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aUniversità di Roma “Tor Vergata”, Dipartimento di Ingegneria dell’Impresa, via del

Politecnico 1, 00133, Roma, Italy
bCONICET and Departamento de Computación, FCEyN, Universidad de Buenos Aires,

Buenos Aires, Argentina

Abstract

We deal with some generalizations of the graph coloring problem on classes
of perfect graphs. Namely we consider the µ-coloring problem (upper bounds
for the color on each vertex), the precoloring extension problem (a subset
of vertices colored beforehand), and a problem generalizing both of them,
the (γ, µ)-coloring problem (lower and upper bounds for the color on each
vertex). We characterize the complexity of all those problems on clique trees
of different heights, providing polytime algorithms for the cases that are easy.
These results have two interesting corollaries: first, one can observe on clique
trees of different heights the increasing complexity of the chain k-coloring,
µ-coloring, (γ, µ)-coloring, list-coloring. Second, clique trees of height 2 are
the first known example of a class of graphs where µ-coloring is polynomial
time solvable and precoloring extension is NP-complete, thus being at the
same time the first example where µ-coloring is polynomially solvable and
(γ, µ)-coloring is NP-complete. Last, we show that the µ-coloring problem
on unit interval graphs is NP-complete. These results answer three questions
from [Ann. Oper. Res. 169(1) (2009), 3–16].

Key words: Graph coloring, clique trees, unit interval graphs,
computational complexity.

Email addresses: fbonomo@dc.uba.ar (Flavia Bonomo), faenza@disp.uniroma2.it
(Yuri Faenza), oriolo@disp.uniroma2.it (Gianpaolo Oriolo)

1Partially supported by ANPCyT PICT-2007-00518 and PICT-2007-00533, and UBA-
CyT Grants X069 and X606 (Argentina).

2Partially supported by ANPCyT PICT-2007-00533.

Preprint submitted to Elsevier January 9, 2010



1. Introduction

A coloring of a graph G(V, E) is a function f : V → N such that f(v) 6=
f(w) whenever vw ∈ E. A k-coloring is a coloring f such that f(v) ≤ k
for every v ∈ V . The vertex coloring problem takes as input a graph G and
a natural number k, and consists in deciding whether G is k-colorable or
not. This well-known problem is a basic model for scheduling, frequency
assignment and resource allocation problems.

In order to take into account particular constraints arising in practi-
cal settings, more elaborate models of vertex coloring have been defined in
the literature. A hierarchy of such models was studied in [4]. Two gen-
eralizations of the k-coloring problem are precoloring extension [2] and µ-
coloring [3].

The precoloring extension problem takes as input a graph G(V, E), a
subset W ⊆ V , a natural number k, a k-coloring f ′ of W , and consists
in deciding whether G admits a k-coloring f such that f(v) = f ′(v) for
every v ∈ W or not. In other words, a prespecified vertex subset is colored
beforehand, and the goal is to extend this partial coloring to a valid k-
coloring of the whole graph.

Given a graph G(V, E) and a function µ : V → N, the µ-coloring prob-
lem consists in deciding whether G is µ-colorable, i.e. whether there exists
a function f : V → N such that f(v) ≤ µ(v) for every v ∈ V and f is a
k-coloring of G for some natural k. This model arises in resources alloca-
tion problems with conflict between users [3], as well as in railways train
scheduling [5].

A problem generalizing the latter two ones is the (γ, µ)-coloring prob-
lem [4], where also lower bounds for the color of each vertex are determined:
given a graph G(V, E) and functions γ, µ : V → N such that γ(v) ≤ µ(v) for
every v ∈ V , the (γ, µ)-coloring problem consists in deciding whether there
exists a µ-coloring f where additionally γ(v) ≤ f(v) for every v ∈ V .

Finally, a model generalizing all of the previous problems is the list-
coloring problem [20], which considers a prespecified set of available colors
for each vertex. Given a graph G and a finite list L(v) ⊆ N for each vertex
v ∈ V , the list-coloring problem asks for a list-coloring of G, i.e., a coloring
f such that f(v) ∈ L(v) for every v ∈ V .

The scheme of generalizations, summarized in Figure 1, implies that
all the problems in this hierarchy are polynomially solvable in those graph
classes where list-coloring is polynomial and, on the other hand, all the
problems are NP-complete in those graph classes where vertex coloring is
NP-complete.
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Figure 1: Scheme of generalizations among these coloring problems.

The complexity of this family of problems over different classes of graphs
has been studied, and there are several examples of classes where k-coloring
is polynomial-time solvable but precoloring extension and µ-coloring are NP-
complete, like bipartite graphs [3, 10], interval graphs [2, 4, 6] and distance
hereditary graphs [4, 9], where precoloring extension is polynomial-time solv-
able but (γ, µ)-coloring is NP-complete, like split graphs [11, 4], and where
(γ, µ)-coloring is polynomial time solvable but list-coloring is NP-complete,
like complete bipartite graphs and complete split graphs [4, 13]. Note that,
however, to the best of our knowledge, so far no class of graphs where
(γ, µ)-coloring is NP-complete while µ-coloring is polynomially solvable was
known, and finding it is mentioned as an open problem in [4].

The problems of precoloring extension and µ-coloring are not directly
related, i.e., no one is a generalization of the other one. Nevertheless, for
almost all the graph classes where their complexity is known, they are in the
same side of the dichotomy “polynomial time solvable vs. NP-complete”.
The class of split graphs is the only known exception where precoloring ex-
tension is polynomial time solvable [11] while µ-coloring is NP-complete [4].
Again, to the best of our knowledge, so far no class of graphs where µ-
coloring is polynomially solvable and precoloring extension is NP-complete
was known and finding it is mentioned as another open problem in [4].

In this work we study the complexity of these coloring problems on a class
of perfect graphs called clique trees. We characterize the complexity of each
problem on clique trees of different heights, providing polytime algorithms
for the cases that are easy. These results have two interesting corollar-
ies: first, one can observe on clique trees of different heights the increasing
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complexity of the chain k-coloring, µ-coloring, (γ, µ)-coloring, list-coloring.
Second, clique trees of height 2 are the first known example of a class of
graphs where µ-coloring is polynomial time solvable and precoloring exten-
sion is NP-complete, thus being at the same time the first example where
µ-coloring is polynomially solvable and (γ, µ)-coloring is NP-complete; this
solves the above questions from [4].

We also study the complexity of the µ-coloring problem on another class
of perfect graphs, the one of unit interval graphs. Both the precoloring
extension problem and the µ-coloring problem were motivated by and arise
in the context of scheduling problems, like job scheduling [2], classroom
allocation [3] and railways train scheduling [5]. Thus one of the classes of
interest for these problems is the class of interval graphs and, in particular,
the class of unit interval graphs.

It is well known that the chromatic number of an interval graph G(V, E)
can be determined in time O(|V | + |E|). While the NP-completeness of
precoloring extension on interval graphs was proved in 1992 [2], it took
more than ten years, and a quite involved reduction, in order to prove that
the problem is hard also for unit interval graphs [15]. Analogously, in [4] it
was proved that the µ-coloring problem is NP-complete on interval graphs
and the question of the complexity of µ-coloring on unit interval graphs was
raised. We also settle this question and show, via a non-trivial reduction,
that this problem is NP-complete.

The paper is organized as follows: we close this section with some no-
tation. In Section 2 we introduce the class of clique trees and the related
notion of height, characterizing the complexity of the aforementioned color-
ing problems on clique trees of different heights. In Section 3, we present a
(quite involved) proof of the NP-completeness of the µ-coloring problem on
unit interval graphs.

We shall consider finite, simple, loopless, undirected graphs. Let G be
a graph. Denote by V (G) its vertex set and by E(G) its edge set. Given a
vertex v of G, denote by NG(v) the set of neighbors of v in G and by NG[v]
the set NG(v)∪ {v}, and generalize it to a set of vertices W ⊆ V as follows:
NG(W ) = ∪w∈W NG(w), and NG[W ] = NG(W ) ∪ W . A graph G is a tree
if it is connected and |E(G)| = |V (G)| − 1 holds. A rooted tree is a pair
(G, r) consisting of a tree G together with a designated vertex r ∈ V (G).
Two vertices v and w of G are said to be true twins if either v = w or
NG[v] = NG[w], i.e., they are adjacent and they have the same neighbors.

