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Abstract

Capturing word meaning is one of the challenges of natural language process-

ing (NLP). Formal models of meaning such as semantic networks of words or

concepts are knowledge repositories used in a variety of applications. To be

effectively used, these networks have to be large or, at least, adapted to specific

domains. Our main goal is to contribute practically to the research on semantic

networks learning models by covering different aspects of the task.

We propose a novel probabilistic model for learning semantic networks that

expands existing semantic networks taking into accounts both corpus-extracted

evidences and the structure of the generated semantic networks. The model ex-

ploits structural properties of target relations such as transitivity during learn-

ing. The probability for a given relation instance to belong to the semantic

networks of words depends both on its direct probability and on the induced

probability derived from the structural properties of the target relation. Our

model presents some innovations in estimating these probabilities.

We also propose a model that can be used in different specific knowledge

domains with a small effort for its adaptation. In this approach a model is

learned from a generic domain that can be exploited to extract new informations

in a specific domain.

Finally, we propose an incremental ontology learning system: Semantic

Turkey Ontology Learner (ST-OL). ST-OL addresses two principal issues. The

first issue is an efficient way to interact with final users and, then, to put the

final users decisions in the learning loop. We obtain this positive interaction

using an ontology editor. The second issue is a probabilistic learning semantic
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networks of words model that exploits transitive relations for inducing better

extraction models. ST-OL provides a graphical user interface and a human-

computer interaction workflow supporting the incremental leaning loop of our

learning semantic networks of words.

We empirically show that all our proposed models give a real contribute to

the different considered tasks improving performance.
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1
Introduction

Gottfried Wilhelm Leibniz, the famous German philosopher, was also a librar-

ian. He was convinced that human knowledge was like a bazaar: a place full

of all sorts of goods without any order or inventory. Searching specific knowl-

edge items was then perceived to be a challenge. Nowadays, we have powerful

machines to process and collect data that we can share using the World Wide

Web. These technologies, combined with the human need of exchanging and

sharing information, produced an incredibly large evolving collection of docu-

ments. The Web has become the modern worldwide scale knowledge bazaar

where searching specific information is a titanic task. Ontologies represent the

Semantic Web’s reply to this need, providing shared metadata vocabularies for

representing knowledge [Berners-Lee et al.(2001)]. Data, documents, images,

and information sources in general, described through these vocabularies, will
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Chapter 1. Introduction

be thus accessible as organized with explicit semantic references for humans as

well as for machines. Yet, to be useful, ontologies should cover large part of hu-

man knowledge. Thus, learning automatically these ontologies from document

collections is the challenge in this context. This thesis wants to contribute in

this area.

The rest of the Chapter is organized as follows. In Section 1.1 we give the

definition of ontology in the Semantic Web and we describe its applications

for organizing knowledge. In Section 1.2 we describe the methodologies for

building ontologies and in general semantic networks from texts. In Section 1.3

we shortly introduce the contribution that this thesis gives to the state-of-the-

art in learning knowledge from text. In the last Section the outline of the thesis

is given (Section 1.4).

1.1 Ontologies and Knowledge Organization

Ontologies are one of the answers for organizing the modern worldwide scale

knowledge bazaar provided in the context of the Semantic Web

[Berners-Lee et al.(2001)]. The term ontology is borrowed from philosophy,

where it is a systematic account of Existence. The Ontology with the capital O is

only one. For knowledge-based systems, ontologies are an explicit, formal speci-

fication of a conceptualization needed to organize knowledge in specific domains

and applications. These ontologies become then the reference point for applica-

tions because what “exists” is exactly what is represented [Gruber(1993)]. An

ontology defines the basic terms, i.e., a sort of controlled vocabulary, and rela-
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1.1. Ontologies and Knowledge Organization

tions of a topic area as well as the rules for combining terms and the relations

to define extensions to the vocabulary [Neches et al.(1991)].

In the Semantic Web vision, any service that wants to access and manipulate

knowledge of a knowledge domain should use a shared ontological representa-

tion. As a benefit, these services will have the possibility to reason about the

properties of that domain and to share knowledge with other services using the

same or a related ontology to describe the domain. These new services are called

“semantic services”: services performing specific knowledge access and having

their data (arguments as well as returned objects) explicitly described through

ontology vocabularies. A “semantic service” is a wheel of the overall model for

knowledge organization and sharing. In this context, shared ontologies improve

relations between the actors, i.e., the services, involved in the overall model by

helping in combining or replacing services that have a common semantic ground.

Nowadays, the Semantic web is spreading out. Ontologies are already used in

databases design, knowledge management of organizations and companies, infor-

mation seek on distributed databases, information extraction from texts, search

engines, etc. In recent years many ontologies have been produced describing

different knowledge domains: STEP (manufacturing), FOAF (Personal Infor-

mation Management), UMLS (medical terminology), Gene Ontology (molecular

biology), Agrovoc (agriculture), SWEET (Earth and Environmental Terminol-

ogy), etc. Yet, the coverage of such ontologies with respect to the human knowl-

edge is still low and efforts for increasing this coverage are needed.
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Chapter 1. Introduction

1.2 Ontology engineering and ontology learning

from text

Building, developing and managing ontologies is one of the major problems for

making the Semantic Web vision possible. Ontology engineering is the field that

studies the methods and the methodologies for finding solutions to the problem.

There are three main approaches in ontology engineering:

• In the first approach, one or more people give a local and shared agreement

on an ontology that meets his/her or their requirements. The obtained on-

tology is certainly accurate and fully meets the requirements but a shared

agreement between people is anyway difficult to have. Furthermore, the

ontology is not readily usable by other people or in application domains

similar to what it was designed for.

• The second approach is the ontology development by reengineering of

shared semi-structured knowledge as domain taxonomies or dictionaries.

This approach leverages on reuses something that is already shared. Then,

the final ontological resource should be ready to be commonly agreed.

This model has two main limitations: the first is that it could not map

perfectly the requirements of the specific domain; the second is that the

reused shared knowledge may not be understood by others.

• The third approach is to adapt existing general ontological components

to target domains. This help in linking new ontological content with

already shared components. Unfortunately, there are no tools that allow
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1.3. Thesis Contributions

to immediately reuse existing ontology components.

In all the above approaches ontologies are manually created and then the

task is time consuming and expensive. Automatically learning ontologies from

domain textual collections can help in solving this last issue as well as the above

ones. Automatically extracting ontological knowledge from domain document

collections can speed up the production and help in determining shared knowl-

edge representations. Domain document collections represent what domain ex-

perts think about concepts and concept relations within the domain. Retrieving

and structuring knowledge using these collections can help in finding shared on-

tological representations. It is worth noticing that ontology learning methods

extract knowledge from texts where concepts are described with words. When

extracting relations among concepts, these models ultimately learn relations

among words.

Automatically learning ontological information from documents is still far

from being an accomplished goal. Current methods are often referred as semi-

automatic ontology learning and suggest possible ontologies that should be later

controlled. This thesis gives a contribution in this area.

1.3 Thesis Contributions

In this thesis, we will firstly consider ontologies as ultimately used in language-

based applications. Then, we will focus our attention to semantic networks of

words. Our main goal is to contribute practically to the research on semantic

networks learning models by covering different aspects of the task.
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We propose a novel probabilistic model for learning semantic networks that

expands existing semantic networks taking into accounts both corpus-extracted

evidences and the structure of the generated semantic networks. The model ex-

ploits structural properties of target relations such as transitivity during learn-

ing. The probability for a given relation instance to belong to the semantic

networks of words depends both on its direct probability and on the induced

probability derived from the structural properties of the target relation. Our

model presents some innovations in estimating these probabilities.

To estimate direct probability, we naturally exploit vector space reduction

techniques for selecting features, i.e. we leverage on the computation of lo-

gistic regression based on the Moore-Penrose pseudo-inverse matrix to exploit

unsupervised feature selection by singular value decomposition (SVD).

To estimate induced probability, we directly include transitivity in the for-

mulation of the probabilistic model. This induced probability should capture

the fact that a decision on the pair (i, j) depends also on the transitive rela-

tions activated by (i, j). In the induced model, we exploit direct probabilities

to derive the induced probability. We introduce three models for exploiting

the probabilistic definitions of concepts within the induced probabilistic model:

intensional, extensional and mixed model.

Then, we propose a model that can be used in different specific knowledge

domains with a small effort for its adaptation. In this approach a model is

learned from a generic domain that can be exploited to extract new informations

in a specific domain. To evaluate the new specific domain networks of words we

consult human annotators and we examine inter-annotator agreement.
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1.4. Thesis Outline

Finally, we present an incremental ontology learning system: Semantic Turkey

Ontology Learner (ST-OL). ST-OL addresses two principal issues. The first is-

sue is an efficient way to interact with final users and, then, to put the final

users decisions in the learning loop. We obtain this positive interaction us-

ing an ontology editor. The second issue is a probabilistic learning semantic

networks of words model that exploits transitive relations for inducing better

extraction models. ST-OL provides a graphical user interface and a human-

computer interaction workflow supporting the incremental leaning loop of our

learning semantic networks of words .

1.4 Thesis Outline

In Chapter 2 we give a survey of the main strategies and approaches, nowadays

adopted, in learning semantic networks of words. In particular, we propose a

review of the state-of-the-art and we point out the limits that can be overcome

with our approaches.

In Chapter 3 and 4 we introduce our two probabilistic models to learn se-

mantic networks of words. The first, described in Chapter 3, estimates direct

probability between words using our logistic regressors based on the Moore-

Penrose pseudo inverse matrix. With the second model, described in Chapter

4, we exploit structural properties of target relations in determining the proba-

bility of the word pairs to be in a particular relation. We show, in particular,

three different ways to exploit transitivity.

In Chapter 5 we propose a semantic networks learning method that can

9



Chapter 1. Introduction

exploit models learned from a generic domain to extract new information in a

specific domain.

In Chapter 6 we present Semantic Turkey Ontology Learner (ST-OL), an

incremental ontology learning system that puts final users in the learning loop

and uses our probabilistic models to exploit transitive relations for inducing

better extraction models.

Finally, in Chapter 7 we draw some final conclusions and we outline feature

research directions.

10



2
Methods for Ontology Learning

Automatically creating, adapting, or extending existing ontologies or semantic

networks of words using domain texts is a very important and active area of

research. Here, we report the state-of-the-art of learning semantic networks of

words , that is the field where this thesis wants to give a contribution.

In the following we analyze these techniques thoroughly, with particular ref-

erence to aspects and components that characterize them, limitations included.

In Section 2.1 we describe the layer cake organization of the task for ontology

learning from text [Buitelaar et al.(2005)]. The overall task is seen as com-

posed by different subtasks for learning terms, concepts, taxonomies, relations

among concepts, and axioms/rules. In Section 2.2 we focus on the learning

of relations among concepts/words by introducing the three classical working

hypotheses. We will analyze the feature spaces built from corpus-extracted ev-
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Chapter 2. Methods for Ontology Learning

idences using these three hypotheses. In Section 2.3 we describe how semantic

networks learning methods use the three hypotheses and exploit relation prop-

erties such as transitivity. In Section 2.4 we focus on a particular model that

uses a probabilistic formulation for semantic networks learning. In Section 2.5

we introduce a model to learn semantic networks in new domains and in Section

2.6 we present an incremental learning model. Finally, in Section 2.7 we intro-

duce feature selection models to solve the problem of the huge feature spaces

arising in semantic networks learning models.

2.1 Learning Ontologies from Text

Ontology learning was originally started in [Maedche and Staab(2001)] but the

fully automatic acquisition of knowledge by machines is still far from being real-

ized. Ontology learning is not merely a rehash of existing ideas and techniques

under a new name. Lexical acquisition, information extraction, knowledge base

learning from texts, etc. are areas that contribute to the definition of this new

problem but ontology learning is more than the sum of all these contributions.

This new problem is inherently multidisciplinary due to its strong connection

with philosophy, knowledge representation, database theories, formal logic, and

natural language processing. Moreover, as ontologies are the basis for the Se-

mantic Web, learning models have to work with massive and heterogeneous data

and document collections.

For devising the problem, the complex task of ontology learning has been

divided in subtasks organized in a layer cake [Buitelaar et al.(2005)]. Figure
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2.1. Learning Ontologies from Text

Figure 2.1: Ontology Learning layer cake

2.1 shows this layer cake along with an example. The basic level learns terms

of the domain, e.g., disease. At the synonymy level, terms are grouped in syn-

onymy sets representing concepts of the domain, e.g., {disease, illness}. At

the concept level, concepts of the domain are generated along with their inten-

sional and extensional definitions and their lexicalization. At the taxonomical

level, generalization relations among concepts are retrieved and modeled, e.g.,

the taxonomic relation of the concept doctor with the concept person. At the

relation level, all other relations are considered, e.g., the cure relation among

doctor and disease. Finally, at the level of rules and axioms, methods should

derive rules such as the one reported in Figure 2.1.

Upper levels in the layer cake generally correspond to a higher complexity

of the algorithms. In the following we will illustrate all the levels of the layer

cake, from the bottom to the top (see Figure 2.1).
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Chapter 2. Methods for Ontology Learning

Terms

At the first level there is the terms extraction, where terms are linguistic real-

izations of domain-specific concepts. In this subtask methods provide relevant

terms for the construction of ontology concepts. Typically, these systems are es-

tablished by integrating components for the parsing and statistical components.

Terms extraction is based on information retrieval methods for term indexing.

Text indexing systems based on the assignment of appropriately weighted single

terms produce retrieval results that are superior to those obtainable with other

more elaborate text representations [Salton and Buckley(1987)]. The statisti-

cal components determine the degree of association between the words in the

term. For example in [Pantel and Lin(2001)] an algorithm is given that use a

language independent statistical corpus-based to extract terms. As reported

in [Bourigault et al.(2001)], new insights on computational terminology can be

found in articles about automatic analysis, storage, and use of terminology and

applied in linguistics, computational linguistics, information retrieval, and ar-

tificial intelligence. At the present, researchers are interested in developing a

domain independent method for the automatic extraction of multi-word terms

from machine-readable special language corpora. This method should combine

linguistic and statistical information [Frantzi et al.(2000)].

Synonyms

In the second level there are the methodologies for the recognition of synonyms,

in view of identifying a set of lexical variants in which the same concept can be

expressed and then identified. These techniques exploits Harris’ hypothesis, i.e.
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2.1. Learning Ontologies from Text

words are semantically similar if they share linguistic contexts [Harris(1968)].

There are several synonym acquisition methods based on Harris’ distribution

hypothesis. For example UNICON [Lin and Pantel(2001b)], that is an unsuper-

vised algorithm, can be used for inducing a set of concepts, each one consisting

of a cluster of words and a set of concepts that may be constructed for any cor-

pus. Clustering By Committee (CBC) [Lin and Pantel(2002)], is a clustering

algorithm that automatically discovers concepts from text. It initially discovers

a set of tight clusters called committees that are well scattered in the similarity

space (the centroid of the members of a committee is used as the feature vector

of the cluster). It then proceeds by assigning elements to their most similar clus-

ter. In [Hindle(1990)], Hindle describes a method of determining the similarity

of nouns on the basis of a metric derived from the distribution of subject, verb

and object in a large text corpus. The resulting quasi-semantic classification

of nouns obtained with this method demonstrates the plausibility of the dis-

tributional hypothesis with potential applications in a variety of tasks, such as

automatic indexing, resolving nominal compounds, and determining the scope of

modification. Important techniques for synonym discovery belong to the family

of latent semantic indexing algorithms [Landauer and Dumais(1997)] and other

variants. In very specific domains, acquisition of synonyms has exploited ap-

proaches to word sense disambiguation such as in [Navigli and Velardi(2004),

Turcato et al.(2000), Buitelaar and Sacaleanu(2002)]. Currently, in acquisition

of synonyms, the statistical information measures defined over the web seem to

be a trend [Baroni and Bisi(2004), Turney(2001)].
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Chapter 2. Methods for Ontology Learning

Concepts

In the third level there is the formulation of concepts. Techniques adopted

for learning synonyms and concepts strongly overlap because both subtasks

typically use the distributional hypothesis.

Unfortunately, in the extraction of concepts from text it is not clear what ex-

actly constitutes a concept. For this reason concept formulation should provide

an intensional and extensional definition of the concept and a set of linguistic

relations among the concepts.

In the intensional definition of the concept we give a (in)formal definition

of the set of objects that the concept describes. For example, a disease is an

impairment of health or a condition of abnormal functioning, Figure 2.1. In

the extensional definition of the concept a set of “instances” is given that is

described by the definition of the concept. For example, for the concept disease

the possible instances are influenza, cancer, heart disease. In the linguistic

relations we consider the term itself and its multilingual synonyms. Respect to

the considered example, we have influenza, cancer, heart disease, etc.

In [Navigli and Velardi(2004)] Navigli and Velardi have developed a system

(OntoLearn) to learn concepts intentionally. With this system the association

of a complex concept to a complex term is provided using a semantic inter-

pretation based on the structural semantic interconnections, i.e. a word sense

disambiguation algorithm. In this way, WordNet is trimmed and enriched with

the detected domain concepts.

Many other researchers are working in the extensional definition of concepts.

For example in [Evans(2003)] hierarchies of named entities are derived from text
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and concepts are discovered from an extensional point of view. The concepts

as well as their extensions are thus derived automatically. In Know-It-All sys-

tem [Etzioni et al.(2004)] the extensions of existing concepts are learned and

the existing concepts are populated with instances. The main limitations of

these approaches are that they require large training data that usually must be

manually built.

Unfortunately, the language may consist of strings describing the intuitive

meaning of a concept in natural language such as for the glosses of the WordNet,

where the word form is distinguished from its meaning by introducing the so

called synsets, i.e. words sharing a common meaning in some context.

Taxonomy

Nowadays, the problems put in evidences for the first levels can be solved by

efficient existing technologies. On the contrary, the higher levels still present

unsolved acquisition problems that we want to address in this thesis with in-

novative methods. For this reason in this thesis we propose methods to solve

the acquisition problems of these higher levels. The approaches that get the

best results in the taxonomy level are based on integrated approaches that use

both corpus-extracted evidences and existing language resources such as Word-

Net [Basili et al.(2007)]. A large variety of methods have been proposed to

learn taxonomies. Usually, these learning methods are based on three working

hypotheses: Basic Hypothesis (BH), Harris’ Distributional Hypothesis (DH),

and Lexico-Syntactic Pattern exploitation hypothesis (LSP). These working hy-

potheses are largely described in Section 2.2.
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BH relies on the analysis of co-occurrence of terms in the same sentence, for

example, automatically deriving a hierarchical organization of concepts from

a set of documents looking only to the concepts and the external knowledge

repositories such as WordNet [Miller(1995)]. For example, it possible to mea-

sure the semantic similarity or relatedness between a pair of concepts (or word

senses) using WordNet such as in [Pedersen et al.(2004)]. DH is widely used

in many approaches for taxonomy induction from texts. For example, it is

used for populating lattices, i.e. graphs of a particular class of formal concepts

[Cimiano et al.(2005)]. Other researchers have mainly exploited hierarchical

clustering algorithms to automatically derive taxonomies [Cimiano et al.(2004)].

