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k,l . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2.1.3 Ã0,2
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Introduction

The representations of quivers can be viewed as a formalization of some lin-
ear algebra problems. Symmetric quivers have been introduced by Derksen
and Weyman in [DW2] to provide similar formalization for other classical
groups.
In the recent years the quiver representations were used to prove interest-
ing results related to general linear groups.
Derksen and Weyman in [DW1] gave a proof of saturation property for
Littlewood-Richardson coefficients.
Magyar, Weyman and Zelevinsky in [MWZ1] classified products of flag va-
rieties with finitely many orbits under the diagonal action of general linear
groups. We hope that the representations of symmetric quivers are a tool
to solve similar problems for classical groups.
Another interesting aspect and direction for future research is the connec-
tion with Cluster algebras (see [FZ1]). Igusa, Orr, Todorov and Weyman
in [IOTW] generalized the semi-invariants of quivers to virtual representa-
tions of quivers. They associated, via virtual semi-invariants of quivers, a
simplicial complex T (Q) with each quiver Q. In particular, if Q is of finite
type, then the simplices of T (Q) correspond to tilting objects in a corre-
sponding Cluster category (defined in [BMRRT]). It would be interesting to
carry out a similar construction for symmetric quivers of finite type and to
relate it to Cluster algebras (see [FZ2]).
The results of this thesis are first steps in this direction. We describe the
ring of semi-invariants for symmetric quivers of finite and tame type.
A symmetric quiver is a pair (Q, σ) where Q is a quiver (called underlying
quiver of (Q, σ)) and σ is a contravariant involution on the union of the set
of arrows and the set of vertices of Q. The involution allows us to define a
nondegenerate bilinear form <,> on a representation V of Q. We call the
pair (V,<,>) orthogonal representation (respectively symplectic) of (Q, σ)
if<,> is symmetric (respectively skew-symmetric). We define SpRep(Q, β)
and ORep(Q, β) to be respectively the space of symplectic β-dimensional
representations and the space of orthogonal β-dimensional representations
of (Q, σ). Moreover we can define an action of a product of classical groups,
which we call SSp(Q, β) in the symplectic case and SO(Q, β) in the orthog-
onal case, on these space. We describe a set of generators of the ring of
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semi-invariants of ORep(Q, β)

OSI(Q, β) = K[ORep(Q, β)]SO(Q,β) =

{f ∈ K[ORep(Q, β)]|g · f = f ∀g ∈ SO(Q, β)}

and of the ring of semi-invariants of SpRep(Q,α)

SpSI(Q, β) = K[SpRep(Q, β)]SSp(Q,β) =

{f ∈ K[SpRep(Q, β)]|g · f = f ∀g ∈ SSp(Q, β)},

where K[ORep(Q, β)] is the ring of polynomial functions on ORep(Q, β)
and K[SpRep(Q, β)] is the ring of polynomial functions on SpRep(Q, β).
Let (Q, σ) be a symmetric quiver and V a representation of the underlying
quiver Q such that 〈dimV, β〉 = 0, where 〈·, ·〉 is the Euler form of Q. Let

0 −→ P1
dV−→ P0 −→ V −→ 0

be the canonical projective resolution of V (see [R1]). We define the semi-
invariant cV := det(HomQ(dV , ·)) ofOSI(Q, β) and SpSI(Q, β) (see [DW1]
and [S]).
Let τ be the Auslander-Reiten translation functor and let ∇ be the duality
functor. We will prove in the symmetric case the following

Theorem 1. Let (Q, σ) be a symmetric quiver of finite type or of tame type such
that the underlying quiver Q is without oriented cycles and let β be a symmetric
dimension vector. The ring SpSI(Q, β) is generated by semi-invariants

(i) cV if V ∈ Rep(Q) is such that 〈dimV, β〉 = 0,

(ii) pfV :=
√
cV if V ∈ Rep(Q) is such that 〈dimV, β〉 = 0, τV = ∇V and

the almost split sequence 0 → ∇V → Z → V → 0 has the middle term Z
in ORep(Q).

Theorem 2. Let (Q, σ) be a symmetric quiver of finite type or of tame type such
that the underlying quiver Q is without oriented cycles and let β be a symmetric
dimension vector. The ring OSI(Q, β) is generated by semi-invariants

(i) cV if V ∈ Rep(Q) is such that 〈dimV, β〉 = 0,

(ii) pfV :=
√
cV if V ∈ Rep(Q) is such that 〈dimV, β〉 = 0, τV = ∇V and

the almost split sequence 0 → ∇V → Z → V → 0 has the middle term Z
in SpRep(Q).

The strategy of the proofs is the following. First we set the technique of
reflection functors on the symmetric quivers. Then we prove that we can
reduce theorems 1 and 2, by this technique, to particular orientations of the
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symmetric quivers. Finally, we check theorems 1 and 2 for these orienta-
tions.
In the first chapter we give general notions and results about symmetric
quivers and their representations. First, we state main results 1 and 2. Next,
we adjust to symmetric quivers the technique of reflection functors and we
describe particular orientations for every symmetric quiver of finite type
and tame type. Finally, we prove general results about semi-invariants of
symmetric quivers and we check that we can reduce theorems 1 and 2 to
these particular orientations.
In the second chapter, using classical invariant theory and the technique
of Schur functors, we prove case by case theorems 1 and 2 for symmetric
quivers of finite type with the orientations described in chapter 1.
In the third chapter we prove theorems 1 and 2 for symmetric quivers of
tame type with the orientations described in chapter 1. First, we deal with
symplectic and orthogonal representations of dimension β = ph, where
p ∈ N and h is the homogeneous simple regular dimension vector. We give
a proof of theorems 1 and 2 case by case. Next, we adjust to symmetric
quivers some general results of Dlab and Ringel about regular representa-
tions of tame quivers (see [DR]) and we describe generic decomposition of
dimension vectors of symplectic and orthogonal representations (see [K1]
and [K2]). Finally, by these results, we describe case by case the ring of
semi-invariants of symmetric quivers of tame type for any regular dimen-
sion vectors.
At last, in appendix A we recall some results of representations of gen-
eral linear group and of invariant theory. In appendix B we recall general
definitions and results about quiver representations and semi-invariants of
quivers.
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Chapter 1

Main results

1.1 Symmetric quivers

Throughout all this section, we use the notation of section B.1.

Definition 1.1.1. A symmetric quiver is a pair (Q, σ) where Q is a quiver (called
the underlying quiver of (Q, σ)) and σ is an involution from the disjoint union
Q0
∐
Q1 to itself, such that

(i) σ(Q0) = Q0 and σ(Q1) = Q1,

(ii) tσ(a) = σ(ha) and hσ(a) = σ(ta) for all a ∈ Q1,

(iii) σ(a) = a whenever a ∈ Q1 and σ(ta) = ha.

Definition 1.1.2. Let (Q, σ) be a symmetric quiver and

V =
{
{V (x)}x∈Q0 , {V (a)}a∈Q1

}
be a representation of the underlying quiver Q. We define the duality functor ∇ :
V → V ∗ with V ∗ =

{
{V ∗(x)}x∈Q0 , {V ∗(a)}a∈Q1

}
where V ∗(x) := V (σ(x))∗

for every x ∈ Q0 and V ∗(a) := −V (σ(a))∗ for every a ∈ Q1. Moreover if W is
another representation of Q and f : V → W is a morphism, then ∇f : ∇W →
∇V is defined by (∇f)(x) := f(σ(x))∗ : W ∗(x) → V ∗(x), for every x ∈ Q0.
We shall call V selfdual if∇V = V .

Definition 1.1.3. An orthogonal (resp. symplectic) representation of a symmetric
quiver (Q, σ) is a pair (V,< ·, · >), where V is a representation of the underlying
quiver Q with a nondegenerate symmetric (resp. skew-symmetric) scalar product
< ·, · > on

⊕
x∈Q0

V (x) such that

(i) the restriction of < ·, · > to V (x)× V (y) is 0 if y 6= σ(x),

(ii) < V (a)(v), w > + < v, V (σ(a))(w) >= 0 for all v ∈ V (ta) and all
w ∈ V (σ(ha)).
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By properties (i) and (ii) of definition 1.1.3, an orthogonal or symplectic
representation (V,< ·, · >) of a symmetric quiver is selfdual.

Definition 1.1.4. An orthogonal (respectively symplectic) representation is called
indecomposable orthogonal (respectively indecomposable symplectic) if it cannot be
expressed as a direct sum of orthogonal (respectively symplectic) representations.

We denote Qσ0 (respectively Qσ1 ) the set of vertices (respectively arrows)
fixed by σ. Thus we have partitions

Q0 = Q+
0 ∪Q

σ
0 ∪Q−0

Q1 = Q+
1 ∪Q

σ
1 ∪Q−1

such that Q−0 = σ(Q+
0 ) and Q−1 = σ(Q+

1 ), satisfying:

i) ∀a ∈ Q+
1 , either {ta, ha} ⊂ Q+

0 or one of the elements in {ta, ha} is in
Q+

0 while the other is in Qσ0 ;

ii) ∀x ∈ Q+
0 , if a ∈ Q1 with ta = x or ha = x, then a ∈ Q+

1 ∪Qσ1 .

Definition 1.1.5. Let (Q, σ) be a symmetric quiver. We define a linear map δ :
ZQ0

≥0 → ZQ0

≥0 by setting {δα(i)}i∈Q0 = {α(σ(i))}i∈Q0 for every dimension vector
α.

Remark 1.1.6. Since σ is an involution, also δ is one.

Remark 1.1.7. If V is a representation of dimension α then δα = dim(∇V ). In
particular if V is an orthogonal or symplectic representation of (Q, σ) of dimension
α, then δα = α. Such α is called symmetric dimension vector.

Proposition 1.1.8. Let δ : ZQ0

≥0 → ZQ0

≥0 as in definition 1.1.5. If α and β are
dimension vectors, then

〈α, β〉 = 〈δβ, δα〉. (1.1)

Proof.

〈α, β〉 =
∑

i∈Q+
0 ∪Qσ0

α(i)β(i) +
∑

i∈Q+
0
α(σ(i))β(σ(i))

+
∑

a∈Q+
1 ∪Qσ1

α(ta)β(ha) +
∑

a∈Q+
1
α(tσ(a))β(hσ(a)) . (1.2)

By definition of σ, we have
〈δβ, δα〉 =∑

i∈Q+
0 ∪Qσ0

β(σ(i))α(σ(i)) +
∑
i∈Q+

0

β(σ(σ(i)))α(σ(σ(i)))+

∑
a∈Q+

1 ∪Qσ1

β(σ(ta))α(σ(ha)) +
∑
a∈Q+

1

β(σ(tσ(a)))α(σ(hσ(a))) =
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∑
i∈Q+

0

β(σ(i))α(σ(i)) +
∑
i∈Qσ0

β(i)α(i)+

∑
i∈Q+

0

β(i)α(i) +
∑
a∈Q+

1

β(hσ(a))α(tσ(a))+

∑
a∈Qσ1

β(hσ(a))α(tσ(a)) +
∑
a∈Q+

1

β(σ2(ha))α(σ2(tσ(a))

which is the right hand side of (1.2), recalling that σ is an involution. 2

The space of orthogonal α-dimensional representations of a symmetric
quiver (Q, σ) can be identified with

ORep(Q,α) =
⊕
a∈Q+

1

Hom(Kα(ta),Kα(ha))⊕
⊕
a∈Qσ1

2∧
(Kα(ta))∗. (1.3)

The space of symplectic α-dimensional representations can be identified
with

SpRep(Q,α) =
⊕
a∈Q+

1

Hom(Kα(ta),Kα(ha))⊕
⊕
a∈Qσ1

S2(Kα(ta))∗. (1.4)

We define the group

O(Q,α) =
∏
x∈Q+

0

GL(K, α(x))×
∏
x∈Qσ0

O(K, α(x)) (1.5)

and the subgroup

SO(Q,α) =
∏
x∈Q+

0

SL(K, α(x))×
∏
x∈Qσ0

SO(K, α(x)). (1.6)

Here O(K, α(x)) is the group of orthogonal transformations for the sym-
metric form < ·, · > restricted to V (x).

Assuming that α(x) is even for every x ∈ Qσ0 , we define the group

Sp(Q,α) =
∏
x∈Q+

0

GL(K, α(x))×
∏
x∈Qσ0

Sp(K, α(x)) (1.7)

and the subgroup

SSp(Q,α) =
∏
x∈Q+

0

SL(K, α(x))×
∏
x∈Qσ0

Sp(K, α(x)). (1.8)
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Here Sp(K, α(x)) is the group of isometric transformations for the skew-
symmetric form < ·, · > restricted to V (x).

The action of these groups is defined by

g · V = {ghaV (a)gta−1}a∈Q+
1 ∪Qδ1

where g = (gx)x∈Q0 ∈ O(Q,α) (respectively g ∈ Sp(Q,α)) and V ∈ ORep(Q,α)
(respectively in SpRep(Q,α)). In particular we can suppose gσ(x) = (g−1

x )t

for every x ∈ Q0.

Example 1.1.9. (1) Consider the symmetric quiver (Q, σ)

◦ → • → ◦

where σ interchanges the antipodal nodes and fixes the closed node. An
orthogonal representation of (Q, σ) is a quadruple (V1, V2, φ, 〈·, ·〉) where
V1 and V2 are vector spaces, φ : V1 → V2 is a linear map and 〈·, ·〉 is a
non-degenerate symmetric bilinear form on V2. We also have the dual map
−φ∗ : V ∗2 ∼= V2 → V ∗1 and so we have the following diagram:

V1
φ→ V2

−φ∗→ V ∗1 .

Hence the isomorphism classes of orthogonal representations of (Q, σ) are
the GL(V1)×O(V2)-orbits in Hom(V1, V2).

(2) Consider the symmetric quiver (Q, σ)

◦ → ◦ → ◦ → ◦

where σ sends the first vertex to the last one and the second one to the
third one. A symplectic representation of (Q, σ) is a quadriple (V1, V2, φ, ψ)
where V1 and V2 are vector spaces, φ : V1 → V2 is linear map andψ ∈ S2V

∗
2 .

We also have the dual map −φ∗ : V ∗2 → V ∗1 . We consider the following dia-
gram:

V1
φ→ V2

ψ→ V ∗2
−φ∗→ V ∗1 .

Hence the isomorphism classes of symplectic representations of (Q, σ) are
the GL(V1)×GL(V2)-orbits in Hom(V1, V2)⊕ S2V

∗
2 .

Definition 1.1.10. (i) Let K[ORep(Q,α)] be the ring of polynomial functions
on ORep(Q,α).

OSI(Q,α) = K[ORep(Q,α)]SO(Q,α) =

{f ∈ K[ORep(Q,α)]|g · f = f ∀g ∈ SO(Q,α)} (1.9)

is the ring of orthogonal semi-invariants of (Q,α).
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(ii) Let K[SpRep(Q,α)] be the ring of polynomial functions on SpRep(Q,α),

SpSI(Q,α) = K[SpRep(Q,α)]SSp(Q,α) =

{f ∈ K[SpRep(Q,α)]|g · f = f ∀g ∈ SSp(Q,α)} (1.10)

is the ring of symplectic semi-invariants of (Q,α).