For any W ⊆ V (G), denote by G[W ] the subgraph of G induced by W . If
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H is an induced subgraph of G, denote by G\H the graph G[V (G)\V (H)].
Given two graphs G1, G2 with V (G1) ∩ V (G2) = ∅, we will denote by

G1 ∪G2 a graph such that V (G1 ∪G2) = V (G1)∪V (G2) and E(G1 ∪G2) =
E(G1) ∪ E(G2). Given a graph G and two vertices v, w of it, contracting
them into a single vertex will mean to replace them by a new vertex, and
making it adjacent to the neighbors of v and w in G \ {v, w}.

For a strictly positive integer k, let [k] = {1, 2, . . . , k}.
Given two vertices a, b ∈ V (G), an (a, b)-path of length k in G is an

ordered sequence of vertices {v0, v1, . . . , vk} such that v0 = a, vk = b, all
vertices are distinct, and for i ∈ [k], (vi−1, vi) ∈ E(G). The distance of (a, b)
in G is the minimum length of all (a, b)-paths in G.

A clique is a set of pairwise adjacent vertices. Denote by Kn the clique
of size n. A stable set is a set of pairwise non-adjacent vertices. Let A, B ⊆
V (G). We say that A is complete to B if every vertex of A is adjacent to
every vertex of B; and A is anticomplete to B if no vertex of A is adjacent
to a vertex of B.

The chromatic number of a graph G is the minimum k such that G is
k-colorable. A graph is perfect [1] if for every induced subgraph H of it, the
chromatic number of H coincides with the size of a maximum clique of H.
The k-coloring problem is known to be polynomial time solvable on perfect
graphs [7].

Throughout the paper, an instance of the µ-coloring will be a pair (G, µ),
where µ : V (G) → N; an instance of the (γ, µ)-coloring will be a triple
(G, γ, µ), where µ, γ : V (G) → N with γ(v) ≤ µ(v) for each v ∈ V (G); an
instance of the precoloring extension will be a 4-tuple (G, W, f ′, k) where
W ⊆ V (G), k ∈ N and f ′ : W → [k] is a valid coloring of G[W ]; an instance
of list-coloring will be a pair (G, L), where L : V (G) → 2(N), i.e., L(v) is
finite for each v ∈ V (G).

2. Clique trees

A graph G is a clique tree if the graph G′ obtained by iteratively con-
tracting its true twins is a tree. It is immediate to check that G′ does not
depend on the order of the contractions, and thus it is well defined. The
height of a rooted tree is the maximum distance from the root to any other
vertex of the tree. The height of a tree is the minimum height over all the
choices of a root. The height of a clique tree G is the height of the tree
obtained by identifying true twins in G. We shall denote that tree by T (G),
and call root any vertex of T (G) for which the minimum height is achieved.
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Given a vertex v of G, the multiplicity of v in G is the number of true twins
of v in G (by definition, v is also counted).

Clique trees are perfect graphs since trees are perfect graphs and the
operation of adding true twins maintains perfection [14]. Moreover, the size
of the maximum clique, an thus the chromatic number, is the maximum
sum of the multiplicities of two adjacent vertices that are not twins. So the
k-coloring problem can be solved in strongly polynomial time for this class
of graphs.

As for the other coloring problems we are interested in this paper, the
complexity changes with the height of the clique tree. Clique trees of height
0 are the complete graphs, and the list-coloring problem on a complete graph
can be modelled as a maximum matching problem on a bipartite graph and
thus solved in polynomial time.

Meanwhile, it is known that the list-coloring problem is NP-complete
for clique trees of height 1, even if its corresponding tree is formed by a
root and two children [12], or if the multiplicity of all the vertices but the
root is 1 [13]. Vice versa, as we show in the following, (γ, µ)-coloring, and
therefore µ-coloring and precoloring extension, are still easy for clique trees
of height 1.

If we move to clique trees of height 2, we show in the following that
only µ-coloring (and, of course, k-coloring) is easy. As mentioned in the
introduction, this class of graphs gives, to the best of our knowledge, the first
known example where µ-coloring is polynomially solvable, while precoloring
extension (and thus (γ, µ)-coloring) is NP-complete.

If we then move to height 3 or more, then also µ-coloring becomes hard,
even when the height is fixed. Table 2 summarizes these results. Inter-
estingly, one can observe on clique trees of different heights the increasing
complexity of the chain k-coloring, µ-coloring, (γ, µ)-coloring, list-coloring.

Problem Height
0 1 2 fixed p ≥ 3

k-coloring P P P P
µ-coloring P P P NP-c

precoloring P P NP-c NP-c

(γ, µ)-coloring P P NP-c NP-c

list-coloring P NP-c NP-c NP-c

Table 1: A summary of the complexity results for clique trees. Original results from this
paper are bold-faced.

We start with some useful lemmas.
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Lemma 1. For a strictly positive integer n, let G be a complete graph with
vertex set V ∪ V ′, where V = {v1, . . . , vn} and V ′ = {v′1, . . . , v

′
n}. Let

µ : V (G) → N such that µ(vi) = µ(v′i) = 2i for i in [n]. Let γ : V → N

such that γ(vi) = 2i − 1 for i in [n]. If f is a solution to (G, µ), then its
restriction to G[V ] is a solution to (G[V ], (γ, µ)). Vice versa, any solution
to (G[V ], (γ, µ)) can be extended in polytime to a solution of (G, µ).

Proof. Consider a feasible solution to (G, µ) and let i ∈ [n]. Since G is
complete and, for every j ∈ [n], µ(vj) = µ(v′j) = 2j, it follows that ver-
tices v1, . . . , vi, v

′
1, . . . , v

′
i use all the colors in [2i]. Thus vertex vi+1 uses

either color 2i + 1 or 2(i + 1). Then the restriction to V gives a solution to
(G[V ], (γ, µ)). Conversely, a solution to (G[V ], (γ, µ)) leaves unused either
2i or 2i − 1 for each i ∈ [n], so we can extend it to a solution of (G, µ) by
assigning that free color to v′i. 2

The following Lemma is implicitly proved in [4], see Theorem 4.

Lemma 2. Let G be a complete graph and let γ, µ : V (G) → N such that
for every w ∈ V (G), γ(w) ≤ µ(w). Let µmax = maxw∈V (G) µ(w). Let
C be a subset of natural numbers within the interval [1, µmax]. Then G
admits a (γ, µ)-coloring using only colors in C if and only if, for every
1 ≤ i ≤ j ≤ µmax, |{w ∈ V (G) : i ≤ γ(w) ≤ µ(w) ≤ j}| ≤ |C ∩ [i, j]|.

2.1. Polynomial cases

Theorem 3. The (γ, µ)-coloring problem can be solved in polynomial time
for clique trees of height at most 1.

Proof. The statement is true for clique trees of height 0, i.e. complete
graphs, since there the more general list-coloring problem can be modelled
as a maximum matching problem on a bipartite graph.

Suppose therefore that we are given a graph G that is a clique tree of
height 1 and γ, µ : V (G) → N such that for every v ∈ V (G), γ(v) ≤ µ(v). Let
µmax be the maximum value of µ over G. We may assume that every color
between 1 and µmax belongs to the interval [γ(v), µ(v)], for some v ∈ V (G).
Furthermore, we may assume µ(v) − γ(v) ≤ |NG(v)| for every v ∈ V (G). It
follows from these assumptions that µmax ≤ n · maxv∈V |NG(v)|.