Learning methods based on distributional hypothesis can be applied only for

learning cotopy [Harris(1964), Deerwester et al.(1990)] and generalization

[Geffet and Dagan(2005), Cimiano et al.(2005)]. Lexico-syntactic patterns (LSP)

models are more general. In fact, these models can be potentially used for decid-

ing whether or not any type of semantic relation holds between two words. This

approach has been widely used for detecting hyperonymy relations [Hearst(1992a),

Morin(1999), Snow et al.(2006)], but also for other ontological relations

[Pantel and Pennacchiotti(2006)], even more relations [Szpektor et al.(2004),

Ravichandran and Hovy(2002)], and for relations among verbs [Zanzotto et al.(2006),

Chklovski and Pantel(2004)]. These learning models generally use the hypothe-

sis that two words have a particular relation if they frequently appear in specific

text fragments.

All the above mentioned models operate on concepts and not directly on

words. But semantic relations are ultimately binary relations among words
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unless Word Sense Disambiguation (WSD) systems are used. For example,

the lexical substitution task in [McCarthy and Navigli(2007)] is accomplished

using a model that operates on words. When applied as networks of words,

taxonomies are tested in text based tasks, e.g. substituting words with similar

ones in a given specific context. In this way, the task of learning or expanding

these networks using plain text collections is feasible.

Relations

Several models have been elaborated to discoverer relations from text. In

[Pantel and Pennacchiotti(2006), Snow et al.(2006)] generic semantic relations

between concepts are learned using a model that operate as binary classifiers.

In this case the task is deciding whether or not two words are in a specific

semantic relation. Lexico-syntactic patterns are used as features to build vec-

tor spaces for word pairs where binary classifiers are applied. Feature values

describe the correlation between contexts of word pairs and specific patterns.

This approach is extremely relevant because the task is seen as a simple bi-

nary classification problem and not as a more complex multi-classification task

[Pekar and Staab(2002)].

In [Maedche and Staab(2000)] an algorithm is proposed to discover concep-

tual relations building on shallow text processing techniques. It is a generalized

association rule algorithm that does not only detect relations between concepts,

but uses term co-occurrence to determine the appropriate level of abstraction

at which the relations are defined. In [Hearst(1992a), Szpektor et al.(2004),

Pantel and Pennacchiotti(2006)] are determined relations among relevant words
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using the textual patterns. Generic semantic relations between nouns have been

extracted exploiting lexical-syntactic patterns in [Pantel and Pennacchiotti(2006),

Szpektor et al.(2004)]. The same approach has been used to find specific rela-

tions between verbs in [Chklovski and Pantel(2004), Zanzotto et al.(2006)].

Whenever these models deal with relations among synonymy sets or con-

cepts. The approach proves to be limited, because these relations are usually

hard to be retrieved. In fact, these models can produce semantic relations

among concepts only under particular conditions, i.e. if used with specific text

collection where concepts are generally expressed with stable terms, learning

models produce semantic relations among concepts [Navigli and Velardi(2004),

Medche(2002), Cimiano et al.(2005)]. What we will exploit in this thesis is that

the natural product of these methods is the semantic relations among words

and not among concepts.

Axioms & Rules

The last level is expected to develop systems that infer rules and axioms from

texts. This field has been poorly explored, but it is achieving growing attention

in literature. Many researchers are deriving lexical entailment rules. The main

focus hereby is to learn lexical entailments for application in question answer-

ing systems such as in PASCAL Network of Excellence Recognizing Textual

Entailment (RTE) Challenge [Dagan and Glickman(2005)]. The RTE task is

defined as recognizing, given two text fragments, whether the meaning of one

text can be inferred (entailed) from another one. This application independent

task is suggested as capturing major inferences about the variability of semantic
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expressions which are commonly needed across multiple applications.

2.2 Three working hypotheses for knowledge

learning from text

Semantic resources are ultimately exploited in text understanding systems as

networks of words. Here, we want to review the three basic hypotheses for

extracting relations among concepts: Basic Hypothesis (BH), Harris’ Distribu-

tional Hypothesis (DH), and Lexico-Syntactic Pattern exploitation hypothesis

(LSP). These hypotheses are used in any semantic networks learning methods

are based. The three hypotheses clearly define different spaces where target

textual forms and contexts may be represented. These spaces are, respectively,

the space of the target textual forms and the space of the contexts. These spaces

are strictly interconnected and what is done in one space can be exploited in

the other. Figure 2.2 shows the two spaces and presents an example that can

clarify how the three hypotheses work together.

2.2.1 The Basic Hypothesis

The well-known Basic Hypothesis (BH) is applied when the relation or the

similarity between the textual forms, wi and wj , is determined looking only at wi

and wj and at external knowledge repositories such as WordNet [Miller(1995)].

The similarity or oriented relation between textual forms may be defined as

function rBH(wi, wj) operating only in the space of the target textual forms.

For example, rBH(wi, wj) may detect the similarity between wi and wj , where
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Figure 2.2: Two spaces for the three hypotheses

wi and wj are lemmas, using similarity measures defined over WordNet, as

those collected in [Pedersen et al.(2004)]. Contexts are not used. This rBH

can then detect the similarity between compose and constitute (Figure 2.2),

i.e., rBH(compose, constitute), looking at the two words and at an external

resource only. More complex ways of computing the similarity using the basic

hypothesis have been proposed when the forms are word sequences such as

terms (e.g. [Jacquemin(2001)]) or complete sentences (e.g. [Dolan et al.(2004),

Burger and Ferro(2005)]).

2.2.2 The Distributional Hypothesis

The well-known Distributional Hypothesis (DH) [Harris(1964)] allows determin-

ing whether or not two forms are in relation looking at their contexts. These

latter are found in a corpus. The hypothesis states that two forms are similar
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if these are found in similar contexts, i.e., rDH(wi, wj) ≈ simDH(C(wi), C(wj))

where C(wi) and C(wj) are the contexts of the forms wi and wj in a given

corpus. In the example of Figure 2.2, using the distributional hypothesis, the

similarity between compose and constitute is determined as the overlap be-

tween C(constitute) and C(compose). As consequence, simDH(C(wi), C(wj))

is high. The words compose and constitute are similar because they can be

found in similar contexts such as the sun is constituted of hydrogen and the sun

is composed of hydrogen, i.e., the contexts containing both sun and oxygen. The

simDH(C(wi), C(wj)) similarity is defined in the space of the contexts.

2.2.3 The Lexico-Syntactic Pattern Exploitation Hypoth-

esis

Lexico-syntactic patterns exploitation hypothesis (LSP) used in [Robison(1970)]

and used afterwards in [Hearst(1992a), Pantel and Pennacchiotti(2006),

Szpektor et al.(2004)], allows to determine relations among relevant words using

textual patterns, e.g. X is constituted of Y may be used to determine the part-

of relation among X and Y . The textual patterns are defined in the textual

form space and, then, are used in the context space to retrieve textual elements

in relation. In the above example of Figure 2.2, the pattern X is constituted of

Y is used to find the part-of relation between the two words sun and oxygen.

More generally, C(constitute) contains, after statistical filtering, words that are

in a part-of relation. Moreover, the equivalences determined in the textual

form space, e.g., the equivalence between constitute and compose, can be used

to further augment words that are in a given relation. Using the equivalence
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between constitute and compose, elements in part-of relation can be found in

C(constitute) ∪ C(compose).

LSP learning models generally use the hypothesis that two words have a par-

ticular relation if they frequently appear in specific text fragments. Prototypical

text fragments related to a particular relation are often called lexico-syntactic

patterns. For example, given the isa relation, X isa Y if X and Y are frequently

found in contexts such as ”X is a Y”, ”X as well as Y”, or ”X, Y,”. Given the

relation R, a pair of words (X,Y ), and the patterns related to the relation R,

the above mentioned learning methods tend to determine a confidence weight

that expresses to which degree the relation R holds for the pair (X,Y ) according

to a collection of documents.

2.3 Semantic network learning methods

Models for automatically learning semantic networks of words from texts use

both corpus-extracted evidences and existing language resources [Basili et al.(2007)].

In the previous sections we have define the three hypotheses underlying any

method for learning relations among concepts. In this section we focus on how

existing resources are used and we see as the existing learning models do not

explicitly exploit structural properties of target relations when learning tax-

onomies or semantic networks of words.

How existing resources are used is an important aspect in this task. DH

models generally start learning from scratch. In [Cimiano et al.(2005)], for ex-

ample, lattices and related semantic networks are built from scratch. Even when

24



2.3. Semantic network learning methods

prior knowledge is used in DH models [Pekar and Staab(2002)], the status of

prior knowledge and of produced knowledge is extremely different. Inserting

new words in semantic networks may be seen as a classification problem where

target classes are nodes of existing hierarchies and the classification decision

is taken over a pair of words, i.e. a word and its possible generalization. In

this context, the classifier should decide if pairs belong or not to the semantic

networks. Both existing and produced elements of the networks have the same

nature, i.e., pairs of words. A distributional description of words is used to make

the decision with respect to target classes. A new word and a word already ex-

isting in the network can be then treated differently, the first being represented

with its distributional vector while the second being one of the final classes.

LSP models (e.g., [Snow et al.(2006)]) offer a more uniform way to represent

prior and extracted knowledge. In this case, the insertion of a new word in the

hierarchy is seen as a binary classification problem.

In the rest of the section we will see the approaches to induce isa-relation

(Section 2.3.1) and other kind of relations from text (Section 2.3.2). Finally the

limits of these approaches will be reported in Section 2.3.3.

2.3.1 Learning isa relation

The distributional hypothesis is widely used in many approaches for semantic

networks induction from texts. As defined in Section 2.2.2 the distributional

hypothesis (DH) states that words occurring in the same contexts tend to be

similar. Then, it can be naturally applied to determine relatedness or sister-

hood between words. Relatedness confidences derived using the distributional
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hypothesis are transitive. If a word “a” is related to a word “b” and this latter

is related to a word “c”, we can somehow derive the confidence relations be-

tween the words “a” and “c”. This can be derived from the formulation of the

distributional hypothesis itself. Even when the distributional hypothesis is used

to build hierarchies of words, structural properties of the semantic networks

of words, such as transitivity and reflexivity are implicitly used. For example,

DH is used in [Cimiano et al.(2005)] for populating lattices (i.e. graphs of a

particular class) of formal concepts. Namely, the DH is exploited to extract

attributes for objects. Nodes of the lattice are obtained clustering objects with

similar attributes and hierarchical links are drawn between two nodes A and

B if the set of attributes of A are an included subset of attributes of B. These

lattices are then used to build taxonomic hierarchies. The idea of drawing

semantic networks links using the inclusion of features derived exploiting the

distributional hypothesis has been also used in [Geffet and Dagan(2005)] where

the distributional inclusion hypothesis is defined.

The distributional inclusion hypothesis [Geffet and Dagan(2005)] and the

similar formal concept analysis [Cimiano et al.(2005)] basically state that the

word “a” is the generalization of the word “b” if the properties representing the

contexts of “a” are included in those representing the contexts of “b”. Seman-

tic network learning methods based on these hypothesis can be applied only for

learning cotopy, for example sisterhood in generalization networks [Harris(1964),

Deerwester et al.(1990)] and generalization [Geffet and Dagan(2005),

Cimiano et al.(2005)].
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2.3.2 Learning all other relations

For all the other kind of relations, the basic working hypothesis is the ex-

ploitation of LSP’s ([Robison(1970)]), i.e., as already described in Section 2.2.3,

a generic way to express a semantic relation in texts. These models have

been applied for learning is-a relations [Hearst(1992a), Snow et al.(2006)],

generic semantic relations between nouns [Pantel and Pennacchiotti(2006),

Szpektor et al.(2004)], and specific relations between verbs [Zanzotto et al.(2006),

Chklovski and Pantel(2004)]. LSP models do not directly exploit structural

properties of semantic networks of words , i.e. these properties are not intrinsi-

cally inherited from the definition, as it differently happens for the distributional

hypothesis.

LSP models can be potentially used for deciding whether or not any type

of semantic relation holds between two words. These models have been widely

used for detecting hyperonymy relations [Hearst(1992a), Morin(1999)], and

also for other ontological relations [Pantel and Pennacchiotti(2006)],

even more generic [Szpektor et al.(2004), Ravichandran and Hovy(2002)], and

for relations among verbs [Zanzotto et al.(2006), Chklovski and Pantel(2004)].

Semantic network learning models based on lexico-syntactic patterns present

then three advantages with respect to DH models:

• these models can be used to learn any semantic relation [Hearst(1992a),

Morin(1999), Pantel and Pennacchiotti(2006), Chklovski and Pantel(2004),

Ravichandran and Hovy(2002), Zanzotto et al.(2006), Szpektor et al.(2004)]

• these models coherently exploit existing taxonomies in the expansion phase
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[Snow et al.(2006)]

• the classification is binary, i.e., a word pair belongs or not to the taxonomy

[Pantel and Pennacchiotti(2006), Snow et al.(2006)]

In this way, a single classifier is associated to each treated relation. In this thesis,

we will select a probabilistic approach, among LSP semantic networks learning

models, because in this way we can model both existing and new knowledge with

probabilities. This is needed to positively exploit transitivity during learning.

2.3.3 Limits

LSP models are interesting because they can learn any kind of semantic rela-

tions but they do not explicitly exploit structural properties of target relations

when learning taxonomies or semantic networks of words. Semantic relation

learning models based on the distributional hypothesis intrinsically use struc-

tural properties of semantic networks of words such as transitivity, but these

models cannot be applied for learning transitive semantic relations other than

the generalization.

In general, structural properties of semantic networks of words, when rel-

evant, are not used in machine learning models to better induce confidence

values for extracted semantic relations. Even where transitivity is explicitly

used [Snow et al.(2006)], it is not directly exploited to model confidence values

but it is used in an iterative maximization process of the probability of the entire

semantic network.
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2.4 Using Probabilistic Models

Semantic network learning approach exploit three working hypotheses to build

feature space. These feature spaces are used to determine whether or not new

pairs of words coming from the text collection have to be included in existing

knowledge repositories. With the approach proposed by Snow in [Snow et al.(2006)]

it is possible to take into account both corpus-extracted evidences and existing

language resources using a probabilistic formulation. This model is the only

one using, even if only intrinsically, one of the properties of semantic networks

(transitivity) to expand existing networks.

In this section, we will firstly motivate why we should store probabilities or

confidence weights in learnt semantic networks (Section 2.4.1). Then, we will

introduce the state-of-the-art of probabilistic semantic networks learning models

(Section 2.4.2) and, finally, we will point out their limits (Section 2.4.3).

2.4.1 Confidence weights, probabilities, and corpus-based

learning

Any corpus-based knowledge learning method augments existing knowledge

repositories with new information extracted from texts. In this process, we

have two big issues:

• we are mixing reliable with unreliable information

• as we are dealing with natural language, ambiguity affects every bit of

discovered knowledge
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Mixing reliable concepts, relations among concepts, and instances with semi-

reliable extracted information is a big problem as final knowledge repositories

cannot be considered reliable. Generally, extracted knowledge items are in-

cluded in final resources if the related estimated confidence weights are above

a threshold. Accuracy of added information is generally evaluated over a small

randomly selected portion (e.g., [Lin and Pantel(2001a), Snow et al.(2006),

Pantel and Pennacchiotti(2006)]). Final knowledge repositories contain, then,

two different kinds of information. The first kind is reliable and controlled. The

second kind, i.e., the above threshold extracted information, is semi-reliable. Its

accuracy is below 100% and it generally varies in different ranges of confidence

weights. High confidence values guarantee high accuracy (e.g., [Snow et al.(2006)]).

Then, it is extremely important that corpus extracted knowledge items report

the confidence weights that justifies the inclusion in the knowledge base. In this

way, consumers of knowledge repositories can decide if information is “reliable

enough” to be applied in their task.

Ambiguity of natural language is the second reason why knowledge reposi-

tories should store confidence weights (or probabilities) of extracted knowledge

items. For example, the word “dog” can be generalized to the word “ani-

mal” or to the word “device” according to which sense is taken into account. A

decision system working with words would benefit in accuracy from the knowl-

edge of the probabilities of two different generalizations. The simple ordering of

word senses in WordNet [Miller(1995)] (first sense heuristic) according to their

frequencies is useful for open domain word sense disambiguation models. Also

the computation of prior sense probabilities within specific domains is useful
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for word sense disambiguation processors [McCarthy et al.(2004)]. Experience

in different NLP tasks such as part-of-speech (POS) tagging suggests that it

is important to model and store these probabilities. In [Yoshida et al.(2007)] a

comparison between three POS taggers is shown: one emitting one interpreta-

tion per word, one emitting multiple interpretations, and, finally, one emitting

multiple interpretations with associated probabilities. The POS taggers have

been then evaluated with respect to the performances obtained by a parser.

Even if the probabilistic model of the parser is different with respect to the

one of the POS tagger, the parser has better performances with the third POS

tagger that emits tags and the associated probabilities.

2.4.2 Iterative probabilistic model

We illustrate here an existing state-of-the-art probabilistic model for semantic

networks learning presented in [Snow et al.(2006)]. This probabilistic model is

the only one based on lexico-syntactic patterns that intrinsically uses transitivity

to expand existing semantic networks. We will hereafter call this model iterative.

We are interested in this model because it represents a valid alternative to the

models proposed in this thesis. The iterative model, instead of determining

induced probabilities, iteratively adds facts in the knowledge base changing the

initial semantic networks.

The task of learning semantic networks from a corpus is seen as a probability

maximization problem. The semantic networks are seen as a set T of assertions

R over pairs Ri,j . If Ri,j is in T , i is a concept and j is one of its generalizations.

For example, Rdog,animal ∈ T describes that dog is an animal. The main
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innovation of this probabilistic method is the ability of taking into account in

a single probability the information coming from the corpus and an existing

semantic networks T .

The main probabilities are then: (1) the prior probability P (Ri,j ∈ T ) of

an assertion Ri,j to belong to the semantic network T and (2) the posterior

probability P (Ri,j ∈ T |−→e i,j) of an assertion Ri,j to belong to the semantic

network T given a set of evidences −→e i,j derived from the corpus. The evidences

are a feature vector associated to a pair (i, j). For example, a feature may

describe how many times i and j are seen in patterns like ”i as j” or ”i is a j”.

These, among many other features, are indicators of an is-a relation between i

and j (see [Hearst(1992a)]).

Given a set of evidences E over all the relevant word pairs, the probabilistic

semantic networks learning task is defined as the problem of finding a semantic

network T̂ that maximizes the probability of observing the evidences E, i.e.:

T̂ = arg max
T

P (E|T )

This maximization problem is solved by a local and iterative search. Each step

maximizes the ratio between the likelihood P (E|T ′) and the likelihood P (E|T )

where T ′ = T ∪ I(Ri,j) and I(Ri,j) are the added relations. This ratio is called

multiplicative change ∆(N) and is defined as follows:

∆(I(Ri,j)) = P (E|T ′)/P (E|T ) (2.1)

Given the semantic network T and the relation Ri,j , the set I(Ri,j) contains

Ri,k if Rj,k is in T and contains Rk,j if Rk,i is in T . For example: given T and

Rdog,animal, if Ranimal,organism ∈ T then I(Rdog,animal) contains Rdog,organism.
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Moreover, given T and Rbird,beast, if Rturkey,beast ∈ T then I(Rbird,beast) con-

tains Rturkey,beast.