1.1.1 Symmetric quivers of finite type

Definition 1.1.11. A symmetric quiver is said to be of finite representation type
if it has only finitely many indecomposable orthogonal (resp. symplectic) represen-
tations up to isomorphisms.

We recall the following theorem proved by Derksen and Weyman in
[DW2]

Theorem 1.1.12. A symmetric quiver (Q, σ) is of finite type if and only if the
underlying quiver Q is of type An.

Proof. See [DW2, theorem 3.1 and proposition 3.3] 2

1.1.2 Symmetric quivers of tame type

Definition 1.1.13. A symmetric quiver is said to be of tame representation type if
is not of finite representation type, but in every dimension vector the indecompos-
able orthogonal (symplectic) representations occur in families of dimension ≤ 1.

Theorem 1.1.14. A symmetric quiver (Q, σ) with Q connected is tame if and
only if the underlying quiver Q is an extended Dynkin quiver.

Proof. See [DW2, theorem 4.1]. 2

One can classify the symmetric tame quivers with connected underlying
quiver.

Proposition 1.1.15. Let (Q, σ) be a symmetric tame quiver with Q connected.
Then (Q, σ) is one of the following symmetric quivers.

(1) Of type Ã2,0,1
n :

◦ // ◦

◦ // ◦

with arbitrary orientation reversed under σ if Q = Ã2n+1 (≥ 1). Here σ is
a reflection with respect to a central vertical line (so σ fixes two arrows and
no vertices).
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(2) Of type Ã2,0,2
n :

◦ // ◦

◦ ◦oo

with arbitrary orientation reversed under σ if Q = Ã2n+1 (≥ 1). Here σ is
a reflection with respect to a central vertical line (so σ fixes two arrows and
no vertices).

(3) Of type Ã0,2
n :

•

��@@@@@@@

◦

??~~~~~~~
◦

◦

��@@@@@@@ ◦

•

??~~~~~~~

with arbitrary orientation reversed under σ if Q = Ã2n−1 (n ≤ 1). Here σ
is a reflection with respect to a central vertical line (so σ fixes two vertices
and no arrows).

(4) Of type Ã1,1
n :

•

��@@@@@@@

◦

??~~~~~~~
◦

◦ // ◦

with arbitrary orientation reversed under σ if Q = Ã2n (n ≥ 1). Here σ is
a reflection with respect to a central vertical line (so σ fixes one arrow and
one vertex).
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(5) Of type Ã0,0
n :

◦

��@@@@@@@

◦

??~~~~~~~
◦

·

◦

��@@@@@@@ ◦

◦

??~~~~~~~

with arbitrary orientation reversed under σ if Q = Ã2n+1 (n ≥ 1). Here σ
is a central symmetry (so σ fixes neither arrows nor vertices).

(6) Of type D̃1,0
n

◦

��@@@@@@@ ◦

◦ ◦ // ◦ ◦

??~~~~~~~

��@@@@@@@

◦

??~~~~~~~
◦

with arbitrary orientation reversed under σ if Q = D̃2n (n ≥ 2). Here σ is
a reflection with respect to a central vertical line (so σ fixes one arrow and
no vertices).

(7) Of type D̃0,1
n

◦

��@@@@@@@ ◦

◦ ◦ // • // ◦ ◦

??~~~~~~~

��@@@@@@@

◦

??~~~~~~~
◦

with arbitrary orientation reversed under σ if Q = D̃2n−1 (n ≥ 2). Here σ
is a reflection with respect to a central vertical line (so σ fixes one vertex and
no arrows).

Proof. See [DW2, proposition 4.3]. 2
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1.2 The main results

In this thesis we describe the rings of semi-invariants of symmetric quiv-
ers in the finite type and in the tame cases. We also conjecture in general
the following results. Below we use the notations of section B.4 and we
conjecture the following theorems

Conjecture 1.2.1. Let (Q, σ) a symmetric quiver such that the underlying quiver
Q is without oriented cycles and let β be a symmetric dimension vector. The ring
SpSI(Q, β) is generated by semi-invariants

(i) cV if V ∈ Rep(Q) is such that 〈dimV, β〉 = 0,

(ii) pfV :=
√
cV if V ∈ Rep(Q) is such that 〈dimV, β〉 = 0, V = τ−∇V and

the almost split sequence 0 → ∇V → Z → V → 0 has the middle term Z
in ORep(Q).

Conjecture 1.2.2. Let (Q, σ) a symmetric quiver such that the underlying quiver
Q is without oriented cycles and let β be a symmetric dimension vector. The ring
OSI(Q, β) is generated by semi-invariants

(i) cV if V ∈ Rep(Q) is such that 〈dimV, β〉 = 0,

(ii) pfV :=
√
cV if V ∈ Rep(Q) is such that 〈dimV, β〉 = 0, V = τ−∇V and

the almost split sequence 0 → ∇V → Z → V → 0 has the middle term Z
in SpRep(Q).

We prove these conjectures for symmetric quivers of finite type (chapter
2) and for symmetric quivers of tame type and regular dimension vectors
β (chapter 3).
We use the following strategy. First we adjust to symmetric quivers the
technique of reflection functors. Next we prove with this technique that
we can reduce the conjectures 1.2.1 and 1.2.2 to a particular orientation of
the quiver. Then we state and prove conjectures 1.2.1 and 1.2.2 for these
orientations.

Definition 1.2.3. We will say that V ∈ Rep(Q) satisfies property (Op) if

(i) V = τ−∇V

(ii) the almost split sequence 0 → ∇V → Z → V → 0 has the middle term Z
in ORep(Q).

Similarly we will say that V ∈ Rep(Q) satisfies property (Spp) if

(i) V = τ−∇V

(ii) the almost split sequence 0 → ∇V → Z → V → 0 has the middle term Z
in SpRep(Q).

14



1.3 Reflection functors for symmetric quivers

In this section we describe the technique of reflection functors for the sym-
metric quivers.

1.3.1 Admissible sink-source pairs

We use the notation of section B.3.

Definition 1.3.1. Let (Q, σ) be a symmetric quiver. A sink (respectively source)
x ∈ Q0 is called admissible if there are no arrows connecting x and σ(x).

By definition of σ, x is a sink (respectively a source) if and only if σ(x)
is a source, so we can define the quiver cσ(x)cx(Q). We shall call (x, σ(x))
the admissible sink-source pair. The corresponding reflection is denoted by
c(x,σ(x)) := cσ(x)cx.

Lemma 1.3.2. If (Q, σ) is a symmetric quiver and x is an admissible sink or
source, then (c(x,σ(x))(Q), σ) is symmetric.

Proof. Let x ∈ Q0 be an admissible sink of (Q, σ). When we apply
c(x,σ(x)) toQ, the only arrows which we reverse are the arrows connecting to
x and those connecting to σ(x). Now in c(x,σ(x))(Q), x becomes a source and
σ(x) becomes a sink. So if a is an arrow connecting to x or to σ(x) we have
σ(tc(x,σ(x))(a)) = σ(ha) = tσ(a) = hσ(c(x,σ(x))(a)) and σ(hc(x,σ(x))(a)) =
σ(ta) = hσ(a) = tσ(c(x,σ(x))(a)). Hence c(x,σ(x))(Q) is a symmetric quiver.
One proves similarly if x is a source. 2

Definition 1.3.3. Let (Q, σ) be a symmetric quiver. A sequence x1, . . . , xm of
vertices of Q is an admissible sequence of sinks (or sources) for admissible sink-
source pairs if xi+1 is a sink such that there are no arrows linking xi+1 and σ(xi+1)
in c(xi,σ(xi)) · · · c(x1,σ(x1))(Q) for i = 1, . . . ,m− 1.

Proposition 1.3.4. Let (Q, σ) and (Q′, σ) be two symmetric connected quivers,
without cycles, with the same underlying graph and such that Q′ differs from Q
only by changing the orientation of some arrows. Then there exists a sequence
x1, . . . , xm ∈ Q0 which is an admissible sequence of sinks (or sources) for admis-
sible sink-source pairs such that

Q′ = c(xm,σ(xm)) · · · c(x1,σ(x1))(Q).

For the proof of proposition 1.3.4, we need a lemma.

Lemma 1.3.5. If (Q, σ) is a symmetric quiver with |{x → σ(x)|x ∈ Q0}| > 1,
then (Q, σ) has cycles or it is not connected.

15



Proof of lemma 1.3.5. If there are more than one arrow x → σ(x) for the
same x in Q then Q has cycles. Otherwise we suppose that Q is connected

and that there are two arrows x a→ σ(x) and y
b→ σ(y), with x 6= y in Q.

SinceQ is connected, these two arrows have to be linked with a sequence of
other arrows (this regarding their orientation). If there exists a sequence of
arrows a1, . . . , at from x to y then, by definition of σ, there exists a sequence
of arrows σ(a1), . . . , σ(at) from σ(y) to σ(x), reversed respect to a1, . . . , at.
So a1 · · · ataσ(at) · · ·σ(a1)b is a cycle. By a similar reasoning for the other
possible three links between x → σ(x) and y → σ(y) (from x to σ(y), from
y to σ(x) and from σ(x) to σ(y)), we obtain the same conclusion. 2

Proof of proposition 1.3.4. By lemma 1.3.5 we can suppose that Q has at most
one arrow x → σ(x) for some x ∈ Q0. First of all we notice that the un-
derlying graph of Q and Q′, being a connected graph without cycles, is a
tree, i.e. a graph where every vertex x has one parent and a several of chil-
dren each connected by one edge to the vertex x. We define ancestor and
descendants in obvious way and we call x ∈ Q0 a vertex without children
if there is only one edge connected to x. Let S be a set of vertices without
children in Q.
We observe, by definition of σ, that if Q 6= A2, in that case there are no
admissible sink or source, and if S contains x ∈ Q0 then it contains σ(x).
Observe that, using reflection of the admissible sink-source pair at the ver-
tex without children x, we can change arbitrarily orientation of arrow con-
nected to x and so of the arrow connected to σ(x).
We proceed by induction on the number m of generations in the tree. If
the number of generations is one, each vertex but one is without children,
applying reflection at the admissible sink-source pairs we can pass from
orientation of Q to orientation of Q′, by which we observed before.
Assume proposition true for the trees with m − 1 generations. We remove
all vertices without children from Q and Q′, so the resulting quivers Q̃ and
Q̃′ havem−1 generations and are symmetric. By inductive assumption, we
can go from Q̃ to Q̃′ by a sequence of reflections at admissible sink-source
pairs.
To pass from Q to Q′ we use the same sequence of reflections at each point,
adjusting the orientations of arrows incident to S, to get the next admissi-
ble sink-source pair if necessarily. 2

We prove some results on orientations of symmetric quivers of tame type.
The underlying graph of D̃ is a tree, so by proposition 1.3.4, we will con-
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sider a particular orientation of D̃

D̃eq : ◦

��@@@@@@@ ◦

◦ // ◦ ◦ // ◦

>>}}}}}}}

  AAAAAAA

◦

??~~~~~~~
◦.

(1.11)

Applying a compositions of reflections at admissible sink-source pairs we
can get any orientation of D̃ from D̃eq.
Now we deal with orientation of symmetric quivers with underlying quiver
of type Ã. First we prove lemma about possible exchange of orientation of
a quiver Q of type An, that does not involve reflections at the end points of
Q. We denote vertices of Q with {1, . . . , n} from left to right.

Lemma 1.3.6. Let

Q : ◦

��@@@@
��~~~~

◦

��@@@@
��~~~~

◦ ◦ ◦ ◦ ◦

◦ ◦

��@@@@ ◦

��~~~~
◦

��@@@@ ◦

��~~~~

◦ ◦ ,

with k south-west arrows and h south-east arrows. Then there exists a sequence
of admissible sinks x1, . . . , xl with xi 6= 1, n for every i ∈ {1, . . . , l}, such that
cx1 · · · cxlQ is

Q′ : ◦

��@@@@
��~~~~

◦
k arrows

◦
h arrows

◦

������
◦

  AAAA

1 n,

i.e. Q′ has 1, n as only sinks, with k south-west arrows and with h south-east
arrows.

Proof. Let x and y be two sinks closest to 1.

Q : h̃′

������
""EEEEE k′

||zzzzz
��====

◦
k′′ arrows

h′+1 k′−1 ◦
h′′ arrows

◦

������
x−1

""DDDDD x+1

||zzzzz
◦

��====

��
1 x y
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From 1 to y, Q has k′+k′′ south-west arrows and h′+h′′ south-east arrows.
We remove x by applying only reflections at vertices with number smaller
than y, as follows. We suppose k′ ≥ h′ (the other case is similar). Applying
cx we get

h′

������
""FFFFF k′

||yyyyy
��>>>>

◦
k′′ arrows

h′+1

$$

x

}}{{{{{
!!CCCCC k′−1

zz

◦
h′′ arrows

◦

������
x−1 x+1 ◦

��====

��
1 y .

Now we can apply cx−1cx+1 and so on we obtain

k′−h′−1

zzuuuuuu
&&MMMMM k′−h′+1

xxqqqqq
$$IIIIII

◦

��

k′−h′ ◦

��
h′

k′′ arrows
��

k′

h′′ arrows �� ��
1 y .

Finally, applying ck′−h′ we get

k′−h′

##GGGGG
{{wwwww

◦

~~

◦

  
h′

k′′ arrows
��

k′

h′′ arrows �� ��
1 y

in which there are (k′ − h′) + h′ + k′′ = k′ + k′′ south-west arrows and
k′ − (k′ − h′) + h′′ = h′ + h′′ south-east arrows. Removing internal sinks in
this way proves lemma. 2

Definition 1.3.7. We will say that a symmetric quiver is of type (s, t, k, l) if

(i) it is of type Ã,

(ii) |Qσ1 | = s and |Qσ0 | = t,

(iii) it has k counterclockwise arrows and l clockwise arrows in Q+
1 tQ

−
1 .

By proposition 1.1.15, s, t ∈ {0, 1, 2} and if either s or t are not zero, then
s+ t = 2. Moreover, by symmetry, we note that k and l have to be even.