Let A be the clique corresponding to the root of T (G) and B1, . . . , Br

the cliques corresponding to the leaves of T (G). For 0 < j ≤ i ≤ µmax,
let LA(i, j) = |{v ∈ A : j ≤ γ(v) ≤ µ(v) ≤ i}| and Lk(i, j) = |{v ∈ Bk :
j ≤ γ(v) ≤ µ(v) ≤ i}|, for k in [r]. We reduce the problem of finding a
(γ, µ)-coloring of G to a linear programming feasibility problem. For j in
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[µmax], we define the integer variable xj to be the number of colors from the
set [j] assigned to vertices of A and, based on this definition, we consider
the following linear program:

x0 = 0 (1)

xi − xj−1 ≥ LA(i, j) ∀ i, j : 0 < j ≤ i ≤ µmax (2)

xi − xj−1 ≤ i − j + 1 − max
k∈[r]

Lk(i, j) ∀ i, j : 0 < j ≤ i ≤ µmax (3)

Since µmax ≤ n ·maxv∈V |NG(v)|, it follows that the number of variables
and constraints is polynomial in the size of G. All the constraints take the
form xj − xk ≥ αjk or xj = αj , hence the constraint matrix is totally uni-
modular, implying that the associated polytope is integral (see for example
[16]). To complete the proof, we verify that G is (γ, µ)-colorable if and only
if the linear program (1)-(3) is feasible.

Assume first G is (γ, µ)-colorable. Let x0 = 0 and, for j in [µmax], let
xj be the number of colors from [j] assigned to vertices of A. Constraint
(1) holds trivially. Since A is a clique, at least LA(i, j) colors from [j, i] are
assigned to the vertices of A, hence constraints (2) hold. Analogously, for
each k ∈ [r], at least Lk(i, j) colors from [j, i] are assigned to the vertices of
Bk; then, since each Bk is complete to A, constraints (3) hold. Thus, if G
is (γ, µ)-colorable, then the linear program (1)-(3) has a feasible solution.

Conversely, assume that the linear program (1)-(3) is feasible and let x
be an integer solution, which exists since the associated polytope is integral.
We shall verify that G admits a (γ, µ)-coloring. Let C = {j : 1 ≤ j ≤ µmax

and xj − xj−1 = 1}. By (2), C and A satisfy the hypothesis of Lemma 2, so
there is a (γ, µ)-coloring of A using the colors in C. By (3), for each k in [r],
the complete graph Bk and the set of colors [µmax]\C satisfy the hypothesis
of Lemma 2, so there is a (γ, µ)-coloring of Bk using the colors in [µmax]\C.
Putting things together, there exists a (γ, µ)-coloring of G; note that this
coloring may be found solving r + 1 bipartite matching problems. 2

Since the (γ, µ)-coloring problem is a generalization of the precoloring
extension and the µ-coloring problem, we have the following corollary.

Corollary 4. The precoloring extension and the µ-coloring problem can be
solved in polynomial time for clique trees of height at most 1.

Theorem 5. The µ-coloring problem can be solved in polynomial time for
clique trees of height at most 2.
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Proof. Let (G, µ) be an instance of µ-coloring where G is a clique tree of
height 2. We shall show that (G, µ) can be polynomially reduced to an
instance (G′, (γ, µ)) of the (γ, µ)-coloring problem, where G′ is a clique tree
of height 1. Then we can invoke Theorem 3.

Let A be the clique of G corresponding to the root of T (G), {Bk}k∈[r] the

cliques of G corresponding to the vertices in level 1 of T (G), {C j
k}k∈[r],j∈[sk]

the cliques of G corresponding to the leaves of T (G), where for each k in
[r] and each j in [sk], Cj

k is complete to Bk. The graph G′ is obtained from
G by deleting the cliques corresponding to vertices of level 2 in T (G), i.e.
G′ = G[A ∪k∈[r] Bk]. Thus G′ is a clique tree of height 1.

As for the vector γ, it requires some more definitions. Let µmax be the
maximum value of µ over G and, for every i ∈ [µmax] and k ∈ [r], let lki =

max1≤j≤sk
|{v ∈ Cj

k : µ(v) ≤ i}|. Also we assume that Bk = {w1
k, . . . , w

|Bk|
k },

with µ(w1
k) ≤ · · · ≤ µ(w

|Bk|
k ), for k ∈ [r]. For each k ∈ [r] and j ∈ [|Bk|],

we let γ(wj
k) = h, where (h − 1) is the largest index i ∈ [µmax] : lik + j > i.

Meanwhile, we let γ(v) = 1 for every v ∈ A.
We claim that the resulting γ-vector is such that, for i ∈ [µmax], |{v ∈

Bk : γ(v) ≤ i}| ≤ i − lik. Indeed, fix i and suppose i − lik < |Bk|. Then for

w = w
i−lki +1
k , . . . , w

|Bk|
k , γ(w) ≥ i + 1, so the statement holds. Conversely

if i − lik ≥ |Bk|, then the statement holds since |{v ∈ Bk : γ(v) ≤ i}| is a
subset of Bk.

We finally show that every solution of (G′, (γ, µ)) can be extended to a
solution of (G, µ) and, conversely, every solution to (G, µ) is, restricted to
V (G′), a solution of (G′, (γ, µ)). Let f be a (γ, µ)-coloring of G′. It is, in
particular, a µ-coloring of G′. For each k ∈ [r], let f(Bk) = {f(v), v ∈ Bk}
and let Qk = [µmax] \ f(Bk). We claim that, for each k ∈ [r] and j ∈ [sk],
there exists a µ coloring of Cj

k that uses only colors from Qk. From Lemma 2,

it is enough to show that, for every i ≤ µmax, |{v ∈ Cj
k : µ(w) ≤ i}| ≤

|Qk ∩ [i]| = i − |f(Bk) ∩ [i]|. Since |f(Bk) ∩ [i]| ≤ |{v ∈ Bk : γ(v) ≤ i}| ≤
i − lik ≤ i − |{v ∈ Cj

k : µ(v) ≤ i}|, we are done.
Conversely, let f be a µ-coloring of G. Since, for each k ∈ [r], µ(wi

k) ≤
µ(wi+1

k ) and vertices in Bk are twins, we can permute colors of vertices in

Bk to obtain f(w1
k) < · · · < f(w

|Bk|
k ), without affecting the feasibility of the

problem. We claim that f now induces a (γ, µ)-coloring of G′. Note that
we only need to show that, for each k ∈ [r] and j ∈ [|Bk|] we have that
γ(wj

k) ≤ f(wj
k). Suppose the contrary and let h = γ(wj

k) > f(wj
k) for some

j. By definition of γ(wj
k), it follows that lh−1

k +j > h−1, i.e. j > h−1−lh−1
k ,

and, since w1
k, . . . w

j
k are receiving a color in [h − 1], this is a contradiction
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with f being a feasible µ-coloring of G. 2

2.2. NP-complete cases

Theorem 6. For each integer p ≥ 3, the µ-coloring problem is NP-complete
on clique trees of height p and the precoloring extension problem is NP-
complete on clique trees of height p − 1.

Proof. The proof is based on a reduction from 3-Sat; namely, we are given
a 3-Sat instance with variables x1, . . . xn and clauses c1, . . . , ck. W.l.o.g. we
assume that there is no clause cj where both xi and x̄i appear.

Our first task is producing a list-coloring instance (G, L) such that there
exists a feasible coloring for (G, L) if and only if there exists a feasible
solution to the 3-Sat instance. This goes as follows. Define a bijection ϕ
between the set ∪i{xi, x̄i} and [2n] such that: ϕ(xi) = 2i − 1, ϕ(x̄i) = 2i.
The list-coloring instance (G, L) is defined as follows: V (G) = {A ∪ C},
A = {v1, . . . , vn}, C = {w1, . . . , wk}, where A is a clique, C is a stable set
and A is complete to C. Let L(vi) = {2i− 1, 2i} = {ϕ(xi), ϕ(x̄i)} for i ∈ [n]
and L(wj) = {ϕ(xi)| xi ∈ cj} ∪ {ϕ(x̄i)| x̄i ∈ cj} for j ∈ [k].