The main innovation of this model is the possibility of adding at each step

the best relation {Ri,j} as well as all the relations induced from Ri,j and the

existing semantic networks T . Two different approaches can be adopted at this

point:

flat: at each iteration step, a single relation is added,

R̂i,j = arg max
Ri,j

∆(Ri,j)

inductive: at each iteration step, a set of relations I(R̂i,j) is added

R̂i,j = arg max
Ri,j

∆(I(Ri,j))

Finally, it is possible to demonstrate that the following equation holds:

∆(Ri,j) = k · P (Ri,j ∈ T |~ei,j)
1− P (Ri,j ∈ T |~ei,j)

(2.2)

where k is a constant that will be neglected in the maximization process.

The model for predicting P (Ri,j ∈ T |~ei,j) is then trained using logistic regres-

sion.

2.4.3 Limits

When dealing with learning semantic networks of words from texts such as

learning ontologies, we generally have ontology-rich domains with large struc-

tured domain knowledge repositories or large general corpora with large general

structured knowledge repositories such as WordNet [Miller(1995)]. But even

33



Chapter 2. Methods for Ontology Learning

large knowledge repositories such as WordNet [Miller(1995)] are extremely poor

when used in specific domains (e.g., medicine [Toumouth et al.(2006)]).

Obtaining manually structured knowledge repositories in specific domains is

a very time consuming and expensive task. Systems that automatically create,

adapt, or extend existing semantic networks of words need a sufficiently large

number of documents and existing structured knowledge to achieve reasonable

performance. If the target domain has not relevant pre-existing semantic net-

works of words to expand, we will not have enough data for training the initial

model. In general, despite the scarcity of domains covered by existing struc-

tured knowledge, there are no limits on the domains where these resources may

be required to operate. In general, in learning methods the amount of out-of-

domain data is larger than in-domain data. For this reason, we will envisage

methods that, with a small effort for the adaptation to different specific knowl-

edge domains, can exploit out-of-domain data for building in-domain models

with bigger accuracy. We would be liked a learning semantic networks of words

model that can be used, with a small effort for the adaptation, in different

specific knowledge domains.

2.5 Adapting semantic networks to new domains

One of the basic assumptions in machine learning and statistical learning is

that learning data are enough representative of the environment where learned

models will be applied. The statistical distribution of learning data is similar

to the distribution of the data where the learned model is applied. In natu-
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ral language processing tasks involving semantics, this assumption is extremely

important. One of these semantic tasks is learning semantic networks of words

from texts using lexico-syntactic pattern (LSP) based methods. LSP meth-

ods [Hearst(1992a), Pantel and Pennacchiotti(2006), Snow et al.(2006)] gener-

ally use existing ontological resources to extract learning examples. The learn-

ing examples are matched over collection of documents to derive lexico-syntactic

patterns describing a semantic relation. These patterns are then used to expand

the existing ontological resource by retrieving and selecting new examples.

LSP semantic networks learning methods are generally used to expand ex-

isting domain ontologies using domain corpora or to expand generic lexical re-

sources (e.g.,WordNet [Miller(1995)]) using general corpora [Snow et al.(2006),

Fallucchi and Zanzotto(2009b)]. In this way, the basic assumption of machine

learning approaches is satisfied. Yet, the nature of the semantic networks learn-

ing task requires that models learned in a general or a specific domain may be ap-

plied in other domains for building or expanding poor initial semantic networks

using domain corpora. In this case, the distribution of learning and application

data is different. Learned LSP models are “domain-specific” and they being

potentially related to the prose of a specific domain. These models are then

accurate for the specific domain but may fail in other domains. For examples, if

the target domain has not relevant pre-existing ontologies to expand, may be not

enough data for training the initial model. In [Snow et al.(2006)], all WordNet

has been used as source of training examples. In this case, domain adaptation

techniques must be adopted [Bacchiani et al.(2004), Roark and Bacchiani(2003),

Chelba and Acero(2006), Daumé and Marcu(2006), Gao(2009), Gildea(2001)].
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Domain adaptation is a well-known problem in machine learning and statis-

tical learning. To stress the difference between the distribution of the data in

the original domain (also called background domain) and in the target domain,

we can refer to out-of-domain data and as in-domain data. Out-of-domain

data are generally large sets and are used for training. In general, in learning

method the assumption that out-of-domain data and in-domain data share the

same underlying probability distribution is inaccurate. This problem arises for

many applications. Generally, in-domain data are drawn from a distribution

that is related, but not identical, to out-of-domain distributions of the training

data. Some the amount of out-of-domain data is generally larger than in-domain

data, we need to envisage methods that exploit these data for building accurate

in-domain models.

The domain adaptation problem exactly consists in leveraging out-of-domain

data to derive models well performing on in-domain data. The alternative is

a manually building initial training resources for new domains. But this is an

expensive task just as designing a system for each target domain. The natural

expectation from the domain adaptation models is to minimize the efforts re-

quired to build in-domain data using a model trained with out-of-domain data.

This context, it becomes very important to adapt existing models from rich

source domains to resource poor target domains. The problem of domain

adaptation arises in a large variety of applications: natural language processing

[Blitzer et al.(2006), Chelba and Acero(2006), Daumé and Marcu(2006)], ma-

chine translation [Bertoldi and Federico(2009)], word sense disambiguation

[Chan and Ng(2007)], etc..
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In the rest of this section we will investigate the domain adaptation tech-

niques (Section 2.5.1), the model adaptation (Section 2.5.2) and the limits of

the presented approaches (Section 2.5.3).

2.5.1 Domain Adaptation Techniques

Different domain adaptation techniques are introduced in the context of spe-

cific applications and statistical learning methods. A standard technique used in

statistical language modeling and in other generative models is the maximum a

posteriori (MAP) estimation [Gauvain and Lee(1994)], where the prior knowl-

edge is used to estimate the model parameters. In the MAP estimation, the

some model parameters are considered to be random variables with a known

distribution (the prior one). Then, the prior distribution and the maximum

likelihood distribution based on the in-domain observations are used to derive

the posterior distribution of the parameters, from which the model is selected.

If the amount of in-domain data is large, the mode of the posterior distribution

is mostly defined by the adaptation sample; if the amount of adaptation data is

small, the mode will nearly coincide with the mode of the prior distribution.

The intuition behind the MAP estimation is that, once there are sufficient

observations, the prior model need no longer to be relied upon corpus, and which

are more general. The MAP framework is general enough to include some pre-

vious model adaptation approaches, such as corpus mixing [Gildea(2001)]. The

MAP estimation has been also used in [Roark and Bacchiani(2003)] to adapt a

lexicalized probabilistic context-free grammar (PCFG) to a novel domain. In

[Chelba and Acero(2006)] a MAP adaptation technique for maximum entropy
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models has been developed for the problem of recovering the correct capital-

ization of uniformly case text for language modeling in speech recognition. In

[Daumé and Marcu(2006)] a statistical formulation has been provided, that is

a mixture of the maximum entropy model and the linear Chain Models for

conditional random fields.

Two other classes of model adaptation methods are very interesting: error-

driven learning approaches and model interpolation approaches. In the error-

driven learning approaches, the background model is adjusted to minimize the

ranking errors made by the model on the adaptation data [Bacchiani et al.(2004),

Gao(2009)]. In the model interpolation approaches, the in-domain data are used

to derive an adaptation model, which is then combined with the background

model trained on the out-of-domain data. In [Gao(2009)] the model interpola-

tion has been investigated for web search ranking.

2.5.2 Model Adaptation

One of the possible ways of using the model adaptation is to adjust the model

trained on the background domain to a different domain (the adaptation do-

main) modifying opportunely the parameters and/or the structure. The motiva-

tion of this approach is that usually the background domain has large amounts

of training data while the adaptation domain has only small amounts of data.

In [Gao(2009)] a set of error-driven learning methods is developed where, in an

incremental way, each feature weight could be changed separately but also new

features could be constructed.

In [Blitzer et al.(2006)] a common representation is given for features ex-
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tracted from different domains. Pivot features from unlabeled data are used

to put domain-specific words in correspondence where the pivot features are

features occuring frequently in the two domains and behaving similarly in both.

By analogy with [Blitzer et al.(2006)] we propose to learn common features,

meaningful for both domains having different weights, where the weights are

determined according to the occurrences in the respective corpus. We are con-

fident that a model trained in the source domain using this common feature

representation will generalize better the target domain.

In some cases, many steps may be required to adapt a model trained on the

source domain to the target domain [Roark and Bacchiani(2003), Ando(2004),

Daumé and Marcu(2006)]. On the contrary, in the approach that we propose

we learn a model from the out-of-domain data that can be used to learn the

in-domain data without any additional effort.

2.5.3 Limits

In general, in the learning method, the amount of out-of-domain data is larger

than in-domain data. For this reason, we want to envisage methods that exploit

out-of-domain data for building accurate in-domain models. Systems for creat-

ing or augmenting semantic networks of words using information extracted from

texts foresee a manual validation for assessing the quality of semantic networks

of words expansion. Yet, these systems do not use the manual validation for

refining the information extraction model that proposes novel links in the net-

works. Manual validation can be efficiently exploited if used in an incremental

model. We need an efficient way to interact with final users.
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2.6 Incremental Ontology Learning

Exploiting the above (and also other) algorithms and techniques for inducing

ontological structures from texts, different approaches have been devised, fol-

lowed and applied regarding how to properly exploit the learned objects and

how to translate them into real ontologies using dedicated editing tools. This

is an aspect which is not trivially confined to importing induced data inside

an existing (or empty) semantic network, but identifies iterative processes that

could benefit from properly assessed interaction steps with the user, giving life

to novel ways of interpreting semantic networks development.

One of the most notable examples of integration between semantic networks

learning systems and ontology development frameworks is offered by Text-to-

Onto [Maedche and Volz(2001)], an ontology learning module for the KAON

tool suite, which discovers conceptual structures from different kind of sources

(ranging from free texts to semi-structured information sources such as dictio-

naries, legacy ontologies and databases) using knowledge acquisition and ma-

chine learning techniques; OntoLT [Buitelaar et al.(2004)] is a Protégé

[Gennari et al.(2003)] plug-in able to extract concepts (classes) and relations

(Protégé slots or Protégé OWL properties) from linguistically annotated text

collections. It provides mapping rules, defined by use of a precondition language,

that allow for a mapping between extracted linguistic entities and classes/slots.

An outdated overview of this kind of integrated tools (which is part of a

complete survey on ontology learning methods and techniques) can be found

in the public Deliverable 1.5 [Gómez-Pérez and Manzano-Macho(2003)] of the

OntoWeb project. A more recent example is offered by the Text2Onto
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[Cimiano and Volker(2005)] plug-in for the Neon toolkit [Haase et al.(2008)], a

renewed version of Text-To-Onto with improvements featuring ont-model in-

dependence (a Probabilistic Ontology Model is adopted as a replacement for

any definite target ontology language), better user interaction and incremental

learning.

Lastly, in [Bagni et al.(2007)] the authors define a web browser extension

based on the Semantic Turkey Knowledge Acquisition Framework

[Griesi et al.(2007)], offering two distinct learning modules: a relation extractor

based on a light-weight and fast-to-perform version of algorithms for relation

extraction defined in [Pantel and Pennacchiotti(2006)], and an ontology popu-

lation module for harvesting data from html tables. Most of the above models

defines supervised cyclic develop and refine processes controlled by domain ex-

perts.

2.7 Feature selection models

Knowledge harvesting and semantic networks learning models exploit the three

working hypotheses to build feature spaces where instances (words as in

[Pekar and Staab(2002)] or word pairs as in [Snow et al.(2006)]) are repre-

sented. Decision models are learned using existing knowledge repositories and

then applied to new words or word pairs. Generally, all learning models use as

features all the possible and relevant generalized contexts where words or word

pairs can appear. For example, possible features in the word pair classification

problem are ”is a” and ”as well as”. These feature spaces can be huge, as they
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include all potential relevant features for a particular relation among words,

where relevant features are not known in advance. Yet, large feature spaces can

have negative effects on machine learning models such as increasing the com-

putational load and introducing redundant or noisy features. Feature selection

can solve these collateral problems (see [Guyon and Elisseeff(2003)]).

Feature selection is a process wherein a subset of the features available from

the data is selected for application in a learning algorithm. The best sub-

set contains the least number of dimensions that most contribute to accuracy.

Feature selection models are also widely used in semantic networks learning

methods. For example, attribute selection for building lattices of concepts in

[Cimiano et al.(2005)] is done applying specific thresholds on specific informa-

tion measures on attribute extracted from corpora. This model uses conditional

probabilities, point-wise mutual information, and a selectional preference-like

measure ([Resnik(1993)]). The wide range of feature selection models can be

classified in two main families: supervised feature selection models (Section

2.7.1) and unsupervised feature selection models (Section 2.7.2).

2.7.1 Supervised Feature selection models

Supervised models directly exploit the class of training instances for determining

weather a feature is relevant or not. The idea is to select features that are highly

correlated with final target classes. The most standard filtering features can be

estimated in different ways, such as with information theoretic ranking criteria,

according to their individual predictive power. In particular, when adopting

the information theoretic ranking criteria, mutual information and information
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gain are often used [Dhillon et al.(2003)].

Intuitively, mutual information is a measure of the amount of information

that one random variable contains about the other. The higher is the value the

less is the uncertainty of one random variable due to knowledge about the other.

In this type of supervised feature selection the question is to find optimal word

clusters in terms of preserving mutual information between words.

The information gain is the reduction in the uncertainty about a word when

we know the other one. The uncertainty about a word is measured by its entropy.

Information gain is primarily used in decision tree algorithm.

2.7.2 Unsupervised Feature selection models

Unsupervised models are used when the classification of training instances is

not available at the training time or it is inapplicable, such as in information

retrieval. Straightforward and simple models for unsupervised feature selection

can be derived from information retrieval weighting schemes, an example is the

term frequency times inverse document frequency (tf ∗ idf) reported in Section

2.7.2.1. In machine learning, a mathematical construct is largely used as feature

selection that directly reveals the rank and the corresponding ideal basis of a

dataset: singular value decomposition (SVD) reported in Section 2.7.2.2. We

will describe SVD with much detail because this technique has been successfully

integrated in the probabilistic models that we suggest in this thesis.
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2.7.2.1 Term frequency times inverse document frequency

Term frequency times inverse document frequency, tf ∗ idf , is a statistical mea-

sure that combines term frequency (tf) and inverse document frequency (idf).

The first, tf , allows weighting the relevance of a term in a corpus in a simple

way. The measuring of the term relevance is by the absolute term frequency, i.e.

the number of times a term occurs in a corpus. While the second, idf , penalizes

terms which occur in several documents. Then, tf ∗ idf allow weighting how

important a word is for a document in a collection or corpus. In tf ∗ idf , rele-

vant features are respectively those appearing more often or those being more

selective, i.e., appearing in fewer instances.

2.7.2.2 Singular Value Decomposition

In machine learning, singular value decomposition (a mathematical construct

that directly reveals the rank and the corresponding ideal basis of a dataset) is

largely used as unsupervised feature selection.

SVD is one of the possible factorizations of a rectangular matrix that has

been largely used in information retrieval for reducing the dimension of the

document vector space [Deerwester et al.(1990)]. The decomposition can be

defined as follows. Given a generic rectangular n × m matrix A, its singular

value decomposition is:

A = UΣV T

where U is a matrix n× r, V T is a r×m and Σ is a diagonal matrix r× r. The

two matrices U and V are unitary, i.e., UTU = I and V TV = I. The diagonal
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elements of Σ are the singular values δ1 ≥ δ2 ≥ ... ≥ δr > 0 where r is the rank

of the matrix A. For the decomposition, SVD exploits the linear combination

of rows and columns of A.

A first trivial way of using SVD as unsupervised feature reduction is the

following. Given E as a set of training examples represented in a feature space

of n features, we can represent it as a matrix, i.e. a sequence of examples

E = (−→e1 ...
−→em). With SVD, the n×m matrix E can be factorized as E = UΣV T .

This factorization implies that we can focus the learning problem on a new

space using the transformation provided by the matrix U . This new space is

represented by the matrix:

E′ = UTE = ΣV T (2.3)

where each example is represented with r new features. Each new feature is

obtained as a linear combination of the original features, i.e. each feature vector

−→el can be seen as a new feature vector −→el ′ = UT−→el . When the target feature

space is big and the cardinality of the training set is small, i.e., n >> m, the

application of SVD results in a reduction of the original feature space dimension

to the rank r of the matrix E is r ≤ min(n,m).

A more interesting way of using SVD as unsupervised feature selection model

is to exploit its approximated computations, i.e. :

A ≈ Ak = Um×kΣk×kV
T
k×n (2.4)

where k is smaller than the rank r. The computation algorithm

[Golub and Kahan(1965)] allowed to stop at a given k different from the real

rank r. The property of the singular values, i.e., δ1 ≥ δ2 ≥ ... ≥ δr > 0, guar-
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antees that the first k are bigger than the discarded ones. There is a direct

relation between the informativeness of the dimension and the value of the sin-

gular value. High singular values correspond to dimensions of the new space

where examples have more variability whereas low singular values determine

dimensions where examples have a smaller variability (see [Liu(2007)]). These

dimensions can not be used as discriminative features in learning algorithms.

The possibility of computing the approximated version of the matrix gives a

powerful method for feature selection and filtering as we can decide in advance

how many features or, better, linear combination of original features we want

to use.

SVD is an unsupervised feature selection model in the sense that the feature

selection is done without taking into account the final classes of the training

examples. This is not always the case: feature selection models, such as those

based on Information Gain, largely use the final classes of training examples.

SVD as feature selection is independent of the classification problem.
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Approaches to estimate direct

probabilities

Any corpus-based knowledge learning method augments existing knowledge

repositories with new information extracted from texts. Two big issues must be

addressed in this process. The first is that we are mixing reliable with unreli-

able information. The second is that, as we are dealing with natural language,

an ambiguity affects the bits of the discovered knowledge. This is the reason

why knowledge repositories should store confidence weights or probabilities of

the extracted knowledge items. Here, we will estimate this probability, which

will be hereafter called direct probability, it being obtained directly from the

observations over text collection.

In this chapter, we will firstly define the direct probabilistic model (Section

47



Chapter 3. Approaches to estimate direct probabilities

3.1) and we will introduce the logistic regression model (Section 3.2). Then,

we will show how regression coefficients are estimated (Section 3.3) and we will

describe how SVD can be used as feature selector in the logistic regression that

estimates the probabilities of the model (Section 3.4). Finally, we will report

and we comment the results of the experiments (Section 3.5) and we will draw

some conclusions (Section 3.6).

3.1 Direct Probabilistic Model

The direct probabilistic model is directly built on the observations over the text

collection. We model the semantic network learning problem as a binary classifi-

cation task, in line with [Pantel and Pennacchiotti(2006)] and [Snow et al.(2006)].

Given a pair of words (i, j) and a vector of observed features ~ei,j , we want to

build a binary classifier that determines if “i” is in a relation R with “j” and

gives the related confidence weight.