Proposition 1.3.8. Let (Q, σ) be a symmetric quiver of type Ã such that Q is
without oriented cycles. Then there is an admissible sequence of sinks x1, . . . , xs
of Q for admissible sink-source pairs such that c(x1,σ(x1)) · · · c(xs,σ(xs))Q is one of
the quivers:
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(1)
Ã2,0,1
k,h : ◦ // ◦

��
◦

k
2

arrows ��

h
2

arrows
OO

◦

◦ // ◦

OO

and

(2)
Ã2,0,2
k,h : ◦ // ◦

��
◦

k
2

arrows ��

h
2

arrows
OO

◦

◦ ◦oo

OO

if (Q, σ) is of type (2, 0, k, l);

(3)
Ã0,2
k,l : •

��@@@@

◦

??~~~~
◦
��

◦
k
2
−1 arrows ��

h
2
−1 arrows

OO

◦

◦
��@@@@ ◦

OO

•

??~~~~ ,

if (Q, σ) is of type (0, 2, k, l);

(4)
Ã1,1
k,l : •

��@@@@

◦

??~~~~
◦
��

◦
h
2
−1 arrows

OO

k
2

arrows ��

◦

◦ // ◦

OO

if (Q, σ) is of type (1, 1, k, l);

(5)
Ã0,0
k,k : ◦

◦

??~~~~
◦

__@@@@

◦
k
2
−2 arrows

OO

◦

OO

◦

__@@@@
??~~~~ ,

if (Q, σ) if of type (0, 0, k, k).
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Proof. For (Q, σ) of types (2, 0, k, l), (0, 2, k, l) and (1, 1, k, l) we apply
lemma 1.3.6 respectively to the subquivers whose the underlying graphs
are

Q′ : •

◦
~~~~

◦

◦

Q′′ : •

◦
~~~~

◦

◦
@@@@

•

Q′′′ : ◦

◦

◦,

i.e. the subquivers which have as first and last vertex respectively: the σ-
fixed vertex and ta, where a is the σ-fixed arrow, for Q′; the σ-fixed vertices
for Q′′; ta and tb, where a and b are the σ-fixed arrows, for Q′′′. We note
that these three quivers have k

2 counterclockwise arrows and l
2 clockwise

arrows. So for each one of Q′, Q′′ and Q′′′ there exists a sequence of sinks
x1, . . . , xs such that cx1 · · · cxsQ′, cx1 · · · cxsQ′′ and cx1 · · · cxsQ′′′ are respec-
tively

Q′ : •

◦

??~~~~

◦
l
2
−1 arrows

OO

k
2

arrows ��
◦

Q′′ : •

◦

??~~~~

◦
k
2
−1 arrows ��

l
2
−1 arrows

OO

◦
��@@@@

•

Q′′′ : ◦

◦
k
2

arrows ��

l
2

arrows
OO

◦.

Hence, by symmetry, applying c(x1,σ(x1)) · · · c(xs,σ(xs)), we obtain the desired
orientations.
For (Q, σ) of type (0, 0, k, k) we consider a sink x of Q and we apply lemma
1.3.6 to the subquiver Q′ which has as first and last vertex respectively x
and σ(x). So there exists a sequence of sinks x1, . . . , xs such that cx1 · · · cxsQ′
is

x ◦k′ arrowsoo k′′ arrows // σ(x).

Hence, by symmetry, applying c(x1,σ(x1)) · · · c(xs,σ(xs)) we obtain

◦

x

k−k′ arrows
@@

σ(x)

k−k′′ arrows
aa

◦
k′ arrows

^^

k′′ arrows

==

i.e. the desired orientation. 2
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1.3.2 Reflection functors for symmetric quivers

Let (Q, σ) be a symmetric quiver, (x, σ(x)) a sink-source admissible pair.
For every V ∈ Rep(Q), we define the reflection functors

C+
(x,σ(x))V := C−σ(x)C

+
x V

and
C−(σ(x),x)V := C−x C

+
σ(x)V.

We note that C−σ(x)C
+
x V = C+

x C
−
σ(x)V (respectively C−x C

+
σ(x)V = C−σ(x)C

+
x V )

since there are no arrows connecting x and σ(x).

Proposition 1.3.9. Let (Q, σ) be a symmetric quiver and V be a representation of
the underlying quiver.

(i) If x is an admissible sink, then∇C+
(x,σ(x))V

∼= C+
(x,σ(x))∇V .

(ii) If x is an admissible source, then∇C−(x,σ(x))V
∼= C−(x,σ(x))∇V .

In particular for every x admissible sink and y admissible source we have

V = ∇V ⇔ C+
(x,σ(x))V = ∇C+

(x,σ(x))V ⇔ C−(y,σ(y))V = ∇C−(y,σ(y))V.

Proof. We prove (i) (the proof of (ii) is similar). Recall that x 6= σ(x),
otherwise x is not a sink. Let {a1, . . . , ak} be the set of arrows whose head
is x.

(∇C+
(x,σ(x))V )y = (C+

x C
−
σ(x)V )∗σ(y) =

(Vσ(y))∗ σ(y) 6= σ(x), x

(Coker(Vσ(x)
h̃−→
⊕k

i=1 Vhσ(ai)))
∗ σ(y) = σ(x)

(Ker(
⊕k

i=1 Vtai
h′−→ Vx))∗ σ(y) = x,

where h̃(v) = (V (σ(a1))(v), . . . , V (σ(ak))(v)) with v ∈ Vσ(x) and h′(v1, . . . , vk) =
V (a1)(v1) + · · ·+ V (ak)(vk) with (v1, . . . , vk) ∈

⊕k
i=1 Vtai .

(C+
(x,σ(x))∇V )y =

(∇Vy)y y 6= σ(x), x

Coker((∇V )σ(x)
h̃′−→
⊕k

i=1(∇V )hσ(ai)) y = σ(x)

Ker(
⊕k

i=1(∇V )tai
h−→ (∇V )x) y = x,

where h̃′(v) = (∇V (σ(a1))(v), . . . ,∇V (σ(ak))(v)) with v ∈ (∇V )σ(x) and
h(v1, . . . , vk) = ∇V (a1)(v1)+· · ·+∇V (ak)(vk) with (v1, . . . , vk) ∈

⊕k
i=1(∇V )tai .

Since (∇V )y = (Vσ(y))∗ for every y ∈ Q0 and ∇V (a) = −V (σ(a))∗, we
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have h = −h̃∗ and h′ = −h̃′∗; moreover if ϕ is a linear map, in gen-
eral we have (Ker(ϕ))∗ ∼= Coker(ϕ∗) and (Coker(ϕ))∗ ∼= Ker(ϕ∗), so
(∇C+

(x,σ(x))V )y ∼= (C+
(x,σ(x))∇V )y for every y ∈ Q0.

We note that

σ(c(x,σ(x))a) = σ(cxcσ(x)a) =


cσ(x)σ(ai) a = ai with i ∈ {1, . . . , k}
cxai a = σ(ai) with i ∈ {1, . . . , k}
σ(a) a 6= ai, σ(ai) with i ∈ {1, . . . , k}.

So we have

(∇C+
(x,σ(x))V )(c(x,σ(x))a) = −((C+

x C
−
σ(x)V )(σ(cxcσ(x)a)))∗ =

−V (σ(a))∗ a 6= aj , σ(aj) with j ∈ {1, . . . , k}
−(Vx ↪→

⊕k
i=1 Vtai � Vtaj )

∗ a = σ(aj) with j ∈ {1, . . . , k}
−(Vhσ(aj) ↪→

⊕k
i=1 Vhσ(ai) � Vσ(x))∗ a = aj with j ∈ {1, . . . , k}

and
(C+

(x,σ(x))∇V )(c(x,σ(x))a) =
∇V (a) a 6= aj , σ(aj) with j ∈ {1, . . . , k}
(∇V )x ↪→

⊕k
i=1(∇V )tai � (∇V )taj a = aj with j ∈ {1, . . . , k}

(∇V )hσ(aj) ↪→
⊕k

i=1(∇V )hσ(ai) � (∇V )σ(x) a = aj with j ∈ {1, . . . , k}.

Hence∇C+
(x,σ(x))V

∼= C+
(x,σ(x))∇V . 2

Corollary 1.3.10. Let (Q, σ) and (Q′, σ) be two symmetric quivers with the same
underlying graph. We suppose there exists a sequence x1, . . . , xm of admissible
sinks for admissible sink-source pairs such that Q′ = c(xm,σ(xm)) · · · c(x1,σ(x1))Q.
Let V ∈ Rep(Q) and V ′ = C+

(xm,σ(xm)) · · ·C
+
(x1,σ(x1))V ∈ Rep(Q

′). Then

V = τ−∇V ⇐⇒ V ′ = τ−∇V ′.

Proof. By proposition 1.3.9, we have

τ−∇V ′ = τ−∇C+
(xm,σ(xm))· · ·C

+
(x1,σ(x1))V = τ−C+

(xm,σ(xm))· · ·C
+
(x1,σ(x1))∇V =

τ−C−σ(xm)C
+
xm · · ·C

−
σ(x1)C

+
x1
τ+V = C−σ(xm)τ

−C+
xm· · ·C

−
σ(x1)τ

+C+
x1
V = · · · =

C−σ(xm)· · ·C
−
σ(x1)τ

−τ+C+
xm· · ·C

+
x1
V = C+

(xm,σ(xm)) · · ·C
+
(x1,σ(x1))V = V ′. 2

Proposition 1.3.11. Let (Q, σ) be a symmetric quiver and let x be an admissible
sink. Then

(i) V is a symplectic representation of (Q, σ) if and only if C+
(x,σ(x))V is a sym-

plectic representation;

22



(ii) V is a orthogonal representation of (Q, σ) if and only if C+
(x,σ(x))V is a or-

thogonal representation.

Similarly if x is an admissible source then C−(x,σ(x)) sends symplectic representa-
tions to symplectic representations and orthogonal representations to orthogonal
representations.

Proof. By proposition 1.3.9 we have V = ∇V if and only if C+
(x,σ(x))V =

∇C+
(x,σ(x))V . To define an orthogonal (respectively symplectic) structure

on C+
(x,σ(x))V the only problem could occur at the vertices fixed by σ. But,

by definition of admissible sink and of the involution σ, fixed vertices and
fixed arrows don’t change under our reflection. The proof is similar for
C−(x,σ(x)) with x an admissible source. 2

Next we prove that the reflection functors for symmetric quivers preserve
the rings of orthogonal and symplectic semi-invariants. We need some ba-
sic property of Grasmannians.

Definition 1.3.12. Let W be a vector space of dimension n. Consider the set of
all decomposable tensor w1 ∧ . . . ∧ wr, with w1, . . . , wr ∈ W , inside

∧rW . This
set is an affine subvariety of the space vector

∧rW , called affine cone over the
Grasmannian. It will be denoted by G̃r(r,W ).

Definition 1.3.13. The Grasmannian Gr(r,W ) is the projective subvariety of
P(
∧rW ) corresponding to G̃r(r,W ).

This variety can be thought as the set of r-dimensional subspaces of W .
The identification between

∧rW and
∧n−rW ∗ induces an identification

between G̃r(r,W ) and G̃r(n− r,W ∗) and so between Gr(r,W ) and Gr(n−
r,W ∗). By the first fundamental theorem (FFT) for SLV (see [P, chapter 11
section 1.2 ]), it follows that

K[V ⊗W ]SLV ∼= K[G̃r(r,W )],

where r = dim(V ).

Lemma 1.3.14. If x is an admissible sink or source for a symmetric quiver (Q, σ)
and α is a dimension vector such that c(x,σ(x))α(x) ≥ 0, then

i) if c(x,σ(x))α(x) > 0 there exist isomorphisms

SpSI(Q,α)
ϕSpx,α−→ SpSI(c(x,σ(x))Q, c(x,σ(x))α)

and

OSI(Q,α)
ϕOx,α−→ OSI(c(x,σ(x))Q, c(x,σ(x))α),
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ii) if c(x,σ(x))α(x) = 0 there exist isomorphisms

SpSI(Q,α)
ϕSpx,α−→ SpSI(c(x,σ(x))Q, c(x,σ(x))α)[y]

and

OSI(Q,α)
ϕOx,α−→ OSI(c(x,σ(x))Q, c(x,σ(x))α)[y]

where A[y] denotes a polynomial ring with coefficients in A.

Proof. We will prove the lemma for the symplectic case because the
orthogonal case is similar. Let x ∈ Q0 be an admissible sink. Put r = α(x)
and n =

∑
ha=x α(ta). We note that c(x,σ(x))α(x) = n − r. Put V = Kr,

V ′ = Kn−r and W =
⊕

ha=x Kα(ta) ∼= Kn. We define

Z =
⊕
a∈Q+

1
ha6=x

Hom(Kα(ta),Kα(ha))⊕
⊕
a∈Qσ1

S2(Kα(ta))∗

and
G =

∏
y∈Q+

0
y 6=x

SL(α(y))×
∏
y∈Qσ0

Sp(α(y)).

Proof of i). If c(x,σ(x))α(x) > 0 we have

SpSI(Q,α) = K[SpRep(Q,α)]SSp(Q,α) =

K[Z ×Hom(W,V )]G×SLV = (K[Z]⊗K[Hom(W,V )]SLV ]G =

(K[Z]⊗K[G̃r(r,W ∗)])G

and
SpSI(c(x,σ(x))Q, c(x,σ(x))α) =

K[SpRep(c(x,σ(x))Q, c(x,σ(x))α)]SSp(c(x,σ(x))Q,c(x,σ(x))α) =

K[Z ×Hom(V ′,W )]G×SLV
′

= (K[Z]⊗K[Hom(V ′,W )]SLV
′
]G =

(K[Z]⊗K[G̃r(n− r,W )])G.

Since G̃r(r,W ∗) and G̃r(n− r,W ) are isomorphic as G-varieties, it follows
that SpSI(Q,α) and SpSI(c(x,σ(x))Q, c(x,σ(x))α) are isomorphic.
Proof ii). If c(x,σ(x))α(x) = 0, then n = r and V ′ = 0. So G̃r(0,W ) is a point
and hence

SpSI(Q,α) = (K[Z]⊗K[Hom(W,V )])G×SLV (1.12)

is isomorphic to

SpSI(c(x,σ(x))Q, c(x,σ(x))α) = (K[Z]⊗K[Hom(V ′,W )])G×SLV = K[Z]G×SL(V ).
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Now let A = {a ∈ Q+
1 |ha = x}. Using theorem A.1.9, each summand

of (1.12) contains (
⊗

a∈A Sλ(a)V )SLV as factor. By proposition A.2.8 each
λ(a), with a ∈ A, has to contain a column of height α(ta), hence λ(a) =
µ(a) + (1α(ta)), for some µ(a) in the set of partitions Λ. So as factor we have

⊗
a∈A

(S(1α(ta))K
α(ta))SLVta ⊗

(⊗
a∈A

S(1α(ta))V

)SLV

which is generated by det(
⊕

ha=x Kα(ta) → Kα(x)). On the other hand we
have K[Hom(W,V )])G×SLV = K[det(

⊕
ha=x Kα(ta) → Kα(x))] and so we

have the statement ii), with y = det(
⊕

ha=x Kα(ta) → Kα(x)). 2

1.4 Semi-invariants of symmetric quivers

In this section we prove some general results about semi-invariants of sym-
metric quivers with underlying quiver without oriented cycles.
We assume that (Q, σ) is a symmetric quiver with underlying quiver Q
without oriented cycles for rest of the thesis.
We recall that, by definition, symplectic groups or orthogonal groups act
on the spaces which are defined on the σ-fixed vertices, so we have

Definition 1.4.1. Let V be a representation of the underlying quiver Q with
dimV = α such that 〈α, β〉 = 0 for some symmetric dimension vector β. The
weight of cV on SpRep(Q, β) (respectively onORep(Q, β)) is 〈α, ·〉−

∑
x∈Qσ0

εx,α,
where

εx,α(y) =
{
〈α, ·〉(x) y = x
0 otherwise. (1.13)

In general we define an involution γ on the space of weights 〈α, ·〉 with
α dimension vector.