Consider now a solution S to the 3-Sat instance: if xi is true (resp. x̄i

is true) in S, then color vi with ϕ(x̄i) (resp. ϕ(xi)). As for the vertices of C,
let cj be any clause and suppose xi (resp. x̄i) makes cj true in S; then the
color ϕ(xi) (resp. ϕ(x̄i)) is not used in A, so it can be used to color wj : thus,
we obtain a feasible coloring for (G, L). Conversely, every feasible coloring
f to (G, L) induces a true/false assignment to the variables x1, . . . xn such
that the boolean formula is satisfied: namely, make xi true (resp. x̄i true)
if and only if the color of vi is ϕ(x̄i) (resp. ϕ(xi)).

We now define an instance (G′, µ) of the µ-coloring problem such that
the list-coloring instance (G, L) has a solution if and only if (G′, µ) has a
solution, where G′ is a clique tree of height 3.

G′ is defined as follows. V (G′) = A ∪ B ∪ C ∪ D ∪ E, where A, B, C, D
and E are pairwise disjoint set of vertices. In particular, A and C are the
same sets defined for G, B = {v′1, . . . , v

′
n} is a clique, D and E are both

collection of pairwise disjoint set of cliques, that are defined as follows. For
each j in [k], let us name the elements in the list L(wj) as `1

j , `
2
j , `

3
j , where

0 = `0
j < `1

j < `2
j < `3

j . Then, D = D1 ∪ D2 ∪ . . . ∪ Dk, where, for j ∈ [k],

Dj = D1
j ∪ D2

j ∪ D3
j and each Di

j is clique of size `i
j − `i−1

j − 1, for i ∈ [3].

Analogously, E = E1 ∪ E2 ∪ . . . ∪ Ek, where, for j ∈ [k], Ej = E2
j ∪ E3

j

and each Ei
j is a clique of size `i−1

j , for i ∈ {2, 3}. Note that each set Di
j is

non-empty, since we are assuming there is no clause cj with both xi and x̄i.
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As for E(G′), it is defined as follows. G′[A ∪ C] = G, B is complete to
A, for each suitable pair (i, j), Di

j is complete to {wj} and Ei
j is complete

to Di
j , and there are no more edges in G′ (see Figure 2). Note that G′ is

clique tree of height 3, as required.

Figure 2: The graphs G (in full lines) and G′ (in dashed and full lines) from the proof of
Theorem 6.

Define µ : V (G′) → N as follows: µ(vi) = µ(v′i) = 2i for each i in [n];
µ(wj) = `3

j for each j in [k]; µ(w) = `i
j − 1 for each w ∈ Di

j and µ(w) = `i−1
j

for each w ∈ Ei
j , for each suitable pair (i, j).

Let f : V (G′) → N be a solution to (G′, µ). The sets A, B satisfy the
conditions of Lemma 1, so f(v) ∈ L(v) for each v ∈ A. Let wj ∈ C. Observe
that, by construction, the vertices in each set Ei

j are forced to use all and

only the colors in [`i−1
j ]. Therefore, the vertices in each set Di

j are forced

to use all and only the colors in the interval [`i−1
j + 1, . . . , `i

j − 1]. Then

f(wj) ∈ {`1
j , `

2
j , `

3
j} = L(wj) must hold.

Conversely, let f be a solution to (G, L). Then it can be extended to
vertices of D ∪ E by assigning, for each suitable pair (i, j), colors from
[`i−1

j + 1, . . . , `i
j − 1] to vertices of Di

j , and colors in [`i−1
j ] to vertices of Ei

j .
Since B is anticomplete to C ∪D ∪E, we can use Lemma 1 to argue that f
can be extend to vertices of B as well.

Putting things together, it follows that there exists a feasible coloring for
(G′, µ) if and only if there exists a feasible solution to the 3-Sat instance.
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Note that the size of G′ is a polynomial in the size of the 3-Sat instance.
We therefore conclude that the µ-coloring problem is NP-complete on clique
trees of height 3. It is trivial to extend this result to clique trees of fixed
height p ≥ 4: we omit the details.

We now move to the second statement in the theorem. We therefore
define an instance (G′′, P ) of the precoloring extension problem such that
the list-coloring instance (G, L) has a solution if and only if (G′′, P ) has a
solution, where G′′ is a clique tree of height 2.

Let A, C be as in the definition of G, B = {v′1, . . . , v
′
n} be a stable set

disjoint from A ∪ C. Let E1, . . . , En be pairwise disjoint cliques, disjoint
from A ∪ B ∪ C, such that for each i ∈ [n], |Ei| = 2n − 2 and its vertices
are precolored with (different) colors in [2n] \ {2i − 1, 2i}. Let E =

⋃

Ei.
Let D1, . . . , Dk be pairwise disjoint cliques, disjoint from A ∪ B ∪ C ∪ E,
such that for each i ∈ [k], |Di| = 2n − 3 and its vertices are precolored
with (different) colors in [2n] \ L(wi). Let D =

⋃

Di. G′′ is then defined
as follows: V (G′′) = A ∪ B ∪ C ∪ D ∪ E; G′′[A ∪ C] = G, B is complete to
A, Di is complete to {wj} for each j ∈ [k], Ei is complete to {v′i} for each
i ∈ [n], and there are no more edges in G′′. Observe that G′′ is a clique tree
of height at most 2.

With similar arguments as those used above, it can be shown that (G, L)
has a solution if and only if (G′′, P ) has a solution. Moreover, the size of G′′

is a polynomial in the size of the 3-Sat instance. Therefore, the precoloring
extension problem is NP-complete on clique trees of height 2. In fact, it is
trivial to extend this result to clique trees of fixed height p ≥ 3: we omit
the details. 2

Since the (γ, µ)-coloring problem is a generalization of the precoloring
extension problem, we have the following corollary.

Corollary 7. For each integer p ≥ 2, the (γ, µ)-coloring problem is NP-
complete on clique trees of height p.

3. Unit interval graphs

A graph G is an interval graph if it is the intersection graph of a set of
intervals over the real line. A unit interval graph (uig) is the intersection
graph of a set of intervals of length one, while a proper interval graph is the
intersection graph of a set of intervals where no interval is properly contained
in another. A claw is the complete bipartite graph K1,3.

Theorem 8. [19] The classes of unit interval graphs, proper interval graphs,
and claw-free interval graphs coincide.

12



Let v1, . . . , vn be an ordering of the vertices of a graph G. The ordering
is consistent if there is no triple i < j < k such that vkvi ∈ E(G) and vkvj 6∈
E(G). If, in addition, there is no triple i < j < k such that vivk ∈ E(G)
and vivj 6∈ E(G) (equivalently, the reverse ordering is also consistent), the
ordering is called proper consistent.

Theorem 9. [17, 18] A graph if an interval graph if and only if its vertices
admit a consistent order, while it is a unit interval graph if and only if its
vertices admit a proper consistent order.

The main result of this section is the following.

Theorem 10. The µ-coloring problem is NP-complete on unit interval graphs.

Our proof is based on a reduction from the following restriction of the
satisfiability problem, that is known to be NP-complete [8]:

Restricted 3-Sat (R3-Sat)

Input : A t-variables Boolean formula φ in conjunctive normal form with k
clauses such that: each variable x1, x2, . . . , xt does not appear twice in the
same clause, while it appears in at least two and at most three different
clauses; each literal x1, x̄1, x2, x̄2, . . . , xt, x̄t, appears at most twice, and each
clause contains at least two and at most three literals.
Goal : Determine if there exists a truth assignment ν satisfying φ.

Given an R3-Sat instance (φ), we denote by sizeφ the number of bits
required for a binary encoding of (φ). The definition is quite standard, and
we refer the reader to textbooks for details (see for example [16]). For sake
of clarity, we start with reducing R3-Sat to a list-coloring problem with
some parity constraints, which we call Parity list coloring (PLC in short).
We will then show how to complete the proof, linking PLC to the µ-coloring
problem on uig.

Parity list coloring (PLC)

Input : A graph G, a finite list L(v) ⊆ N for each vertex v ∈ V (G), and a
partition F of V (G) into classes.
Goal : Find a list-coloring of G such that all the vertices in a same class are
assigned colors with the same parity.

We say that a set F ∈ F is trivial if |F | = 1, non-trivial otherwise.

