
SpeeDP: A new algorithm to compute

the SDP relaxations of Max-Cut

for very large graphs

L. Grippo L. Palagi M. Piacentini V. Piccialli

G. Rinaldi

September 6, 2010

Abstract

We consider low-rank semidefinite programming (LRSDP) relaxations
of unconstrained {−1, 1} quadratic problems (or, equivalently, of Max-Cut
problems) that can be formulated as the nonconvex nonlinear program-
ming problem of minimizing a quadratic function subject to separable
quadratic equality constraints. We prove the equivalence of the LRSDP
problem with the unconstrained minimization of a new merit function and
we define an efficient and globally convergent algorithm, called SpeeDP,
for finding critical points of the LRSDP problem. We provide evidence of
the effectiveness of SpeeDP by comparing it with other existing codes on
an extended set of instances of the Max-Cut problem.

When the rank of solution matrix is bounded by a given value (in-
dependent on the problem size n), SpeeDP is still able to provide a valid
upper bound for Max-Cut. This feature makes it possible to design an al-
gorithm, called SpeeDP-MC and based on the Goemans-Williamson heuris-
tic, that has two interesting features: (a) it provides heuristic solutions
to Max-Cut along with a guaranteed optimality error; (b) it runs with a
O(n + m) memory requirement (where m is the number of edges of the
graph), thus overcoming a serious drawback of interior point based meth-
ods that demand O(n2) memory. Exploiting the latter feature, we could
run it on very large graphs with sizes of up to a million nodes, obtaining
very small optimality error bounds in reasonable computation times.

keywords Semidefinite programming, low rank factorization, unconstrained
binary quadratic programming, Max-Cut, nonlinear programming.

1 Introduction

We consider a semidefinite programming (SDP) problem in the form

min
X

{Q • X : diag(X) = e, X � 0} , (1)

1

where Q ∈ S n is given, X ∈ S n (S n being the space of the n × n symmetric
matrices), e ∈ R

n is the vector of all ones, diag(X) denotes the n-vector corre-
sponding to the main diagonal of X , and, finally, X � 0 tells that X is required
to be positive semidefinite.

Semidefinite Programming problems of this form arise as relaxations of un-
constrained {−1, 1} quadratic problems (see, e.g., [6], [10], [19]):

min
x

{
xT Qx : x ∈ {−1, 1}n

}
, (2)

which are equivalent to the Max-Cut problem. Given the weighted adjacency
matrix A of a weighted graph G = (V, E), the Max-Cut problem calls for a
bipartition (S, V \ S) of its vertices V so that the weight of the cut, i.e., of
the edges joining the two sets of the bipartition, is maximized. Denote by L
the Laplacian matrix associated with A and defined by L := diag(Ae) − A.
Represent each bipartition (S, V \S) by an n-vector defined by xi = 1 for i ∈ S
and xi = −1 for i /∈ S (or, equivalently, by its opposite vector). Then the
Max-Cut problem can be formulated as

max
x

{
1

4
xT Lx : x ∈ {−1, 1}n

}
. (3)

Since xT Lx = L • xxT and xxT � 0 with diag(xxT) = e, it is clear that
problem (1) with Q = − 1

4L provides a relaxation of Max-Cut. Efficient solution
of problem (1) is then of great interest because it can be exploited for solving
the corresponding integer problem (2) exactly or as a tool for defining good
heuristics (see, e.g., [23], [25]).

The aim of this paper is twofold: on one side is to define an efficient algorithm
for solving large scale instances of problem (1); on the other, exploiting this
useful tool, is to find good solutions of problem (3), by defining a new heuristic
algorithm and providing a measure of the distance of the solution weight from
the optimal value.

It is well known that problem (1) can be solved by any interior point method,
where the key idea consists in applying the Newton method to the optimality
conditions of the primal-dual pair of problems.

The dual of problem (1) is

min
y

{
eT y : Diag(y) + Q � 0

}
. (4)

Unfortunately, the interior point methods require O(n2) memory which makes
it prohibitive to attack instances with, say, n > 50 000. Moreover these methods
typically require to perform a Cholesky factorization of a n × n matrix which
require O(n3) operations, a much too expensive task when the graph is very
large. These limitations motivate searching for methods that are less demanding
in terms of memory allocation and avoid the need of the Cholesky factorization.
For this reason, the special structure of the constraints of problem (1) has been
exploited in the literature to define ad-hoc algorithms. One possibility is to

2

eliminate the semidefiniteness constraint Diag(y) + Q � 0 in the dual problem.
At the end, the dual problem is reformulated as eigenvalue optimization problem
which can be solved by spectral bundle methods [17]. The other option is to
use nonlinear programming reformulations that eliminate the semidefiniteness
constraint from the primal problem (1). The latter is the line of research this
paper falls into. Indeed, using the Gramian representation, any given matrix
X � 0 with rank r can be written as X = V V T , where V is a n × r real
matrix. Therefore the positive semidefiniteness constraint can be eliminated,
and problem (1) reduces to the Low Rank SDP formulation (LRSDP)

min
V

{
Q • V V T : diag(V V T) = e

}
. (5)

For a fixed value of the rank r, problem (5) can be written as a Non Linear
Programming problem (NLPr)

min
v




qr(v) =
n∑

i=1

n∑

j=1

qijv
T
i vj : ‖vi‖2 = 1, i = 1, . . . , n




 , (6)

where vi, i = 1, . . . , n, are the columns of the matrix V T and v = vec(V T) ∈ R
nr.

Indeed this formulation was first derived by Goemans-Williamson in [12], by re-
placing each variable xi of problem (2) with a vector vi ∈ R

n (or vi ∈ R
r with

r ≤ n), obtaining problem (6). Although reformulation (5) results in the non
convex problem (6), it is still possible to state conditions that ensure correspon-
dence among global solutions of problem (6) and solutions of problem (1) and
also optimality conditions which can be used to check global optimality [14],
[21], [15], [5].

In most of the papers based on NLP approaches, the solution of problem (6)
is achieved by means of an unconstrained reformulation (see [5], [15], [18] and
Section 5).

Indeed, the first idea of an unconstrained formulation of problem (1) goes
back to Homer and Peinado [18], but the dimension of the resulting problem
made the method prohibitive for large scale problems. Burer and Monteiro
in [5] combine the Homer and Peinado formulation with the “low rank idea”.
By introducing the change of variables Xij = vT

i vj/‖vi‖‖vj‖, where vi ∈ R
r,

i = 1, . . . , n, with r << n, they get the unconstrained formulation

min
v




fr(v) =

n∑

i=1

n∑

j=1

qij
vT

i vj

‖vi‖‖vj‖
, vi ∈ R

r




 . (7)

The resulting algorithm SDPLR-MC was computationally efficient, but the under-
lying convergence theory was not deeply investigated.

In this paper, we start from the unconstrained formulation (7), to get an en-
hanced different unconstrained formulation, for which we prove complete equiv-
alence with problem (1). The specific feature of this formulation is that we add
to the function fr(v), where v ∈ R

nr as in [5], a shifted barrier penalty term that

3

ensures compactness of the level sets of the new merit function. This allows us
to use standard unconstrained optimization algorithms. In particular, we define
a globally convergent algorithm based on the nonmonotone Barzilai-Borwein
gradient method proposed in [16]. The resulting algorithmic scheme SpeeDP

outperforms the best existing methods for solving problem (1). By fixing r to a
value independent of n, Algorithm SpeeDP requires O(n+m) memory; moreover,
despite the limitation in the rank of the solution matrix, it is still possible to
derive a valid lower bound for problem (1). Therefore, it is possible to produce
a lower bound (close to the SDP bound) for very large instances of problem (2).
In addition, SpeeDP provides in output the Gramiam matrix of a solution X
to problem (1). This implies that, once SpeeDP has produced a solution, the
famous Goemans-Williamson algorithm proposed in [12] can be applied, essen-
tially without any additional computational effort, to find a feasible cut that,
in case of nonnegative weights, has weight at most 12.1% away from the weight
of the optimum. Therefore, we designed a heuristic algorithm exploiting this
feature in order to produce good cuts for very large graphs. In this algorithm
the Goemans-Williamson cut is improved by applying a 1-opt local search and
then by solving problem (1) again a few more times for a perturbed matrix
Q′. As the computation time is concerned, contrary to what happens for the
interior point methods, SpeeDP has the ability of exploiting sparsity of matrix
Q, thus making it possible to find cuts in sparse graphs with millions of nodes
and edges, with optimality error lower than 5% (when the edge weights are all
positive) in quite practical computation times.