Definition 1.4.2. Let α be the dimension vector of a representation V of the un-
derlying quiver Q and let 〈α, ·〉 = χ = {χ(i)}i∈Q0 be the weight of cV . We define
γχ = {γχ(i)}i∈Q0 where γχ(i) = −χ(σ(i)) for every i ∈ Q0

We number vertices in such way that ta < ha for every a ∈ Q1. We note
that χ = 〈α, ·〉 = (α(j)−

∑
i<j bi,jα(i))j∈Q0 ,

where bi,j := |{a ∈ Q1|ta = i, ha = j}| = |{a ∈ Q1|ta = σ(j), ha = σ(i)}| =:
bσ(j),σ(i).

Lemma 1.4.3.

γχ = 〈τ−δα, ·〉 = 〈dim(τ−∇V ), ·〉, (1.14)

i.e. γχ is the weight of cτ−∇V . Moreover γ is an involution.
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Proof. By definition of γ, γχ(j) = −α(σ(j)) +
∑

i<j bi,jα(σ(i)). Now it
follows by theorem B.1.9 that 〈τ−δα, ·〉 = −〈·, δα〉, thus, for every j ∈ Q0,
〈τ−δα, ·〉(j) = −〈·, δα〉(j) = −δα(j) +

∑
i<j bi,jδα(i) = γχ(j). Hence

γχ = 〈τ−δα, ·〉. 2

Moreover, since γγχ(i) = γ(−χ(σ(i))) = χ(σσ(i)) = χ(i) for every i ∈ Q0,
γ is an involution.
If β is the dimension vector of a representation W of the underlying quiver
Q, we have

〈α, β〉 = 0⇔ 〈τ−δα, δβ〉 = 0. (1.15)

Indeed, by theorem B.1.9,

〈α, β〉 = 〈δβ, δα〉 = −〈τ−δα, δβ〉. (1.16)

Since β is the dimension vector of an orthogonal or symplectic representa-
tion W , we have that β is a symmetric dimension vector and so

〈α, β〉 = 0⇔ 〈τ−δα, β〉 = 0. (1.17)

Lemma 1.4.4. Let (Q, σ) be a symmetric quiver. For every representation V of
the underlying quiver Q and for every orthogonal or symplectic representation W
such that 〈dim(V ), dim(W )〉 = 0, we have

cV (W ) = cτ
−∇V (W ).

Proof. It follows directly from lemma B.5.3. 2

Now we prove in general a crucial lemma which will be useful later. Let
(Q, σ) be a symmetric quiver. If V is a representation of the underlying
quiver Q such that V = τ−∇V then, by the theorem B.1.11, there exists an
almost split sequence 0→ ∇V → Z → V → 0 with Z ∈ Rep(Q). Moreover
for such V ∈ Rep(Q) with dimV = α we have α = τ−δα and γχ = χ,
where χ = 〈α, ·〉. So χ(i) = γχ(i) = −χ(σ(i)) for every i ∈ {1, . . . , n}, in
particular χ(i) = 0 if σ(i) = i.

Definition 1.4.5. A weight χ such that γχ = χ is called a symmetric weight.

Lemma 1.4.6. Let (Q, σ) be a symmetric quiver of finite type or of tame type. Let
dVmin be the matrix of the minimal projective presentation of V ∈ Rep(Q,α) and
let β be a symmetric dimension vector such that 〈α, β〉 = 0. Then

(1) HomQ(dVmin, ·) is skew-symmetric on SpRep(Q, β) if and only if V satis-
fies property (Op);

(2) HomQ(dVmin, ·) is skew-symmetric on ORep(Q, β) if and only if V satisfies
property (Spp).
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Proof. We use notation of section B.2. We call (Q′, σ) the symmetric
quiver with the same underlying graph of (Q, σ) such that

(i) ifQ is of typeA, thenQ′ has all the arrows with the same orientations;

(ii) if Q is of type Ã, then Q′ is one of the quiver as in proposition 1.3.8 (it
depends on which kind of quiver is Q);

(iii) if Q is of type D̃, then Q′ is D̃eq (see picture (1.11)).

By propositions 1.3.4 and 1.3.8, there exists a sequence x1, . . . , xm of admis-
sible sink for admissible sink-source pairs such that c(xm,σ(xm)) · · · c(x1,σ(x1))Q =
Q′. We call V ′ := C+

(xm,σ(xm)) · · ·C
+
(x1,σ(x1))V for every V ∈ Rep(Q) and if

α = dimV , then α′ := c(xm,σ(xm)) · · · c(x1,σ(x1))α. We note that, by corollary
1.3.10 and proposition 1.3.11, V satisfies property (Op) (respectively prop-
erty (Spp)) if and only if V ′ satisfies property (Op) (respectively property
(Spp)). We prove only (1), because the proof of (2) is similar.

Type A. Let (An, σ) be a symmetric quiver of type A. We enumerate ver-
tices with 1, . . . , n from left to right and we call ai the arrow with i on the
left and i+ 1 on the right. We define σ by σ(i) = n− i+ 1 for every i ∈ Q0

and σ(ai) for every i ∈ {1, . . . , n−1}. Let V ′ = Vi,σ(i)−1, i.e. is the indecom-
posable of An such that

(dimVi,σ(i)−1)j =
{

1 j ∈ {i, . . . , σ(i)− 1}
0 otherwise.

We note that ∇V ′ = Vi+1,σ(i) = τ+V ′ and Z ′ = Vi,σ(i) ⊕ Vi+1,σ(i)−1. So, by
definition 1.1.3, on Z ′ we can define a structure of orthogonal representa-
tion if n is odd and a structure of symplectic representation if n is even. So
it’s enough to check when HomQ(dVmin, ·) is skew symmetric and, for type
A, we do it explicitly.
Let χ = 〈α, ·〉 −

∑
x∈Qσ0

εx,α be the symmetric weight associated to α. If m1

is the first vertex such that χ(m1) 6= 0, in particular we suppose χ(m1) = 1,
then the last vertexms such that χ(ms) 6= 0 isms = σ(m1) and χ(ms) = −1.
Between m1 and ms, -1 and 1 alternate in correspondence respectively of
sinks and of sources. Moreover, by definition of symmetric weight, we
have s = 2l for some l ∈ N. We call i2, . . . , il the sources, j1, . . . , jl−1

the sinks, i1 = m1 and jl = ms. Hence we have σ(it) = jl−t+1 and
i1 < j1 < . . . < il < jl. Now the minimal projective resolution for V
is

0 −→
jl⊕

j=j1

Pj
dVmin−→

il⊕
i=i1

Pi −→ V −→ 0 (1.18)
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and for the remark above we have

0 −→
jl⊕

j=j1

Pj
dVmin−→

jl⊕
j=j1

Pσ(j) −→ V −→ 0, (1.19)

with

(dVmin)hk =


−aik+1,jk if h = l − k
aik,jk if h = l − k + 1
0 otherwise,

(1.20)

where ai,j is the oriented path from i to j.
Hence

Hom(dVmin,W ) :
jl⊕

j=j1

W (σ(j)) =
jl⊕

j=j1

W (j)∗ −→
jl⊕

j=j1

W (j) (1.21)

where

(Hom(dVmin,W ))hk =


−W (aih+1,jh) if k = l − h
W (aih,jh) if k = l − h+ 1
0 otherwise.

(1.22)

Now W is orthogonal or symplectic, so for k 6= h, if k = l − h+ 1 we have

(Hom(dVmin,W ))hk = W (aih,jh) = W (aσ(jl−h+1),jh) = −W (aσ(jh),jl−h+1
)t =

−W (ail−h+1,jl−h+1
)t = −W (aik,jk)t = −((Hom(dVmin,W ))kh)t.

In a similar way it proves that if k = l − h then (Hom(dVmin,W ))hk =
−((Hom(dVmin,W ))kh)t.
Finally the only cases for which (Hom(dVmin,W ))hh 6= 0 are when h =
l− h+ 1 and h = l− h. In the first case (the second one is similar) we have
(Hom(dVmin,W ))hh = W (aih,jh) = W (aσ(jh),jh) and−((Hom(dVmin,W ))hh)t =
−W (aih,jh)t = −W (aσ(jh),jh)t. But W (aσ(jh),jh) = −W (aσ(jh),jh)t for n even
if and only if W ∈ ORep(Q), for n odd if and only if W ∈ SpRep(Q).

We consider the tame case. First we note, by Auslander-Reiten quiver of
Q, that if (Q, σ) is a symmetric quiver of tame type, then the only represen-
tations V ∈ Rep(Q) such that τ−∇V = V are regular ones.

Type Ã. We prove lemma only for Q of type (1, 1, k, l) because for the
other cases it proceeds similarly. We consider the following labelling for
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Q′ = Ã1,1
k,l :

• σ(v l
2

)

  BBBB

◦

v l
2
??~~~~

◦
σ(v l

2−1
)

��
◦

v l
2−1

OO

◦

◦ ◦
σ(v1)��

◦
u1 ��

v1

OO

◦

◦ ◦
σ(u1)
OO

◦
u k

2 ��

◦

◦
b
// ◦.
σ(u k

2
)

OO

The following indecomposable representations V ′ ∈ Rep(Q′) satisfy prop-
erty (Op). The other regular indecomposable representations of Rep(Q′)
satisfying property (Op) are extensions of these.

(a) V(0,1); in this case Z ′ = E1
h ⊕ E2,0 where E1

h is the regular indecom-
posable representation of dimension e1 + h with socle E1.

(b) Ei,j−1, with 1 ≤ i < j ≤ l + 1, such that ∇Ei,j−1 = Ei+1,j ; in this case
we have Z ′ = Ei+1,j−1 ⊕ Ei,j .

(c) E′i,j−1, with 2 ≤ j < i− 1 ≤ k + 1, such that ∇E′i,j−1 = E′i+1,j ; in this
case we have Z ′ = E′i+1,j−1 ⊕ E′i,j .

Let χ be the symmetric weight associated to α. We order vertices ofQ clock-
wise from tb = 1 to hb = k + l + 1. We use the same notation of type A for
vertices on which the components of χ are not zero.
Let W be a symplectic representation. We prove that HomQ(dVmin,W ) is
skew-symmetric for every regular indecomposable representation V of type
(a), (b) and (c). First we observe that the associated to V symmetric weight
χ have components equal to 0, 1 and -1. In particular, χ(m1) = ±1 =
−χ(ms) and χ(mi) = 1,−1, for every i ∈ {2, . . . , s − 1}, respectively if mi

is a source or a sink. We note that, for every HomQ(dVmin,W ) with V one
representation of type (a), (b) and (c), we can restrict to the symmetric sub-
quiver of type A which has first vertex m1 and last vertex ms and passing
through the σ-fixed vertex of Q. Hence it proceeds as done for type A.
Finally, if V is the middle term of a short exact sequence 0 → V 1 → V →
V 2 → 0, with V 1 and V 2 one of the representations of type (a), (b) or (c), we
have the blocks matrix

HomQ(dVmin, ·) =

(
HomQ(dV

1

min, ·) 0
HomQ(B, ·) HomQ(dV

2
, ·)

)
.
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where dV
1

min : P 1
1 → P 1

0 is the minimal projective presentation of V 1, dV
2

min :
P 2

1 → P 2
0 is the minimal projective presentation of V 2 and for some B ∈

HomQ(P 2
1 , P

1
0 ). In general for every blocks matrix we have

(
A 0
0 C

)
=(

Id 0
−BA−1 Id

)
·
(
A 0
B C

)
if A is invertible. Hence using rows opera-

tions on HomQ(dVmin, ·), we obtain

HomQ(dVmin, ·) ≈

(
HomQ(dV

1

min, ·) 0
0 HomQ(dV

2

min, ·)

)
.

So it’s enough to prove the skew-symmetry of HomQ(dVmin, ·) for V one of
representations of type (a), (b) and (c).

Type D̃. We prove lemma only for Q = D̃0,1
n because for the case D̃1,0

n

it proceeds similarly. We consider the following labelling for (D̃0,1
n )eq:

◦
a

��@@@@@@@ ◦

◦ c1 // ◦ ◦ cn−3 // •σ(cn−3)// ◦ ◦ σ(c1) // ◦

σ(a)
??~~~~~~~

σ(b) ��@@@@@@@

◦
b

??~~~~~~~
◦

We consider again indecomposable representations V ′ ∈ Rep(Q′) satisfy-
ing property (Op). The other regular indecomposable representations of
Rep(Q′) satisfying property (Op). are extensions of these.

(a) Ei,j−1, with 1 ≤ i < j ≤ 2n − 3 or 2 ≤ j < i − 1 ≤ 2n − 4, such that
∇Ei,j−1 = Ei+1,j ; in this case we have Z ′ = Ei+1,j−1 ⊕ Ei,j .

(b) E′′0 and E′′1 . We note that∇E′′0 = E′′1 = τ+E′′0 ,∇E′′1 = E′′0 = τ+E′′1 and
the respective Z ′ are

K ( 1
0)
  BBBB K

K2 // K2

(1 1)   
BBBB

(1,0) >>||||

K ( 1
1)

>>||||
K

and K ( 1
1)
  BBBB K

K2 // K2

(1 0)   
BBBB

(1,1) >>||||

K ( 1
0)

>>||||
K

.

where linear maps defined on ci, with 1 ≤ i ≤ n − 3, are identity
maps.

(c) V(0,1) and V(1,1); respectively Z ′ = En−1
h ⊕ E0,2n−6 and Z ′ = E1

h ⊕
E2n−6,0 where E1

h and En−1
h are the regular indecomposable repre-

sentations respectively of dimension e1 + h and en−1 + h.
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We consider the following labelling of vertices end arrows for D̃0,1
n :

1
a
99999 2n− 2 = σ(1)

3 2n− 3 = σ(3)

σ(a)
TTTTTTTT

σ(b) jjjjjjjj

2
b

�����
2n− 1 = σ(2)

and we call ci−2 the arrow such that tci−2 = i.
Let χ be the symmetric weight associated to V . We use the same notation
of type A for vertices from 3 to 2n − 3 on which the components of χ are
not zero. Suppose that 1 and 2 are source (the other cases are similar). We
check when HomQ(dVmin, ·) is skew-symmetric, for V of type (a), (b) and (c)

(a) Let V be one of representation of type (a). We note that either χ(1) =
0 = χ(2) or χ(1) 6= 0 6= χ(2). If χ(1) = 0 = χ(2), then we have
χ(m1) = ±1 = −χ(ms) and χ(mi) = 1,−1, for every i ∈ {2, . . . , s−1},
respectively if mi is a source or a sink. Hence it proceeds as in type A.
If χ(1) 6= 0 6= χ(2) then −χ(2n − 2) = χ(1) = 1 = χ(2) = −χ(2n − 1
and we have χ(mi) = 1,−1, for every i ∈ {1, . . . , s}, respectively ifmi

is a source or a sink. Let i1 < . . . < it be the sources from 3 to 2n − 3
and let j1 < . . . < jt be the sinks from 3 to 2n − 3. We also note that
j1 < i1 < . . . < jt < it.
dVmin is a matrix (t+ 2)× (t+ 2) whose entries are

(dVmin)h,k =


−aik+1,jk h = t− k and 1 ≤ k ≤ t− 1
aik,jk h = t− k + 1 and 1 ≤ k ≤ t
−ai,j1 h = t+ i and k = 1 for i = 1, 2
−σ(ai,j1) h = 1 and k = t+ i for i = 1, 2
0 otherwise

where ai,j is oriented path from i to j.
Finally, as for the typeA, we note thatHomQ(dVmin,W ) is skew-symmetric
if and only if W ∈ SpRep(D̃0,1

n , β).