In the direct probabilistic model, we define the direct events Ri,j ∈ T where

T is the semantic network. If Ri,j is in T , then “i” is in a R relation with

“j” according to the semantic network T. For example, if R is the is-a relation,

Rdog,animal ∈ T describes that dog is an animal according to the semantic

network T . The learning problem in the direct settings is to determine the

probabilities:

P (Ri,j ∈ T |E) (3.1)
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where E is a set of evidences extracted from the corpus. We will hereafter refer

to this probability as P (Ri,j |E).

Using the assumption of independence of the evidence vectors, we can rewrite

equation (3.1) as P (Ri,j |~ei,j) where ~ei,j is the set of evidences for (i, j) derived

from the corpus. These evidences are derived from the contexts where the pair

(i, j) is found in the corpus. The vector ~ei,j is a feature vector associated with

a pair (i, j). For example, a feature may describe how many times i and j are

seen in patterns like ”i as j” or ”i is a j”. These, among many other features,

are indicators of an is-a relation between i and j ([Hearst(1992a)]). The direct

probabilities P (Ri,j |~ei,j) only depend on what has been observed in the corpus

for a particular pair of words (i, j).

The last issue we need to address is how to estimate the direct probabilities

P (Ri,j |~ei,j) using an initial knowledge base and a corpus where evidences for

pairs (i, j) can be extracted. We will do this using the logistic regression model

[Cox(1958)] that, as we will see, gives a natural setting for using singular value

decomposition (SVD) as unsupervised feature selection model.

3.2 Logistic Regression

Logistic Regression [Cox(1958)] is a particular type of statistical model for relat-

ing responses Y to linear combinations of predictor variables X. It is a specific

kind of Generalized Linear Model (see [Nelder and Wedderburn(1972)]) where

the function is the logit function and the dependent variable Y is a binary or

dicothomic variable which has a Bernoulli distribution. The dependent variable
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Y takes value 0 or 1. The probability that Y has value 1 is a function of the

regressors x = (1, x1, ..., xk).

The direct probability P (Ri,j |~ei,j) falls in the category of the probabilistic

models where the logistic regression can be applied, because Ri,j ∈ T can be

seen as the binary dependent variable and ~ei,j as the vector of its regressors.

We start from describing formally the logistic regression model. Given a binary

stochastic variable Y and a generic stochastic variable X for the regressors, we

can define p as the probability of Y to be 1 given X = ~x, i.e.:

p = P (Y = 1|X = ~x)

The distribution of Y is a Bernoulli distribution.

Given the definition of the logit(p) as:

logit(p) = ln

(
p

1− p

)
(3.2)

and given the fact that Y is a Bernoulli distribution, the logistic regression

predicts that the logit is a linear combination of the values of the regressors,

i.e.,

logit(p) = β0 + β1x1 + ...+ βkxk (3.3)

where β0, β1, ..., βk are called regression coefficients of the variables x1, ..., xk

respectively.

Given the regression coefficients, it is possible to compute the probability of

a given event where we observe the regressors x to be Y = 1 or in our case to

belong to the taxonomy. This probability can be computed as follows:

p(x) =
exp(β0 + β1x1 + ...+ βkxk)

1 + exp(β0 + β1x1 + ...+ βkxk)
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Probability Odds Logit

0 ≤ p < 0.5 [0, 1) (−∞, 0]

0.5 < p ≤ 1 [1,∞) [0,∞)

Table 3.1: Relationship between probability, odds and logit

It is trivial to determine the odds(Ri,j) related to the multiplicative change

of the probabilistic taxonomy model. The odds is the ratio between positive

and negative events. It is defined as follows:

odds(Ri,j) =
P (Ri,j∈T |−→e i,j)

1−P (Ri,j∈T |−→e i,j)
(3.4)

It is noteworthy that the odds is strictly related to the logit

odds(Ri,j) = exp(β0 +−→e Ti,jβ) (3.5)

The relationship among probability, odds and logit is show in Table 3.1.

3.3 Estimating Regression Coefficients

The last issue is how to estimate the regression coefficients. This estimation can

be done using the maximal likelihood estimation. The above logit definition

generate a set of linear equations. The linear problem is then solved introduc-

ing a pseudo-inverse matrix, the original matrix being usually rectangular and

singular.

The importance of obtaining the regression coefficients (see above) is that

we can estimate in this way a probability P (Ri,j |~ei,j) given any configuration
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of the regressors ~ei,j , i.e., the observed values of the features.

The estimation of the β coeffients can be done as follows. Let assume to

have a multiset O of observations extracted from a corpus. Elements of the

multiset are (y,~ei,j) where y = 1 if (i, j) is a positive case and y = 0 if (i, j) is

a negative case. We can now generate a set E of all the different vectors ~ei,j .

For the sake of simplicity, we will write ~q instead of ~ei,j . For each ~q ∈ E, we

can use the maximum likelihood to estimate the initial probability P (Y = 1|~q)

as the frequency of the pair (1, ~q) in O divided by the frequency of ~q. For each

~q ∈ E, we have then a set of equations of this kind:

logit(P (Y = 1|~q)) = β0 + β1q1 + ...+ βmqm (3.6)

where m is the size of the feature space. This set of equations can be written

as a linear equation system:

−−−−−→
logit(p) = Qβ (3.7)

where Q is a matrix that includes a constant column of 1’s. The matrix is:

Q =



1 q11 q12 · · · q1m

1 q21 q22 · · · q2m

...
...

...
. . .

...

1 qn1 qn2 · · · qnm


The set of equations in (3.7) is a particular case of multiple linear regression

[Caron et al.(1988)].

As Q is a rectangular and singular matrix, Q is not invertible and the system
−−−−−→
logit(p) = Qβ has no solutions. Yet, it is possible to use the principle of the
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Least Square Estimation. With this principle we can determine the solution β

that minimize the residual norm, i.e.:

β̂ = arg min ‖Qβ −
−−−−−→
logit(p)‖2 (3.8)

This problem can be solved by the Moore-Penrose pseudoinverse Q+

[Penrose(1955)] that gives the following final equation:

β̂ = Q+−−−−−→logit(p) (3.9)

It is important to remark that if the inverse matrix exists then Q+ = Q−1 and

Q+Q , QQ+ are symmetric.

3.4 Computing Pseudoinverse Matrix with SVD

Analysis

We can finally illustrate why it is natural to use singular value decomposition as

feature selection in a probabilistic taxonomy learner. In the previous sections we

described how the probabilities of the taxonomy learner can be estimated using

logistic regressions and we concluded that a way to determine the regression

coefficients β is by computing the Moore-Penrose pseudoinverse Q+. Here

we compute Moore-Penrose pseudoinverse using the SVD [Penrose(1955)].

Given a SVD of the matrix Q = UΣV T , the pseudo-inverse matrix that mini-

mizes the Equation 3.8 is:

Q+ = V Σ+UT (3.10)
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The diagonal matrix Σ+ is the r× r transposed matrix of Σ having as diagonal

elements the reciprocals of the Σ singular values 1
δ1
, 1
δ2
, ..., 1

δr
.

The use of SVD in the computation of the pseudo-inverse matrix intrinsically

designate SVD as unsupervised feature selection model. We can compute differ-

ent approximations of the pseudo-inverse matrix. The algorithm for computing

the singular value decomposition is iterative [Golub and Kahan(1965)]. The

firstly derived dimensions are those with higher singular value. Once obtained

the higher value we can decide how many dimensions we want to use, considering

that the first k dimensions are more informative than the k+ 1 dimensions. We

can take different values of k in order to obtain different SVD as approximations

Q+
k of the original matrix Q+ (Equation 3.10)

Q+
k = Vn×kΣ+

k×kU
T
k×m

where Q+
k is a matrix n by m obtained taking the first k singular values.

The computation algorithm [Golub and Kahan(1965)] can be stopped at a

given k’s different from the real rank r. The property of the singular values, i.e.,

δ1 ≥ δ2 ≥ ... ≥ δr > 0, guarantees that the first k are bigger than the discarded

ones.

A direct relation holds between the informativeness of the i-th new dimension

and the singular value δi. High singular values correspond to dimensions of the

new space where examples have more variability whereas low singular values

correspond to dimensions where examples have a smaller variability [Liu(2007)].

The latter dimensions can be then hardly used as efficient features selection in

learning.

The computation of approximated matrices is a powerful method for feature

54



3.5. Experimental Evaluation

selection and filtering as we can decide in advance how many features or, better,

linear combinations of the original features we want to use.

3.5 Experimental Evaluation

In this section, we will show two sets of experiments where the validity of our

direct probabilistic model has been checked. With the first set (Section 3.5.2) we

will determine if keeping probabilities within the final knowledge base is better

than taking strict decisions. To assess this claim we will compare our direct

probabilistic model with the iterative model presented in Section 2.4.2 that

is the state-of-the-art of the probabilistic models. With the second set (Section

3.5.1) we will empirically explore whether the use of SVD feature selection

positively affects performances of the probabilistic semantic networks learner.

3.5.1 Experimental Set-up: keeping probabilities within

the final knowledge base

Here, we report and discuss the first set of experiments to determine if keeping

probabilities within the final knowledge base is better than taking strict deci-

sions. To assess this claim we compare our direct probabilistic model with the

iterative model . To this aim an appropriate experimental setting has been

disposed (corpus, semantic networks and feature spaces).
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3.5.1.1 Corpus

The adapted corpus is the English Web as Corpus (ukWaC)

[Baroni et al.(2009)]. This is a web extracted corpus of about 2700000 web

pages containing more than 2 billion words. The corpus contains documents of

different topics such as web, computers, education, public sphere, etc.. It has

been largely demonstrated that the web documents are good models for natural

language [Lapata and Keller(2004)].

3.5.1.2 Semantic Networks

As target semantic networks we selected a portion of WordNet1 [Miller(1995)].

Namely, we started from 44 concrete nouns divided in 3 classes: animal, artifact,

and vegetable. For the sake of comprehension, this set is reported in Table 3.2.

For each word w, we selected the synset sw that generalizes the class it

belongs to. In this way we obtained a set S of synsets. We then expanded the

set to S′ adding the siblings (i.e., the coordinate terms) for each synset in S.

The sets S′ contains 265 coordinate terms plus the 44 original concrete nouns.

For each element in S we collected the hypernyms, obtaining the set H of

the hypernyms. We then removed from the set H the top classes entity, unit,

object, and whole, obtaining 77 hypernyms. For the purpose of the experiments

we derived a taxonomy T from S and S′ and a taxonomy T from the set of

negative examples. The taxonomy T is the portion of WordNet implied by

O = H ∪ S′, i.e., T contains all the (s, h) ∈ O ×O that are in WordNet.

On the contrary, T contains all the (s, h) ∈ O×O that are not in WordNet.

1We used the version 3.0 of WordNet
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Concrete nouns Clas Sense Concrete nouns Clas Sense

1 banana Vegetable 1 23 boat Artifact 0

2 bottle Artifact 0 24 bowl Artifact 0

3 car Artifact 0 25 cat Animal 0

4 cherry Vegetable 2 26 chicken Animal 1

5 chisel Artifact 0 27 corn Vegetable 2

6 cow Animal 0 28 cup Artifact 0

7 dog Animal 0 29 duck Animal 0

8 eagle Animal 0 30 elephant Animal 0

9 hammer Artifact 1 31 helicopter Artifact 0

10 kettle Artifact 0 32 knife Artifact 0

11 lettuce Vegetable 2 33 lion Animal 0

12 motorcycle Artifact 0 34 mushroom Vegetable 4

13 onion Vegetable 2 35 owl Animal 0

14 peacock Animal 1 36 pear Vegetable 0

15 pen Artifact 0 37 pencil Artifact 0

16 penguin Animal 0 38 pig Animal 0

17 pineapple Vegetable 1 39 potato Vegetable 2

18 rocket Artifact 0 40 scissors Artifact 0

19 screwdriver Artifact 0 41 ship Artifact 0

20 snail Animal 0 42 spoon Artifact 0

21 swan Animal 0 43 telephone Artifact 1

22 truck Artifact 0 44 turtle Animal 1

Table 3.2: Concrete nouns, Classes and senses selected in WordNet
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We then have 4596 positive pairs in T and 48354 negative pairs in T . To obtain

the training and testing sets, we randomly divided the set T ∪ T in two parts,

Ttr ∪ T tr and Tts ∪ T ts, respectively the 70% and 30% of the original T ∪ T .

3.5.1.3 Feature Space

We used a bag-of-n-gram feature space for implicitly modeling lexical-syntactic

patterns. Features are words (monograms), bigrams, and trigrams. The n-

grams represent specific lexico-syntactic patterns. Given a pair (i, j) ∈ T ∪ T ,

we built the related feature vector ~ei,j using the contexts where the words i and

j appears in a window of 5 words at most. For each context of (i, j), the word

sequence between i and j was used to increment the frequency of the related

n-gram. For example, given the pair (car, vehicle), we can retrieve the context:

... to control the car as a motor vehicle and ...

where the only features that can be obtained from the word sequence between

the two target words are: as, a, motor, as a, a motor, and as a motor.

3.5.1.4 Results

In the experiment we have analyzed the relevance of the probability in the final

knowledge base. We evaluated the iterative and the direct probabilistic models

on their ability of sorting the pairs. The iterative model adds some pairs at

each step. On the contrary, the direct probabilistic model, produces a sorting of

the pairs according to the probabilities. We then compared the two methods.

In the case of the iterative methods, we have plotted the curve that relates the

accuracy to the number of added pairs. The accuracy is computed as the number
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Figure 3.1: Accuracy of the top-k ranked pairs for the iterative and direct

probabilistic semantic networks learners

of correctly added pairs with respect to the added pairs. On the contrary, in the

case of the probabilistic model we have plotted the accuracies with respect to the

ranked pairs. For this set of experiments, the SVD approximated pseudo-inverse

matrix was computed with k = 100.

The results are reported in Figure 3.1. We can observe that, keeping the

probabilities is better than making a decision at each step, i.e. the direct model

outperforms the iterative model. Thus, the final knowledge base should keep

the probabilities. The accuracies are reported in Table 3.3 for both models for

two different cuts of the sorted pair list. The second and the third columns

report, respectively, the accuracies for 100 and 1000 considered pairs.
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Top k-pairs

Probabilistic Model 100 1000

iterative 0.33981 0.22500

direct 0.51000 0.26200

Table 3.3: Accuracy of the different models at top 100 and 1000 ranked pairs

3.5.2 Experimental Set-up: feature selections affect per-

formances

In this section, we empirically explore whether the use of SVD feature selection

positively affects performances of the probabilistic semantic networks learner.

In the experiments, we addressed two issues:

• determining to what extent SVD feature selection affects performances of

the semantic networks learner;

• determining if, for the probabilistic semantic networks learner, SVD is

better than other simpler models for supervised and unsupervised feature

selection.

We explore the effects on both the flat and the inductive probabilistic

semantic networks learner. In the flat model the best relation is added at each

iteration step, whereas in inductive model not only the best relation but even

all the relations entailed by it are added at each iteration step (Section 2.4.2).
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3.5.2.1 Corpus

The adapted corpus was the English Web as Corpus (ukWaC) [Baroni et al.(2009)]

that we described in Section 3.5.1.1 .

3.5.2.2 Semantic Networks

As target semantic networks we selected a portion of WordNet2 [Miller(1995)]

as we described in Section 3.5.1.2.

3.5.2.3 Feature Space

The focus of the experiments is the analysis of the effect of the SVD feature

selection. We used both n-grams and bag-of-words as feature spaces. Out of

the T ∪ T , we selected only those pairs appearing at a distance of 3 tokens at

most. Using these 3 tokens, we generated three spaces: (1) the 1-gram space

that contains monograms, (2) the 2-gram space that contains monograms and

bigrams, and (3) the 3-gram space that contains monograms, bigrams, and

trigrams. For the purpose of this experiment, we used a reduced stop list as

classical stop words because punctuation, parenthesis and the verb to be are

very relevant in the context of features for learning a semantic networks.

The baseline model only contains Heart’s patterns [Hearst(1992a)] as fea-

tures. The feature value is the point-wise mutual information. These features

are in some sense the best features for the task as these have been manually

selected after a process of corpus analysis. We included in our 3-gram model

2We used the version 3.0 of WordNet
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also the features obtained with the baseline model, in order to compare our best

models with manual selected features.

3.5.2.4 Feature Selection

We want define the feature selection models we compared against. As unsu-

pervised feature selection models we used the term frequency times the inverse

document frequency (tf*idf ). Instances −→e have the role of the documents. As

supervised feature selection models we used the mutual information (mi). For all

the feature selection models, we selected the first k’s features. Finally, we used

a manual feature selection model based on the Heart’s patterns [Hearst(1992b)]

that we called manual model. In this model we used only classical Hearst’s

patterns as features. We proposed two experimental settings: a natural and an

artificial one. In the natural setting we used only positive pairs for the training

set, that is the natural situation when augmenting existing taxonomies because

only positive word pairs can be derived from existing taxonomies. In the ar-

tificial setting we used both positive and negative examples. We empirically

explored with three set of experiments, whether the use of the SVD feature se-

lection positively affects the performances of the probabilistic semantic networks

learner.

3.5.2.5 Results

With the first set of experiments we focused on the attention whether or not

performances of the probabilistic taxonomy learner is positively affected by the

proposed feature selection model based on the singular value decomposition.
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Figure 3.2: Accuracy over different cuts of the feature space
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We then determined the performance with respect to different values of k, when

k represents the number of surviving dimensions where the pseudo-inverse is

computed and thus, the number of features adopted in the model. We performed

this first set of experiments in the 1-gram feature space. Punctuation was

considered.

Figure 3.2 reports the accuracy of the probabilistic learner with respect

to the size of the feature set, i.e. the number k of single values considered

for computing the pseudo-inverse matrix. We reported these curves even for

different sizes of the set of added pairs to determine if the effect of the feature

selection is preserved during the iteration of the local search algorithm. Curves

were reported for both the flat and the inductive model, the flat algorithm

adds one pair at each iteration. We reported the curves for every 20 added

pairs. Each curve shows that accuracy does not increase after a dimension of

k=700. This size of the space is necessary only for the first 20 added pairs.

Accuracy increases up to k=700 and then decreases. When we add more pairs,

the optimal size of the space is around k=200. For the inductive model we

report the accuracies for 40, 80, 130 added pairs. Here, at each iteration, more

than one pair is added. The optimal dimension of the feature space seems to

be k=500, the performances decreasing or staying stable after this value. SVD

feature selection has then a positive effect for both the flat and the inductive

probabilistic semantic networks learners. This has beneficial effects both on the

performances and on the computation time.

With the second set of experiments we determined whether or not SVD

feature selection for the probabilistic taxonomy learner behaves better than a
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Figure 3.3: Comparison of different feature spaces with k=400

reduced set of known features. We fixed the dimension k to 400 and we compared

the baseline model with different probabilistic models with different feature sets:

1-gram, 2-gram, and 3-gram. We can consider that the trigram model before

the cut on its dimensions contains feature subsuming the baseline model. The

results are reported in Figure 3.3.