Papers describing heuristics for Max-Cut abound in the literature. However,
only in a few cases the algorithms they describe provide a bound on the optimal-
ity error for the generated solutions. Excluding the heuristics with a certified a
priori bound (like the one of Goemans and Williamson) the only cases when this
bound is computed are those of the exact algorithms, that compute an upper
bound on the value of optimal solution, by solving a relaxation of the problem.
If these algorithms are interrupted prematurely, they provide, as a side product,
a heuristic cut along with an upper bound on the optimal value. Unfortunately,
the computational studies based on these types of algorithms consider graphs
much smaller than those used for the test bed of this paper (see, e.g., [20] for
the polyhedral relaxations and [25] for a combination of SDP and polyhedral
relaxation), therefore no comparison of the computational results provided here
with other approaches is possible at the time.

The paper is structured as follows: in Section 2 we report some useful results
about the low rank reformulation of problem (1). In Section 3 we define the new
unconstrained reformulation of problem (LRSDP), while in Section 4 we define
formally the solution algorithm SpeeDP employed for solving this formulation.

In Section 5 we define our heuristic for finding good solutions of large sparse
instances of Max-Cut.

In Section 6 we report the numerical results. We compare the performance
of SpeeDP against other existing approaches for problem (1). Then we use the
heuristic to find good solutions of large and huge instances of the Max-Cut
problem for random graphs.

4

Throughout the paper, given an m×p matrix M we denote by vec(M) ∈ R
mp

the vector corresponding to the elements of M ordered by column index and
then by row index. Given a vector v ∈ R

m, we denote by Diag(v) the diagonal
matrix having as diagonal the vector v and by Bρ(v) the closed ball centered
in v with radius ρ > 0, namely Bρ(v) = {y ∈ R

m : ‖y − v‖ ≤ ρ}. For a
given scalar x we denote by (x)+ the maximum between x and zero, namely
(x)+ ≡ max(x, 0).

2 Some useful results about the low rank SDP

formulation

In this section we report the main results on the Low Rank SDP formulation
(LRSDP) defined in (5).

A global minimum point of problem (5) is a solution of problem (1) provided
that

r ≥ rmin = min
X∈X ∗

SDP

rank(X),

where X ∗
SDP denotes the optimal solution set of problem (1). Although the value

of rmin is not known, an upper bound can easily be computed by exploiting the
result proved in [24], [2], [22], that gives

rmin ≤ r̂ =

√
8n + 1 − 1

2
. (8)

Thus, in order to get a problem equivalent to problem (1), the dimension of the
matrix V in problem (5) can be fixed to n × r with r ≥ r̂.

We say that a point v∗ ∈ R
nr solves problem (1) if X∗ = V ∗V ∗T is an

optimal solution of problem (1). This implies, by definition, that r ≥ rmin.
Although reformulation (5) results in the non convex problem (6), the primal-

dual optimality conditions for (1) combined with necessary optimality conditions
for (6) lead to some global optimality conditions that can be exploited from the
computational point of view [14], [21], [15], [5].

The Karush-Kuhn-Tucker conditions for problem (6) are written as follows
for some λ ∈ R

n

n∑

j=1

qijvj + λivi = 0, i = 1, . . . , n

‖vi‖2 = 1, i = 1, . . . , n.

(9)

We define stationary point of problem (6) a point v̂ ∈ R
nr satisfying (9) with

a suitable multiplier λ̂ ∈ R
n. Given a local minimizer v̂ ∈ R

nr of problem (6),
the KKT conditions are necessary conditions for optimality and there exists a
unique λ̂ ∈ R

n such that (v̂, λ̂) satisfies (9). This feature has been exploited
first in [15] and later for slightly more general constraints in [21]. Indeed, given

5

a pair (v, λ) satisfying the conditions (9), the multiplier λ can be expressed
uniquely as a function of v, namely

λi(V) = λi = −EiiQ • V V T = −vi
T

n∑

j=1

qijvj , i = 1, . . . , n. (10)

By substituting the expression of λ in the first condition of (9), we get

n∑

j=1

qij

(
Ir − viv

T
i

)
vj = 0 i = 1, . . . , n. (11)

The next proposition that extends the sufficient conditions given in [5] and
was proved in in [15] and for more general problems in [14], [21], states the
global optimality conditions obtained by exploiting the primal-dual properties
for problem (1).

Proposition 3 (Global optimality conditions). A point v∗ ∈ R
nr is a global

minimizer of problem (6) that solves problem (1) if and only if it is a stationary
point of problem (6) and satisfies

Q + Diag(λ(V∗)) � 0,

where λ(V ∗) is computed according to (10).

Thanks to the above proposition, given a stationary point of problem (6), we
can prove its optimality just checking that a certain matrix is positive semidef-
inite.

Another global condition has been proved in [21] for a slightly more general
convex SDP problem which includes as a special case problem (1). It is proved

that the n × r local minimizer V̂ of the LRSDP problem provides a global
solution X̂ = V̂ V̂ T of the original SDP problem if V̂ is rank deficient, namely if
rank(V̂) < r. Actually looking at the proof, it turns out that the assumption of

V̂ being a local minimizer can be relaxed to satisfying the second order necessary
conditions for the LRSDP problem. Hence we restate their proposition (only in
the special case of problem (1), although a generalization to linear constraints
and convex objective function easily follows).

Proposition 4. Let V̂ be the n× r matrix satisfying the first and second order
necessary conditions of problem (5), namely (9) and
(
Q + Diag(λ̂)

)
• ZZT ≥ 0 for all Z ∈ R

n×r : Eii • V̂ ZT = 0 i = 1, . . . , n.

If the matrix V̂ is rank deficient, then it provides a global solution X̂ = V̂ V̂ T of
problem (1). If r = n, any n×n matrix V̂ satisfying the second order necessary

conditions of problem (5) provides a global solution X̂ = V̂ V̂ T of problem (1).

For sake of completeness we report the proof in Appendix 14 although it is
only a special case of the proof presented in [21]. We note for r = n it was

already proved in [18] that there exists no local minimizer V̂ of problem (5)
which is not global.

6

5 A new unconstrained formulation of the SDP

problem

In most papers considering problem (6), its solution is achieved by means of
an unconstrained reformulation of it. In particular, the augmented Lagrangian
function proposed in [5] for a semidefinite programming problem with general
linear constraints can be specified to problem (1) and takes the form

L (V, λ; ε) = Q • V V T +
n∑

i=1

λi

(
‖vi‖2 − 1

)
+

1

2ε

n∑

i=1

(
‖vi‖2 − 1

)2
,

where ε > 0 is a penalty parameter and λi ∈ R, i = 1, . . . , n. This function is
minimized for a sequence of suitable values of (λk, εk), where εk is increasing
and λk is obtained with some updating rule. In [15], the structure of the con-
straints in problem (6) has been exploited to get the closed expression (10) of
the multipliers λi(V) as a function of the variables v. Replacing the multipli-
ers λi with the closed expression λi(V) in the augmented Lagrangian function
L (V, λ; ε) and fixing the penalty parameter to a value ε > 0, they get an exact
penalty function

P (V) = Q • V V T +
n∑

i=1

λi(V)
(
‖vi‖2 − 1

)
+

1

2ε

n∑

i=1

(
‖vi‖2 − 1

)2
.

In this case a single unconstrained minimization of the twice continuously dif-
ferentiable function P (V) is enough to find a stationary point of problem (6).
Computational experiments with the resulting algorithmic scheme, called EXPA

in [15], showed that this unconstrained approach compares favorably with the
best codes available in literature. More recently, Journée et al. in [21] use a
trust region method for optimizing over a manifold [1], which relies on a par-
ticular quotient manifold. Their algorithm is defined for a slightly more general
problem than (1) since they consider a generic convex objective function and
general linear constraints. Their method relies on exploiting the special struc-
ture of the constraints to find a closed expression of the multipliers, which in
the special case of problem (6) returns the same expression found in [15].

However, the original idea of an unconstrained formulation of problem (1)
goes back to Homer and Peinado [18], where the change of variables Xij =
vT

i vj/‖vi‖‖vj‖ for the elements of X with vi ∈ R
n, i = 1, . . . , n has been used

to formulate an unconstrained optimization problem equivalent to the original
problem (6). Their approach led to a problem of dimension n2 which was solved
by a parallel gradient method, but turned out to be impractical for large values
of n.

