approximation (equation (2.12)) is obtained neglecting the terms �1FC +�2C

in equation (5.1) and the terms �1C
2 − �2F in equation (5.2).

It appears from the inspection of system (5.1)–(5.2) that two types of non-linearities appear
in the propagation of polarization: (i) quadratic terms in F and C; (ii) coupling terms F ∗C.
Since usually �3 � �1 it could be expected that the main non-linearity in Faraday is due to
the quadratic term F 2, while for Cotton–Mouton the main non-linearity would be the coupling
term F ∗C.

The magnitude of the terms at the right-hand side of (5.1)–(5.2) can be estimated solving
directly the Stokes equations. Figures 8(a) and (b) show how the non-linear terms play in the
determination of the Cotton–Mouton effect: the values of dC/dZ and �1 are plotted together
versus the normalized coordinate along the beam path for channel 3 (figure 9(a)) and channel
4(figure 9(b)) at the time t = 18 s, for the high density shot #67777: it appears that the non-
linear terms become important for Z > 0, in fact the terms in C2 and F*Cincrease for Z > 0
(i.e. in the upper part of the poloidal plane), their sum corresponding to 25% of the contribution
to dC/dZ. Figures 10(a) and (b) show a similar plot for the Faraday rotation angle, the values
of dF /dZ and �3 are plotted together for shot #67777: it appears that the non-linear terms are
negligible for channel 3 (figure 10(a)), while the non-linear terms are important for channel
4 (figure 10(b)), in this case, the Faraday Z-derivative is about eight times that for channel 3
and the term in F 2 is close to 80% of the value of dF /dZ.

It has been verified therefore that (for shot #67777) the most important non-linear term
for Faraday is the term �3F

2, while for Cotton–Mouton it is the term �3 FC, in equation
(5.1)–(5.2).

The importance of non-linear terms for Faraday rotation is confirmed by a comparison
between the Faraday rotation measurements and the calculations for a high density/high current
shot (#75238) as shown in figure 11, where the experimental data (continuous line) are shown
together with the numerical calculation (dashed line) and the linear formula (crosses): the value
of W3 slightly underestimates the Faraday measurement for the high current shot, while the
numerical solution is in agreement with the measured Faraday rotation.

6. Remarks on the mathematical forms of polarimetry constraints inside the
equilibrium codes

The previous sections contain information on the correct mathematical form to be used inside
the equilibrium codes for the polarimetry constraints, for JET discharges.
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Figure 9. Cotton–Mouton. The left member of equation (5.2) (continuous line), and the values
(‘cross’ symbols) of �1 are shown, for shot #67777, channel 3 (figure 9(a)) and channel 4
(figure 9(b)).

 

Figure 10. Faraday rotation. The left member of equation (5.1) (continuous line), and (‘cross’
symbols) the value of −�3 are shown, for shot #67777, time = 18 s, channel 3 (a) and channel 4 (b).

In general, the constraint on Faraday rotation cannot be expressed using the ‘linear form’
(2.7), as it is used currently: the example of the calculations related to chord #4 for shot #67777
shows that the numerical model or type II is more adequate to describe the Faraday rotation at
high density, and for shot #75238, at high current and density.

The introduction of Cotton–Mouton as a constraint in the equilibrium code for an
improved determination of plasma density must be treated carefully, since for Cotton–
Mouton the ‘linear form’ can be used only at low-medium density, while at high density
the effect of Faraday rotation must be included. The simplest form of a model for Cotton–
Mouton, which includes the dependence upon Faraday rotation is represented by the type II
approximation.
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Figure 11. Faraday rotation measurement (continuous line, shot #75238, channel 3) is plotted
together with the calculated values (dashed line) using the solution of Stokes equations. The
calculated values of −W3 (crosses) are shown.

7. Conclusions

This paper presents a detailed analysis of Faraday measurements at JET, a comparison with
available models and a rigorous approach to the mutual interaction between Faraday and
Cotton–Mouton. The Faraday rotation can be calculated from the Stokes equations and the
comparison between the calculations and the measurements can lead to information related to
corrections of the position of the magnetic surfaces. Moreover, it turns out that the Faraday
rotation cannot, in general, be represented by the linear expression of the type I approximation
(expression (2.7), section 2). The Cotton–Mouton, at high density and current, must be
calculated including the dependence from the Faraday rotation angle. This paper suggests
that a test of the new mathematical forms of Faraday and Cotton–Mouton in the constraints of
the EFIT equilibrium code is necessary to obtain accurate equilibrium reconstructions in all
JET regimes of operations.
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