The curves report the accuracy after n added pairs. All the probabilistic

models outperform the baseline model. As in the case of the first series of

experiments (see Figure 3.2) more informative spaces such as 3-gram behaves

better when the number of added pairs is small. Performances of the three

reduced pairs become similar after 100 added pairs. These experiments show

that SVD feature selection has a positive effect on performances as resulting
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Figure 3.4: Comparison of different feature selection models
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models are always better with respect to the baseline.

With the last set of experiments we determined whether or not SVD fea-

ture selection for the probabilistic taxonomy learner behaves better than other

feature selection models. We fixed k to 600 both for the SVD selection model

and for the other feature selection models. In these experiments, the original

feature space is the bigram space.

The results are reported in Figure 3.4. The curves report the accuracies of

the different models after n added pairs. In the natural setting, we compared

our model against the tf ∗ idf and the manual feature selection and we deduced

that our SVD model outperforms both feature selection models. The same for

the mutual information (MI) in the artificial setting. Our SVD way of selecting

features proved to be very effective.

3.6 Conclusion

We presented a model to naturally introduce SVD feature selection in a proba-

bilistic semantic networks learner. The method is effective as allows the design-

ing of better probabilistic semantic networks of words learners.

The direct model proved to outperform the state-of-the-art of the semantic

networks learner models.

It is important also to note that our SVD-based logistic approach demon-

strates here all its efficiency. The iterative model, described in Section 2.4.2,

requires the computation of the regression at each step. On the contrary the

most expensive part of the computation of the regression model we proposed
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(i.e. the computation of the pseudo-inverse matrix) is computed only once for

all the iterative process. In Equation 3.9, the estimated β̂ changes at each step

because the estimated
−−−−−→
logit(p) changes. The use of other regression methods

such as Support Vector Machines [Cortes and Vapnik(1995)] is computationally

unfeasible because they require to recompute the regression at each step.
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4
Transitivity in a Probabilistic Model

Capturing word meaning is one of the challenges of natural language process-

ing. Taxonomies and, in general, semantic networks of words [Miller(1995)] are

often used as formal models of word meaning. In these networks, words are

connected with other words by means of taxonomic and, in general, semantic

relations. This is a way to capture part of the knowledge described in traditional

dictionaries. For example, this informal definition of “wheel”:

a wheel is a circular frame turning about an axis ... used for supporting

vehicles...

contains a taxonomic relation, i.e., the wheel is a circular frame, and a sort of

part-of relation, i.e., the wheel is used for supporting vehicles.
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Transitivity is a well known property of some foundational semantic relations

between words. Semantic networks are built over transitive semantic relations

such as generalization, cotopy, meronymy, cause-effect, entailment, and so on.

Knowing that “dog” is a “mammal” and “mammal” is a “animal”, we can infer

that “dog” is a “animal” or, knowing that “snoring” entails “sleeping” and

“sleeping” entails “resting”, we can state that “snoring” entails “resting”. Yet,

this property is generally not exploited in learning semantic relations from texts.

The semantic networks learning models do not explicitly exploit properties,

such as transitivity, when learning taxonomies or networks of words. Transitiv-

ity, when relevant, is not used to better induce confidence values for extracted se-

mantic relations. Even where transitivity is intrinsically used [Snow et al.(2006)],

it is not directly exploited to model confidence values but it is used in an itera-

tive maximization process of the probability of the entire semantic network. We

transform this limitation into an opportunity. In particular we propose a novel

probabilistic method for learning semantic networks of words that explicitly

models transitivity for deriving confidence weights.

The rest of the chapter is organized as follows. In Section 4.1, we informally

introduce our probabilistic model that explicitly used transitivity in semantic

networks learning models. In Section 4.2, we formalize the probabilistic defini-

tions of concepts in an induced probabilistic model. In Section 4.3, we propose

three different methods for modeling induced probabilities. Finally, in Section

4.4, we want to demonstrate that our induced models can effectively exploit

transitivity when we replicate an existing networks or we expand or build new

semantic networks.
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4.1 Probabilistic definitions of concepts in se-

mantic networks learning

In this section, we want to informally introduce our inductive probabilistic model

for semantic networks learning [Fallucchi and Zanzotto(2010)]. We have seen

why we should store probabilities or confidence weights in learnt semantic net-

works of words in Section 2.4.1. In Section 4.1.1 we expanded these reasons

including semantic relations with structural properties. We will then introduce

our idea for giving probabilistic definitions of concepts that allows building our

probabilistic model for semantic networks learning (Section 4.1.2).

4.1.1 Probabilities in semantic relations with structural

properties

We have seen why we should store probabilities or confidence weights in learnt

semantic networks of words in Section 2.4.1. When we consider semantic rela-

tions with structural properties as transitivity, including confidence weights in

knowledge repositories is not a trivial problem.

In methods such as [Pantel and Pennacchiotti(2006)], it seems to be possible to

easily include some initial values in the final resource as these have been used for

deciding whether or not the knowledge base should include a relation. Yet, when

we need to combine these values n transitive relations, we need to be extremely

careful on how these values have been estimated and computed. For example, if

we discover from corpus analysis that “dog” is a “canine” and we already know

that “canine” is an “animal” (see Figure 4.1(a)), using transitivity we can de-
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rive the induced relation, i.e., dog is an animal (dashed arrow in Figure 4.1(a)).

Yet, we cannot easily combine confidence weights if the nature of these weights

is obscure. On the contrary if we discover from corpus analysis that “dog” is an

“animal” and we already know that “dog” is “canine” (see Figure 4.1(b)), us-

ing the transitivity we can derive the induced relation, i.e., canine is an animal

(dashed arrow in Figure 4.1(b)). Another example is shown in Figure 4.1(c).

The solution generally proposed for combining confidence weights is neglecting

its nature. The final relation between two words has the same confidence weight

of reliable and controlled information.

Even in the probabilistic models [Snow et al.(2006)], these reliable and un-

reliable information is mixed during the knowledge acquisition process. In these

models, if “canine” is an “animal” (see Figure 4.1(a)) is in the original man-

ually controlled network and “dog” is a “canine” has a high probability from

the corpus observations, this latter is included in the knowledge base with the

same degree of plausibility of “canine” is an “animal”. Then, the induced rela-

tion “dog” is an “animal” has again the same degree of plausibility of manually

controlled information. This represent a loss of information the uncertainty of

the relation “dog” is an “animal” hs been neglected.

4.1.2 Probabilistic definitions for concepts

Keeping and propagating uncertainty in transitive semantic networks is ex-

tremely important. We thus propose an inductive semantic networks learning

model, i.e., a probabilistic semantic networks learning model based on lexico-

syntactic patterns that exploits transitivity during learning and for determining
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Figure 4.1: Examples of relations derived exploiting the transitivity

combined confidence weights. Our model stems from the intuition that LSP

learning models contribute to probabilistic definitions of target concepts and

that it is possible to combine these definitions to determine confidence weights

derived from the transitive networks.

Extracting evidence from corpora suggesting that “dog” is an “animal” con-

tributes both to the definition of “dog” and to the definition of “animal”. In

the case of “dog”, the relation between “dog” and “animal” contributes to the

intensional definition of “dog”, it stating that “dog” is a “animal” with specific

features. In the case of “animal”, this relation contributes, in a wide sense,

to the extensional definition1 of “animal”. It is like we are giving one of the

possible instances 2 of the concept “animal”. These formal intensional and

1The extensional definition of a concept is the enumeration of all its instances.
2Considering “dog” as instance of “animal” is not completely correct as dog can be a

concept in the structured knowledge repository. Yet, it is useful to describe the difference
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extensional definitions are often used to derive the similarity among words or

concepts. Cotopy [Maedche and Staab(2002)], a measure for determining sim-

ilarity between concepts in two different semantic networks, uses exactly this

information.

A probabilistic definition of a concept is an intensional definition associated

with its induced probabilities. These probabilities are derived from the topology

of the transitive semantic networks mixing existing knowledge and corpus esti-

mated probabilities. In Figure 4.1, the solid arrow indicates relations derived

from existing structured knowledge repositories and from corpus analysis while

the dashed arrow type indicates probabilities induced from the structure of the

network. We want to describe the probability of the dashed relations using the

probabilities of the solid ones. We call direct probabilities the first type, defined

in Section 3.1, and induced probabilities the second one.

Starting from the idea described above, we propose three models that derive

induced probabilistic definitions from direct probabilities: the first exploits inten-

sional definitions of concepts while the second exploits extensional definitions

and the third exploits both intensional and extensional probabilistic definitions

of concepts. We then define the three model respectively: the intensional in-

ductive probabilistic model, the extensional probabilistic inductive model and the

mixed probabilistic inductive model. To give an intuitive idea of our models, we

can use the example in Figure 4.1.

The intensional inductive model exploits direct intensional definitions to

derive an induced intensional definition. In Figure 4.1.(a), we have as direct

between intensional and extensional definitions.
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information the probabilities of the relations “dog” is a “canine” and “canine”

is a “animal”. From these two relations, we can derive the induced probability

of the intensional definition of “dog” is a “animal”. In this case we are exploiting

and modeling the transitivity of the isa relation.

The extensional inductive model uses the direct probabilities (solid arrows),

to form extensional definitions of the concepts and, to compare the different

extensional definitions for determining the final induced probability. In Figure

4.1.(b), the relations “dog” is a “animal” and “dog” is a “canine” are used to

form a very small part of the extensional definitions of, respectively, “animal”

and “canine”. The idea is that these extensional definitions can be used to

determine the similarity of “animal” and “canine”. Then, we can derive the

induced probability of the relation “dog” is a “animal”. Using the same intu-

ition, the relations “dog” is a “animal” and “canine” is a “animal” contribute

to the extensional definition of “animal” (see Figure 4.1.(c)). Using all the other

relations, we can derive also the induced probability of the relation “dog” is a

“canine”.

4.2 Inductive Probabilistic Model

In this section, we formalize the probabilistic definitions of concepts in an in-

duced probabilistic model. In Section 4.3, we introduce three models for ex-

ploiting the probabilistic definitions of concepts within the induced probabilistic

model. Without loss of generality, we focus the examples and the prose on se-

mantic networks learning. Yet, these models can be adopted for any transitive
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Figure 4.2: Example of relations derived exploiting transitivity

semantic relation.

As in [Pantel and Pennacchiotti(2006), Snow et al.(2006)], we model the se-

mantic networks learning problem as a binary classification task. Given a pair

of words (i, j) and a vector of observed features ~ei,j , we want to build a binary

classifier that determines if i is a j and gives the related confidence weight. As

in [Snow et al.(2006)], we see this problem in a probabilistic point of view as it

gives the possibility to determine the direct probabilistic model as well as the

induced probabilistic model.

We here propose a model to exploit transitivity within probabilistic semantic

networks learners that use lexico-syntactic patterns. Using lexico-syntactic pat-

terns on a corpus, we can extract pairs of words in a given relation along with

their reliability. These pairs of words and their reliabilities are directly observed.

For example (see Figure 4.2), given the hyperonymy relation, we directly derive

the reliabilities of the pairs “dog” is a “canine” (0.8), “canine” is an “animal”

(0.7), and “dog” is an “animal” (0.2) (solid arrows). If we now look at all these
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pairs as a whole, we can observe that these words form a semantic network where

transitive property holds. Even if the directly observed reliability of the pair

“dog” is an “animal” is low (0.2), transitivity of the network suggests that this

reliability should be higher (0.648). We exactly want to exploit the transitive

network to induce the reliability of the relation between “dog” and “animal”

(dashed arrow) using all the reliabilities of the involved pairs directly observed

from the corpus. We then use a probabilistic setting where this composition of

confidence weights can be better controlled.

The example of Figure 4.2 we have the following direct probabilities (where

d = dog, a = animal, and c = canine): P (Rd,a|~ed,a) = 0.2, P (Rd,c|~ed,c) = 0.8,

and P (Rc,a|~ec,a) = 0.7.

In the inductive probabilistic model presents the main innovation of our ap-

proach to semantic networks learning. We want here to define an event space

that models transitivity. We then introduce the events R̂i,j and the related

probability function:

P (R̂i,j ∈ T |E) (4.1)

This probability should capture the fact that a decision on the pair (i, j) also

depends on the transitive relations activated by (i, j). Rarely these relations

are activated by existing semantic networks links. Yet, this induced probability

takes into account transitively related taxonomic links. We examine differ-

ent models to exploit the transitive property of the R relation and for each of

these models we show that P (R̂i,j |E) can be rewritten in term of the involved

P (Rh,k|E).
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For example, we can compute the induced intensional probability for the pair

(dog, animal) in Figure 4.2. The induced intensional probability P (R̂d,a|E) can

be computed as the probability of the event R̂d,a = Rd,a ∪ (Rd,c ∩ Rc,a). This

captures that the induced event R̂d,a is active when Rd,a happens or the joint

event Rd,c ∩ Rc,a happens. Then, using the inclusion-exclusion property, the

previous independence assumptions on the evidences E, and an independence

assumption between Ri,j , we can compute P (Rd,a ∪ (Rd,c ∩Rc,a)|E) as:

P (Rd,a ∪ (Rd,c ∩Rc,a)|E) =

= P (Rd,a|E) + P (Rd,c ∩Rc,a|E)− P (Rd,a ∩Rd,c ∩Rc,a|E) =

= P (Rd,a|~ed,a) + P (Rd,c|~ed,c)P (Rc,a|~ec,a)− P (Rd,a|~ed,a)P (Rd,c|~ed,c)P (Rc,a|~ec,a) =

= 0.2 + 0.8 ∗ 0.7− 0.2 ∗ 0.8 ∗ 0.7 = 0.648

Given this initial idea, we formalize our induced probabilistic models in the next

sections.

4.3 Three inductive probabilistic models

We propose three different methods for modeling induced probabilities. We

call these intensional (Sec.4.3.1), extensional (Section 4.3.2), and mixed model

(Section 4.3.3). These three models exploit different definitions of the event

R̂i,j ∈ T . In the intensional model (Section 4.3.1), the event R̂i,j ∈ T is

represented as the event Ri,j ∈ T and for any k all the alternative events

Ri,k ∈ T and Rk,j ∈ T . In the extensional model (Section 4.3.2), the event

R̂i,j ∈ T is represented as the event Ri,j ∈ T and for any k all alternative events

Ri,k ∈ T and Rj,k ∈ T and all the events Rk,j ∈ T and Rk,i ∈ T . The mixed
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model (Section4.3.3), is a combination of the other two models.

4.3.1 The intensional inductive model

In the intensional inductive model, we exploit direct probabilities to derive the

induced probabilistic intensional definition PI(R̂i,j |E). We evaluate this prob-

ability using the direct probability of Ri,j ∈ T and the direct probabilities of

having a transitive connection between i and j of two direct relations. For each

possible node k, we then consider all alternative events Ri,k ∈ T and Rk,j ∈ T .

We use a running example to illustrate the idea.

We suppose to have four elements in a network (see Figure 4.3): “lettuce”

(i), “food” (j), “vegetable” (k1), and “animal” (k2). We empirically estimated

the direct probabilities (bold arrows) and we then determined the induced prob-

ability (dashed arrow). Both the i − k1 − j and i − k2 − j paths offer some

information to the final induced probability even if we expect that P (Ri,k1 |E),

i.e., the direct probability of “lettuce” is a “vegetable”, is closer to one and

that P (Ri,k2 |E), i.e., the direct probability of “lettuce” is a “animal”, is closer

to zero. We compute the induced probability as the probability of alternative

events that represent the sub-part of the network of direct events. In this case,

the induced probability is then:

PI(R̂i,j |E) = P (Ri,j ∪ (Ri,k1 ∩Rk1,j) ∪ (Ri,k2 ∩Rk2,j)|E)

We can compute this probability using the inclusion-exclusion principle and

some assumptions on the independence among events. The inclusion-exclusion

principle gives the possibility of computing the probabilities of alternative events.
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Given n probabilistic events A1, A2, ..., An in a probability space, the probabil-

ity of the union of these events is:

P (A1 ∪A2 ∪ ... ∪An) =
∑

∅6=J⊆{1,...,n}

(−1)|J|−1P (AJ)

where AJ =
⋂
i∈J Ai. The probability PI(R̂i,j |E) can be then rewritten as:

PI(R̂i,j |E) = P (Ri,j |E)+P (Ri,k1
∩Rk1,j |E)+P (Ri,k2

∩Rk2,j |E)+

−P (Ri,j∩Ri,k1
∩Rk1,j |E)−P (Ri,k1

∩Rk1,j∩Ri,k2
∩Rk2,j |E)+

−P (Ri,j∩Ri,k2
∩Rk2,j |E)+P (Ri,j∩Ri,k1

∩Rk1,j∩Ri,k2
∩Rk2,j |E)

Finally, assuming that the probabilities of the direct events Rn,m are indepen-

dent, we can determine the probabilities of any of the joint events as the product

of the probabilities of the events, e.g.: P (Ri,k1
∩Rk1,j |E)=P (Ri,k1

|~ei,k1
)P (Rk1,j |~ek1,j).

The general equation for the induced intensional probability is the following:

PI(R̂i,j |E) = P (Ri,j ∪
⋃
k∈K

(Ri,k ∩Rk,j)|E)

where K = {k1, ..., kn} is the set of the intermediate nodes considered between

i and j. As in the case of Equation 4.2, we can compute this equation using the

inclusion-exclusion principle:

PI(R̂i,j |E) =
∑

∅6=J⊆{ε,k1,...,kn}

(−1)|J|−1P (RJ |E)

where RJ =
⋂
k∈J Rk. Each Rk is defined as Rε = Ri,j and Rk = (Ri,k∩Rk,j) if

k 6= ε. Using the assumption that direct probabilities of Rm,n are independent,
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4.3. Three inductive probabilistic models

Figure 4.3: Example of intensional inductive model

we can also rewrite P (RJ |E) as:

P (RJ |E) =
∏
k∈J

P (Rk|E)

where P (Rε|E) = P (Ri,j |~ei,j) and P (Rk|E) = P (Ri,k|~ei,k)P (Rk,j |~ek,j) if k 6= ε.

4.3.2 The extensional inductive model

The extensional inductive model exploits the extensional definitions of the con-

cepts to derive the induced probabilities. Figure 4.4 reports an example where

two different models are adopted. The first model (see Figure 4.4.(a)) uses the

extensional definition of the two involved concepts, i.e., “turkey” and “boat”,

to determine the probability of the induced relation “bird” is a “beast”, i.e.,

P (R̂i,j |E). The similarity between the extensional definition of “bird”(i) and of

“beast”(j) should help in determining the probability of the relation between the
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Figure 4.4: Example of extensional induced model

two concepts. In the second model (see Figure 4.4.(b)), “animal” and “penguin”

contribute to the extensional definition of both organism and “artifact”. This

should help in determining the probability P (R̂i,j |E) of the induced event R̂i,j .