In [5] the unconstrained formulation proposed by Homer and Peinado has
been resumed and combined it with the “low rank idea”, by introducing the
change of variables Xij = vT

i vj/‖vi‖‖vj‖ where vi ∈ R
r, i = 1, . . . , n, with

r < n. The resulting unconstrained problem (7) was solved to obtain a solu-
tion of problem (5). The practical performance of the resulting algorithm, that

7

we called, SDPLR-MC was pretty good, but the underlying convergence theory
was not deeply investigated. Indeed, it is easy to show that problem (7) is
equivalent to problem (5) in the sense that a one-to-one correspondence among
local/global/stationary point of the two problems can be stated (see [13]). How-
ever, problem (7) presents some peculiarities that make standard convergence
results not immediately applicable. Indeed, standard unconstrained algorithms
can be proved to be globally convergent if the objective function is continuously
differentiable and has compact level sets. Function fr(v) is not even defined
at points where ‖vi‖ = 0 for at least one index i. In principle, it is possible
to modify standard algorithms by looking not at the sequence {(v1, . . . , vn)k}
but at the normalized sequence {(v1/‖v1‖, . . . , vn/‖vn‖)k}. However, this may
cause difficulties in proving convergence of standard optimization algorithms.

In this paper we propose to modify fr in such a way to get an unconstrained
problem that can be solved by standard methods. In particular, we add a shifted
barrier penalty term

n∑

i=1

(‖vi‖2 − 1)2

d(vi)
, (12)

where
d(vi) ≡ δ2 −

(
1 − ‖vi‖2

)2

+
, 0 < δ < 1. (13)

For a fixed ε > 0, we consider the unconstrained minimization problem

min
v

{
fε(v) = fr(v) +

1

ε

n∑

i=1

(‖vi‖2 − 1)2

d(vi)
, v ∈ Sδ

}
, (14)

where fr(v) is given in (7) and the open set Sδ is defined as

Sδ ≡ {v ∈ R
nr : ‖vi‖2 > 1 − δ, i = 1, . . . , n}.

The added term (12) ensures that the level sets of fε are contained in the
set Sδ and are compact. Hence, problem (14) allows us to overcome all the
theoretical drawbacks of problem (7). In particular, we will show that solving
problem (14) for a single value of ε is equivalent to solving problem (6).

We start by investigating the theoretical properties of the function fε(v).
Function fε(v) is continuously differentiable on the open set Sδ with gradient

∇vi
fε(v) = ∇vi

fr(v) +
4

ε

(‖vi‖2 − 1)

d(vi)

[
1 − (‖vi‖2 − 1)(1 − ‖vi‖2)+

d(vi)

]
vi

where

∇vi
fr(v) =

2

‖vi‖




n∑

j=1

qij

(
Ir −

vi

‖vi‖
vi

T

‖vi‖

)
vj

‖vj‖



 .

The first important property is the compactness of the level sets of function
fε(v), that guarantees the existence of a solution of problem (14).

8

Proposition 6. For every given ε > 0 and for every given v0 ∈ Sδ, the level
sets Lε(v

0) = {v ∈ Sδ : fε(v) ≤ fε(v
0)} are compact and

Lε(v
0) ⊆

{
v ∈ R

nr : ‖vi‖2 ≤ C(εδ), i = 1, . . . , n
}

,

with C(εδ) > 0 positive constant depending from ε and δ.

The proof can be found in Appendix 14.
An interesting property of the objective function fr(v) of problem (7) is that,

given a point v in Sδ, its gradient with respect to vi is orthogonal to the vector
vi, namely, for every v ∈ Sδ and for every i = 1, . . . , n

vT
i ∇vi

fr(v) = 2




n∑

j=1

qij

(
vT

i

‖vi‖
− vT

i vi

‖vi‖2

vi
T

‖vi‖

)
vj

‖vj‖



 = 0. (15)

The following theorem states the equivalence between stationary points, lo-
cal/global minimizers of (14) and the corresponding stationary points, local/global
minimizers of (6).

Theorem 7 (Exactness properties of (14)). For any ε > 0 and for any fixed
r ≥ 1, the following correspondences hold:

(i) a point v̂ ∈ R
nr is a stationary point of problem (14) if and only if it is a

stationary point of problem (6).

(ii) a point v̂ ∈ R
nr is a global minimizer of problem (14) if and only if it is a

global minimizer of problem (6).

(iii) a point v̂ ∈ R
nr is a local minimizer of problem (14) if and only if it is a

local minimizer of problem (6).

Proof. First, we recall that, for every v ∈ Sδ, vi 6= 0 for all i = 1, . . . , n.
Furthermore, by definition of ∇vi

fε and by (15), we get for every vi and for
i = 1, . . . , n

vT
i ∇vi

fε(v) =
4

ε

(‖vi‖2 − 1)vT
i vi

d(vi)

(
1 − (‖vi‖2 − 1)(1 − ‖vi‖2)+

d(vi)

)
.

Therefore we get, if ‖vi‖2 ≥ 1,

vT
i ∇vi

fε(v) =
4

ε

(‖vi‖2 − 1)‖vi‖2

δ2
, (16)

otherwise

vT
i ∇vi

fε(v) =
4

ε

(‖vi‖2 − 1)‖vi‖2

d(vi)

(
1 +

(‖vi‖2 − 1)2

d(vi)

)
. (17)

9

Furthermore, if v ∈ F

fε(v) = fr(v) = qr(v) (18)

∇vi
fε(v) = 2

n∑

j=1

qij(Ir − vivi
T)vj , i = 1, . . . , n. (19)

Now we can prove the three statements.
(i) Sufficiency. Let v̂ be a stationary point for problem (6). Therefore v̂

satisfies (11) and v̂ ∈ F . Then (19) implies

∇vi
fε(v̂) = 2

n∑

j=1

qij(Ir − v̂iv̂
T
i)v̂j = 0, i = 1, . . . , n.

(i) Necessity. By (16) and (17), v̂ ∈ Sδ being a stationary point of fε implies
v̂ ∈ F . Hence, as a result of (19), v̂ is stationary point also for problem (6).

(ii) Necessity. By Proposition 6, the function fε admits a global minimizer
v̂, which is obviously a stationary point of fε and hence we have that v̂ ∈ F ,
so that fε(v̂) = qr(v̂). We proceed by contradiction. Assume that a global
minimizer v̂ of fε is not a global minimizer of problem (6). Then there exists a
point v∗ ∈ F , global minimizer of problem (6), such that

fε(v̂) = qr(v̂) > qr(v
∗) = fε(v

∗),

but this contradicts the assumption that v̂ is a global minimizer of fε.
(ii) Sufficiency. True by similar arguments.
(iii) Necessity. Since v̂ is a local minimizer of fε, it is a stationary point of

fε, so that v̂ ∈ F . Thus, fε(v̂) = qr(v̂). Since v̂ is a local minimizer of fε, there
exists a ρ > 0 such that for all v ∈ Sδ ∩ Bρ(v̂) such that

qr(v̂) = fε(v̂) ≤ fε(v).

Therefore, by using (18), for all v ∈ v ∈ F ∩ Bρ(v̂) we have that

qr(v̂) ≤ fε(v) = qr(v).

and hence v̂ is a local minimizer for problem (6).
(iii) Sufficiency. Since v̂ ∈ F and is a local minimizer of (6), there exists a

ρ > 0 such that for all v ∈ F ∩ Bρ(v̂)

qr(v̂) = fε(v̂) ≤ qr(v) = fε(v).

We want to show that there exists γ such that for all v ∈ Sδ ∩Bγ(v̂) we get

fε(v̂) ≤ fε(v).

10

It is sufficient to show that there is a γ > 0 such that for all v ∈ Sδ ∩Bγ(v̂),
we have that p(v) ∈ Bγ(v̂), where

p(v) ≡





v1

‖v1‖
...

vn

‖vn‖




.

Actually in this case we have

qr(v̂) = fε(v̂) ≤ qr(p(v)) = fε(p(v)) ≤ fε(v).

It is well known that, given any point x 6= 0 ∈ R
n, its projection over the unit

norm set is simply
x

‖x‖ . Hence, for any γ ≤ ρ
2 we can write

‖p(v) − v̂‖2 =

n∑

i=1

‖v̂i −
vi

‖vi‖
‖2 =

n∑

i=1

‖v̂i −
vi

‖vi‖
+ vi − vi‖2

≤
n∑

i=1

(
‖v̂i − vi‖2 + ‖vi −

vi

‖vi‖
‖2 + 2‖v̂i − vi‖‖vi −

vi

‖vi‖
‖
)

≤
n∑

i=1

4‖v̂i − vi‖2 = 4‖v̂ − v‖2 ≤ 4γ2 ≤ ρ2

Therefore, for a proper γ, we have for all v ∈ Sδ ∩ Bγ(v̂)

fε(v̂) ≤ fε(v),

so that v̂ is a local minimum also for (14).