13



3.1. From satisfiability to parity list coloring

As we are showing, PLC is NP-complete on complete graphs (recall that
list-coloring is easy on such graphs). We first show how to associate to some
instance (φ) of R3-Sat an instance (G, L,F) of PLC. We assume that
we are given some ordering c1, . . . , ck on the clauses of (φ), and associate
therefore to (φ) a string `1 . . . `y of characters from the alphabet of literals.
For instance, if φ = (x1∨ x̄2)∧(x1∨x2∨ x̄3)∧(x̄1∨x3), we associate to φ the
string `1 . . . `y ≡ x1x̄2x1x2x̄3x̄1x3. It follows from the definition of R3-Sat
that y ≤ 3t and y ≤ 3k.

We consider a clause as a set of characters, and associate to each clause
cj , j ∈ [k], the set α(cj) = {1 ≤ i ≤ y : `i ∈ cj} and to each variable xi,
i ∈ [t], the set β(xi) = {1 ≤ i ≤ y : `i ≡ xi or `i ≡ x̄i}. If we refer again
to the previous example, we have that α(c1) = {1, 2}, α(c2) = {3, 4, 5},
α(c2) = {6, 7}, β(x1) = {1, 3, 6}, β(x2) = {2, 4} and β(x3) = {5, 7}.

We exploit some ideas from Jansen [12] and associate to (φ) an instance
(Gφ, Lφ,Fφ) of parity list coloring, that is defined as follows. Gφ is the
complete graph of size y + k. The vertices of Gφ are partitioned into two
sets: T = {v1, . . . , vy} and U = {vy+1, vy+2, . . . , vy+k}. The lists Lφ of
feasible colors of V (Gφ) are defined as follows:

for p ∈ [y], Lφ(vp) = {2p, 2p + 1};

for j ∈ [k], Lφ(vy+j) = {2h : h ∈ α(cj) and `h ≡ xi, for some i ∈ [t]} ∪
{2h + 1 : h ∈ α(cj) and `h ≡ x̄i, for some i ∈ [t]}.

Finally, let Fφ = {{vi, i ∈ β(x1)}, . . . , {vi, i ∈ β(xt)}, {vy+1}, . . . , {vy+k}}.

Lemma 11. There exists a feasible list-coloring for (Gφ, Lφ,Fφ) if and only
if there exists a feasible truth assignment for (φ), and one can construct one
from the other in a time polynomial in sizeφ.

Proof. The “if” part: let ν be a feasible assignment for (φ). Consider a
coloring f defined as follows: for p ∈ [y], f(vp) = 2p + 1 if the variable
corresponding to `p is true in ν, it is f(vp) = 2p otherwise; for j ∈ [k], we
choose a literal `m of cj that is true (there is at least one since ν is a feasible
truth assignment), and set f(vy+j) = 2m+1 if `m corresponds to a negated
variable, f(vy+j) = 2m otherwise. It is straightforward to check that f is
feasible for (Gφ, Lφ,Fφ).

The “only if” part: from a feasible list-coloring, we define a truth assign-
ment ν as follows: a variable ν(xi) is true if each vertex vh with h ∈ β(xi),
has odd color, it is false otherwise. It is straightforward to check that ν is a
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feasible truth assignment. We conclude by pointing out that both produc-
ing a feasible truth assignment from a feasible coloring, and the converse
operation can be performed in time polynomial in sizeφ. 2

As an immediate corollary of the previous lemma, we obtain that PLC
is NP-complete on cliques.

3.2. From satisfiability to µ-coloring on unit interval graphs

In order to show that µ-coloring is NP-complete on uigs, we associate
with each instance (φ) of R3-Sat an instance (G, µ), with G a uig. We
postpone the complete definition of (G, µ), that is rather technical, to Sec-
tion 3.3, but give here some crucial properties. Namely, (G, µ) is such that:

(P1) V (G) = U ∪ U ′ ∪ T ∪ T ′ ∪ {v?}.

(P2) G[U ∪ T ] is isomorphic to Gφ.

(P3) G[T ∪T ′∪{v?}] (resp. G[U∪U ′]) is a uig admitting a proper consistent
ordering where the vertices of T ∪ {v?} (resp. U) are last (resp. first).

(P4) N(v?) = U ∪T ; U ′ (resp. T ′) is anti-complete to T ∪T ′(resp. U ∪U ′).

(P5) For each v ∈ U ∪ T , µ(v) = maxh∈Lφ(v) h; µ(v?) = 1.

(P6) (G, µ) can be built in time polynomial in sizeφ.

Here (Gφ, Lφ,Fφ) is the instance of PLC that is defined from (φ), as in
Section 3.1.

Lemma 12. G is a uig.

Proof. Observe that U is complete to T ∪ {v?} and there are no more edges
from U ∪ U ′ to T ∪ T ′ ∪ {v?}. The statement then follows from (P3). 2

It follows from Lemma 11 that, in order to prove Theorem 10, it is
enough to prove the next lemma. Note that, with a slight abuse, we often
look at Gφ as the subgraph of G induced by U ∪ T . Moreover, if f is a
coloring for a graph G and X ⊆ V (G), we denote by f [X] the restriction of
f to X.

Lemma 13. If f is a µ-coloring for (G, µ), then f [V (Gφ)] is a feasible list-
coloring for (Gφ, Lφ,Fφ); vice versa every feasible coloring for (Gφ, Lφ,Fφ)
can be extended in time polynomial in sizeφ to a feasible coloring for (G, µ).
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We divide the proof of Lemma 13 into the proof of two lemmas, whose
statements need a few definitions.

Our first aim is to define a “restriction” of (Gφ, Lφ,Fφ) to G[U ] and
G[T ]. First, we let Lφ[U ] (resp. Lφ[T ]) be the restriction of Lφ to U (resp.
T ). We also consider the restriction of Fφ to T and U : this deserves a
few words. First note that the definition of Fφ is such that it does indeed
induce a partition of U and a partition of T . Moreover, the partition of
U is only composed of trivial sets, thus the parity constraints associated to
vertices of U can be neglected. Thus, Fφ is essentially a partition of T and,
in the following, with a slight abuse, we will also refer to Fφ as a partition of
T . Therefore, the restriction of (Gφ, Lφ,Fφ) to G[U ] is simply an instance
(G[U ], Lφ[U ]) of list-coloring, while the restriction of (Gφ, Lφ,Fφ) to G[T ]
is an instance (G[T ], Lφ[T ],Fφ) of PLC.

Finally, we associate to an instance (G, µ) of the µ-coloring on G two
“sub-instances” (G[U∪U ′], µ) and (G[T ∪T ′∪{v?}], µ), where we are slightly
abusing notations since we are identifying µ respectively with its restriction
to U ∪ U ′ and to T ∪ T ′ ∪ {v?}.

Lemma 14. If f is a µ-coloring for (G[U ∪ U ′], µ), then f [U ] is a list-
coloring for (Gφ[U ], Lφ[U ]); vice versa every list-coloring for (Gφ[U ], Lφ[U ])
can be extended in time polynomial in sizeφ to a µ-coloring for (G[U∪U ′], µ).

Lemma 15. If f is a µ-coloring for (G[T ∪ T ′ ∪ {v?}], µ), then f [T ] is
a feasible list-coloring for (Gφ[T ], Lφ[T ],Fφ); vice versa every feasible list-
coloring for (Gφ[T ], Lφ[T ],Fφ) can be extended in time polynomial in sizeφ

to a µ-coloring for (G[T ∪ T ′ ∪ {v?}], µ).

Assume now that Lemma 14 and 15 hold. As we show in the following,
then Lemma 13 holds too.

In order to prove the first statement of Lemma 13, we consider a µ-
coloring f for (G, µ). The restrictions f [U ∪U ′] and f [T ∪T ′∪{v?}] are triv-
ially a µ-coloring for (G[U ∪U ′], µ) and a µ-coloring for (G[T ∪T ′∪{v?}], µ),
respectively. It follows from Lemma 14 and 15 that f [U ] is a list-coloring
for (Gφ[U ], Lφ[U ]) and f [T ] is a feasible list-coloring for (Gφ[T ], Lφ[T ],Fφ).
We claim that f [U ∪ T ] determines a feasible list-coloring for (Gφ, Lφ,Fφ).
That is easy to check, as soon as we observe that, for each vertex u ∈ U and
t ∈ T , f(u) 6= f(t), since T ∪ U is a clique of G.