In the case of the reported running examples the probability of the induced

event is:

P (R̂i,j |E) = P (Ri,j∪(Rs1,i∩Rs1,j)∪(Rs2,i∩Rs2,j)∪(Ri,h1
∩Rj,h1

)∪(Ri,h2
∩Rj,h2

)|E)

These probability equations can be reduced using the inclusion-exclusion prin-

ciple and the independence assumption between the direct events. We can then

rewrite this equation as:
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4.3. Three inductive probabilistic models

PE(R̂i,j |E) = P (Ri,j |E)+P (Rs1,i∩Rs1,j |E)+P (Rs2,i∩Rs2,j |E)+P (Ri,h1
∩Rj,h1

|E)+

P (Ri,h2
∩Rj,h2

|E)−P (Ri,j∩Rs1,i∩Rs1,j |E)−···+

P (Ri,j∩Rs1,i∩Rs1,j∩Rs2,i∩Rs2,j |E)+···+

−P (Ri,j∩Rs1,i∩Rs1,j∩Rs2,i∩Rs2,j∩Ri,h1
∩Rj,h1

|E)−···+

+P (Ri,j∩Rs1,i∩Rs1,j∩Rs2,i∩Rs2,j∩Ri,h1
∩Rj,h1

∩Ri,h2
∩Rj,h2

|E)

We can finally write the general equation using the extensional probabilistic

definitions of the concepts. In this model we mix the two previous models in

one single equation. The probability P (R̂i,j |E) of the induced event R̂i,j is then

rewritten in term of the probabilities of the direct events as follows:

PE(R̂i,j |E) = P (Ri,j ∪
⋃
s

(Ri,s ∩Rj,s) ∪
⋃
h

(Rh,i ∩Rh,j)|E)

4.3.3 The mixed induced model

The mixed induced model unifies the above mentioned methods, considering

both the intensional and the extensional probabilistic models. Formally:

PM (R̂i,k|E) = P (Ri,j ∪
⋃
k

(Ri,k ∩Rk,j) ∪

∪
⋃
s

(Ri,s ∩Rj,s) ∪
⋃
h

(Rh,i ∩Rh,j))

Similarly, the inclusion-exclusion principle can be used to evaluate the alter-

native probability also for the mixed method.
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Chapter 4. Transitivity in a Probabilistic Model

The complete computation of the induced probabilistic models presented

in this section is unfeasible as the computation of inclusion-exclusion prin-

ciple is combinatorial with respect to the set of alternative events J . We

then use an approximated computation derived from the method described in

[Kahn et al.(1993)].

4.4 Experimental Evaluation

Here we want to demonstrate, with two sets of experiments, that our induced

models can effectively exploit transitivity. The first experiment is a pilot exper-

iment (Section 4.4.1). The second experiment is a full experiment that differs

from the pilot in the size of semantic networks and in target relations (Section

4.4.2). For both sets of experiments we describe the experimental set up and

we report the results.

4.4.1 The pilot experiment

In the pilot experiment we replicate a small existing semantic network of works

with few pair of words in isa relation. To completely define the experiments we

need to address some issues: how we defined the semantic networks to replicate,

which corpus we have used to extract evidences for pairs of words, and which

feature space and logit regressors we used.
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4.4.1.1 Corpus

As corpus we used the English Web as Corpus (ukWaC) [Baroni et al.(2009)]

that we described in Section 3.5.1.1.

4.4.1.2 Semantic Networks

The best way of determining how a semantic network of words learner is per-

forming is to see if it can replicate an existing semantic network. As target

semantic networks we selected a portion of WordNet3 [Miller(1995)] as we de-

scribed in Section 3.5.1.2.

4.4.1.3 Feature Space

We used a bag-of-n-gram feature space for implicitly modeling lexical-syntactic

patterns, as defined in Section 3.5.2.3.

4.4.1.4 Logistic regressors

We used the logistic regressors defined in Chapter 3, i.e. a logistic regressor

based on the Monroe-Penrose pseudo-inverse matrix [Golub and Kahan(1965)]

as described in [Fallucchi and Zanzotto(2009a)].

4.4.1.5 Results

With the first set of experiments, we analyze the effectiveness of our inductive

model. We evaluate the iterative (Section 2.4.2), the direct (Section 3.1), and

the induced probabilistic models (Section 4.2) on their ability of sorting the

3We used the version 3.0 of WordNet
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Figure 4.5: Accuracy of the top-k ranked pairs for the iterative, direct , and

inductive probabilistic semantic networks learners

pairs. We have two classes of methods. The iterative model adds some pairs at

each step. The direct and the inductive probabilistic models, instead, produce

a sorting of the pairs according to the probabilities.

We compared the two methods in the following way. For the iterative methods,

we plot the curve that relates the accuracy to the number of added pairs. The

accuracy is computed as the number of correctly added pairs with respect to the

added pairs. On the contrary, for the probabilistic models we plot the accuracies

with respect to the ranked pairs. For this set of experiments, we used k=100

for the pseudo-inverse matrix computation with SVD.

The results are reported in Figure 4.5. Firstly, we can observe that, after
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Top k-pairs

Probabilistic Model 100 1000

iterative 0.350 0.225

direct 0.290 0.269

intentional 0.510 0.282

extensional 0.420 0.292

mixed 0.510 0.322

Table 4.1: Accuracy of the different models at top 100 and 1000 ranked pairs

some initial steps, models that keep the probabilities are better than the model

that makes a decision at each step. The direct model already outperforms the

iterative model. The second observation is that the inductive (extensional, in-

tensional, and mixed) models outperform the direct model. This shows that our

way of encoding the transitivity is effective. Finally, among the inductive mod-

els, the mixed model exploits both the intensional and extensional probabilistic

definitions of concepts, proves to be the best one.

The accuracies are reported in Table 4.1. The table reports the accuracies

for the different probabilistic models for two different cuts of the sorted pair list.

The second and the third columns report, respectively, the accuracies for 100

and for 1000 considered pairs. We used these two cuts to compute the statistical

significance of the difference between the direct and the mixed model. To deter-

mine the statistical significance, we used the model described in [Yeh(2000)] as

implemented in [Padó(2006)]. We extended this latter for considering accuracies
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computed on sorted lists. According to these tests, the statistical significance is

below 0.05.
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Figure 4.6: Accuracy of the direct and inductive probabilistic semantic networks

learners with respect to SVD feature selection

With the second set of experiments, we want to investigate the role of the

feature selection performed using SVD on our probabilistic model. Then, we

analyze the accuracy on 100 considered pairs for different values of k, i.e., the

number of considered dimensions for the SVD used in the computation of the

pseudo-inverse matrix. The plots of the direct and the mixed inductive proba-

bilistic models are presented in Figure 4.6. For both models, the performances

are stable or decrease after k=100. An aggressive dimensionality reduction of
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eigenvector 1 eigenvector 400

rank feature weight feature weight

1 , 2.9363 10−4 clear 86.1446 10−4

2 be 0.5762 10−4 of ” 54.8997 10−4

3 play 0.2077 10−4 clear of 47.1909 10−4

4 & 0.1984 10−4 expedition 40.7345 10−4

5 , as 0.1965 10−4 burnt 36.1784 10−4

6 - 0.1671 10−4 ), 34.8534 10−4

7 is 0.1356 10−4 tank 32.9300 10−4

8 : 0.0858 10−4 fishing 31.8269 10−4

9 ( 0.0839 10−4 preparation 31.4684 10−4

10 find 0.0689 10−4 group 31.2342 10−4

Table 4.2: Two selected eigenvectors on the bag-of-n-grams

the feature space does not negatively affect performances. For example, perfor-

mances are not significantly affected if taking k=100 features instead of k=1000

features but the model are computed much faster. The stability of the two

curves suggests that, even using the whole feature space, the performance can-

not increase.

4.4.1.6 Qualitative analysis of dimensionality reduction

The experiments show that we can positively use dimensionality reduction of

SVD within the computation of the pseudo-inverse matrix. We want now to ana-
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lyze the first dimensions to understand which linear combination of the original

features is relevant for the specific task of learning taxonomies using lexical

patterns. As the decomposition algorithm we are using sorts the eigenvectors

according to decreasing values of eigenvalues, we will examine the first eigenvec-

tor that should be more significant and the eigenvector number 400. In Table

4.2, we present only some of these eigenvectors. We present the dimensions

with the 10 largest values. The first 10 dimensions of the first eigenvector are

presented in column 2 and 3. The first 10 dimension of the 400th eigenvector

are presented in column 4 and 5.

The first eigenvector is very interesting as it mixes many classical indicators

of hypernymy, e.g., ”,”, ”be”, ”&”, etc. These indicators appear with different

relative weights in many of the first eigenvectors. It is worth noticing that

the forms of the verb to be are present in the considered eigenvector. On the

contrary, the eigenvector number 400 does not contain any relevant information

related to the hypernymy phenomenon in the first positions. This qualitatively

explains what has been shown by the experiments in the previous section: many

dimensions in the reduced space are totally irrelevant.

4.4.2 The full experiment

Here, we want to demonstrate that our induced models can effectively exploit

transitivity when increasing the size of the semantic network of both training

and testing. Differently from the pilot experiment two target relations are con-

sidered: isa and part-of relations. To carry out the experiments we then need:

(1) a semantic network of words and a set of negative examples for the target
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relation; (2) a corpus for extracting evidences to derive probabilities; (3) the

definition of the feature space; and, finally, (4) the definition of the logistic

regressors.

4.4.2.1 Corpus

As corpus we used the English Web as Corpus (ukWaC) [Baroni et al.(2009)]

that we described in Section 3.5.1.1.

4.4.2.2 Semantic Networks

The semantic network of words will be used as source of training and testing ex-

amples. For each experiment we need: a training example set TR = (TRp, TRn)

with positive pairs TRp and negative pairs TRn and a testing example set

TS = (TSp, TSn) with positive pairs TSp and negative pairs TSn. The testing

set TS should be a totally connected set for building the potential network of

words. We want to test our model for two different transitive semantic relations:

hyperonymy (H) and meronymy (M).

We extract the semantic networks and the set of negative examples from

an existing knowledge repository, i.e., WordNet4 [Miller(1995)]. In WordNet,

semantic relations R are expressed as pairs of synonymy sets (synset), i.e.,

R={(S1, S2)|S1 is in relation R with S2} where the synset S1 and S2 are the

sets of words S1 = {w(1)
1 , . . . , w

(1)
n } and S2 = {w(2)

1 , . . . , w
(2)
m }. The synset S1 is

in relation R with the synset S2 if S1 is directly related with the synset S2 or

if it is reachable with the transitive property. We derive the semantic networks

4We use the version 3.0 in prolog.

91



Chapter 4. Transitivity in a Probabilistic Model

Test Set Description Initial Size Retreived Pairs

isa TRp H/Hts 1983197 212076

TRn H/Hts 5594387 315428

TSp Hts 506 150

TSn Hts 80436 258

part-of TRp M/Mts 14333 8077

TRn H/Mts 623616 318679

TSp Mts 408 101

TSn Mts 34214 1713

Table 4.3: Semantic networks used in the experiments

of words from the synset network.

Given one of the two target relations, we can derive the network of words

R from the set R as follows: R = {(wa, wb)|(Sa, Sb) ∈ R,wa ∈ Sa, wb ∈ Sb}.

We then derived the semantic networks of words for hyperonymy H and for

meronymy M. These networks consist of, respectively, 7879350 and 672571 as

reported in Table 4.3.

The negative examples have been obtained as follows. Given the set of the

words in WordNet W , the negative examples are respectively H = W ×W −H

and M = W ×W −M.

For generating the testing set, we selected a relevant and strictly connected

sub portion of network of words. This portion has been obtained using a synset

as head and deriving the part of the network that can be transitively reached.

For the H relation, we selected the sense 1 of “vegetable”. For the M relation,
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we selected the sense 1 of “face”. We then obtained Hts, and Mts respectively

containing 506 and 408 pairs. Given the sets W (veg) and W (face) of the words

respectively in Hts and Mts , the negative examples are Hts = W (veg) ×

W (veg) − Hts, and Mts = W (face) ×W (face) −Mts. In this way, we have

the overall potential network of words for the testing.

The final sets are reported in Table 4.3. We here describe the two tests we

made: the isa with vegetable and the part-of with face. The table reports how

we obtained the positive examples and the negative examples for the training

and the testing of the two examples. We also report the size of these sets and

the number of the pairs retrieved in the corpus under the conditions lateron

described.

4.4.2.3 Feature Space

We used a bag-of-n-gram feature space for implicitly modeling lexical-syntactic

patterns such as defined in Section 3.5.2.3.

4.4.2.4 Logistic regressors

We used two different logistic regressors: a logistic regressor based on the

Monroe-Penrose pseudo-inverse matrix (in Chapter 3) and the support vector

machines [Vapnik(1995)] as implemented in [Joachims(1999)].

4.4.2.5 Results

In the first set of experiments, we want to investigate how induced model behaves

with respect to the direct model in the most common settings for semantic
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direct intensional extensional mixed

PI SVM PI SVM PI SVM PI SVM

100 30.67 30.00 4.00 1.33 37.33 35.33 24.000 24.000

200 56.67 49.33 27.33 26.00 60.67 61.33 45.333 43.333

300 74.67 74.67 64.00 65.33 81.33 78.67 64.667 66.000

Table 4.4: Relative Recall of is-a relation: case semi-supervised

relation learning: enriching an existing semantic network without any additional

information. We then have the existing network out of which we can derive

positive examples but also some negative example. We obtained this setting,

that we call semi-supervised, using the two proposed sets for the two transitive

relations. We gave an initial probability of 0.99 to the positive examples and of

0.5 for the negative examples. These latter are then used as if no information

is available. This is the natural setting in learning semantic networks that is

used in many experiments (e.g., [Pantel and Pennacchiotti(2006)]). The results

of these experiments for the isa relation and the part-of relation are reported

respectively in Table 4.4 and in Table 4.5. These tables report the relative recall

of the different methods obtained using the first k ranked pairs. In line with

[Pantel and Pennacchiotti(2006)], the relative recall RR is the ratio between

the retrieved pairs with respect to the pairs that can be retrieved from the

method, i.e., in our case the pairs that are retrieved in the corpus. In these

tables, we report both the experiments with the pseudo-inverse matrix method

(PI) and with SVM.
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direct intensional extensional mixed

PI SVM PI SVM PI SVM PI SVM

500 28.71 28.71 32.67 32.67 33.66 33.66 34.66 33.64

1000 44.55 70.30 54.46 70.3 49.5 72.28 51.50 70.71

Table 4.5: Relative Recall of part-of relation: case semi-supervised

For each method, direct, intentional, and extensional we have the two columns

representing the two methods for inducing the direct probabilities. For the isa

relation (Table 4.4), we report the relative recall for the first 100, 200, and 300

first ranked pairs. For the part of relation, we report the relative recall for 500

and 1000 first ranked pairs. For the isa relation (Table 4.4), experiments show

that the best way to exploit the transitivity of the isa relation is the extensional

model. Only the extensional model outperforms the direct model. This is con-

firmed for both regression methods. We can also observe that the difference

between the SVM and PI does not seem to be significant. For the part-of rela-

tion (Table 4.4), experiments confirm that the extensional model outperforms

the direct model. Yet, the intensional model behaves better than in the case of

the isa relation.

To better explore our models, we then analyzed their behavior under ideal

conditions. In this setting, we have explicit negative cases. Yet, these condi-

tions hardly represent the operational scenario where the models act. Generally,

we have an existing semantic network that we want to expand and we have no

knowledge about negative examples. We obtained this setting, that we call
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direct intensional extensional mixed

PI PI PI PI

100 28.00 2.67 37.33 21.333

200 56.67 27.33 60.67 45.333

300 80.67 66.00 82.67 64.667

Table 4.6: Relative Recall of is-a relation Vegetable: case supervised

supervised, assigning an initial probability of 0.99 to positive examples and an

initial probability of 0.01 to negative examples.

direct intensional extensional mixed

PI PI PI PI

500 26.73 28.71 28.71 28.70

1000 39.60 49.50 44.55 46.51

Table 4.7: Relative Recall of part-of relation Face: case supervised

The results of these experiments for the isa and the part-of relations are reported

respectively in Table 4.6 and in Table 4.7. We report here the experiments for

the pseudo-inverse method (PI). In the case of the isa relation, we can observe

that this setting increases the performance only when we consider 300 pairs with

respect to the semi-supervised approach. The extensional model is still better

than the intensional model. For the part-of, the increase in performance with
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respect to the semi-supervised approach is lower than the previous case. Some

part-of pairs that have been considered negative examples are positive. Inheri-

tance of the part-of is not considered in generating positive examples. Yet, even

in this case, the extensional model outperform the intensional model. For the

part-of relation, both the intensional and the extensional models are suitable

for exploiting transitivity.

4.5 Conclusion

We presented a probabilistic semantic networks learning model that positively

exploits transitivity. We demonstrated that keeping the probability within the

final knowledge base is extremely important for the performances of the learning

method. We have also shown that our model positively exploits transitiveness

as proved by the fact that the inductive model outperforms the direct model.

Finally, we have demonstrated that SVD can be used as natural feature selection

model within probabilistic semantic networks learning models.
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5
Generic Ontology Learners on

Application Domains

Domain knowledge bases are extremely important in a variety of natural lan-

guage processing applications but manually creating structured knowledge repos-

itories is a very time consuming and expensive task. Semi-supervised learning

of domain knowledge bases from texts is generally seen as the solution. This

is a very attractive and rich research area that is full of challenges. Generally,

the process for automatically creating, adapting, or extending existing knowl-

edge bases relies on existing structured knowledge and domain corpora. In

ontology learning models using lexico-syntactic patterns (LSP) [Robison(1970),

Hearst(1992b), Pantel and Pennacchiotti(2006)], existing domain ontologies or

structured knowledge bases give positive learning examples. These latter are
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exploited to learn lexico-syntactic patterns from domain corpora. Learnt LSPs

are then used to extract and structure new knowledge from the domain cor-

pora. For a successful application, these LSP methods for learning domain

ontologies need large domain corpora and existing domain knowledge bases.

LSP methods for learning ontologies from texts are good models only when we

consider ontology-rich domains or we do generic knowledge extraction. In this

latter case, these methods can exploit large general corpora and large general

structured knowledge repositories such as WordNet [Miller(1995)]. There are

only few domains with well-assessed existing structured knowledge bases where

the problem is to expand these ontologies. On the contrary, the large number

of applications domains has little or not existing structured knowledge. The

big challenge is to successful apply these methods in ontology-poor domains.

One of the possible ways to address the above challenge is to build LSP mod-

els that learn lexico-syntactic patterns on generic and ontology rich domains

and then apply these patterns on specific ontology poor domains. In line with

[Gao(2009)], we respectively refer as the background domains and application

domains to these two kinds of domains. Yet, in machine learning and in statis-

tical learning data should be enough representative of the environment where

learned models will be applied. The statistical distribution of learning data

should be similar to the distribution of the data where the learn model is ap-

plied. In this application scenario, this assumption is inaccurate. Background

domain data, also called out-of-domain data, used for learning lexico-syntactic

patterns have generally a different distribution with respect to application do-

main data, also called in-domain data. Generally, out-of-domain data are more
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than in-domain data. We need to envisage methods that exploit these data for

building accurate in-domain models.

The rest of the Section is organized as follows. We present our model in

Section 5.1. In section 5.2, we, then, evaluate and assess the performance of

our method on the target domain, i.e., Earth Observation Domain. Finally, in

section 5.3, we draw some conclusions.

5.1 Learner Model: from Background to Appli-

cation domain

Can training data from one corpus be applied to learn another corpus? The

basic idea is partly to answer this question because we want to define an ontology

learning model that can be adapted to previously unseen distributions of data.