Theorem 7 states a tight relation between problem (14) and (6) and hence
allows us to solve problem (6) by minimizing fε(v). We stress that all the
properties of problem (14) hold for any given ε > 0.

Proposition 7 implies that we can solve problem (6) by solving problem (14),
and Proposition 6 implies that any standard global convergent unconstrained
minimization method can be used for solving it (see, e.g., [4] for a complete
review of unconstrained algorithms). Since fε(v) is continuously differentiable
over the set Sδ and, by Proposition 6, it has compact level sets, by applying a
convergent unconstrained procedure, we can easily state the following conver-
gence result.

Proposition 8. Let r be given and v0 ∈ F . Assume we apply to problem (14)
any unconstrained procedure that produces a sequence {vk} such that (i) vk stays
in the initial level set, (ii) it admits at least an accumulation point, (iii) every
accumulation point is a stationary point of the objective function. Then

11

(i) {vk} is bounded and it admits at least an accumulation point;

(ii) every accumulation point is a stationary point of problem (6);

(iii) if v̂ is an accumulation point then qr(v̂) ≤ qr(v
0).

Proof. Function fε(v) is continuously differentiable over the set Sδ and Proposi-
tion 6 implies that it has compact level sets. Therefore the assumptions made on
the unconstrained procedure imply that it produces a sequence that has at least
an accumulation point and all the accumulation points are stationary points of
problem (14). Finally, Theorem 7 implies that the stationary points of fε are
stationary points of problem (6), and we have

qr(v̂) = fε(v̂) ≤ fε(v
0) = qr(v

0).

9 SpeeDP: an efficient algorithm for solving the

SDP problem

In this section, we define an algorithm for solving problem (1) that exploits the
results stated in the previous sections.

In Section 2 we have seen that for r ≥ rmin a global solution of problem (6)
provides a solution of problem (1). Moreover, Proposition 7 states a complete
correspondence between problems (6) and (14). Finally, Proposition 8 ensures
that we can find a stationary point of problem (14) by applying any global
convergent unconstrained minimization procedure.

In our algorithm we select a nonmonotone gradient method defined by an
iteration of the form

vk+1
i = vk

i − αk∇vi
fε(v

k) i = 1, . . . , n, (20)

where αk > 0 is obtained by a suitable line-search procedure satisfying

fε(v
k+1) ≤ fε(v

0), (21)

with v0 ∈ F .
This choice is motivated by the fact that, using a gradient method and

for ε sufficiently large, the produced sequence stays in the set {v ∈ R
nr :

‖vi‖2 ≥ 1, i = 1, . . . , n}. This result implies that the barrier term (12), that
may affect negatively the performance behavior of any optimization method
when the produced sequence gets closer to the boundary of Sδ, reduces simply
to a penalty term on the feasibility of problem (6).

In particular, the following proposition holds whose proof can be found in
Appendix 14.

12

Proposition 10. Let v0 ∈ F and let {vk} be the sequence generated with the
iterative scheme (20), where each αk satisfies (21) and αk ≤ αM . Then, there
exists ε̄ > 0 such that, for any ε ≥ ε̄, we have for k = 1, 2, . . .

‖vk
i ‖ ≥ 1, i = 1, . . . , n.

The value of rmin is not known. In principle, the only value of r that can
be calculated and that guarantees the correspondence between solutions of (1)
and global solutions of (6), is r̂ as defined in (8). However, this value is usually
larger than the actual value needed to obtain a solution of problem (1). Hence,
following the idea in [5] and [15], we choose r << r̂, and use the global optimality
condition of Proposition 3 to prove optimality. We use an incremental rank
scheme as in algorithm EXPA defined in [15].

ALGORITHM SpeeDP

Initialization. Set integers 2 ≤ r1 < r2 < . . . < rp with rp ∈ [r̂, n] where r̂ is
given by (8). Choose ε̄ > 0, δ̄ ∈ [0, 1] and tolε > 0.

For j = 1, . . . , p do:

S.0 Set r = rj in problem (5).

S.1 Starting from V 0 ∈ R
n×rj

, find a stationary point V̂ ∈ R
n×rj

of
problem (14) with ε = ε̄ and δ = δ̄.

S.2 Compute λ(V̂) with (10) and the minimum eigenvalue λmin(V̂) of

Q + Diag(λ(V̂)).

S.3 If λmin(V̂) ≥ −tolε, then exit.

Return V̂ ∈ R
n×rj

and λmin(V̂)

SpeeDP returns V̂ , and λmin(V̂). If λmin(V̂) ≥ −tolε, then the matrix Q +

Diag(λ(V̂)) is positive semidefinite within a tolerance tolε so that a solution

of problem (1) is obtained as X∗ = V̂ V̂ T . If the optimality condition is not

met, namely λmin(V̂) < −tolε, a bound can be easily computed. Indeed, since(
λ(V̂) + λmin(V̂)

)
e is feasible for the dual problem (4), the value zLB = Q •

V̂ V̂ T + nλmin(V̂), provides a lower bound on the solution of problem (1) (see,
e.g, [27], [15]).

In practice, however, in all the computational experiments performed the
stopping condition λmin(V̂) ≥ −tolε was always met with satisfactory accuracy,
so that SpeeDP always converged to a solution of (1), as we will illustrate in the
Section 12.

11 SpeeDP-MC: a heuristic for large scale Max-

Cut

Our heuristic is essentially the one due to Goemans and Williamson and de-
scribed in [12], integrated with SpeeDP and a few simple details.

13

The Goemans-Williamson algorithm is very well known and actually con-
tributed to making SDP techniques popular; nevertheless, we briefly outline it
here for the sake of completeness.

Let X be the optimal solution to (1), −zP be its optimal value (for the
Max-Cut problem the objective function has to be maximized), and let v1, v2,
. . ., vn ∈ R

r be vectors whose Gramian matrix coincides with X . Let hT x = 0
define a hyperplane of R

r generated by drawing the value of the r components
of h from a uniform random distribution. Then the algorithm outputs the node
bipartition (S, V \ S) where S = {i : hT vi ≥ 0}.

We assume here that all components of the weighted adjacency matrix A of
G are non-negative. The expected weight W of the cut defined by the bipartition
(S, V \ S) is given by

W =
∑

i∈S, j /∈S

Aijpij ,

where pij is the probability that edge ij belongs to the cut or, equivalently, the
probability that vi and vj lay on opposite sides with respect to the hyperplane
defined by hT x = 0. Such a probability is proportional to the angle defined by
the two vectors. Finally, using the inequality arcos(α)/π ≥ 0.87856(1 − α)/2,
we can write

W =
∑

ij

Aij
arcos(vT

i vj)

π
≥ 0.87856

∑

ij

Aij
1 − vT

i vj

2
= 0.87856zP .

In conclusion the gap (in percentage with respect to the SDP bound) obtained
by using the relaxation (1) and the Goemans-Williamson algorithm is around
12.1%.

Once the SDP bound has been computed, the main computational effort of
the Goemans-Williamson algorithm, is essentially devoted to finding the vectors
vi, with i = 1, . . . , n. This task can be accomplished by a truncated Cholesky
decomposition of the matrix X which requires time proportional to n3 and
space proportional to n2. Therefore the algorithm cannot be applied to very
large instances with size, say, of the order of one hundred thousand nodes.

To the contrary, SpeeDP makes it possible to apply the Goemans-Williamson
approximation algorithm to very large graphs since on the one hand it is able to
solve problem (1) in reasonable time also for very large graphs, and on the other
hand, it outputs the vectors vi, avoiding the need of a Cholesky factorization. In
our procedure the cut provided by the Goemans-Williamson algorithm is then
improved by means of a 1-opt local search, where all possible moves of a single
vertex to the opposite set of the partition are checked and moved are made until
no further improvement is possible.

In [8], where a similar heuristic is described but problem (1) is solved by
interior point algorithm, a particularly successful step is proposed to further
improve on the solution. The whole procedure is repeated a few times where
the solution matrix X of problem (1) is replaced by the convex combination
X ′ = αX + (1 − α)x̂x̂T , 0 < α < 1, where x̂ is the representative vector of the
current best cut. The idea behind this step is to bias the Goemans-Williams

14

rounding with the current best cut, or put it differently, to force the rounding
procedure to generate a cut in a neighborhood of the current best solution.