(b) Let V be a representation of type (b). We note that if χ if the weight
associated to E′′0 , then −χ(2n− 2) = χ(1) = 1 and χ(mi) = 1,−1, for
every i ∈ {1, . . . , s}, respectively if mi is a source or a sink. So we can
proceed as in type A.

(c) Let V be a representation of type (c). We use the same notation of part
(a) of type D̃. We note that−χ(2n−2) = χ(1) = 1 = χ(2) = −χ(2n−1
and we have χ(mi) = 2,−2, for every i ∈ {1, . . . , s}, respectively if
mi is a source or a sink.
In the remainder of the proof, we use notation of section B.5. In this

case, dVmin is a blocks (2t+ 2)× (2t+ 2)-matrix
(
A C
B 0

)
. Here
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(i) A is a 2t× 2t-matrix with 2× 2-blocks Ah,k, defined as follows

Ah,k =


(−aik+1,jk)Id2 h = t− k and 1 ≤ k ≤ t− 1
(aik,jk)Id2 h = t− k + 1 and 1 ≤ k ≤ t
0 otherwise.

(ii) B is a 2× 2t-matrix, whose entries bh,k are{
(−1)h+k+1ah,j1 h = 1, 2 and k = 1, 2

0 otherwise.

(iii) C is a 2t× 2-matrix, whose entries ch,k are{
(−1)h+k+1σ(ak,j1) h = 1, 2 and k = 1, 2

0 otherwise.

Finally, as for the typeA, we note thatHomQ(dVmin,W ) is skew-symmetric
if and only if W ∈ SpRep(D̃0,1

n , β).

At last it remains to prove that lemma is true also for every V decomposable
representation. But we note that if V = V 1 ⊕ V 2, then

(i) V satisfies property (Op) if and only if V 1 and V 2 satisfy property
(Op);

(ii) dVmin =

(
dV

1

min 0
0 dV

2

min

)
.

This concludes the proof. 2

1.5 Relations between semi-invariants of (Q, σ) and of
(c(x,σ(x))(Q), σ)

Let (Q, σ) be a symmetric quiver and let x be an admissible sink of (Q, σ).
First we consider the action of c(x,σ(x)) on the weights of semi-invariants

Lemma 1.5.1. Let (Q, σ) be a symmetric quiver and let x be an admissible sink-
source of Q. If χ = 〈α, ·〉 −

∑
x∈Qσ0

εx,α is a weight for some dimension vector α
(see definition 1.4.1), then

(c(x,σ(x))χ)(y) =


−χ(x) y = x
−χ(σ(x)) y = σ(x)
χ(y) + bx,yχ(x) y 6∈ Qσ0 ∪ {x}
χ(y) + bσ(x),yχ(x) y 6∈ Qσ0 ∪ {σ(x)}
0 otherwise,

(1.23)

where bx,y is the number of arrows linking x and y.
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Proof. First we note that, by definition, χ(y) = 0 for every y ∈ Qσ0 .

(i) If y = x, then y 6∈ Qσ0 and

(c(x,σ(x))χ)(x) = (c(x,σ(x))α)(x) =
∑
a∈Q1:
ha=x

α(ta)− α(x) = −χ(x).

Similarly one proves the case y = σ(x).

(ii) If y = ta 6∈ Qσ0 ∪ {x} such that ha = x in Q, then y = hc(x,σ(x))a such
that tc(x,σ(x))a = x in c(x,σ(x))Q and

(c(x,σ(x))χ)(y) =

(c(x,σ(x))α)(y)−
∑

a∈c(x,σ(x))Q1:

ha=y and ta 6=x

(c(x,σ(x))α)(ta)−
∑

a∈c(x,σ(x))Q1:

ha=y and ta=x

(c(x,σ(x))α)(x) =

α(y)−
∑
a∈Q1:
ha=y

α(ta) +
∑
a∈Q1:
ha=x

(α(x)−
∑
a∈Q1:
ha=x

α(ta)) =

χ(y) + bx,yχ(x).

Similarly one proves the case y = hσ(a) 6∈ Qσ0 ∪ {σ(x)} such that
tσ(a) = x in Q.

(iii) Finally we have to consider y such that there are no arrows linking y
and x (i.e. bx,y = 0) and no arrows linking y and σ(x). In this case

(c(x,σ(x))χ)(y) =

(c(x,σ(x))α)(y)−
∑

a∈c(x,σ(x))Q1:

ha=y

(c(x,σ(x))α)(ta) =

α(y)−
∑
a∈Q1:
ha=y

α(ta) =

χ(y).

Similarly one proves for σ(x). 2

Next we study the relation between SpSI(Q,α) and SpSI(c(x,σ(x))Q, c(x,σ(x))α)
(respectively between OSI(Q,α) and
OSI(c(x,σ(x))Q, c(x,σ(x))α)) with the following lemmas

Lemma 1.5.2. Let (Q, σ) be a symmetric quiver, let x be a sink and let α be the
dimension vector of a symplectic representation.
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(i) If V ∈ Rep(Q) is indecomposable, not projective, such that C+
(x,σ(x))V is

not projective and 〈dimV, α〉 = 0, then cV ∈ SpSI(Q,α) and cC
+
(x,σ(x))

V ∈
SpSI(c(x,σ(x))Q, c(x,σ(x))α).

(ii) If V = Sx and 〈dimSx, c(x,σ(x))α〉 = 0, then cSx and cC
−Sσ(x) in

SpSI(c(x,σ(x))Q, c(x,σ(x))α), where Sx and Sσ(x) are considered as repre-
sentation of c(x,σ(x))Q, but cSx and cC

−Sσ(x) are zero for Q. Moreover
cSx = cC

−Sσ(x) .

(iii) If V = C−Sx and 〈dimC−Sx, α〉 = 0, then we have cC−Sx , cSσ(x) ∈
SpSI(Q,α) but they are zero for c(x,σ(x))Q. Moreover cSσ(x) = cC

−Sx .

Lemma 1.5.3. Let (Q, σ) be a symmetric quiver, let x be a sink and let α be the
vector dimension of an orthogonal representation.

(i) If V ∈ Rep(Q) is indecomposable, not projective and such thatC+
(x,σ(x))V is

not projective and 〈dimV, α〉 = 0, then cV ∈ OSI(Q,α) and cC
+
(x,σ(x))

V ∈
OSI(c(x,σ(x))Q, c(x,σ(x))α).

(ii) If V = Sx and 〈dimSx, c(x,σ(x))α〉 = 0, then we have cSx and cC
−Sσ(x)

in OSI(c(x,σ(x))Q, c(x,σ(x))α), where Sx and Sσ(x) are considered as rep-
resentation of c(x,σ(x))Q, but cSx and cC

−Sσ(x) are zero for Q. Moreover
cSx = cC

−Sσ(x) .

(iii) If V = C−Sx and 〈dimC−Sx, α〉 = 0, then we have cC−Sx , cSσ(x) ∈
OSI(Q,α) but they are zero for c(x,σ(x))Q. Moreover cSσ(x) = cC

−Sx .

We prove only lemma 1.5.2 because the proof of lemma 1.5.3 is similar.
Proof. First of all we note that if x is an admissible sink, then Sσ(x) 6=
τ−∇Sσ(x) and C−Sx 6= τ−∇C−Sx and so, by lemma 1.4.6, we can not de-
fine both pfSσ(x) and pfC

−Sx . It’s enough to prove the first one because,
by lemma B.3.9, τ−∇C−Sx = τ−∇τ−Sx = ∇τ+τ−Sx = ∇Sx = Sσ(x). If
Sσ(x) = τ−∇Sσ(x), by theorem B.1.11 there exists an almost split sequence

0 −→ ∇Sσ(x) = Sx −→ Z −→ Sσ(x) −→ 0. (1.24)

Hence (dimZ)y =
{

1 if y = x, σ(x)
0 otherwise

and so either Z = Sx ⊕ Sσ(x) which

is an absurd because (1.24) would be a split sequence, or Z is indecompos-
able and thus there is an arrow σ(x)→ x which is not possible since x is an
admissible sink.

We recall that (dimSσ(x))y =
{

1 if σ(x) = y
0 otherwise

, that αx = ασ(x) for every

x ∈ Q0 and, by theorem B.1.9, that 〈dimC−Sx, α〉 = −〈α, dimSx〉. So, for
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a dimension vector α of a symplectic (respectively orthogonal) representa-
tion, 〈dimSσ(x), α〉 = ασ(x) −

∑
a∈Q1:ha=x ασ(ta) = αx −

∑
a∈Q1:ha=x αta =

〈α, dimSx〉 = −〈dimC−Sx, α〉. Similarly we have 〈dimSx, c(x,σ(x))α〉 =
−〈dimC−Sσ(x), c(x,σ(x))α〉. Hence, since x is a sink ofQ and σ(x) is a sink of
c(x,σ(x))Q, it’s enough to apply lemma B.6.1 to bothQ and c(x,σ(x))Q. Finally
τ−∇Sσ(x) = τ−Sx = C−Sx and τ−∇C−Sσ(x) = τ−τ+∇Sσ(x) = Sx, so, by
lemma 1.4.4, cSx = cC

−Sσ(x) and cSσ(x) = cC
−Sx . 2

We observe that, by proposition 1.3.9, τ−∇V = V if and only if τ−∇C+
(x,σ(x))V =

C+
(x,σ(x))V . Let α be a symmetric dimension vector. We recall that αy =

c(x,σ(x))αy for every y 6= x, σ(x) and (c(x,σ(x))α)x =
∑

a∈Q1:ha=x αta − αx =∑
a∈Q1:ha=x ασ(ta) − ασ(x) = (c(x,σ(x))α)σ(x), so we consider three cases.

(i) 0 6= αx 6=
∑

a∈Q1:ha=x αta, i.e. 〈dimSσ(x), α〉 6= 0 and 〈dimSx, c(x,σ(x))α〉 6=
0.

(ii) 0 = αx 6=
∑

a∈Q1:ha=x αta, i.e. 〈dimSσ(x), α〉 6= 0 and 〈dimSx, c(x,σ(x))α〉 =
0.

(iii) 0 6= αx =
∑

a∈Q1:ha=x αta, i.e. 〈dimSσ(x), α〉 = 0 and 〈dimSx, c(x,σ(x))α〉 6=
0.

We note that 0 = αx =
∑

a∈Q1:ha=x αta is not possible, unless αta = 0 for
every a such that ha = x.

Proposition 1.5.4. Let (Q, σ) be a symmetric quiver. Let α be a symmetric di-
mension vector, x be an admissible sink and ϕSpx,α be as defined in lemma 1.3.14.
Then ϕSpx,α(cV ) = cC(x,σ(x))V and ϕSpx,α(pfW ) = pfC(x,σ(x))W , where V and W are
indecomposables of Q such that 〈dimV, α〉 = 0 = 〈dimW,α〉 and W satisfies
property (Op). In particular

(i) if 0 = αx 6=
∑

a∈Q1:ha=x αta, then (ϕSpx,α)−1(cSx) = 0;

(ii) if 0 6= αx =
∑

a∈Q1:ha=x αta, then ϕSpx,α(cSσ(x)) = 0.

Proof. We consider the same notation of proof of lemma 1.3.14. If x is an
admissible sink of (Q, σ), then we have

C−(x,σ(x))(Z ×Hom(V ′,W )) = C−(x,σ(x))(SpRep(c(x,σ(x))Q, c(x,σ(x))α)) =

SpRep(Q,α) = Z ×Hom(W,V ).

So, by definition,

C−(x,σ(x))|Z(SpRep(c(x,σ(x))Q, c(x,σ(x))α)) = Z

and

C−(x,σ(x))|Hom(V ′,W )(SpRep(c(x,σ(x))Q, c(x,σ(x))α)) = Hom(W,V ).
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Now C−(x,σ(x)) induces a ring morphism

φSpx,α : K[SpRep(Q,α)] −→ K[SpRep(c(x,σ(x))Q, c(x,σ(x))α)]
f 7−→ f ◦ C−(x,σ(x))

By proof of lemma 1.3.14, we note that

K[C−(x,σ(x))Z × C
−
(x,σ(x))Hom(V ′,W )]SSp(Q,α) = K[Z ×Hom(W,V )]SSp(Q,α)

is isomorphic by ϕSpx,α to K[Z × Hom(V ′,W )]SSp(c(x,σ(x))Q,c(x,σ(x))α). Hence
ϕSpx,α = φSpx,α|SpSI(Q,α) and so for every representation Z of dimension vector
α of (Q, σ) we have

ϕSpx,α(cV )(C+
(x,σ(x))Z) = (cV ◦ C−(x,σ(x)))(C

+
(x,σ(x))Z) = cV (Z) (1.25)

and

ϕSpx,α(pfW )(C+
(x,σ(x))Z) = (pfW ◦ C−(x,σ(x)))(C

+
(x,σ(x))Z) = pfW (Z). (1.26)

By lemma B.5.1 and B.5.2 we have cV (Z) = λ · cC
+
(x,σ(x))

V (C+
(x,σ(x))Z), for

some λ ∈ K. So, by (1.25), ϕSpx,α sends cV to cC
+
(x,σ(x))

V up to a constant in K.
Similarly for pfW . Finally (i) and (ii) follow by lemma 1.5.2. 2

Proposition 1.5.5. Let (Q, σ) be a symmetric quiver. Let α be a symmetric di-
mension vector, x be an admissible sink and ϕOx,α be as defined in lemma 1.3.14.
Then ϕOx,α(cV ) = cC(x,σ(x))V and ϕOx,α(pfW ) = pfC(x,σ(x))W , where V and W are
indecomposables of Q such that 〈dimV, α〉 = 0 = 〈dimW,α〉 and W satisfies
property (Spp). In particular

(i) if 0 = αx 6=
∑

a∈Q1:ha=x αta, then (ϕOx,α)−1(cSx) = 0;

(ii) if 0 6= αx =
∑

a∈Q1:ha=x αta, then ϕOx,α(cSσ(x)) = 0.

Proof. It is similar to that one of proposition 1.5.4. 2

By previous propositions and by lemma 1.3.14 it follows that if the con-
jectures 1.2.1 and 1.2.2 are true for a symmetric quiver (Q, σ), then they are
true for (c(x,σ(x))Q, σ).

1.6 Composition lemmas

We conclude this chapter with general lemmas which will be useful in our
proofs.
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Lemma 1.6.1. Let

(Q, σ) : · · · y a−→ x
b−→ z · · ·σ(z)

σ(b)−→ σ(x)
σ(a)−→ σ(y) · · ·

be a symmetric quiver. Assume the underlying quiver with n vertices. Also assume
there exist only two arrows in Q+

1 incident to x ∈ Q+
0 , a : y → x and b : x → z

with y, z ∈ Q+
0 ∪ Qσ0 . Let V be an orthogonal or symplectic representation with

symmetric dimension vector (α1, . . . , αn) = α such that αx ≥ max{αy, αz}.
We define the symmetric quiver Q′ = ((Q′0, Q

′
1), σ) with n− 2 vertices such that

Q′0 = Q0 \ {x, σ(x)} and Q′1 = Q1 \ {a, b, σ(a), σ(b)} ∪ {ba, σ(a)σ(b)}, i.e.