We now show the second statement of Lemma 13. Consider there-
fore a feasible coloring for (Gφ, Lφ,Fφ). Trivially, f [U ] is a coloring for
(Gφ[U ], Lφ[U ]) and f [T ] is a feasible coloring for (Gφ[T ], Lφ[T ],Fφ). It fol-
lows from Lemma 14 and 15 that f [U ] can be extended to a µ-coloring
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f ′ for (G[U ∪ U ′], µ) and f [T ] can be extended to a µ-coloring f ′′ for
(G[T ∪ T ′ ∪ {v?}], µ). Observe also that, for each vertex u ∈ U and t ∈ T ,
f(u) 6= f(t), since T ∪ U is a clique of Gφ. Moreover, f ′′(v?) = 1 (since
µ(v?) = 1) and f(u) 6= 1, for u ∈ U (color 1 does not belong to Lφ(u)).
Then it is easy to check that the union of f ′ and f ′′ determines a µ-coloring
for G, and that f, f ′ can be obtained in time polynomial in sizeφ.

In the rest of the paper, we therefore build the graph G as to satisfy
properties (P1) to (P6), and prove Lemma 14 and 15.

3.3. Building up the uig G

In this section we construct graph G, describing explicitly the graphs
G[U ∪ U ′] and G[T ∪ T ′ ∪ {v?}] and a proper consistent ordering of their
vertices where vertices of U (resp. T ∪ {v?}) are first (resp. last).

3.3.1. The graph G[U ∪ U ′] and the proof of Lemma 14

Let D =
⋃

v∈U Lφ(v). Let U ′ = {w1, . . . , w2y+1}. The edges of G[U ∪U ′]
are as follows: U , U ′ are cliques; vertices wi with i ∈ [2y + 1] \ D are
complete to U ; for i ∈ D, a vertex v of U is adjacent to wi if and only if
i < minh∈Lφ(v)

h.
The proposed order of the vertices starts by the vertices of U , vy+1, . . . ,

vy+k, followed by the vertices wi in U ′ with i ∈ [2y + 1] \ D, and finally by
the vertices wi in U ′ with i ∈ D, ordered by their index.

Note that in the list-coloring instance (Gφ[U ], Lφ), for j ∈ [k − 1], each
color in Lφ(vy+j+1) is strictly greater than all the colors in Lφ(vy+j). So
N [vy+1] = {wi : i ∈ [2y + 1] \ D}, and N [vy+j+1] = N [vy+j ] ∪ {wi : i ∈
Lφ(vy+j)}, for each j ∈ [k − 1]. Taking this into account, it is not hard to
see that the order proposed above is a proper consistent order, thus G[U∪U ′]
is a uig. An example can be seen in Figure 3.

As we already mentioned, for each v ∈ U , µ(v) = maxh∈Lφ(v) h. Finally,
we define µ over U ′ as µ(wi) = i for each i ∈ [2y + 1].

Proof of Lemma 14. Consider a µ-coloring f of G[U ∪ U ′]. First note
that the vertices in U ′ form a clique, and for each i ∈ [2y + 1], µ(wi) = i;
this implies that f(wi) = i for each i ∈ [2y + 1]. Now, let v ∈ U . Since
µ(v) ≤ 2y + 1, f(v) is a color used by some vertex in U ′ nonadjacent to v.
By definition of (G[U ∪ U ′], µ), a vertex wi ∈ U ′ is nonadjacent to v if and
only if either i > µ(v) or i ∈ Lφ(v). Since f is a µ-coloring, it follows that
f(v) ∈ Lφ(v). Thus, f [U ] is a feasible solution for (Gφ[U ], Lφ). Conversely,
given a feasible list-coloring of (Gφ[U ], Lφ), we can extend it to a µ-coloring
of (G[U ∪ U ′], µ), by giving to each vertex w of U ′ color µ(w). 2
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Figure 3: A unit interval representation of the instance (G[U ∪U ′], µ), for φ = (x1 ∨ x̄2)∧
(x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x3) (the values of µ on each vertex are shown at the left of the
corresponding interval). Recall that, for this instance, y = 7, k = 3, U = {v8, v9, v10},
Lφ(v8) = {2, 5}, Lφ(v9) = {6, 8, 11} and Lφ(v10) = {13, 14}.

3.3.2. The graph G[T ∪ T ′ ∪ {v?}] and the proof of Lemma 15

G[T ∪ T ′ ∪ {v?}] will be constructed through the following three inter-
mediate steps: we start by building a gadget Hn, where n is any positive
integer. Then, for each i ∈ [t], we build a graph Di starting from two copies
of Hn. Last, we use graphs D1, . . . , Dt to obtain G[T ∪ T ′ ∪ {v?}]. We
conclude the paragraph by showing that the latter graph satisfies Lemma
15.

For each n ∈ N, n ≥ 3, Hn is the graph on 4n + 8 vertices, V (Hn) =
{z1, . . . , z4n+8} defined below. Define the following disjoint subsets of V (Hn):
A0

1 = {z2, z3} , A0
2 = {z4, . . . , zn+1}, B0

1 = {zn+2, zn+3}, B0
2 = {zn+4,

. . . , z2n+1}, B1
2 = {z2n+8, . . . , z3n+5}, B1

1 = {z3n+6, z3n+7}, A1
2 = {z3n+8,

. . . , z4n+5}, A1
1 = {z4n+6, z4n+7}. The edges of Hn are all and only the

following: {z1, . . . , z2n+1}, {z2n+2, . . . , z2n+7}, {z2n+8, . . . , z4n+8} are com-
plete sets in Hn; {z2n+2, z2n+3, z2n+4} is complete to A0

2 ∪ B0
1 ∪ B0

2 ∪ B1
2 ;

{z2n+5, z2n+6, z2n+7} is complete to B0
2 ∪ B1

2 ∪ B1
1 ∪ A1

2; B0
2 is complete to

B1
2 . It is easy to see that the order z1, . . . , zn is a proper consistent order

for V (Hn) (see Figure 4 for a unit interval representation of Hn).

Remark 16. Graph Hn is a symmetric proper interval graph, that is, the
one-to-one correspondence zj 7→ z4n+9−j is an automorphism of Hn.

Let now n1, n2 ∈ N, n1 < n2 ≤ n/2. Define the integers a = 2n1 and
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Figure 4: A unit interval representation of the graph Hn.

b = 2n2 and consider the following list-coloring constraints La,b:

• La,b(z1) = 1;

• La,b(z2) = La,b(zn+2) = {a, a + 1};

• La,b(z3) = La,b(zn+3) = {b, b + 1};

• for zj ∈ A0
2,

La,b(zj) = La,b(zj+n) =







{2(j − 3), 2(j − 3) + 1} if j < n1 + 3
{2(j − 2), 2(j − 2) + 1} if n1 + 3 ≤ j < n2 + 2
{2(j − 1), 2j − 1} if n2 + 2 ≤ j

• La,b(z2n+2) = {a + 1, b};

• La,b(z2n+3) = {b + 1, 2n + 2};

• La,b(z2n+4) = {1, a};

• for j ≥ 2n + 5, La,b(zj) = La,b(z4n+9−j).

Remark 17. Let n1, n2 ∈ N, n1 < n2 ≤ n/2, and (Hn, La,b) defined as
above. Then for each j ∈ [n] \ {n1, n2}, there exists a unique vertex v ∈ A0

2
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(resp. B0
2 , A1

2, B1
2) such that La,b(v) = {2j, 2j +1}, and conversely for each

vertex v ∈ A0
2 (resp. B0

2 , A1
2, B1

2) there exist a value j ∈ [n] \ {n1, n2} such
that La,b(v) = {2j, 2j + 1}.