This step does not require to solve problem (1) again, but needs the Cholesky
factorization of the matrix X ′.

We use a similar technique in our procedure. However, to avoid the Cholesky
factorization, which is not suitable for very large instances, we solve a new
problem (1) after perturbing the objective function. Matrix Q is replaced by
the perturbed matrix Q′ given by Q′ = Q + βx̂x̂T with β > 0.

Such a perturbation has again the effect of moving the solution of problem (1)
and hence of the Goemans-Williamson rounding, towards a neighborhood of
the current best integral solution. With the new objective function Q′ we solve
problem (1) with SpeeDP and repeat the rounding and the 1-opt improvement
as well. The whole procedure is repeated a few times with different values of β.

Summarizing, the scheme of our heuristic algorithm is as follows:

ALGORITHM SpeeDP-MC

Data: Q, x̂ = e, α > 0, kmax, Q =
∑

i,j |Qij |/|E|.

For k = kmax, . . . , 0 do :

S.0 Set β = kαQ · J and Q′ = Q + β(x̂x̂T)

S.1 Apply SpeeDP to problem (1) with Q = Q′ and let vi, i = 1, . . . , n
be the returned solution and the valid bound φ on problem (3) with
objective function corresponding to Q′.

S.2 Apply the Goemans-Williamson hyperplane rounding technique to
the vectors vi, i = 1, . . . , n. This gives a bipartition representative
vector x̄.

S.3 Apply the 1-opt improvement to x̄. This gives a new bipartition
representative vector x̃. If Q′ • x̃x̃T < Q′ • x̂x̂T , set x̂ = x̃.

Return Best cut x̂, lower bound −Q′ • x̂x̂T , upper bound φ.

Note that the amount of perturbation decreases when the iteration counter
increases, getting to zero in the last iteration. We stress that Step 1 is not ex-
pensive since we use a warm start technique: at each iteration we start SpeeDP
from the solution found at the previous step, so that each minimization is com-
putationally cheaper than the first one.

Besides the ability of treating graphs of very large sizes, another advantage
of SpeeDP-MC is that it also provides a solution with a guaranteed optimality
error bound, since it outputs an upper and lower bound on the value of the
optimal cut.

Numerical results for this heuristic are reported in next section.

15

12 Numerical Results

In this section, we describe our computational experience both with algorithm
SpeeDP for solving problem (1), and with the heuristic based on it for finding
good cuts for large graphs.

SpeeDP is implemented in Fortran 90 and all the experiments have been run
on a PC with processor Core2 DUO E6750 2.66Ghz, and RAM of 2.00 GB.

The parameter δ that appears in the definition of the open set S has been
set to 0.25. This value has been chosen after some experiments for different
values of δ. The parameter ε is set equal to 103/δ for all the tests.

As unconstrained optimization procedure we use a Fortran 90 implementa-
tion of the non monotone Barzilai-Borwein gradient method proposed in [16]
which falls in the iterative scheme (20), (21) and satisfies the assumption of
Proposition 8. The termination criteria in the minimization procedure are stan-
dard ones with tolerance in the range 10−5.

As for the choice of the starting value r1 of the rank we use the same values
as in [15], reported in Table 1. The values of the rank rj are chosen with the
simple rule rj+1 = min

{
brj · 1.5c, r̂

}
where r̂ is given in (8).

200 < n 800 < n 1000 < n 5000 < n n > 20000
n ≤ 200 n ≤ 800 n ≤ 1000 n ≤ 5000 n ≤ 20000

8 10 15 18 25 30

Table 1: Values of r1 depending on the dimension of the problem.

In order to check positive semidefiniteness of Q + Diag(λ(V̂)), we use the
ARPACK subroutines dsaupd and dseupd to compute the minimum eigenvalue
of this matrix. We set the tolerance tolε = −10−3.

As a first step, we consider SpeeDP for solving problem (1). We compare
the performance of SpeeDP with the best codes in literature in the main classes
of methods for solving problem (1): interior point methods, Spectral Bundle
methods and low rank NLP methods.

As an interior point method we select the dual-scaling algorithm defined in [3]
and implemented in the software DSDP(version 5.8) downloaded from the web
page http://www-unix.mcs.anl.gov/DSDP/. DSDP is considered particularly
efficient for solving problems where the solution is known to have low rank (as
it is the case for Max-Cut instances), since it exploits low-rank structure and
sparsity in the data. Further, DSDP has relatively low memory requirements
for an interior-point method, and is indeed able to solve instances up to 10 000
nodes. We also include the Spectral Bundle method SB can be found in [17] and
downloadable http://www-user.tu-chemnitz.de/~ helmberg/.

Among the NLP based methods, we choose as a term of comparison the
code SDPLR-MC, proposed by Burer and Monteiro in [5] downloadable from the
web page http://dollar.biz.uiowa.edu/~ burer/software/SDPLR-MC, and
EXPA proposed in [15].

Both EXPA and SDPLR−MC have a structure similar to SpeeDP. Indeed,
the main scheme differs in the way of finding a stationary point for problem (6).

16

For any fixed value of r, EXPA uses the nonmonotone Barzilai-Borwein gradient
proposed in [16] (the same one used in SpeeDP) to minimize an exact penalty
function for (6). SDPLR−MC uses an L-BFGS method to obtain a stationary
point of (7). We remark again that SDPLR-MC does not certify global optimality
of the produced solution in the sense that it does not check the global optimality
condition Q + Diag(λ(V̂)) � 0, while both EXPA and SpeeDP do it.

We do not include in our comparison neither the code SDPLR defined in
[5] nor the manifold optimization method GenRTR defined in [21]. Indeed the
computational results in [5] show that SDPLR-MC outperforms SDPLR on the
Max-Cut problem. Further, in [21] the authors report a comparison of a matlab
implementation of GenRTR and SDPLR on some Max-Cut instances which are a
subset of those used as benchmark set here and in [15]. Although the direct
comparison in terms of computational time is not really fair, the authors stated
that the two methods, GenRTR and SDPLR, may be considered to have comparable
performances. Since SDPLR is always worse than SDPLR-MC, this implies that on
the special structured problem (1) that comes out from Max-Cut, GenRTR should
have worse performances than SDPLR-MC.

Our benchmark set consists in standard instances of the Max-Cut problem,
with number of nodes ranging from 100 to 20 000, with different degrees of spar-
sity. The first set of problems belongs to the SDPLIB collection of semidefinite
programming test problems (hosted by B. Borchers) that can be downloaded
from the web page http://infohost.nmt.edu/∼sdplib. The smallest prob-
lems (mcp set) have been contributed by Fujisawa [9], while the maxG problems
were supplied by Benson [3]. The second set of problems belongs to the Gset of
randomly generated problems by means of a machine-independent graph gener-
ator rudy [26]. These problems can also be downloaded from Burer’s web page
http://dollar.biz.uiowa.edu/∼burer/software/SDPLR.

SpeeDP, EXPA, SDPLR-MC, and SB solve all the test problems, whereas DSDP
runs out of memory on the two largest problems (G77 and G81 of the Gset
collection). Hence we eliminate these two test problems in the comparison with
DSDP.

We compare the different codes on the basis of the level of accuracy and of
the computational time.