Q′ : · · · y ba−→ z · · ·σ(z)
σ(a)σ(b)−→ σ(y) · · · ,

and let α′ be the dimension of V restricted to Q′.
We have:

(Sp) Assume V symplectic. Then

(a) if αx > max{αy, αz} then SpSI(Q,α) = SpSI(Q′, α′),

(b) if αx = αy > αz then SpSI(Q,α) = SpSI(Q′, α′)[detV (a)],

(b’) if αx = αz > αy then SpSI(Q,α) = SpSI(Q′, α′)[detV (b)],

(c) ifαx = αy = αz then SpSI(Q,α) = SpSI(Q′, α′)[detV (a), detV (b)].

(O) Assume V orthogonal. Then

(a) if αx > max{αy, αz} then OSI(Q,α) = OSI(Q′, α′),

(b) if αx = αy > αz then OSI(Q,α) = OSI(Q′, α′)[detV (a)],

(b’) if αx = αz > αy then OSI(Q,α) = OSI(Q′, α′)[detV (b)],

(c) if αx = αy = αz then OSI(Q,α) = OSI(Q′, α′)[detV (a), detV (b)].

Proof. We use the notation of section A.1.
(Sp) Using Cauchy formula (theorem A.1.9) we have

SpSI(Q,α) =

 ⊕
λ:Q+

1 →Λ

µ:Qσ1→ERΛ

⊗
c∈Q+

1

(Sλ(c)Vtc ⊗ Sλ(c)V
∗
hc)⊗

⊗
d∈Qσ1

Sµ(d)Vtd



SSp(Q,α)

where Λ is the set of all partitions and ERΛ is the set of the partitions with
even rows.
(a) If αx > max{αy, αz}, by theorem A.1.8,

Sλ(a)V
∗
x = S( 0,...,0︸︷︷︸

αx−αy

,−λ(a)αy ,...,−λ(a)1︸ ︷︷ ︸
αy

)Vx,
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where λ(a) = (λ(a)1, . . . , λ(a)αy). By proposition A.2.8, λ(a) and λ(b) have
to satisfy the following equations

λ(b)i − λ(b)i+1 = 0, i ∈ {αy + 1, . . . , αx − 1}
λ(b)αy − λ(b)αy+1 = λ(a)αy
λ(b)αy−i − λ(b)αy−i+1 = λ(a)αy−i − λ(a)αy−i+1, i ∈ {1, . . . , αy − 1}.

(1.27)
We call λ(b)i = k ≥ 0 for every i ∈ {αy + 1, . . . , αx} and so

λ(b) = (λ(b)1, . . . , λ(b)αx) = (λ(a)1 + k, . . . , λ(a)αy + k︸ ︷︷ ︸
αy

, k, . . . , k︸ ︷︷ ︸
αx−αy

).

Now, by theorem A.1.8, Sλ(b)V
∗
z = 0 unless ht(λ(b)) ≤ αz . If αy ≤ αz , then

Sλ(b)V
∗
z = 0 unless λ(b)αz+1 = . . . = λ(b)αx = 0, i.e. k = 0, so λ(b) =

(λ(a)1, . . . , λ(a)αy , 0, . . . , 0︸ ︷︷ ︸
αx−αy

) = λ(a). If αz < αy, then Sλ(b)V
∗
z = 0 unless

λ(b)αz+1 = . . . = λ(b)αx = 0, i.e. k = 0 and λ(a)αz+1 = . . . = λ(a)αy = 0, so
λ(b) = λ(a) again.
So let λ(a) = λ(b) = λ̄. By proposition A.2.8, Sλ̄V

∗
x ⊗ Sλ̄Vx contains a

semi-invariant of weight zero, which is hence a GL(Vx)-invariant. Since
V ∗y ⊗Vx⊕V ∗x ⊗Vz = V

αy
x ⊕(V ∗x )αz and since Sλ̄V

∗
x ⊗Sλ̄Vx is a summand in the

Cauchy formula of K[V αy
x ⊕ (V ∗x )αz ], using FFT for GL (theorem A.2.3) we

obtain SL(V ) acts trivially on Sλ̄V
∗
x ⊗Sλ̄Vx and so (Sλ(a)V

∗
x ⊗Sλ(b)Vx)SLVx =

K. So we have
SpSI(Q,α) ∼= SpSI(Q′, α′).

(b) If αx = αy > α(z), by theorem A.1.8,

Sλ(a)V
∗
x = S(−λ(a)αy=αx ,...,−λ(a)1)Vx.

By proposition A.2.8, λ(a) and λ(b) have to satisfy λ(a)i−λ(ai+1) = λ(b)i−
λ(b)i+1 for every i ∈ {1, . . . , αx} and moreover Sλ(b)V

∗
z = 0 unless ht(λ(b)) ≤

αz < αx. Hence we have{
λ(b)i = 0 i ∈ {αz+1, . . . , αx}
λ(a)i − λ(a)i+1 = λ(b)i − λ(b)i+1 i ∈ {1, . . . , αx − 1} (1.28)

and thus
λ(a)i − λ(a)i+1 = λ(b)i − λ(b)i+1 i ∈ {1, . . . , αz − 1}
λ(a)αz = λ(a)αz+1 + λ(b)αz
λ(a)i = λ(a)i+1 i ∈ {αz + 1, . . . , αx − 1}.

(1.29)

Hence λ(a) contains a column of length αx = αy for some k ∈ N, so we have
λ(a) = (λ(b)1+k, . . . , λ(b)αz+k, k, . . . , k) then Sλ(a)Vy⊗Sλ(a)V

∗
x = Sλ(b)Vy⊗

(
∧αy Vy)k⊗(

∧αx V ∗x )k⊗Sλ(b)V
∗
x . Now (

∧αy Vy)k⊗(
∧αx V ∗x )k is spanned by
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(det V (a))k. So we have a semi-invariant f of the form (detV (a))kf ′ where
f ′ is of weight zero, hence using theorem FFT for GL (A.2.3) as before and
by lemma A.2.1, we have

SpSI(Q,α) = SpSI(Q′, α′)[detV (a)].

In the similar way we prove (b’).
(c) If α(x) = α(y) = α(z), by theorem A.1.8,

Sλ(a)V
∗
x = S(−λ(a)αy=αx ,...,−λ(a)1)Vx

and
Sλ(b)V

∗
z = S(−λ(b)αx=αz ,...,−λ(b)1)Vz,

where λ(a) = (λ(a)1, . . . , λ(a)αy) and λ(b) = (λ(b)1, . . . , λ(b)αx). By propo-
sition A.2.8, λ(a) and λ(b) have to satisfy the following equations

λ(a)i−1 − λ(a)i = λ(b)i−1 − λ(b)i (1.30)

for every i ∈ {2, . . . , αx = αy}. Thus λ(a)i = λ(b)i − λ(b)αx + λ(a)αx for
every i ∈ {1, . . . , αx}. Hence if we set λ(b)αx = h and λ(a)αx = k we have

λ(a)i = λ(b)i − h+ k (1.31)

for every i ∈ {1, . . . , αx}. So in our case λ(a) = (λ(b) − (hαx)) + (kαx)
and λ(b) = (λ(a) − (kαx)) + (hαx). We call λ(b) − (hαx) = λ(b)′ and
λ(a) − (kαx) = λ(a)′ and we note that λ(a)′ = λ(b)′ by the system (1.31).
Then Sλ(a)Vy ⊗ Sλ(a)V

∗
x ⊗ Sλ(b)Vx ⊗ Sλ(b)V

∗
z = Sλ(b)′Vy⊗ < (detV (a))k >

⊗Sλ(b)′V
∗
x ⊗ Sλ(a)′Vx⊗ < (detV (b))h > ⊗Sλ(a)′V

∗
z . So we have a semi-

invariant f of the form (detV (a))k(detV (b))hf ′ where f ′ is of weight zero,
hence using theorem FFT for GL (A.2.3) as before and by lemma A.2.1, we
have

SpSI(Q,α) ∼= SpSI(Q′, α′)[detV (a), detV (b)].

(O) Using Cauchy formula we have

OSI(Q,α) =

 ⊕
λ:Q+

1 →Λ

µ:Qσ1→ECΛ

⊗
c∈Q+

1

(Sλ(c)Vtc ⊗ Sλ(c)V
∗
hc)⊗

⊗
d∈Qσ1

Sµ(d)Vtd



SO(Q,α)

where Λ is the set of all partitions and ECΛ is the set of the partitions with
even columns. The rest of the proof is similar of the symplectic case. 2

Lemma 1.6.2. Let (Q, σ) be a symmetric quiver with n vertices such that there
exist only two arrows a and b incident to the vertex x in Q0 and b is fixed by σ, i.e.

Q : · · · y a−→ x
b−→ σ(x)

σ(a)−→ σ(y) · · ·
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Let
V : · · ·Vy

V (a)−→ Vx
V (b)−→ V ∗x

−V (a)t−→ V ∗y · · ·

be an orthogonal or symplectic representation of (Q, σ) with dimV = α such that
αx ≥ αy. Moreover define the symmetric quiver (Q′, σ) = ((Q′0, Q

′
1), σ) with n−

2 vertices such that Q′0 = Q0 \{x, σ(x)} and Q′1 = Q1 \{a, b, σ(a)}∪{σ(a)ba},
i.e

Q′ : · · · y σ(a)ba−→ σ(y) · · · .

Let α′ be the dimension of V restricted to Q′.

(Sp) If V is symplectic, then

(i) αx > αy =⇒ SpSI(Q,α) = SpSI(Q′, α′)[detV (b)]

(ii) αx = αy =⇒ SpSI(Q,α) = SpSI(Q′, α′)[detV (a)].

(O) If V is orthogonal, then

(i) αx > αy and αx is even =⇒ OSI(Q,α) = OSI(Q′, α′)[pfV (b)]

(ii) αx = αy =⇒ OSI(Q,α) = OSI(Q′, α′)[detV (a)].

Proof. We consider again the Cauchy formulas.
(Sp) If αy ≤ αx, by proposition A.2.8, λ(a) and λ(b) have to satisfy λ(a)i−1−
λ(a)i = λ(b)i−1 − λ(b)i for every i ∈ {2, . . . , αy}.
(i) Let αy < αx, we have

Sλ(a)V
∗
x = S(0,...,0,−λ(a)αy ,...,−λ(a)1)Vx

and so

λ(b) = (

αx︷ ︸︸ ︷
λ(a)1, . . . , λ(a)αy , 0, . . . , 0) + (

αx︷ ︸︸ ︷
2k, . . . , 2k),

for some k ∈ Z≥0 and with λ(a)i even for every i. Then Sλ(a)V
∗
x ⊗Sλ(b)Vx =

Sλ(a)V
∗
x ⊗ Sλ(a)Vx ⊗ (

∧αx Vx)2k. Now (
∧αx Vx)2k is spanned by (det V (b))k.

So we have a semi-invariant f of the form (detV (b))kf ′where f ′ is of weight
zero, hence using theorem FFT forGL (A.2.3) as before and by lemma A.2.1,
we have

SpSI(Q,α) ∼= SpSI(Q′, α′)[det V (b)].

(ii) If αx = αy, the proof is similar to the part (b) of lemma 1.6.1.

(O) If αy ≤ αx, by proposition A.2.8, (Sλ(a)V
∗
x ⊗ Sλ(b)Vx)SL(Vx) 6= 0 if and

only if λ(a)i−1 − λ(a)i = λ(b)i−1 − λ(b)i for every i ∈ {2, . . . , αy}.
Now the proof is similar to the symplectic case, recalling that V (b), in this
case, is skew-symmetric, so we can define pf V (b). 2
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Chapter 2

Semi-invariants of symmetric
quivers of finite type

In this chapter we prove conjectures 1.2.1 and 1.2.2 for the symmetric quiv-
ers of finite type. We recall that, by theorem 1.1.12, a symmetric quiver of
finite type has the underlying quiver of type An. Throughout this chapter
we enumerate vertices with 1, . . . , n from left to right and we call ai the
arrow with i on the left and i + 1 on the right; moreover we define σ by
σ(i) = n − i + 1, for every i ∈ {1, . . . , n}, and σ(ai) = an−i, for every
i ∈ {1, . . . , n− 1}.
First we prove a lemma valid for Q = An, which is a particular case of
lemma 1.4.6.

Lemma 2.0.3. Let (An, σ) be a symmetric quiver of typeA. Let V ∈ Rep(Q) such
that V = τ−∇V and letW a selfdual representation such that 〈dimV, dimW 〉=0,
then we have the following.

(i) If n is even, dVW is skew-symmetric if and only if W ∈ ORep(Q, dimW ).

(ii) If n is odd dVW is skew-symmetric if and only if W ∈ SpRep(Q, dimW ).

Proof. It checked in the proof of lemma 1.4.6. 2

By proof of lemma 1.4.6 we noted also that an indecomposable represen-
tation V of An satisfies property (Spp) if n is even and it satisfies property
(Op) if n is odd.
The conjectures 1.2.1 and 1.2.2 for symmetric quivers of finite type become

Theorem 2.0.4. Let (Q, σ) be a symmetric quiver of finite type. Let α be the
dimension vector of a symplectic representation. Then SpSI(Q,α) is generated
by the following semi-invariants.

(n even) cV with V indecomposable in Rep(Q) such that 〈dimV, α〉 = 0.

41



(n odd) (i) cV with V indecomposable in Rep(Q) such that 〈dimV, α〉 = 0;
(ii) pfV with V ∈ Rep(Q) such that V = τ−∇V .

Theorem 2.0.5. Let (Q, σ) be a symmetric quiver of finite type. Let α be the
dimension vector of an orthogonal representation. Then OSI(Q,α) is generated
by the following semi-invariants.

(n odd) cV with V indecomposable in Rep(Q) such that 〈dimV, α〉 = 0.

(n even) (i) cV with V indecomposable in Rep(Q) such that 〈dimV, α〉 = 0;
(ii) pfV with V ∈ Rep(Q) such that V = τ−∇V .

By proposition 1.3.4 and by propositions 1.5.4 and 1.5.5, it’s enough to
study the equioriented case, i.e. the case in which all the arrows have ori-
entation from left to right.

Lemma 2.0.6. Let (Q, σ) be a symmetric quiver of finite type. Then SpSI(Q, β)
and OSI(Q, β) are polynomial rings, for every symmetric dimension vector β.

Proof. Since the isomorphism classes of β-dimensional symplectic (resp.
orthogonal) representations of (Q, σ) correspond to the orbits of the action
of Sp(Q, β) (resp. of O(Q, β)) on SpRep(Q, β) (resp. on ORep(Q, β)), then
lemma follows by definition of symmetric quiver finite type and by lemma
A.2.5. 2

2.1 Equioriented symmetric quivers of finite type

In this section we state and prove case by case theorems 2.0.4 and 2.0.5 for
equioriented case. Throughout this section we call Vj,i the indecomposable
of An with dimension vector

(vj,i)k =
{

1 if j ≤ k ≤ i
0 otherwise.