This model is thought to exploit the information learned in a background domain

for extracting information in an adaptation domain.

Our ontology learning method is based on the probabilistic formulation given

in [Snow et al.(2006), Fallucchi and Zanzotto(2009a)]. We use this probabilistic

setting to learn a model that takes into consideration corpus-extracted evidences

over a list of training pairs. The initial feature space is built starting from the

analysis of a generic corpus where we observe a list of training pairs of words

that are in a target semantic relation. We can generate these pairs using gen-

eral resources such as WordNet. These pairs are used to enable the probabilistic

method to induce lexico-syntactic patterns for the model of the specific semantic

relation [Hearst(1992a)]. The learned model can be used to estimate the prob-
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abilities of the new instances computing a new feature space using the corpus

of the adaptation domain.

In the rest of this section, we will firstly describe the background ontology

learning model (Section 5.1.1) and we will then illustrate the method that we

will be adapted to the new domain (Section 5.1.2).

5.1.1 Background Ontology Learner

In the probabilistic formulation, the task of learning ontologies from a corpus

is seen as a maximum likelihood problem. The ontology is seen as a set O of

assertions R over pairs Ri,j . In particular we will consider the is-a relation.

In this case, if Ri,j is in O, i is a concept and j is one of its generalizations.

For example, Rdog,animal ∈ O states that dog is an animal according to the

ontology O.

The main probabilities are then: (1) the prior probability P (Ri,j ∈ O) of

an assertion Ri,j to belong to the ontology O and (2) the posterior probability

P (Ri,j ∈ O|−→e i,j) of an assertion Ri,j to belong to the ontology O given a set of

evidences −→e i,j derived from the corpus. These evidences are derived from the

contexts where the pair (i, j) is found in the corpus. The vector −→e i,j is a feature

vector associated to a pair (i, j). For example, a feature may describe how many

times i and j are seen in patterns like ”i as j” or ”i is a j”. But many other

indicators exist of an Is-a relation between i and j (see [Hearst(1992a)]). Given

a set of evidences E over all the relevant word pairs, the probabilistic ontology

learning task is defined as the problem of finding an ontology Ô that maximizes
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the probability of having the evidences of E, i.e.:

Ô = arg max
O

P (E|O)

In the original model [Snow et al.(2006), Fallucchi and Zanzotto(2009a)], this

maximization problem was solved by a local search.

In the present model at each step we maximize the ratio between the likeli-

hood P (E|O′) and the likelihood P (E|O) where O′ = O∪N and N are the rela-

tions added at each step. As in [Snow et al.(2006), Fallucchi and Zanzotto(2009a)]

this ratio is called odds. It is calculated using the logistic regression and

then solving a linear problem using the pseudo-inverse matrix

[Fallucchi and Zanzotto(2009a)]. The regression coefficients will be estimated

as follows

β̂ = X+
CB
l (5.1)

where l is the logit vector and X+
CB

is the Moore-Penrose pseudoinverse

[Penrose(1955)] matrix of the inverse evidence matrix XCB
obtained from a

generic corpus CB that includes a constant column of 1’s, necessary to obtain

the β0 coefficients. The regressors represent the model that we learned from

the training pairs using a generic corpus CB that we will use to compute the

probabilities of the testing pairs.

5.1.2 Estimator for Application Domain

In our task, instead of finding the ontology that maximizes the likelihood of

having the evidences E, we calculate, given the regressors, the probabilities of

the testing pairs step by step. The idea is that, given the domain based corpus
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CA, for each testing pair we compute the vector space according to the features

selected in the previous generic corpus feature space analysis. After the domain

based corpus feature space analysis where we look for the testing pairs in CA, we

obtain a new feature space XCA
. It is a matrix n′×m where n′ is the number of

the new instances found in the corpus CA and m is the number of the features.

We compute the logit of the new instances as in [Fallucchi and Zanzotto(2009a)]

l′ = αXCA
β̂ (5.2)

where XCA
is the inverse evidence matrix obtained from a adaptation domain

corpus CA that includes a constant column of 1’s, necessary to obtain the β0

coefficients. The parameter α is used to adapt the model by the β vector to the

new domain. From the definition of logit we can compute the probabilities of

the new instances, i.e.:

pi =
exp(li)

1 + exp(li)
(5.3)

This latter can be used to build the know ledge base in the new domain.

5.2 Experimental Evaluation

We experimented with our model adaptation strategy using a generic domain as

background domain and the Earth Observation Domain as specific domain. We

took the isa relation as the target relation. The target of the experiments is to

understand whether or not our model adapt to specific domains. We then com-

pare our system (Our-System) with respect to a system that uses only WordNet

(WN-System). In this section, we firstly describe the general experimental set
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up. We then describe the quality of the target domain ontologies. Finally, we

analyze the accuracy of our models with respect to the three different ontologies.

5.2.1 Experimental Setup

To define completely the experiments we have to define: both training and

testing pairs, which corpus has been used to extract evidences for training pairs,

which corpus to extract evidences for testing pairs, and which feature space we

use for both corpora. To build the training pairs we generated all the pairs that

were in hyperonym relation in WordNet1 [Miller(1995)] and we obtained about

2 millions of words.

Here, we firstly define the semantic networks used in the experiments of

Section 5.2.3. The network of words will be used as a source of training

and testing examples. For each experiment we need: a training example set

TR = (TRp, TRn) with positive pairs TRp and negative pairs TRn, and a test-

ing example set TS. To build TS we start from a given list of 63 terms that

are relevant in Earth Observation Domain. Then we combine each term with

the other terms and we generate 63× 63 pairs. Furthermore, for each term w,

we select all the synsets sw in WordNet. In the case of a term with a synset in

WordNet we generate the pairs combining w with all the hyperonyms for each

synset. Otherwise, if w has compound words we look for our semantic head in

WordNet. If we find the synsets, we generate the pairs combining w with the

hyperonyms of the semantic head of w.

1We used the version 3.0 of WordNet
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We extract the training example pairs from an existing knowledge repository:

WordNet2 [Miller(1995)]. Given hyperonymy as target relation, we can derive

the network of words R from the set R as follows: R = {(wa, wb)|(Sa, Sb) ∈

R,wa ∈ Sa, wb ∈ Sb}. We then build the set H that contains all pairs of

words in WordNet that are in hyperonymy relation. Then TRp = H − T S .

Given the set of the words in WordNet W , the training negative example is

TRn = W ×W −TRp−TS. We build TRp, TRn and TS without overlap. We

searched for the pairs in TR in a corpus CB (in particular the English Web as

Corpus (ukWaC) [Baroni et al.(2009)] has been used). This is a web extracted

corpus of about 2700000 web pages containing more than 2 billion words. It con-

tains documents of several different topics such as web, computers, education,

public sphere, etc.. It has been largely demonstrated that the web documents

are good models for natural language [Lapata and Keller(2004)].

Using a web crawler, here we pick up a corpus related to Earth Observation

Domain CA , successively ”cleaned”, that contains about 8300 documents (115,6

MB). We use the bag-of-word feature space. Out of the T ∪ T , only those pairs

that appeared at a distance of 3 tokens at most have been selected. Using these

3 tokens, we generate the bag-of-word feature space. The pairs in TR found in

the ukWaC are 527348, while the pairs in TS found in CA are 404. The two

generated feature spaces have the same features that are 276670. The model to

build ontologies in Earth Observation Domain has been generated by using the

training pairs and the corpus ukWac.

2We use the version 3.0 in prolog.

106



5.2. Experimental Evaluation

5.2.2 Evaluating the Quality of Target Domain Specific

Ontologies

We want to evaluate our approach in learning the bulk of the ontologies, i.e.,

the isa relation, in Earth Observation Domain. between two pairs of words is

a binary problem. We then asked three annotators (A1, A2 and A3) to build

three different ontologies: two of them are expert in the domain (A1 and A2),

the third one is not (A3). A1 and A2 have different levels of expertise: A1 is

a young expert in the domain and A2 an older one. Each annotator made a

binary classification of 641 pairs of words in Earth Observation Domain, i.e.,

the TS set introduced in the previous section.

We then wanted to judge the quality of the annotation procedure according

to their inter annotation agreement. A simple measure of the quality of the

agreement rate between two human annotators is the ratio between the number

of items identically judged by two different annotators and the total number

of items considered by the annotators. In [Scott(1955)] this measure is named

observed agreement Ao and it is defined as the percentage of judgments on

which the two analysts agree when coding the same data independently. In accord

to [Artstein and Poesio(2008)] we define the agreement value agri for all items

I as follows:

argi =

 1 if annotators assign i to the same category

0 if annotators assign i to different categories

The observed agreement has been evaluated as in the following:

Ao =
1

i

∑
i∈I

agri
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This measure does not take into account changes in the agreement between

two annotators. An improved measure of inter-annotator agreement is given by

the Cohen’s kappa coefficient [Cohen(1960)]. It is a statistical measure that

takes into account the effect of changes in the agreement giving the possible

agreement beyond change actually observed. The kappa-coefficient is defined as

follows:

k =
Ao −Ae
1−Ae

• Ae : expected agreement by change

• 1−Ae : attainabled agreement over and above change

• Ao −Ae : actually found agreement beyond change

The expected agreement (Ae) is the probability of the agreement among an-

notators due to change. There are two different methods for estimating a prob-

ability distribution for random assignment of categories. The two approaches

reflect different conceptualizations of the problem.

In the first approach, each annotator has a personal distribution, based on

that annotator’s distribution of categories [Cohen(1960)]. In the second ap-

proach, there is one distribution for all annotators, derived from the total pro-

portions of categories assigned by all annotators [Scott(1955), Fleiss et al.(1971)].

Data are respectively visualized in a contingency table (first approach) and in

an agreement table (second approach).

The distinction between the two approaches, in the case of two annotators,

is often glossed over because in practice the two computations of Ae produce

very similar (when not the same) outcomes, as shown in section 5.2.2.1. In
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Figure 5.1: Scale for the interpretation of Kappa by Landis and Koch (1977)

[Carletta(1996)] the adaptation of the kappa coefficient to computational lin-

guistic is suggested. Different levels of agreement may be defined, according

to the experiments of a specific application. In [Landis and Koch(1977)] confi-

dence intervals are proposed for the values of the kappa coefficient, as reported

in Figure 5.1.

We can examine the issue of inter-annotator agreement by comparing the

agreement rate of the human annotators. There are different methods for mea-

suring the agreement among 3 annotators. When there are more than two

annotators, some of them may agree and the rest disagrees on the same item.

In this case, the observed agreement can no longer be defined as the percentage

of items getting agreement. To solve this problem , we can analyze two solutions

: pairwise agreement and multi-π agreement both in [Fleiss et al.(1971)].

In the first section 5.2.2.1 we will describe the inter-annotators agreement for

each pair of annotators that has a personal distribution and we will show that

this is similar to the distribution computed on both annotators of each pair. In

the multi-π agreement, we examine the distribution of all the three annotators.
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5.2.2.1 Pairwise agreement

The pairwise agreement defines the agreement on a particular item as the pro-

portion of agreed judgment pairs out of the total number of judgment pairs for

that item [Fleiss et al.(1971)]. We measure the inter-annotators agreement of

the 3 pairs of annotators: pair1 for the two annotators expert in the domain A1

and A2; pair2 for one annotator expert in the domain A1 and the other one not

expert A3; and, pair3 for the second annotator expert in the domain A2 and

the other one not expert A3.

Given the same data (641 or 404-annotations) with the same guidelines, we

build the contingency tables for the 3 pairwise annotators(respectly Table 2

and Table 4). For each table we report the statistic of the two annotators.

Then in Table 1a we summarize the inter-annotator agreement of the 3 pairwise

agreements considering 641-annotators. For example, the observed agreement

for this data is obtained summing up the cells of the table where the annotators

assign the same judgement and dividing by the total number of annotations.

For example, considering pair1 (first row of the Table 1a), the two annotators

label 47 occurrences as YES, and 490 as NO. The resulting observed agreement

of pair1 is Ao = (47+490)/641 = 0.8377535. As above mentioned, there are two

different methods to compute the expected agreement. In the first method the

expected agreement is governed by prior distributions that are unique for each

annotator and it is computed looking the actual distribution. Then for pair1

we have Ae = 0.16848674 ∗ 0.1404056 + 0.83151326 ∗ 0.8595944 = 0.7384206.

In the second method we get the same distribution for each annotator of the
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A1

yes no

yes 47 61 108

A2

no 43 490 533

90 551 641

(a) pair1 = (A1, A2)

A1

yes no

yes 76 83 159

A3

no 14 468 482

90 551 641

(b) pair2 = (A1, A3)

A2

yes no

yes 72 87 159

A3

no 36 446 482

180 533 641

(c) pair3 = (A2, A3)

Table 1: Contingency tables for pairwise annotator agreement for 641-

annotations

Ao Ae kappa

pair1 = (A1, A2) 0.8377535 0.7384206 0.3797428

pair2 = (A1, A3) 0.8486739 0.6811997 0.5253266

pair3 = (A2, A3) 0.8081123 0.6670496 0.4236749

Table 2: pairwise agreement for 641-annotations
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pair, then we have

Ae =

(
90 + 108

641 ∗ 2

)2

+

(
533 + 551

641 ∗ 2

)2

= 0.7388149

Since the two Ae values are similar and the same occurs for the other pairs, we

report only the expected agreement computed using the first method

Finally, using both the observed and expected agreement, the possible agree-

ment beyond change observed for the pair1 is kappa = (0.8377535−0.7384206)/(1−

0.7384206) = 0.3797428. Analogously we compute kappa value for the other pair

of annotators.

In the same way we compute Observed Agreement, Expected Agreement and

coefficient kappa for the pairwise agreement considering 404-annotations (Table

3a). Summarizing only for pair3 on 641-annotations the coefficient kappa is in

the “fair” interval in accord to the scale proposed in [Landis and Koch(1977)]

and reported in Figure 5.1. Most likely there is a fair agreement between anno-

tators A2 and A3 because the first one is an older expert in the domain while the

second one is not expert at all, so they have a different knowledge with respect

to the specific Earth Observation Domain.

In all the other cases the pairwise agreement is better because the coefficient

kappa belongs to the “moderate” interval. We are confident on the reliability of

such annotations as the annotators agree on labeling the same pairs of words.

This allows us to prove the validity of the annotation.

5.2.2.2 Multi-π agreement

In multi-π agreement the agreement of the annotators is considered as a whole.

There is only one distribution for all the annotators, derived from the total
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A1

yes no

yes 40 32 72

A2

no 35 297 332

75 329 404

(a) pair1 = (A1, A2)

A1

yes no

yes 65 54 119

A3

no 10 275 285

75 329 404

(b) pair2 = (A1, A3)

A2

yes no

yes 53 66 119

A3

no 19 266 285

72 332 404

(c) pair3 = (A2, A3)

Table 3: Contingency tables: pairwise annotator agreement for 404-annotations

Ao Ae kappa

pair1 = (A1, A2) 0.8341584 0.7023086 0.4429077

pair2 = (A1, A3) 0.8415842 0.6291663 0.5728117

pair3 = (A2, A3) 0.7896040 0.6322174 0.4279336

Table 4: pairwise agreement for 404-annotations
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proportions of categories assigned by each annotator.

When there are more than two annotators, the visualization of the data is

a difficult task: a possible solution is in using the agreement table where each

annotator is represented in a separate column. The columns A1, A2, and A3

of table 4a and table 4b report the label 1 or 0 assigned for each pair (first

column) by the 3 annotators respectively in 641 or 404-annotations. For both

tables we report in the columns YES and NO respectively the sum of 1s and 0s

in A1, A2, and A3. In table 4c we report the observed and expected agreement

and the relative kappa coefficient for both 641 and 404 annotations. The kappa

value obtained from both annotations confirms the conclusions deduced with

the pairwise agreement method that proved the validity of the annotations of

the 3 annotators.

5.2.3 Result

In our experiments we investigated how the approach to compute a model using

both a background domain and an existing network, can be positively used

to learn the isa relation in Earth Observation Domain. For the evaluation,

we compare our learner model (Our-System) directly with currently existing

hyperonym links in WordNet (WN-System) and we measure in both cases the

performance to find correctly the testing pairs that are in isa relation. In order to

evaluate the performance of the two systems for the pairs in Earth Observation

Domain we used the three different ontologies produced by the three annotators.

We will call these three target ontologies with the name of the annotator.

The results of the experiments are reported in Table 5a and in Table 5b.
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pairs of words A1 A2 A3 Yes NO

(agriculture,department) 0 0 0 0 3

(soil,earth) 1 1 1 3 0

(agriculture,business) 0 0 0 0 3

(wind,direction) 1 0 0 1 2

(climate,climate change) 0 0 0 0 3

(climate change,climate) 0 1 1 2 1

(climate change,activity) 1 0 1 2 1

(forest,terra firma) 1 1 1 3 0

. . . . . . . . . . . . . . . . . .

TOTAL 90 108 159 357 (0.19) 1566 (0.81)

(a) Agreement table for 641-annotations

pairs of words A1 A2 A3 Yes No

(forest,terra firma) 1 1 1 3 0

(wind,process) 0 0 0 0 3

(forest,object) 0 0 0 0 3

(cloud,state) 0 1 0 1 2

(soil,object) 0 1 1 2 1

(wind,breath) 0 0 0 0 3

(wind,act) 0 0 0 0 3

(topography,geography) 1 1 1 3 0

. . . . . . . . . . . . . . . . . .

TOTAL 75 72 119 266 (0.22) 946 (0.78)

(b) Agreement table for 404-annotations

Ao Ae kappa

641-annotations 0.83151 0.69764 0.44277

404-annotations 0.82382 0.65739 0.48577

(c) Multi-π agreement rispet to 641 and 404 annotations

Table 5: Agreement tables and Multi-π agreement for 641 and 404 annotations
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annotators recall precision f-measure

A1 0,36 0.184932 0,244344

A2 0,305556 0,150685 0,201836

A3 0,470588 0,383562 0,422642

(a) WN-System against the 3 annotators

annotators recall precision f-measure

A1 0,493333 0,253425 0,334842

A2 0,4305556 0,212329 0,284404

A3 0,4369748 0,356164 0,392453

(b) Our-System against the 3 annotators

Table 6: Performance of both systems with respect to 3 annotators

In the first table we compute the recall, the precision and the f-measure of the

WN-System against the 3 ontologies, while in the second table we compute the

recall, the precision and the f-measure of the Our-System.

We can then draw some observations: First, Our-System behaves better than

the WN-System on the ontologies produced by the expert annotators. The f-

measure of both the expert annotators (A1 and A2) is better for Our-System

with respect to WN-System. On the contrary, for the last ontology (A3) the WN-

System has better performance than our system. Then, our system is capturing

knowledge of the specific domain as it is behaving better than the generic system

with respect to domain experts. Second, in the case of the expert annotators,
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the recall of our system is higher than the recall of the WordNet based system.

This confirms that the coverage of WordNet in the specific domain is low and

only learning methods can be used to adapt the ontological information to the

specific domain. On the contrary, for the non-domain expert, WordNet is good

enough to cover domain knowledge. Results show that Our-System is a good

learner method that can be positively used to learn the isa relation in Earth

Observation Domain.