As for the accuracy, we report in Table 2 the primal and/or dual objective
function value obtained by the five methods on all the instances. We note that
SDPLR-MC only reports the primal objective value, while SB produces a value
of the dual objective function that is a bound on the optimal value of problem
(1). Similarly, for SpeeDP we report the primal objective function value, and

the dual, where the dual is obtained by adding nλmin(Q + Diag(λ(V̂))) to the

primal value whenever λmin(Q + Diag(λ(V̂))) is negative.
As regards the computational time, in order to have a better flavor of the

results, we follow the approach proposed in [7] and we draw the cpu time perfor-
mance profile of the five methods. To be more precise, let p denote a particular
problem and s a particular solver. The idea is to compare the performance of
solver s on problem p with the best performance by any solver on this particular

17

SpeeDP EXPA SDPLR-MC SB DSDP

primal dual obj primal dual primal dual primal dual

mcp100 226.157349 226.157303 226.15735 226.157394 226.15127 226.1592 226.15733 226.15735

mcp124 1 141.990463 141.990494 141.99045 141.990402 141.99002 141.9937 141.99044 141.99048

mcp124 2 269.880157 269.880890 269.88016 269.883087 269.88011 269.8822 269.88012 269.88017

mcp124 3 467.750092 467.750092 467.75009 467.750092 467.75000 467.7537 467.75004 467.75012

mcp124 4 864.411682 864.411682 864.41187 864.411926 864.41045 864.4156 864.41166 864.41187

mcp250 1 317.264313 317.264313 317.26425 317.264313 317.26415 317.2708 317.26429 317.26435

mcp250 2 531.930054 531.930115 531.92999 531.929993 531.92949 531.9349 531.92998 531.93009

mcp250 3 981.172546 981.172607 981.17242 981.172424 981.17207 981.1780 981.17239 981.17257

mcp250 4 1681.959595 1681.959595 1681.95960 1681.961426 1681.95581 1681.9750 1681.95995 1681.96011

mcp500 1 598.148499 598.148499 598.14789 598.147888 598.14749 598.1588 598.14840 598.14852

mcp500 2 1070.056152 1070.056152 1070.05615 1070.056152 1070.04501 1070.0759 1070.05660 1070.05677

mcp500 3 1847.969971 1847.970093 1847.96936 1847.974731 1847.92925 1847.9836 1847.96947 1847.97003

mcp500 4 3566.737549 3566.766357 3566.73779 3566.737793 3566.72863 3566.7479 3566.73765 3566.73806

G01 12083.196289 12083.197266 12083.19727 12083.19727 12082.93730 12083.2650 12083.19640 12083.19770

G60 15222.267578 15222.267578 15222.25488 15222.25488 15221.90950 15223.1930 15222.25710 15222.26810

G11 629.146118 629.146118 629.14722 629.147217 629.15795 629.1701 629.16472 629.16478

G14 3191.564209 3191.656982 3191.56567 3192.163574 3191.55893 3191.5847 3191.56609 3191.56681

G22 14135.945312 14136.145508 14135.94336 14135.97754 14135.77440 14136.0440 14135.94470 14135.94570

G32 1567.605591 1567.605591 1567.59265 1567.592651 1567.61532 1567.6519 1567.63942 1567.63965

G35 8014.738770 8014.738770 8014.73584 8014.766602 8014.55729 8014.8070 8014.73758 8014.73972

G36 8005.962891 8005.962891 8005.95850 8007.056152 8005.91627 8006.0213 8005.96316 8005.96379

G43 7032.221680 7032.221680 7032.21973 7032.223145 7032.19023 7032.2749 7032.22079 7032.22185

G48 5999.998047 6000.000000 5999.99561 5999.995605 5999.79596 6000.0000 5999.99852 6000.00000

G51 4006.247559 4006.248291 4006.25391 4006.253906 4006.21749 4006.2745 4006.25460 4006.25553

G52 4009.634766 4009.672363 4009.63696 4009.645264 4009.60292 4009.6574 4009.63834 4009.63877

G55 11039.45898 11039.45898 11039.44922 11039.44922 11039.20140 11040.1590 11039.44910 11039.46050

G57 3885.31787 3885.317871 3885.33887 3885.338867 3885.36524 3885.5197 3885.48675 3885.48917

G58 20136.17383 20136.17383 20136.16992 20141.125 20135.59150 20136.2870 20136.18060 20136.18980

G62 5430.506348 5430.506348 5430.79688 5430.796875 5430.72287 5430.9512 5430.90837 5430.91042

G63 28244.353516 28244.458984 28244.30664 28260.37695 28243.63720 28244.5770 28244.40560 28244.41790

G64 10465.827148 10469.678711 10465.87891 10472.86621 10465.82000 10465.9700 10465.89790 10465.90440

G65 6205.268555 6205.268555 6205.32861 6205.328613 6205.28798 6205.5822 6205.53219 6205.53820

G66 7076.871582 7076.871582 7076.92676 7076.926758 7076.93516 7077.2640 7077.20904 7077.21373

G67 7744.033203 7744.033203 7744.14697 7744.146973 7744.06409 7744.4942 7744.42783 7744.43649

G70 9861.485352 9861.485352 9861.48340 9861.483398 9861.24740 9861.7747 9861.51431 9861.52455

G72 7808.015137 7808.015137 7808.04541 7808.04541 7808.16545 7808.5914 7808.53427 7808.53926

G77 11044.382812 11044.983398 11045.36621 11045.36621 11045.08100 11045.7510 **** ****

G81 15655.122070 15655.122070 15655.44238 15655.44238 15655.12500 15656.2790 **** ****

T
a
b
le

2
:

O
b
jectiv

e
fu

n
ctio

n
va

lu
es

o
b
ta

in
ed

b
y

th
e

th
ree

N
L
P

b
a
sed

m
eth

o
d
s,

S
B

a
n
d
D
S
D
P

1
8

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SpeeDP
EXPA
SDPLR−MC
SB
DSDP

Figure 1: Comparison between NLP based methods, SB and DSDP

problem. To this aim, consider the performance ratio

rp,s =
tp,s

min{tp,s′ : s′ ∈ S} ,

where tp,s is the CPU time in seconds needed by solver s to solve problem p.
Given this performance ratio, a cumulative distribution function ρs(τ) is defined
as:

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}.

We draw ρs(τ) with respect to τ , that is reported on the x-axis in a loga-
rithmic scale.

In the picture, the higher the method the better, and the efficiency is mea-
sured by how fast the method reaches the value of 1 (since all the methods
solve all the problems, all the methods reach the performance value 1 allowing
a sufficiently large τ).

In Figure 1 we compare all the five methods on the test problems solved by
all of them (i.e. all the problems except G77 and G80).

In Figure 2, we report the comparison among the three low rank based
methods and SB on all the test problems. It emerges from the profiles that
SpeeDP outperforms the other methods.

Finally, we report the numerical results obtained by the heuristic described in
Section 11 on some large random graphs. We used the graph generator rudy [26]
to define instances with growing dimension and density and different weights.
We first considered graphs with number of nodes n equal to 500 + i · 250, for
i = 0, . . . , 8 and with edge density equal to 10% + i · 10% for i = 0, . . . , 9. For
each pair (n, density) we generated three different graphs with positive weights
ranging between 1 and 100. In Table 3 we report in each row the average values
on the three problems in each class of CPU time, cut value, gap %, and the value

19

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SpeeDP
EXPA
SDPLR−MC
SB

Figure 2: Comparison among the NLP based methods, and SB

Figure 3: Average CPU time of the heuristic on the random graphs

0.87856×(upper bound), which represents the expected value of the Goemans-
Williamson algorithm. We also draw in Figure 3 the average CPU time as a
function of the density of the graph. As it emerges from the figure and the table,
the heuristic is able to produce a good cut in a small amount of time, and as
expected the performance of the heuristic is better on sparse graphs in term of
time, but the gap decreases when the density of the graph increases.

Furthermore, we consider huge graphs, in order to verify how far we can go
with the number of nodes. For this set of instances we run SpeeDP on a machine
with 6G of RAM.

We generate three random graphs with 100 001 nodes, 7 050 827 edges and
different weights. The results are in Table 4 where we report the ranges of the
weights, the total time, the value of the bound, the best cut obtained and the
% gap.

We also generated 6-regular graphs (3D toroidal grid graphs) with 1 030 301
nodes and 3 090 903 edges and different weights. The results are reported in