2.1.1 The symplectic case for A2n

We rewrite theorem 2.0.4 in the following way

Theorem 2.1.1. Let (Q, σ) be an equioriented symmetric quiver of type A2n and
let α be the dimension vector of a symplectic representation of (Q, σ).
Then SpSI(Q,α) is generated by the following indecomposable semi-invariants:

(i) cVj,i of weight 〈dimVj,i, ·〉 for every 1 ≤ j ≤ i ≤ n−1 such that 〈dimVj,i, α〉 =
0,

(ii) cVi,2n−i of weight 〈dimVi,2n−i, ·〉 for every i ∈ {1, . . . , n}.

The result follows from the following statement
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Theorem 2.1.2. Let (Q, σ) be an equioriented symmetric quiver of type A2n,
where

Q = Aeqn : 1 a1−→ 2 · · ·n an−→ n+ 1 · · · 2n− 1
a2n−1−→ 2n,

σ(i) = 2n − i + 1 and σ(ai) = a2n−i for every i ∈ {1, . . . , n} and let V be a
symplectic representation, dim(V ) = (α1, . . . , αn) = α.
Then SpSI(Q,α) is generated by the following indecomposable semi-invariants:

(i) det(V (ai) · · ·V (aj)) with j ≤ i ∈ {1, . . . , n− 1} if min{αj+1, . . . , αi} >
αj = αi+1;

(ii) det(V (a2n−i) · · ·V (ai)) with i ∈ {1, . . . , n} if min{αi+1, . . . , αn} > αi.

Proof. First we recall that if V is a symplectic representation of dimen-
sion α = (α1, . . . , αn) of a symmetric quiver of type A2n, then we have

SpRep(Q,α) =
n−1⊕
i=1

V (tai)∗ ⊗ V (hai)⊕ S2V
∗
n .

We proceed by induction on n. For n = 1 we have the symplectic represen-
tation

V1
V (a)−→ V ∗1

where V1 is a vector space of dimension α and V (a) is a linear map such
that V (a) = V (a)t. So

SpRep(Q,α) = S2V ∗1

and by theorem A.1.9

SpSI(Q,α) =
⊕

λ∈ERΛ

(SλV1)SL(V1),

whereERΛ is the set of the partitions with even rows. By proposition A.2.7

and since λ ∈ ERΛ, SpSI(Q,α) 6= 0 if and only if λ = (

α︷ ︸︸ ︷
2k, . . . , 2k) for some

k ∈ Z≥0 and we have that (SλV1)SL(V1) is generated by a semi-invariant
of weight 2k. Since gk · detV (a) = det((gt)kV (a)gk) = (det g)2kdetV (a)
for every g ∈ GL(V ), we note that V (a) ∈ S2V

∗
1 7→ (detV (a))k is a semi-

invariant of weight 2k. So (detV (a))k is a generator of (SλV1)SL(V1) and
thus SpSI(Q,α) = K[detV (a)].
Now we prove the induction step. By theorem A.1.9 we obtain

SpSI(Q,α) =
(
K[X]

)SL(V ) =

⊕
λ(a1),...,λ(an−1) and

λ(an)∈ERΛ

(Sλ(a1)V1)SL(V1) ⊗ (Sλ(a1)V
∗

2 ⊗ Sλ(a2)V2)SL(V2)⊗
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· · · ⊗ (Sλ(an−1)V
∗
n ⊗ Sλ(an)Vn)SL(Vn).

where SL(V ) = SL(V1) × · · · × SL(Vn). We suppose that there exists i ∈
{1, . . . , n− 2} such that α1 ≤ · · · ≤ αi > αi+i. By lemma 1.6.1,

SpSI(Q,α) = SpSI(Q1, α1)

where Q1 is the smaller quiver 1 −→ 2 · · · i − 1 −→ i + 1 · · · 2n − i + 1 −→
2n− i+ 3 · · · 2n− 1 −→ 2n and α1 is the restriction of α in Q1.
If i does’t exist, we have α1 ≤ · · · ≤ αn−1. So, by lemma 1.6.1, we have the
generators det V (ai) = det V (σ(ai)) if αi = αi+1, 1 ≤ i ≤ n− 2.
We note that, by proposition A.2.7,

λ(a1) = (

α1︷ ︸︸ ︷
k1, . . . , k1)

is a rectangle with k1 columns of height α1, for some k1 ∈ Z≥0. Since α1 ≤
· · · ≤ αn−1, by proposition A.2.8, we obtain that there exist k1, . . . , kn−1 ∈
Z≥0 such that

λ(ai) = (

α1︷ ︸︸ ︷
ki + · · ·+ k1, . . . , ki + · · ·+ k1, . . . ,

αi−αi−1︷ ︸︸ ︷
ki, . . . , ki),

for every i ∈ {1, . . . , n− 1}. We also know that λn must have even rows. If
αn = αj ≤ αj+1 ≤ · · · ≤ αn−1 for some j ∈ {1, . . . , n− 1} then Sλn−1V

∗
n = 0

unless kn−1 + · · ·+kj+1 = 0, so λ(an−1) = · · · = λ(aj+1) = λ(aj). By propo-
sition A.2.8, (Sλ(an−1)V

∗
n ⊗ Sλ(an)Vn)SL(Vn) = (Sλ(aj)V

∗
n ⊗ Sλ(an)Vn)SL(Vn)

contains a semi-invariant if and only if

λ(an) = (

α1︷ ︸︸ ︷
kn + kj−1 + · · ·+ k1, . . . , kn + kj−1 + · · ·+ k1, . . . ,

αn−αj−1︷ ︸︸ ︷
kn, . . . , kn),

but kn+kj−1 + · · ·+k1, kn+kj−1 + · · ·+k2, . . . , kn have to be even and then
kn, kj−1, . . . , k1 have to be even. As before, by lemma 1.6.1, we can consider
the smaller quiver Q2 : 1 −→ 2 · · · j −→ n −→ n+ 1 −→ 2n− j + 1 · · · 2n−
1 −→ 2n and then

SpSI(Q,α) ∼= SpSI(Q2, α2) =

(Sλ(a1)V1)SL(V1)⊗· · ·⊗(Sλ(aj−1)V
∗
j ⊗Sλ(aj)Vj)

SL(Vj)⊗(Sλ(aj)V
∗
n⊗Sλ(an)Vn)SL(Vn).

Now to complete the proof it’s enough to find the generators of SpSI(Q2, α2)
for αn = αj ≤ αj+1 ≤ · · · ≤ αn−1.

(a) By proposition A.2.8, for every l ∈ {1, . . . , j}, (Sλ(al−1)V
∗
l ⊗Sλ(al)Vl)

SL(Vl)

is generated by a semi-invariant of weight (0, . . . , 0, kl, 0, . . . , 0) where
kl = 2hwith h ∈ Z≥0, is l-th component. Since gh·det(V (a2n−l) · · ·V (al)) =
det((g−1

σ(l))
hV (a2n−l) · · ·V (al)(gl)h) = det((gtl )

hV (a2n−l) · · ·V (al)(gl)h) =
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(det gl)2hdet(V (a2n−l) · · ·V (al)) for every g = {gi}i∈Q0 ∈ GL(V ), we
note that V (a2n−l) · · ·V (al) ∈ SpSI(Q,α) 7→ (det(V (a2n−l) · · ·V (al)))h

is a semi-invariant of weight (0, . . . , 0, kl, 0, . . . , 0), so it generates
(Sλ(al−1)V

∗
l ⊗Sλ(al)Vl)

SL(Vl). Now λ(al) = λ(al−1)+(kαll ) hence, using
lemma A.2.1, det(V (a2n−l) · · ·V (al)) is a generator of SpSI(Q,α).

(b) In the summand of SpSI(Q,α) indexed by the families of partitions in

which λ(aj) = (

αj=αn︷ ︸︸ ︷
kj , . . . , kj), with kj ∈ Z≥0, we have that (Sλ(aj)Vj)

SL(Vj)⊗
(Sλ(aj)V

∗
n )SL(Vn) is generated by a semi-invariant of weight

(0, . . . , 0, kj , 0, . . . , 0,−kj) where kj and −kj are respectively the j-th
and the n-th component and we note, as before, that (det(V (an−1) · · ·V (aj)))kj
is a semi-invariant of weight (0, . . . , 0, kj , 0, . . . , 0,−kj). Since λ(aj) =
λ(aj−1)+(kαj=αnj ), det(V (an−1) · · ·V (aj)) is a generator of SpSI(Q,α);

(c) in the summand of SpSI(Q,α) indexed by the families of partitions

in which λ(an) = (

αn︷ ︸︸ ︷
kn, . . . , kn) with kn ∈ 2Z≥0, we note again that

(Sλ(an)Vn)SL(Vn) is generated by (det(V (an)))kn of weight (0, . . . , 0, kn)
where n-th component kn is even. Since λ(an) = λ(aj−1) + (kαnn ),
det(V (an)) is a generator of SpSI(Q,α). 2

Proof theorem 2.1.1. First we note that det(V (ai) · · ·V (aj)) = det(Vj →
Vi+1) = cVj,i(V ) and αj = αi+1 is equivalent to 〈dimVj,i, dimV 〉 = 0. We
recall, in fact, that the definition of cVj,i doesn’t depend to the choose of pro-
jective resolution of Vj,i. If we consider the minimal projective resolution
of Vj,i, we have

0 −→ Pi+1
ai···aj−→ Pj −→ Vj,i −→ 0

and applying the Hom-functor we have

Hom(ai · · · aj , V ) : Hom(Pj , V ) = Vj
V (ai···aj)−→ Vi+1 = Hom(Pi+1, V ).

In the same way one proves that det(V (a2n−i) · · ·V (ai)) = det(Vi −→ V2n−i+1 =
V ∗i ) = cVi,2n−i(V ), but in this case, since dimV = dim∇V , we have αi =
α2n−i+1 and so 〈dimVi,2n−i, dimV 〉 = 0 for every i ∈ {1, . . . , n}. Moreover
we note that

(i) cV2n−i,2n−j (V ) = cVj,i(V ), by lemma 1.4.4, since τ−∇Vj i = V2n−i 2n−j ;

(ii) for every j ∈ {1, . . . , n − 1} and for every i ∈ {n + 1, . . . , 2n − 1} \
{2n − j} there exists j < k ∈ {1, . . . , n − 1} such that 2n − k = i and
so cVj,i(V ) = cVj,k−1(V ) · cVk,2n−k(V ).

Now, using theorem 2.1.2, we obtain the statement of the theorem. 2
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2.1.2 The orthogonal case for A2n

We rewrite theorem 2.0.5 in the following way

Theorem 2.1.3. Let (Q, σ) be an equioriented symmetric quiver of type A2n and
let α be the dimension vector of an orthogonal representation of (Q, σ).
Then OSI(Q,α) is generated by the following indecomposable semi-invariants:

(i) cVj,i of weight 〈dimVj,i, ·〉 for every 1 ≤ j ≤ i ≤ n−1 such that 〈dimVj,i, α〉 =
0,

(ii) pfVi,2n−i of weight 〈dimVi,2n−i,·〉2 for every i ∈ {1, . . . , n} such that αi is
even.

The result follows from the following statement

Theorem 2.1.4. Let (Q, σ) be an equioriented symmetric quiver of type A2n,
where

Q = Aeqn : 1 a1−→ 2 · · ·n an−→ n+ 1 · · · 2n− 1
a2n−1−→ 2n,

σ(i) = 2n − i + 1 and σ(ai) = a2n−i for every i ∈ {1, . . . , n} and let V be an
orthogonal representation, dim(V ) = (α1, . . . , αn) = α.
Then OSI(Q,α) is generated by the following indecomposable semi-invariants:

(i) det(V (ai) · · ·V (aj)) with j ≤ i ∈ {1, . . . , n− 1} if min(αj+1, . . . , αi) >
αj = αi+1;

(ii) pf(V (a2n−i) · · ·V (ai)) with i ∈ {1, . . . , n} ifmin(αi+1, . . . , αn) > αiand
αi is even.

Proof. First we recall that if V is a orthogonal representation of dimen-
sion α = (α1, . . . , αn) of a symmetric quiver of type A2n, then

ORep(Q,α) =
n−1⊕
i=1

V (tai)∗ ⊗ V (hai)⊕
2∧
V ∗n .

We proceed by induction on n. For n = 1 we have the orthogonal represen-
tation

V1
V (a)−→ V ∗1

where V1 is a vector space of dimension α and V (a) is a linear map such
that V (a) = −V (a)t.

ORep(Q,α) =
2∧
V ∗1

and by theorem A.1.9

OSI(Q,α) =
⊕

λ∈ECΛ

(SλV1)SL(V1)
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where with ECΛ we denote the set of partitions with even columns. By

proposition A.2.7 since λ ∈ ECΛ,OSI(Q,α) 6= 0 if and only if λ = (

α︷ ︸︸ ︷
k, . . . , k)

with α even, for some k. Since for every g ∈ GL(V1), gk · pfV (a) =

gk ·
√
detV (a) =

√
det((gt)

k
2V (a)g

k
2 ) = (det g)kpfV (a), we note that V (a) ∈∧2 V ∗ 7→ (pfV (a))k is a semi-invariant of weight k so (SλV1)SL(V1) is gener-

ated by the semi-invariant (pf V (a))k ifα is even andOSI(Q,α) = K[pfV (a)].
Now we prove the induction step. Let X = ORep(Q,α) and by theorem
A.1.9 we obtain

OSI(Q,α) =
(
K[X]

)SL(V ) =

⊕
λ(a1),...,λ(an−1) and

λ(an)∈ECΛ

(Sλ(a1)V1)SL(V1) ⊗ (Sλ(a1)V
∗

2 ⊗ Sλ(a2)V2)SL(V2)⊗

· · · ⊗ (Sλ(an−1)V
∗
n ⊗ Sλ(an)Vn)SL(Vn),

where SL(V ) = SL(V1)× · · · × SL(Vn).
The proof of this theorem is the same of the proof of the theorem 2.1.2 up
to when we have to consider αn. As in the previous proof we can sup-
pose α1 ≤ · · · ≤ αn−1, otherwise, by induction, we can reduce to a smaller
quiver.
By lemma 1.6.1, we have the generators det V (ai) = det V (σ(ai)) if αi =
αi+1, 1 ≤ i ≤ n− 2.
By proposition A.2.8, we obtain that there exist k1, . . . , kn−1 ∈ Z≥0 such
that

λ(ai) = (

α1︷ ︸︸ ︷
ki + · · ·+ k1, . . . , ki + · · ·+ k1, . . . ,

αi−αi−1︷ ︸︸ ︷
ki, . . . , ki),

for every i ∈ {1, . . . , n− 1}.
Now we consider the hypothesis on λ(an) by which it must have even
columns. If αn = αj ≤ αj+1 ≤ · · · ≤ αn−1 for some j ∈ {1, . . . , n − 1}
then Sλ(an−1)V

∗
n = 0 unless kn−1 + · · · + kj+1 = 0, so λ(an−1) = · · · =

λ(aj+1) = λ(aj). By proposition A.2.8, (Sλ(an−1)V
∗
n ⊗ Sλ(an)Vn)SL(Vn) =

(Sλ(aj)V
∗
n ⊗ Sλ(an)Vn)SL(Vn) contains a semi-invariant if and only if

λ(an) = (

α1︷ ︸︸ ︷
kn + kj−1 + · · ·+ k1, . . . , kn + kj−1 + · · ·+ k1, . . . ,

αn−αj−1︷ ︸︸ ︷
kn, . . . , kn),

but α1, α2 − α1, . . . , αn − αj−1 have to be even and then α1, . . . , αj−1, αn
have to be even. As before, by lemma 1.6.1, we can consider the smaller
quiver Q1 : 1 −→ 2 · · · j −→ n −→ n + 1 −→ 2n − j + 1 · · · 2n − 1 −→ 2n
and then

OSI(Q,α) ∼= (Sλ(a1)V1)SL(V1) ⊗ · · · ⊗ (Sλ(aj−1)V
∗
j ⊗ Sλ(aj)Vj)

SL(Vj)⊗
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(Sλ(aj)V
∗
n ⊗ Sλ(an)Vn)SL(Vn).