Lemma 18. For a, b defined as above and µ : V (Hn) → N defined as µ(v) =
maxh∈La,b(v) h, the following properties hold:

(i) every solution of (Hn, µ) is a solution of (Hn, La,b), and conversely
every solution of (Hn, La,b) is a solution of (Hn, µ).

(ii) in no feasible coloring f of (Hn, La,b), there exist w, w′ ∈ A0 := A0
1 ∪

A0
2(resp. A1 := A1

1 ∪ A1
2) such that f(w) = a, f(w′) = b + 1, or

f(w) = a + 1, f(w′) = b.

(iii) no pair of vertices of A0 and A1 share a color in any feasible coloring
of (Hn, La,b);

(iv) any coloring of A0 (resp. A1) that does not violate constraints from
La,b and from point (ii) can be extended in time polynomial in n to a
list-coloring of (Hn, La,b).

Proof.

(i) One direction is trivial, thus we only need to show that for each col-
oring f that is feasible for (Hn, µ), f(v) ∈ La,b(v) holds true for
each v ∈ V (Hn). Let f be a feasible coloring of (Hn, µ). Since
µ(z1) = 1, f(z1) = 1. Recall that A0

1 ∪ A0
2 ∪ B0

1 ∪ B0
2 is a clique,

and for each i ∈ [n] there are exactly two vertices of this clique with
µ = 2i + 1 (see Remark 17): as an immediate corollary of Lemma 1
(having excluded color 1, that none of vertices from A0

1 ∪A0
2 ∪B0

1 ∪B0
2

will be colored with, being they adjacent to z1), f(w) ∈ La,b(w) for
w ∈ A0 ∪ B0

1 ∪ B0
2 . Being Hn symmetric (cfr. Remark 17), the same

holds for w ∈ A1 ∪ B1
1 ∪ B1

2 . Vertex z2n+4 is adjacent to the clique
A0

2 ∪B0
2 which has a− 2 vertices that can be colored with colors from

2 to a− 1, so f(z2n+4) ∈ {1, a} = La,b(z2n+4). Again by symmetry we
conclude that f(z2n+5) ∈ La,b(z2n+5). Vertex z2n+2 is adjacent to the
clique A0

2∪B0
2 that has a−2 vertices colored with colors from 2 to a−1

and b− a− 2 colors between a + 2 and b− 1, so it can be colored only
with 1, a, a + 1 and b. Furthermore it is adjacent to z2n+4 and z2n+5,
so it cannot be colored with 1 and a as well, thus the only colors left
are those from its list. Again a symmetric argument works for z2n+7.
In order to conclude the proof, one can easily show f(w) ∈ La,b(w) for
w = z2n+3, z2n+6 by using similar arguments as those used above.
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(ii) From Remark 17, z2 and z3 are the only vertices from A0 that can
be colored with a, a + 1, b, b + 1. In particular La,b(z2) = {a, a + 1}
and La,b(z3) = {b, b + 1}. Suppose first f(z2) = a and f(z3) = b + 1;
then, f(zn+2) = a + 1 and f(zn+3) = b, which implies that vertex
z2n+2 cannot be colored. Now suppose f(z2) = a + 1 and f(z3) = b,
then the following colors are implied: f(zn+2) = a, f(zn+3) = b + 1,
f(z2n+3) = 2n + 2, f(z2n+6) = b + 1, f(z2n+4) = 1, and f(z2n+5) = a.
Since La,b(z2n+7) = {a+1, b}, either the pair of colors a, a+1 or b, b+1
are used by vertices adjacent to z3n+6 and z3n+7, which then cannot
be colored. The symmetric argument works for A1.

(iii) Let f be a feasible coloring for (Hn, La,b). Recall that A0 = A0
1 ∪ A0

2;
pick any color c such that f(w) = c for some c ∈ A0

2, and recall
that c 6= a, a + 1, b, b + 1. Suppose first c is even. By Remark 17,
c 6= a, a+1, b, b+1 and there is a vertex w′ ∈ B0

2 such that La,b(w
′) =

{c, c + 1}, so f(w′) = c + 1. Repeating the same argument, f(w′′) = c
for some w′′ ∈ B1

2 , and a f(w′′′) = c + 1 for some w′′ ∈ A1
2. Since by

Remark 17 no other vertex of A1 can be colored with c, we conclude
the proof for this case. Being the graph symmetric (cfr. Remark 16),
we can reverse the argument and settle the case when c is odd. Now
pick any color c such that f(w) = c for some w ∈ A0

1 = {z2, z3}
and recall that c ∈ {a, a + 1, b, b + 1}. Being f a feasible coloring for
(Hn, La,b), by part (ii) of the Lemma, either f(z2) = a and f(z3) = b,
or f(z2) = a+1 and f(z3) = b+1. Suppose the first holds. Then, being
f feasible for (Hn, La,b), the following colors are implied: f(zn+2) =
a+1, f(zn+3) = b+1, f(z2n+2) = b, f(z2n+3) = 2n+2, f(z2n+6) = b+1
and f(z2n+7) = a+1. Moreover, note now that f(z2n+5) = 1, otherwise
z3n+7 cannot be colored, so f(z2n+4) = a. Repeating the argument, we
obtain that f(z4n+6) = b + 1 and f(z4n+7) = a + 1. Thus, we showed
that if f(z2) = a and f(z3) = b, and f(z4n+6) = b+1 f(z4n+7) = a+1.
Being z4n+6, z4n+7 the only vertices from A1 that can be colored with
a, a + 1, b, b + 1, this concludes the proof for this case. We are left to
settle the statement for the case f(z2) = a+1 and f(z3) = b+1: note
that this is implied by the previous one, since Hn is symmetric.

(iv) Let us settle the case for A0, following the other by symmetry. Re-
peating the arguments from the proof of part (iii), we observe that in
any extension of a coloring f of A0, B1 := B1

1 ∪B1
2 must use the same

colors of A0, while B0 := B0
1 ∪B0

2 and A1 colors c + 1 for each color c
used by A0 with c even, and colors c − 1 for each color c used by A0
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with c odd. Moreover, following again the proof of part (iii), vertices
z2n+2, . . . , z2n+7 can be assigned a color to make the coloring feasible.

2

For each i ∈ [t], we now define a graph Di and an instance of PLC
(Di, Li,F i). For a given instance φ of R3-Sat and a fixed i ∈ [t], let
H ′, H ′′ be two copies of Hy, with V (H ′) = {z′1, . . . , z

′
4y+8}, V (H ′′) =

{z′′1 , . . . , z′′4y+8}. Di is the graph obtained by H ′ ∪ H ′′ by adding all edges

between A1 ∪ {z′4y+8} from H ′ and A0 ∪ {z′1} from H ′′, and then con-
tracting vertex z′4y+8 of H ′ with vertex z′′1 of H ′′. With this definition,

z′1, . . . , z
′
4y+8, z

′′
2 , . . . , z′′4y+8 is a proper consistent ordering of V (Di), and both

{z′1, . . . , z
′
4y+8} and {z′4y+8, z

′′
2 , . . . , z′′4y+8} induce Hy on Di (see Figure 5).

Thus, Di is a uig. We call ui
j := z′j for 1 ≤ j ≤ 4y + 8, ui

j := z′′
j−(4y+7)

for 4y + 9 ≤ j ≤ 8y + 15, Ei = {ui
2, . . . , u

i
y+1}, F i = {ui

7y+15, . . . , u
i
8y+14}.

Recall Ei = A0 from H ′ and F i = A1 from H ′′.
Let yi be the number of occurrences of variable xi in φ, so yi ∈ {2, 3}.

Let p1
i < . . . < pyi

i such that {p1
i , . . . , p

yi

i } = β(xi). Define Li as L2p1
i ,2p2

i
over

{z′1, . . . , z
′
4y+8} and L2p1

i ,2p
yi
i

over {z′4y+8, z
′′
2 , . . . , z′′4y+8} (it is well defined

since L2p1
i ,2p2

i
(z′4y+8) = L2p1

i ,2p
yi
i

(z′′1 ) = {1}). Set µ(u) = maxh∈Li(u) h for

each u ∈ V (Di).
Last, let F i be the partition of V (Di) whose only non-trivial set is {v ∈

F i : Li(v) = {2p, 2p + 1} and p ∈ β(xi)}.