20

cut time gap % 0.87856*ub

n=500

388004.6667 6.216666667 4.595666667 356550.8369

730297.3333 8.366666667 3.421133333 663560.8102

1063049 13.4 2.761066667 959739.3467

1391196.333 18.62666667 2.394766667 1251519.1163

1714089 19.37666633 1.992666667 1535937.3951

2032992.333 36.21333233 1.752933333 1817416.2683

2347809 27.92000033 1.5559 2094784.6522

2661106 30.53333433 1.295366667 2368226.2755

2971604.333 44.373333 1.0805 2638941.8736

3279198.333 47.47666667 0.880966667 2906354.3058

n=750

846281.6667 19.56000067 3.955333333 772917.3149

1602525.667 34.23999967 3.0752 1451210.8624

2344842.667 52.066667 2.407933333 2109690.0815

3075792 62.92333367 2.038 2757341.3049

3800724.667 71.54666633 1.735166667 3397102.7666

4515431.333 100.419998 2.219533333 4055145.0852

5223831.667 154.16333 1.951166667 4679018.8875

5932074 117.4766693 2.158966667 5324216.9517

6632193.667 126.8666653 1.421066667 5909605.1404

7324080.333 81.35666933 1.5842 6536586.5558

n=1000

1470304.333 27.27666667 3.842166667 1341381.6741

2804656.667 60.929999 2.8092 2533278.8535

4116964 129.2566707 2.237433333 3697925.6641

5407801.667 109.0300037 1.908166667 4841737.4244

6694033 109.6433357 1.639166667 5977511.9713

7971429.333 115.23333 1.9694 7141286.9576

9234082.333 115.013331 1.6857 8249405.7535

10487245 194.3833363 1.937533333 9392157.2383

11727142.33 341.6733297 1.636033333 10471585.0468

12962878.33 220.37 1.038566667 11506962.7354

n=1250

2261240.667 55.766665 3.555366667 2057267.4313

4338898 117.859998 2.584166667 3910489.3026

6376438.667 180.5166627 2.106733333 5720104.4340

8396040.667 250.316666 1.7218 7503431.5860

10395843 205.3633373 3.4118 9444982.7083

12378616 179.5900063 1.239633333 11010166.9265

14350605 256.8466697 2.522633333 12925918.8415

16314387.67 247.2799987 1.7555 14584779.8125

18264800 243.693334 1.495266667 16286651.5669

20200056 321.730001 1.5469 18021482.4997

n=1500

3220711 60.03666533 3.394633333 2925643.823

6195972 203.75 2.443333333 5576536.602

9128485.333 305.3333283 1.932633333 8174914.701

12020693.33 267.9600067 1.6445 10734573.2

14899393 338.5299987 1.354266667 13267285.67

17760397.33 272.16333 2.6834 16022282.32

20603549.33 347.5099997 2.344366667 18525817.52

23430844.67 384.0266673 2.016433333 21000489.11

26236188 341.8233337 1.707533333 23443644.4

29026448 521.1066593 1.414566667 25862214.06

n=1750

4344770.667 125.839999 3.216233333 3939910.081

8382268 270.2400007 2.3461 7537097.712

12355222.33 362.8666637 1.858433333 11056530.88

16297722.33 356.3966677 2.1337 14624054.96

20215156.67 602.439992 1.850566667 18088909.05

24101639.33 422.2233273 2.4925 21702521.8

27971634 777.3833313 1.7368 25001570.83

31820130 760.8966573 1.881333333 28481837.5

35640165.33 832.783315 1.591566667 31810367.49

39437790.67 515.2300007 1.312266667 35103136.57

n=2000

5630775.667 208.1233367 3.072666667 5098977.742

10892119.33 516.519989 2.176033333 9777614.603

16076290 400.5799963 3.125133333 14565327.62

21216458.67 778.7866413 2.036266667 19019499.13

26329037.33 828.900004 2.1775 23635357.9

31404458 1246.920024 1.915466667 28119172.62

36443104 535.9733173 2.040133333 32670659.3

41470418.67 1019.960002 1.777566667 37081879.77

46475704 1320.056641 1.5193 41452038.69

51442052 1198.696635 1.2375 45754212.3

n=2250

7092778.333 239.7566683 2.9204 6413414.787

13724521.67 681.0033367 2.145733333 12316544.65

20282490 817.880005 1.6331 18110391.01

26779226 1363.850026 1.3677 23848933.49

33236806 1234.75002 2.1361 29824281.87

39660752 1457.619995 1.3802 35325275.19

46049029.33 1214.609985 1.929166667 41237316.29

52409853.33 1443.710001 1.646333333 46803264.48

58740968 1682.113363 1.409033333 52334639.59

65042482.67 1877.176676 1.171766667 57813304.6

n=2500

8707864.333 326.813334 2.866133333 7869652.293

16883800 512.99999 2.059233333 15138884.38

24971508.67 834.2133483 2.199433333 22421516.56

32984345.33 1475.053324 1.823933333 29507260.52

40946184 1444.76001 2.447766667 36854243.7

48873544 1019.210001 1.725333333 43679150.81

56771676 2992.886719 1.486266667 50618557.71

64627920 1933.013305 1.558366667 57664353.54

72453770.67 2257.273397 1.352333333 64515830.64

80230896 2650.269979 0.905633333 71126099.68

Table 3: Random graphs with weights in [1, 100] and density from 10% to 100%

21

Weights Total Upper Best gap%
CPU time Bound Cut

1 15 043.98 4 113 227.8 3 959 852 3.87
[1, 100] 15 142.22 212 076 831.2 203 236 495 4.35

[−1000, 1000] 15 919.40 21 006 071 437.9 20 129 935 523 4.35

Table 4: Random sparse graphs with 100 001 nodes and 7 050 827 edges

Weights Total Upper Best gap%
CPU time Bound Cut

1 4 723 3 090 133 3 060 300 0.97
[1, 10] 22 042 15 454 739 15 338 007 0.76

[1, 1000] 29 072 1 545 550 679 1 534 441 294 0.72
[−100, 100] 47 491 57 288 795 49 111 079 14.27

Table 5: 6-regular graphs with 1 030 301 nodes and 3 090 903 edges

Table 5. To the best of our knowledge, no other methods can achieve this
accuracy for graphs of this size.

13 Concluding Remarks and future works

In this paper, we define a fast globally convergent algorithm for solving prob-
lem (1), called SpeeDP, which falls in the low rank nonlinear programming ap-
proach. SpeeDP outperforms existing methods for solving the special structured
semidefinite programming problem (1) and provides both a primal and a dual
solution. We also define an heuristic to compute a cut which is an enhanced
version of the Goemans-Williamson algorithm, and is suitable for graphs up to
millions of nodes and edges. The heuristic provides both a feasible cut and a
valid bound, hence hence it is able to provide a cut and a guaranteed bound
on how much its weight deviates from the optimum. As a next step, we in-
tend to include SpeeDP within a branch-and-bound scheme similarly to what
has been done in the BiqMac code of [25], in such a way aiming at increasing
the size of Max-Cut instances that can be solved exactly exploiting semidefinite
programming.

14 Appendix: Technical proofs and results

Proposition 4. The first condition in (9) can be written in matrix form as:
(
Q + Diag(λ̂)

)
V̂ = 0 (22)

where V̂ is the n × p matrix with rows vT
i . Let V̂ be the n × r matrix satisfy-

ing (22) and the second order necessary condition
(
Q + Diag(λ̂)

)
• ZZT ≥ 0 for all Z ∈ R

n×r : Eii • V̂ ZT = 0 i = 1, . . . , n.

22

Assume the rank(V̂) = p < r, namely V̂ is rank deficient, then there exists a

n × p matrix V̂1 such that

V̂ = V̂1M
T M ∈ R

r×p.

Let M⊥ ∈ R
r×(r−p) be a matrix such that

MT M⊥ = 0 MT
⊥M⊥ = Ir−p

For any matrix Z1 ∈ R
n×(r−p), the matrix Z = Z1M

T
⊥

satisfies

Eii • V̂ ZT = Eii • V̂1M
T M⊥ZT

1 = 0

so that we must have
(
Q + Diag(λ̂)

)
• ZZT =

(
Q + Diag(λ̂)

)
• Z1Z

T
1 ≥ 0

for any n × (r − p) matrix Z1, which is equivalent to Q + Diag(λ̂) � 0, so that

global optimality of V̂ follows from Theorem 3. If r = n and rank(V̂) < n,

the result follows from above. If instead rank(V̂) = n, the first order condition

(22) implies Q + Diag(λ̂) ≡ 0n×n, so that global optimality of v̂ follows from
Theorem 3.

We prove Proposition 6. We split it into two propositions.

Proposition 15. For every v ∈ Sδ and for every given ε > 0, the following
condition holds

fε(v) ≥ −C +
1

ε

(‖vi‖2 − 1)2

δ2
, for all i = 1, . . . , n, (23)

where C =

n∑

i=1

n∑

j=1

|qij |. Furthermore, for every given ε > 0 and for every given

v0 ∈ Sδ, the level sets

Lε(v
0) = {v ∈ Sδ : fε(v) ≤ fε(v

0)}

of function fε(v) are compact.

Proof. First, for every v, we have that

fr(v) =

n∑

i=1

n∑

j=1

qij
vT

i vj

‖vi‖‖vj‖
≥ −

n∑

i=1

n∑

j=1

|qij |
|vT

i vj |
‖vi‖‖vj‖

≥ −
n∑

i=1

n∑

j=1

|qij |
‖vi‖‖vj‖
‖vi‖‖vj‖

= −C.

23

Hence, (23) follows from simple majorizations. Now, we prove boundedness
of Lε(v

0). Let {vk} ∈ Lε(v
0) be a sequence of points such that ‖vk‖ → ∞.