5.3 Conclusion

In this Chapter we present an ontology learning method that can exploit the

models learned from a generic domain to extract new information in a specific

domain. In our model, we firstly learn a model from the training data, then we

use the learned model to discover the relation between two words in a specific

domain.

We tested our model adaptation strategy using a background domain that is

applied to learn the isa networks in a specific domain, i.e., the Earth Observation

Domain. The results of the experiments show that this way of using a model

identified in a background domain is helpful to learn the isa relation in Earth

Observation Domain.
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6
Probabilistic Ontology Learner in

Semantic Turkey

Ontologies and knowledge repositories are important components in Knowl-

edge Representation (KR) and Natural Language Processing (NLP) applica-

tions. Yet, to be effectively used, ontologies and knowledge repositories have to

be large or, at least, adapted to specific domains. Even huge knowledge reposi-

tories such as WordNet [Miller(1995)] are extremely poor when used in specific

domains such as the medical domain (see [Toumouth et al.(2006)]). Studying

methods and building systems for automatically creating, adapting, or extend-

ing existing knowledge repositories using domain texts is a very important and

active area.

A large variety of methods have been proposed: ontology learning meth-
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ods in KR [Medche(2002), Cimiano et al.(2005), Navigli and Velardi(2004)] as

well as knowledge harvesting methods in NLP either [Hearst(1992a),

Pantel and Pennacchiotti(2006)]. These learning methods use variants of the

distributional hypothesis [Harris(1964)] or exploit some induced lexical-syntactic

patterns [Robison(1970)]. The task is generally seen as a classifi-

cation (e.g., [Pekar and Staab(2002), Snow et al.(2006)]) or a clustering (e.g.,

[Cimiano et al.(2005)]) problem. This allows the use of both machine learning

and probabilistic models.

Models for automatic creating knowledge repositories generally exploit ex-

isting structured knowledge such as existing thesauri. Methods based on the

Hearst’s work [Hearst(1992a)] use existing pairs of words in a given semantic

relation to extract patterns from corpora. These patterns are then used to in-

duce novel pairs of words that are in the same semantic relation. For example,

the pair of words Bush and New Haven are known examples of the semantic

relation has born in. These part can be used to deduce from corpora that is the

birthplace of is a good pattern to induce other instances of the above relation.

Yet, these models cannot be easily used to exploit the formal properties of the

target relation and, for this reason, they cannot properly exploit information

derived indirectly for existing data.

Some semantic relations such as hyperonymy and part-of have an extremely

important property that is transitiveness. This property, along with the use of

existing knowledge repositories, may help to build better knowledge extraction

and structuring models during the discovering phase. Such idea is explored in

[Snow et al.(2006), Fallucchi and Zanzotto(2009a)].
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Automatic models for extracting ontological knowledge from texts do not

have the performance needed to extend existing ontologies with a high degree

of accuracy. As a consequence, the resulting automatically expanded ontologies

can be completely useless. Generally, systems for augmenting ontologies extract-

ing information from texts foresee a manual validation for assessing the quality

of ontology expansion. Yet, these systems do not use the manual validation

for refining the information extraction model that proposes novel ontological

information. Here, the idea is to prefer methods that can use decisions of final

users to incrementally refine the model for extracting ontological information

from texts, i.e., each decision of final users is exploited in refining the param-

eters of the extraction model. Including these new examples as training for

machines helps in augmenting the performances of the automatic extractor, as

shown in [Cimiano and Volker(2005)]. In the following, we present the Seman-

tic Turkey Ontology Learner (ST-OL) [Fallucchi et al.(2009)], an incremental

ontology learning system that follows the above idea putting final users in the

learning loop. Furthermore, this system uses a probabilistic ontology learning

model that exploits transitive relations for inducing better extraction models.

The chapter is organized as follows. We firstly present the ideas behind our

new ontology learning system introducing the concept of incremental ontology

learning (Section 6.1). We then introduce ST-OL, the system that we have

adopted following the above principles (Section 6.2). Finally, we draw some

conclusions (Section 5.3).
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6.1 Incremental Ontology Learning

To efficiently set-up an incremental model for ontology learning, we have to

address two issues:

• we need an efficient way to interact with final users

• we need an incremental learning model

The rest of the section shows how we can address these issues using existing

models and existing systems. We start from presenting the concept of incre-

mental ontology learning (Section 6.1.1). Then, we describe the used ontol-

ogy editor (Section 6.1.2). Finally, we introduce the adopted ontology learning

methodology (Section 6.1.3).

6.1.1 The concept

The incremental ontology learning process we want to model leverages on the

positive interaction between an automatic model for ontology learning and the

final users. We obtain this positive interaction using one additional component:

an ontology editor. The overall process is organized in two phases: (1) the

initialization step and (2) the learning loop. In the initialization step, the user

selects the initial ontology and the corpus. The system, then, uses these two

elements to generate the first model for learning ontological information from

documents. In the learning loop, the machine learning component extracts

a ranked list of pairs (candidate concept,superconcept) and the user selects,

among the first k pairs, the correct ones to be added to the ontology. We

then use these choices to generate both positive and negative training examples
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for the ontology learning component. Once the new ontology extraction model

has been learnt (using the corpus, the updated ontology, and the growing non-

ontology), the process restarts from the beginning of the loop.

Given a selected corpus C, the initial ontology O0, and the generic ontology

Oi at the iteration i, we can see the incremental learning process as the sequence

of the resulting ontologies O0 . . . On. The transition function leverages on the

ontology learning model M and on the interaction with the user, i.e., the user

validation UV . This function can be represented as follows:

MC(Oi, Oi) = Ôi+1
UV
; (Oi+1, Oi+1) (6.1)

where MC is the model learnt from the corpus, Oi is the ontology at the i− th

step and Oi are the negative choices of the users at the same step. This model

gives as output a ranked list of possible updates of the ontology Ôi+1. The

UV on the first k possibilities produces the updated ontology Oi+1 and the

updated non-ontology Oi+1. At the initial step, the process has O0 and O0 = ∅.

The ontology learner produces the model MC(Oi, Oi) building feature vectors

representing the contexts of the corpus C where we can find pairs of pairs

(candidate concept,superconcept). These pairs are extracted from the ontology

Oi and the non-ontology Oi.

6.1.2 Semantic Turkey

Semantic Turkey is a Knowledge Management and Acquisition system developed

by the Artificial Intelligence Group of the University of Rome, Tor Vergata.
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Semantic Turkey (ST, from now on) was initially developed as a web browser

extension (it is currently implemented for the popular Web Browser Mozilla

Firefox) for Semantic Bookmarking [Griesi et al.(2006)], that is, the process

of eliciting information from (web) documents, to acquire new knowledge and

represent it through representation standards, while keeping reference to its

original information sources.

Semantic Bookmarks are different from their traditional cousins because they

abandon the purely partitive semantics of traditional links&folders bookmark-

ing, and promote a new paradigm, aiming at “a clear separation between (ac-

quired) knowledge data (the WHAT) and their associated information sources

(the WHERE)”. In practice, the user is able to select portions of text from

web pages loaded from the browser, and to annotate them in an (user defined)

ontology. A neat separation is maintained between the ontological resources

created from the annotation, and the annotations themselves. In this way, the

user can easily organize the knowledge (by establishing relationships between

ontology objects, categorizing them, better defining them through attributes

etc...), while keeping multiple bookmarks in a separated space, pointing to on-

tology resources and carrying with them all information related to the taken

annotations (such as the page where the annotation has been taken, its title,

the text which was referring to the created/referenced ontology resource etc...).

Easy-to-perform drag-and-drop operations were thought to optimize user inter-

action, concentrating the creation of both the ontological resources and their

related annotations in a few mouse clicks.

ST has lately evolved [Griesi et al.(2007)] in a complete Knowledge Manage-
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ment and Acquisition System based on Semantic Web technologies, introduc-

ing full support for ontology editing and improving functionalities for annota-

tion&creation, ST has explored a new dimension without predecessors in the

field of Ontology Development or Semantic Annotation, unique in the process

of building new knowledge while exploring the web. The new objective of ST

has been thus reducing the impedance mismatch between domain experts and

knowledge investigators on one side, and knowledge engineers on the other side,

providing a unifying platform for acquiring, building up, reorganizing and refin-

ing knowledge. The ontology learning module that we introduce here has been

implemented and integrated upon the above exposed framework.

6.1.3 Probabilistic Ontology Learner

We use the Probabilistic Ontology Learning (POL) [Fallucchi and Zanzotto(2009a)]

to expand existing ontologies with new facts. In POL it is possible to take into

consideration both corpus-extracted evidences and the structure of the gener-

ated ontology. In the probabilistic formulation [Snow et al.(2006)], the task of

learning ontologies from a corpus is seen as a maximum likelihood problem.

The ontology is seen as a set O of assertions R over pairs Ri,j . In particular

we will consider the is-a relation. In this case, if Ri,j is in O, i is a concept

and j is one of its generalizations (i.e., the direct or the indirect generalization).

For example, Rdog,animal ∈ O describes that dog is an animal according to the

ontology O.

The main probabilities are then: (1) the prior probability P (Ri,j ∈ O) of

an assertion Ri,j to belong to the ontology O and (2) the posterior probability
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P (Ri,j ∈ O|−→e i,j) of an assertion Ri,j to belong to the ontology O given a set

of evidences −→e i,j derived from the corpus. These evidences are derived from

the contexts where the pair (i, j) is found in the corpus. The vector −→e i,j is a

feature vector associated with a pair (i, j). For example, a feature may describe

how many times i and j are seen in patterns like ”i as j” or ”i is a j”. These,

among many other features, are indicators of an Is-a relation between i and j

(see [Hearst(1992a)]).

Given a set of evidences E over all the relevant word pairs, in [Snow et al.(2006),

Fallucchi and Zanzotto(2009a)] the probabilistic ontology learning task is de-

fined as the problem of finding an ontology Ô that maximizes the probability

of having the evidences E, i.e.:

Ô = arg max
O

P (E|O)

In the original model [Snow et al.(2006), Fallucchi and Zanzotto(2009a)], this

maximization problem is solved with a local search. In the incremental ontology

learning model that we propose, this maximization function is solved using also

the information coming from final users.

In the user-less model, what is maximized at each step is the ratio between

the likelihood P (E|O′) and the likelihood P (E|O) where O′ = O ∪ N and N

are the relations added at each step. This ratio is called multiplicative change

∆(N) and is defined as follows:

∆(N) = P (E|O′)/P (E|O) (6.2)

It is also possible to demonstrate that
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∆(Ri,j) = k · P (Ri,j ∈ O|−→e i,j)
1− P (Ri,j ∈ O|−→e i,j)

=

= k · odds(Ri,j)

where k is a constant (see [Snow et al.(2006)]) that will be neglected in the

maximization process.

We calculate the odds using the logistic regression. The regression coeffi-

cients can be estimated using the Monroe-Penrose pseudo-inverse matrix (Chap-

ter 3)

β̂ = X+l (6.3)

where β̂ is an approximation of the regression coefficients vector, X+ is the

inverse evidence matrix, and l the logit vector.

In our user-oriented incremental ontology learning model we propose to in-

clude final users in the loop. In our task we do not find the ontology that

maximizes the likelihood of having the evidences E. We calculate the probabil-

ities step by step. Then we present an ordered set of choices to final users that

make the final decision on what to use in the next iteration. The order set is

obtained using the logit function as it is equivalent to the order given by the

probabilities. For this reason, in the following we will operate directly on the

logit rather than on the probabilities. It is possible to calculate the logit vector

at the i-th iteration using the logit definition (3.7) and the equation (6.3):

XX+ li = l̂i+1
UV
; li+1 (6.4)
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At each iteration, we calculate the logit vector using the logit vector of the

previous iteration. The logit vector is then changed in the user validation (UV).

When the user accepts a new relation its probability is set to 0.99. On the

contrary, when the user discards a relation its probability is set to 0.01. The

matrix XX+ is constant for each iteration. In particular, we have found a

matrix XX+ that is the constant model MC of the equation (6.1). The matrix

XX+ depends only on the corpus C and not on the initial ontology. The logit

vector l represents both the current ontology Oi and the negative ontology Oi

as it includes the logit of both probabilities (0.99 and 0.01).

6.2 Semantic Turkey-Ontology Learner (ST-OL)

The model described in previous section has been implemented and integrated

in a Semantic Turkey extension called ST Ontology Learner (ST-OL). ST-OL

provides a graphical user interface and a human-computer interaction work-

flow supporting the incremental learning loop of our learning theory. If the user

has loaded an ontology in ST, he can to improve it by adding new classes and

new instances using ST-OL. The interaction process is achieved through the

following steps:

• an initialization phase where the user selects the initial ontology O and

the bunch of documents C where to extract new knowledge

• an iterative phase where the user launch the learning and validates the

proposals of ST-OL
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Thus, starting from the initial ontology O and a bunch of documents C, the

user has the possibility of using an incremental ontology learning model.

For the initialization phase (c.f., Section 6.1.1), the User Interface (UI) of

ST-OL allows users to select the initial set of documents C (corpus), and to

send both the ontology O and the corpus C to the learning module. To start

this stage of the process, the user selects “Initialize POL” on the ST-OL panel

(see Figure 6.1). The probabilistic ontology learner analyzes the corpus, finds

the contexts for each ontological pair, computes the first extraction model, and,

finally, proposes the pairs that are in is-a relation. This first analysis is the

most expensive, because devoted to computing the matrix XX+. Yet, this

computation is done only once in the iterative process.

Once this initialization finishes, the iterative phase starts. ST-OL enables

the button labeled “Proposed Ontology”. The effect of this button is to show

the initial ontology extended with the pairs proposed by POL. Figure 6.1 shows

an example of an enriched initial ontology.

The main goal of ST-OL is draw the attention to the good added information.

The user has the possibility of selecting the pairs he wants to add among the

proposed pairs. To drive the attention towards the good pairs, we use different

brightness of red for the different probabilities. More intense tonalities of red

represent higher probabilities.

In order to focus, if possible, only on good pairs, ST-OL shows only pairs

above a threshold τ of probabilities. For example, in Figure 6.1, the relation (i.e.,

the pair) between “truck” and “container” is more probable than the relation

between “spreader” and “container”. Then different red tones are used. At this
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Figure 6.1: Initial Ontology extended with the pairs proposed by the POL

System

point, the user can accept or reject the information. After acceptance, the new

information is stored in the ST ontological repository and can be browsed as

usual through the ontology panel on the Firefox sidebar. Figure 6.2 shows what

happened when the user accepted two proposed pairs: “mango” as instance of

“fruit” and “pepper” as subclass of “vegetable”.

In the incremental model the above activity enables to build an upgraded

probability vector. When the user accepts a new pair, ST-OL updates its prob-

ability to 0.99. When the user discards the pair, its probability is set to 0.01.

These new values are used for the next iteration of the leaning process. After

some manual evaluation, the user can decide to update the proposed ontology.

Given the probabilistic ontology learning model presented in Section 6.1.3, this
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Figure 6.2: Manual validation of new resources added to the ontology

new evaluation is just a simple multiplication between the existing matrix XX+

and the new vector. To force the recompilation, the user can use the “Proposed

Ontology” button.

6.3 Conclusion

In this Chapter, we presented a computational model POL and a system ST-OL

for incremental ontology learning. POL is basically an incremental probabilistic

model to learn ontological information from texts and it is designed to positively

exploit a probabilistic ontology learning method within a learning loop that

includes final users. ST-OL, being developed and integrated as an extension
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for the Knowledge Management and Acquisition platform Semantic Turkey, has

inherited all the facilities that the main application is providing for ontology

development, as well as those exposed by the hosting Web Browser (which

enabled, for example, to rapidly integrate a web spider into the application and

use it to provide corpora for learning probabilistic models and/or for inducing

new ontology contributions). ST-OL (and Semantic Turkey as its founding

technology) has thus proved to be the right environment for embodying this

kind of process, providing the crossroads between Users, Web and Knowledge.
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7
Conclusions and Future Works

Describing word meaning is one of the most interesting challenges of natural

language processing as texts can not be ”understood” without a clear and formal

model of its basic components. Semantic networks of words are often used as

formal models of word meaning but, to be useful for final NLP applications,

these networks should large enough to cover words used in the final domain of

the applications. It is nearly impossible to manually obtain a wide coverage

for these semantic networks. Automatically learning these semantic networks

from domain corpora is then the preferred solution. Models for automatically

expanding semantic networks of words from texts use corpus-extracted evidences

to determine whether or not new pairs of words are in a given semantic relation

and, then, have to be included in existing knowledge repositories. These decision

systems are trained observing how pairs of words in a given semantic relation
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behave in document collections. This information is used to induce a model

that is then applied to novel word pairs.

This thesis has explored this important area of research giving important

contributions and advancing state-of-art models.

First, we observed that structural properties of semantic networks of words,

when relevant, are not used in machine learning models to better induce rele-

vant features to determine confidence values for extracting semantic relations.

Semantic relation learning models based on the distributional hypothesis, for

example, use the structural properties of semantic networks of words such as

transitivity only intrinsically, but they cannot be applied for learning transi-

tive semantic relations other than the generalizations. Even where transitivity

is explicitly used, it is not directly exploited to model confidence values. On

the contrary, LSP models can learn any kind of semantic relations but they do

not explicitly exploit the structural properties of target relations when learning

taxonomies or semantic networks of words. We have demonstrated that keeping

the probability within the final knowledge base is extremely important for the

performances of the learning method as it gives the possibility to better use

structural properties of target relations such as transitivity. Our SVD-based

logistic approach has proved to be efficient and our probabilistic model suitable

for exploiting the structural properties of semantic relations in learning seman-

tic networks. As a side effect, we also demonstrated that SVD can be used as

natural feature selection model within probabilistic taxonomy learning models.

Second, we observed that systems that automatically create, adapt, or ex-

tend existing semantic networks of words need a sufficiently large number of doc-
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uments and existing structured knowledge to achieve reasonable performance.

If the target domain has not relevant pre-existing semantic networks of words,

we will not have enough data for training the initial model. Obtaining manually

structured knowledge repositories in specific domains is a very time consuming

and expensive task. We have shown that our learning method that exploits the

models learned from a generic domain is helpful to discover the relation between

two words in a specific domain. Our learning model exploits training data for

building in-domain models with bigger accuracy with a very small effort for the

adaptation to different specific knowledge domains.

Finally, we studied models to include the manual validation for assessing

the quality of semantic networks of words expansion within systems for creating

or augmenting semantic networks of words . ST-OL provides a graphical user

interface and a human-computer interaction work-flow supporting the incremen-

tal learning loop of our probabilistic learning models. This system efficiently

interacts with final users exploiting an incremental model that in learning loop

includes final users. The probabilistic model is integrated in a Knowledge Man-

agement and Acquisition platform Semantic Turkey. Thus, ST-OL has proven

to be the right environment for embodying this kind of process, providing the

crossroads between Users, Web and Knowledge

In the future, a natural improvement is the analysis of different and more

informative feature spaces such as those based on syntactic models. We believe

this will boost the performances of our model. We have here shown that the

model can be applied to different transitive relations (i.e., isa and part-of). Yet,

we need to explore different transitive semantic relation, e.g., cause-effect, en-
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tailment and we plan to extend the model to consider other structural properties

of semantic networks.
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