Lemma 19. For Di, Li,F i, µ defined as above, the following holds:

(1) Ei and F i are cliques in Di, ui
1 is complete to Ei, while ui

8y+15 is com-

plete to F i.

(2) For each i ∈ [t] and p ∈ [y], there exists a unique vertex v ∈ E i (resp.
F i) such that Li(v) = {2p, 2p+1}, and conversely for each vertex v ∈ E i

(resp. F i) there exist a value p ∈ [y] such that Li(v) = {2p, 2p + 1}.

(3) Ei and F i share no color in any feasible list-coloring of (Di, Li).

(4) Every µ-coloring of Di is a feasible coloring for (Di, Li).

(5) Any feasible coloring of (Di, Li) is a feasible coloring for (Di, Li,F i).

(6) Any feasible solution to (Di[F i], Li,F i) can be extended in time polyno-
mial in sizeφ to a feasible coloring for (Di, Li).
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Figure 5: A unit interval representation of the graph Di.

Proof. (1) and (2) are immediately shown true, by the very definition of
(Di, Li,F i) and Remark 17.

(3) From Lemma 18.iii applied to each copy of Hy, vertices of Ei (A0 of
H ′) share no color with vertices of A1 of H ′, and vertices of F i (A1

of H ′′) share no color with vertices of A0 of H ′′. Since A1 of H ′ is
complete to A0 of H ′′, they also share no color. From Remark 17
applied to each copy of Hy, for each j ∈ [y], there is exactly one vertex
from A0 and one from A1 that can be colored with {2j, 2j + 1}; being
both sets cliques of size y, then a color is used in A0 if and only if it
is not used in A1, and this concludes the proof.

(4) It follows from Lemma 18.i and the definition of (Di, Li).

(5) Let f be a feasible list-coloring of (Di, Li). By the definition of the
lists Li, F i never uses simultaneously 2pj

i and 2pj
i +1 in f , for j ∈ [yi].

From Lemma 18.ii, F i uses either both 2p1
i and 2p2

i or both 2p1
i + 1

and 2p2
i + 1, while Ei uses either both 2p1

i and 2pyi

i or both 2p1
i + 1

and 2pyi

i + 1, respectively. If yi = 2 we are done, so suppose yi = 3.
From Remark 17, for j = 1, 2, 3 there is exactly one vertex from E i

and one from F i that can be colored with {2pj
i , 2p

j
i +1}. Suppose first

F i uses 2p1
i ; repeating the arguments used for yi = 2 and because of

Claim (3), this can happen if and only if F i also uses 2p2
i , and if and
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only if F i uses 2p3
i . If F i uses 2p1

i + 1, the proof is symmetric. So f is
a feasible solution for (Di, Li,F i).

(6) Consider now a feasible solution to (Di[F i], Li,F i). From Lemma 18.iv,
we know that it can be extended to vertices of H ′′, since it satisfies
conditions of Lemma 18.ii with respect to the list-coloring instance
(H ′′, L2p1

i ,2p
yi
i +1), that are a subset of conditions imposed by F i. Re-

peating the argument used in the proof of Claim (3), we can extend
that coloring to A1 from H ′ by assigning in the only possible way the
set of colors used by F i in f . This partial coloring of H ′ respects the
constraints of Lemma 18.ii for (H ′, L2p1

i ,2p2
i +1), since they are a subset

of the constraints imposed by F i on the set of colors used by F i. Thus,
by Lemma 18.iv and since the only edges from H ′ to H ′′ are from A1

to A0, we can extend it to the rest of the graph H ′, obtaining a feasible
list-coloring for (Di, Li).

2

In order to define G[T ∪T ′∪{v?}], we first introduce a sequence of graphs
G1, . . . , Gt: G1 = D1; for 2 ≤ i ≤ t, Gi is the graph obtained from Gi−1∪Di

by adding all edges between ui−1
7y+15, . . . , u

i−1
8y+15 and ui

1, . . . , u
i
y+1, and then

contracting ui−1
8y+15 with ui

1. Last, define G[T ∪ T ′ ∪ {v?}] = Gt.

It is immediate to check that for each i ∈ [t], i ≥ 2, Gi has (8y +14)i+1
vertices, and u1

1, u
1
2, . . . , u

1
8y+15, u

2
2, u

2
3, . . . , u

t
8y+15 is a proper consistent order

of V (Gi), thus Gi is a uig. With a slight abuse of notation, for i = 1, . . . , t,
we will say that Di is an induced subgraph of G[T ∪ T ′ ∪ {v?}], considering
when necessary the vertex obtained by contracting ui

1 (resp. ui
8y+15) as ui

1

(resp. ui
8y+15) itself. Note that the definition of µ over G[T ∪ T ′ ∪ {v?}] is

univocally determined by the definition of µ over the graphs Di, since for
2 ≤ i ≤ t, µ(ui−1

8y+15) = µ(ui
1) = 1.

Finally, we shall identify T with the set F t and v? with vertex ut
8y+15.

Lemma 19.2 allows us to identify T with F t in such a way that, for each
p ∈ [y], the vertex vp of T corresponds to the only vertex v in F t satisfying
Lt(v) = Lφ(vp) = {2p, 2p + 1}. Observe that µ(v?) = 1 and that, in the
proper consistent order given, T ∪ {v?} are the last vertices.

Proof of Lemma 15. Let f be a µ-coloring for (G[T∪T ′∪{v?}], µ). In par-
ticular, for each i ∈ [t], f [V (Di)] is a µ-coloring of Di and, by Lemma 19.4,
it is also a feasible coloring for (Di, Li). By Lemma 19.3, Ei and F i share
no color in f , and since |Ei| = |F i| = y and no vertex in Ei∪F i contains the
color 1 in its list, each of them uses half of colors in the set [2y+1]\{1}. Be-
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sides, for each i ∈ [t−1], F i∪Ei+1 is a clique, so F i and Ei+1 share no color
in f ; iterating, we deduce that all the sets F 1, . . . , F t use the same subset
of colors. By Lemma 19.5, f [V (Di)] is a feasible solution for (Di, Li,F i).
This means that, in f [F i], the vertices whose lists are {2p, 2p + 1} with
p ∈ β(xi) are assigned colors with the same parity. Since the sets F 1, . . . , F t

use the same subset of colors, all parity constraints in Fφ are satisfied in F t.
Therefore f [T ] is a feasible list-coloring for (Gφ[T ], Lφ[T ],Fφ).

Conversely, let f be a feasible list-coloring for (Gφ[T ], Lφ[T ],Fφ). Re-
call that we identify vertices of T with vertices in F t in such a way that,
for each p ∈ [y], the vertex vp of T corresponds to the only vertex v in
F t satisfying Lt(v) = Lφ(vp) = {2p, 2p + 1}. So, f [Ft] is a feasible so-
lution to (Dt[F t], Lt,F t). By Lemma 19.6, it can be extended to a fea-
sible list-coloring f ′ for (Dt, Lt). By Lemma 19.3, Et and F t share no
color in f ′. Then we can extend f ′ to F t−1 by assigning to it the set of
colors f(F t). By Lemma 19.2, there is only one possible way such that
each vertex v receives a color in Lt−1(v). Moreover, since f is a feasible
list-coloring for (Gφ[T ], Lφ[T ],Fφ), then f ′[Ft−1] is a feasible solution to
(Dt−1[F t−1], Lt−1,F t−1). By applying iteratively Lemma 19.6 and these ar-
guments and by the structure of G[T ∪ T ′ ∪ {v?}] and the definition of µ, it
follows that f ′ can be extended to a solution of (G[T ∪ T ′ ∪ {v?}], µ). 2

In order to conclude the proof of Theorem 10, we are left to note that,
by de definition of (G, µ), properties (P1)-(P6) clearly hold.
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