Assume without loss of generality that ‖vk
1‖ → ∞. By using (23), we can write:

fε(v
k) ≥ −C +

1

ε

(‖vk
1‖2 − 1)2

δ2
,

so that fε(v) is coercive and the level set is bounded. On the other hand,
any limit point of a sequence cannot belong to the boundary of Sδ. Indeed, if
‖v̂i‖2 = 1 − δ for some i, then (13) implies d(v̂i) = 0, and hence

lim
k→∞

fε(v
k) = ∞,

but this contradicts vk ∈ Lε(v
0) for k sufficiently large. Therefore the level set

Lε(v
0) is also closed, and the thesis follows.

Next proposition gives a bound on the value of ‖vi‖ for all i = 1, . . . , n in
the level set.

Proposition 16. Let ε > 0 and v0 ∈ F . Then, we have

Lε(v
0) ⊆

{
v ∈ R

nr : ‖vi‖2 ≤ (2Cεδ2)
1
2 + 1, i = 1, . . . , n

}
.

Proof. For any given v ∈ Lε(v
0), because v0 ∈ F , we can write

fε(v) ≤ fε(v
0) = fr(v

0) ≤ C,

where C is defined in Proposition 6. Moreover, using (23), we have

fε(v) ≥ −C +
1

ε

(‖vj‖2 − 1)2

δ2
, j = 1, . . . , n,

so that
‖vj‖2 ≤ (2Cεδ2)

1
2 + 1, j = 1, . . . , n.

Proposition 10. By (21), for a fixed value ε > 0 the sequence {vk} stays in the
compact level set Lε(v

0). The proof is by induction. Assume that there exists
ε̄ > 0 such that, for any ε ≥ ε̄, it is true that ‖vk

i ‖2 ≥ 1. We show that is true
also for k + 1. We can write

‖vk+1
i ‖2 = ‖vk

i ‖2 + (αk)2‖∇vi
fε(v

k)‖2 − 2αk(vk
i)T∇vi

fε(v
k)

= ‖vk
i ‖2 + (αk)2‖∇vi

fε(v
k)‖2 − 8αk

ε

(‖vk
i ‖2 − 1)‖vk

i ‖2

δ2

≥ ‖vk
i ‖2 − 8αM

εδ2
(‖vk

i ‖2 − 1)‖vk
i ‖2,

24

where the second equality derives from (16), keeping in mind that ‖vk
i ‖ ≥ 1. If

‖vk
i ‖ = 1, then ‖vk+1

i ‖2 ≥ 1. Otherwise, if ‖vk
i ‖ > 1, we need to verify that a

value of ε̄ exists such that for all ε ≥ ε̄

(‖vk
i ‖2 − 1) − 8αM

εδ2
(‖vk

i ‖2 − 1)‖vk
i ‖2 ≥ 0,

namely

1 − 8αM

εδ2
‖vk

i ‖2 ≥ 0. (24)

By Proposition 16, we have that for all k

‖vk
i ‖2 ≤ (2Cεδ2)

1
2 + 1 i = 1, . . . , n. (25)

Therefore (25) combined with (24) implies

ε − 8
αM

δ2

(
(2Cδε)

1
2 + 1

)
≥ 0

which is satisfied for all ε ≥ ε.

References

[1] P.-A. Absil, C. Baker, and K. Gallivan, Trust-region methods on Rie-
mannian manifolds, Journal Foundations of Computational Mathematics,
7 (2007), pp. 303–330.

[2] A. Barvinok, Problems of distance geometry and convex properties of
quadratic maps, Discrete Computational Geometry, 13 (1995), pp. 189–
202.

[3] S. J. Benson, Y. Ye, and X. Zhang, Solving large-scale sparse semidef-
inite programs for combinatorial optimization, SIAM Journal on Optimiza-
tion, 10 (2000), pp. 443–461.

[4] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 1999.

[5] S. Burer and R. Monteiro, A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization, Mathematical
Programming Ser. B, 95 (2003), pp. 329–357.

[6] C. Delorme and S. Poljak, Laplacian eigenvalues and the maximum
cut problem, Mathematical Programming, 62 (1993), pp. 557–574.

[7] E. Dolan and J. Morè, Benchmarking optimization software with perfor-
mance profile, Mathematical Programming, Ser. A, 91 (2002), pp. 201–213.

[8] I. Fischer, G. Gruber, F. Rendl, and R. Sotirov, Computational
experience with a bundle approach for semidefinite cutting plane relaxations
of Max-Cut and equipartition, Math. Program., 105 (2006), pp. 451–469.

25

[9] K. Fujisawa, M. Fukuda, M. Kojima, and K. Nakata, Numerical
evaluation of sdpa (semidefinite programming algorithm), in High Perfor-
mance Optimization, H.Frenk, K. Roos, T. Terlaky, and S. Zhang, eds.,
Kluwer Academic Press, 1999, pp. 267–301.

[10] M. Goemans and D. Williamson, Improved approximation algorithms
for Maximum Cut and satisfiability problems using Semidefinite Program-
ming, Journal of the ACM, 42 (1995), pp. 1115–1145.

[11] M. X. Goemans and D. P. Williamson, .878-approximation algorithms
for max cut and max 2sat, in Proceedings of the Twenty-Sixth Annual ACM
Symposium on the Theory of Computing, Montreal, Quebec, Canada, 1994,
pp. 422–431.

[12] , Improved approximation algorithms for maximum cut and satisfia-
bility problems using semidefinite programming, J. Assoc. Comput. Mach.,
42 (1995), pp. 1115–1145. preliminary version see [11].

[13] L. Grippo, L. Palagi, M. Piacentini, and V. Piccialli, An uncon-
strained approach for solving low rank SDP relaxations of {−1, 1} quadratic
problems, Tech. Report 1.13, Dip. di Informatica e sistemistica A. Ruberti,
Sapienza Università di Roma, 2009.

[14] L. Grippo, L. Palagi, and V. Piccialli, Necessary and sufficient global
optimality conditions for NLP reformulations of linear SDP problems, Jour-
nal of Global Optimization, 44 (2009), pp. 339–348.

[15] , An unconstrained minimization method for solving low rank SDP
relaxations of the Max Cut problem, Mathematical Programming, (2010).
DOI: 10.1007/s10107-009-0275-8.

[16] L. Grippo and M. Sciandrone, Nonmonotone globalization techniques
for the Barzilai-Borwein gradient method, Computational Optimization
and Applications, 23 (2002), pp. 143–169.

[17] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite
programming, SIAM Journal on Optimization, 10 (2000), pp. 673–696.

[18] S. Homer and M. Peinado, Desing and performance of parallel and
distributed approximation algorithm for the Maxcut, Journal of Parallel and
Distributed Computing, 46 (1997), pp. 48–61.

[19] M. Laurent, S. Poljak, and F. Rendl, Connections between semidefi-
nite relaxations of the max-cut and stable set problems, Mathematical Pro-
gramming, 77 (1997), pp. 225–246.

[20] F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi, Computing exact
ground states of hard Ising spin glass problems by branch-and-cut, in New
Optimization Algorithms in Physics, A. Hartmann and H. Rieger, eds.,
Wiley-VCH Verlag, 2004, pp. 47–69.

26

[21] F. B. M. Journée, P. Absil, and R. Sepulchre, Low-rank optimiza-
tion for semidefinite convex problems, Tech. Report arXiv:0807.4423v1, ac-
cepted for publication in SIAM Journal on Optimization, 2010., 2008.

[22] G. Pataki, On the rank of extreme matrices in semidefinite programs and
the multiplicity of optimal eigenvalues, Mathematics of Operations Re-
search, 23 (1998), pp. 339 –358.

[23] S. Poljak and F. Rendl, Solving the Max-Cut problem using eigenvalues,
Discrete Applied Mathematics, 62 (1995), pp. 249–278.

[24] G. R., P. S., and W. W., Extremal Correlation Matrices, Linear Algebra
Application, 134 (1990), pp. 63–70.

[25] F. Rendl, G. Rinaldi, and A. Wiegele, Solving Max-Cut to optimal-
ity by intersecting semidefinite and polyhedral relaxations, Mathematical
Programming, 121 (2010), pp. 1436–4646.

[26] G. Rinaldi, Rudy-graph generator.

http://www-user.tu-chemnitz.de/∼helmberg/sdp software.html, 1998.

[27] H. W. S. Poljak, F. Rendl, A recipe for semidefinite relaxation for 0-1
quadratic programming, Journal of Global Optimization, 7 (1995), pp. 51–
73.

27