Now to complete the proof it’s enough to find the generator of this algebra
for αn = αj ≤ αj+1 ≤ · · · ≤ αn−1.

(a) By proposition A.2.8, for every l ∈ {1, . . . , j} such that αl is even,
(Sλ(al−1)V

∗
l ⊗Sλ(al)Vl)

SL(Vl) is generated by a semi-invariant of weight
(0, . . . , 0, kl, 0, . . . , 0) where kl ∈ Z≥0, is l-th component. Since gk ·
pf(V (a2n−l) · · ·V (al)) =

√
det((g−1

σ(l))
k
2V (a2n−l) · · ·V (al)(gl)

k
2 ) =

(det gl)kpf(V (a2n−l) · · ·V (al)) for every g = {gi}i∈Q0 ∈ GL(V ), we
note that V (a2n−l) · · ·V (al) ∈ OSI(Q,α) 7→ (pf(V (a2n−l) · · ·V (al)))kl
is a semi-invariant of weight (0, . . . , 0, kl, 0, . . . , 0), so it generates
(Sλ(al−1)V

∗
l ⊗ Sλ(al)Vl)

SL(Vl). Since λ(al) = λ(al−1) + (kαll ),
pf(V (a2n−l) · · ·V (al)) is a generator of OSI(Q,α).

(b) In the summand of OSI(Q,α) indexed by the families of partitions in

which λ(aj) = (

αj=αn︷ ︸︸ ︷
kj , . . . , kj), with kj ∈ Z≥0, we have that (Sλ(aj)Vj)

SL(Vj)⊗
(Sλ(aj)V

∗
n )SL(Vn) is generated by a semi-invariant of weight

(0, . . . , 0, kj , 0, . . . , 0,−kj) where kj and −kj are respectively the j-th
and the n-th component and we note, as before, that (det(V (an−1) · · ·V (aj)))kj
is a semi-invariant of weight (0, . . . , 0, kj , 0, . . . , 0,−kj). Since λ(aj) =
λ(aj−1)+(kαj=αnj ), det(V (an−1) · · ·V (aj)) is a generator ofOSI(Q,α);

(c) in the summand of OSI(Q,α) indexed by the families of partitions

in which λ(an) = (

αn︷ ︸︸ ︷
kn, . . . , kn) with kn ∈ Z≥0, we note again that if

αn is even (Sλ(an)Vn)SL(Vn) is generated by (pf(V (an)))kn of weight
(0, . . . , 0, kn). Since λ(an) = λ(aj−1) + (kαnn ), pf(V (an)) is a generator
of SpSI(Q,α). 2

Proof of theorem 2.1.3. By lemma 2.0.3, we can define pfV if V = τ−∇V ,
since we are dealing with orthogonal case. Moreover we note that Vi,2n−i =
τ−∇Vi,2n−i. Hence using the theorem 2.1.4, the proof is similar to the proof
of theorem 2.1.1. 2

2.1.3 The symplectic case for A2n+1

We rewrite theorem 2.0.4 in the following way

Theorem 2.1.5. Let (Q, σ) be an equioriented symmetric quiver of type A2n+1

and let α be the dimension vector of an symplectic representation of (Q, σ).
Then SpSI(Q,α) is generated by the following indecomposable semi-invariants:

(i) cVj,i of weight 〈dimVj,i, ·〉 − εn+1,vj,i for every 1 ≤ j ≤ i ≤ n such that
〈dimVj,i, α〉 = 0, where

εn+1,vj,i(h) =
{
〈dimVj,i, ·〉(n+ 1) if h = n+ 1
0 otherwise,
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(ii) pfVi,2n+1−i of weight 〈dimVi,2n+1−i,·〉
2 for every i ∈ {1, . . . , n} such that αi is

even.

The result follows from the following statement

Theorem 2.1.6. Let (Q, σ) be an equioriented symmetric quiver of type A2n+1,
where

Q : 1 a1−→ 2 · · ·n an−→ n+ 1
an+1−→ n+ 2 · · · 2n a2n−→ 2n+ 1,

σ(i) = 2n− i+ 2 and σ(ai) = a2n−i+1 for every i ∈ {1, . . . , n+ 1} and let V be
an symplectic representation, dim(V ) = (α1, . . . , αn+1) = α.
Then SpSI(Q,α) is generated by the following indecomposable semi-invariants:

(i) det(V (ai) · · ·V (aj)) with j ≤ i ∈ {1, . . . , n+ 1} if min(αj+1, . . . , αi) >
αj = αi+1;

(ii) pf(V (a2n−i+1) · · ·V (ai)) with i ∈ {1, . . . , n} if min(αi+1, . . . , αn+1) >
αi and αi is even.

Proof. First we recall that if V is a symplectic representation of dimen-
sion α = (α1, . . . , αn+1) of a symmetric quiver of type A2n+1, in the sym-
plectic case, Vn+1 = V ∗n+1 is a symplectic space, so if Vn+1 6= 0 then dimVn+1

has to be even. We proceed by induction on n. For n = 1 we have the sym-
plectic representation

V1
V (a)−→ V2 = V ∗2

−V (a)t−→ V ∗1 .

By theorem A.1.9

SpSI(Q,α) =
⊕
λ∈Λ

(SλV1)SL(V1) ⊗ (SλV2)Sp(V2).

By proposition A.2.7 and proposition A.2.9, SpSI(Q,α) 6= 0 if and only

if λ = (

α1︷ ︸︸ ︷
k, . . . , k), for some k, and ht(λ) has to be even. If α1 > α2 then

SλV2 = 0 unless λ = 0 and in this case SpSI(Q,α) = K. If α1 = α2 then
ht(λ) = α1 = α2. For every (g1, g2) ∈ GL(V1)×Sp(V2), (g1, g2)k · detV (a) =
det(g1)kdet(g−1

2 )kdetV (a) = det(g1)kdetV (a), because g2 ∈ Sp(V2) so we
note that detV (a)k is a semi-invariant of weight (k, 0). Hence (SλV1)SL(V1)⊗
(SλV2)Sp(V2) is generated by the semi-invariant detV (a)k, so SpSI(Q,α) =
K[detV (a)]. Finally if α1 < α2 then ht(λ) = α1 has to be even. We re-
call that in the symplectic case −V (a)tV (a) is skew-symmetric. Since for
every (g1, g2) ∈ GL(V1) × Sp(V2), (g1, g2)k · pf(−V (a)tV (a)) = (g1, g2)k ·√
det(−V (a)tV (a)) =√
det((gt1)

k
2 (−V (a)t)(g2)

k
2 (g−1

2 )
k
2 (V (a))g

k
2
1 ) = (det g1)kpf(−V (a)tV (a)), we

note that pf(−V (a)tV (a))k is a semi-invariant of weight (k, 0) so (SλV1)SL(V1)⊗
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(SλV2)Sp(V2) is generated by the semi-invariant pf(−V (a)tV (a))k if α1 is
even and thus SpSI(Q,α) = K[pf(−V (a)tV (a))].
Now we prove the induction step. Let X = SpRep(Q,α) and by theorem
A.1.9 we obtain

SpSI(Q,α) =
(
K[X]

)SSp(V ) =

⊕
λ(a1),...,λ(an)∈Λ

(Sλ(a1)V1)SL(V1) ⊗ (Sλ(a1)V
∗

2 ⊗ Sλ(a2)V2)SL(V2)⊗

· · · ⊗ (Sλ(an−1)V
∗
n ⊗ Sλ(an)Vn)SL(Vn) ⊗ (Sλ(an)Vn+1)Sp(Vn+1),

where SSp(V ) = SL(V1)× · · · × SL(Vn)× Sp(Vn+1).
The proof of this theorem is the same of the proof of the theorem 2.1.2 up
to when we have to consider αn+1. As in the proof of theorem 2.1.2 we can
suppose α1 ≤ · · · ≤ αn, otherwise, by induction, we can reduce to a smaller
quiver.
By lemma 1.6.1, we have the generators det V (ai) = det V (σ(ai)) if αi =
αi+1, 1 ≤ i ≤ n− 1.
By proposition A.2.8, we obtain that there exist k1, . . . , kn ∈ Z≥0 such that

λ(ai) = (

α1︷ ︸︸ ︷
ki + · · ·+ k1, . . . , ki + · · ·+ k1, . . . ,

αi−αi−1︷ ︸︸ ︷
ki, . . . , ki),

for every i ∈ {1, . . . , n}.
Now, by proposition A.2.9, λ(an) must have even columns. If αn+1 = αj ≤
αj+1 ≤ · · · ≤ αn for some j ∈ {1, . . . , n} then Sλ(an)V

∗
n+1 = 0 unless kn +

· · · + kj+1 = 0, so λ(an) = · · · = λ(aj+1) = λ(aj). As before, by lemma
1.6.1, we can consider the smaller quiver Q1 : 1 −→ 2 · · · j −→ n + 1 −→
2n− j + 2 · · · 2n −→ 2n+ 1 and then

SpSI(Q,α) ∼= (Sλ(a1)V1)SL(V1) ⊗ · · · ⊗ (Sλ(aj−1)V
∗
j ⊗ Sλ(aj)Vj)

SL(Vj)⊗

(Sλ(aj−1)V
∗
n ⊗ Sλ(aj)Vn)SL(Vn) ⊗ (Sλ(aj)Vn+1)Sp(Vn+1), (2.1)

where

λ(aj) = (

α1︷ ︸︸ ︷
kj + · · ·+ k1, . . . , kj + · · ·+ k1, . . . ,

αn+1−αj−1︷ ︸︸ ︷
kj , . . . , kj ),

and α1, α2−α1, . . . , αn+1−αj−1 have to be even otherwise, by proposition
A.2.9, (Sλ(aj)Vn+1)Sp(Vn+1) = 0. Now to complete the proof it’s enough to
find the generators of the algebra (2.1) for αn+1 = αj ≤ αj+1 ≤ · · · ≤ αn.

(a) By proposition A.2.8, for every l ∈ {1, . . . , j} such that αl is even,
(Sλ(al−1)V

∗
l ⊗Sλ(al)Vl)

SL(Vl) is generated by a semi-invariant of weight
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(0, . . . , 0, kl, 0, . . . , 0) where kl ∈ Z≥0, is l-th component. Since gk ·
pf(V (a2n−l+1) · · ·V (al)) =

√
det((g−1

σ(l))
k
2V (a2n−l+1) · · ·V (al)(gl)

k
2 ) =

(det gl)kpf(V (a2n−l+1) · · ·V (al)) for every g = {gi}i∈Q0 ∈ Sp(V ), we
note that V (a2n−l+1) · · ·V (al) ∈ SpSI(Q,α) 7→ (pf(V (a2n−l+1) · · ·V (al)))kl
is a semi-invariant of weight (0, . . . , 0, kl, 0, . . . , 0), so it generates
(Sλ(al−1)V

∗
l ⊗ Sλ(al)Vl)

SL(Vl). Since λ(al) = λ(al−1) + (kl)αl , then
pf(V (a2n−l+1) · · ·V (al)) is a generator of SpSI(Q,α).

(b) In the summand of SpSI(Q,α) indexed by the families of partitions in

which λ(aj) = (

αj=αn+1︷ ︸︸ ︷
kj , . . . , kj), with kj ∈ Z≥0, we have that (Sλ(aj)Vj)

SL(Vj)⊗
(Sλ(aj)Vn+1)Sp(Vn+1) is generated by a semi-invariant of weight
(0, . . . , 0, kj , 0, . . . , 0, 0) where kj is the j-th component and we note,
as before, that (det(V (an) · · ·V (aj)))kj is a semi-invariant of weight
(0, . . . , 0, kj , 0, . . . , 0, 0). Since λ(aj) = λ(aj−1) + (kj)αj=αn+1 ,
det(V (an) · · ·V (aj)) is a generator of SpSI(Q,α). 2

Proof of theorem 2.1.5. By lemma 2.0.3, we can define pfV if V = τ−∇V , since
we are dealing with symplectic case. Moreover we note that Vi,2n+1−i =
τ−∇Vi,2n+1−i, for every i ∈ {1, . . . , n} . Hence using the theorem 2.1.6, the
proof is similar to the proof of theorem 2.1.1. 2

2.1.4 The orthogonal case for A2n+1

We rewrite the theorem 2.0.5 in the following way

Theorem 2.1.7. Let (Q, σ) be an equioriented symmetric quiver of type A2n+1

and let α be the dimension vector of an orthogonal representation of (Q, σ).
Then OSI(Q,α) is generated by the following indecomposable semi-invariants:

(i) cVj,i of weight 〈dimVj,i, ·〉 − εn+1,vj,i for every 1 ≤ j ≤ i ≤ n such that
〈dimVj,i, α〉 = 0, where

εn+1,vj,i(h) =
{
〈dimVj,i, ·〉(n+ 1) if h = n+ 1
0 otherwise,

(ii) cVi,2n+1−i of weight 〈dimVi,2n+1−i, ·〉 for every i ∈ {1, . . . , n}.

The result follows from the following statement

Theorem 2.1.8. Let (Q, σ) be an equioriented symmetric quiver of type A2n+1,
where

Q : 1 a1−→ 2 · · ·n an−→ n+ 1
an+1−→ n+ 2 · · · 2n a2n−→ 2n+ 1,

σ(i) = 2n− i+ 2 and σ(ai) = a2n−i+1 for every i ∈ {1, . . . , n+ 1} and let V be
an orthogonal representation, dim(V ) = (α1, . . . , αn+1) = α.
Then OSI(Q,α) is generated by the following indecomposable semi-invariants:
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(i) det(V (ai) · · ·V (aj)) with j ≤ i ∈ {1, . . . , n+ 1} if min(αj+1, . . . , αi) >
αj = αi+1;

(ii) det(V (a2n−i+1) · · ·V (ai)) with i ∈ {1, . . . , n} if min(αi+1, . . . , αn+1) >
αi.

Proof. First we recall that if V is a orthogonal representation of dimen-
sion α = (α1, . . . , αn+1) of a symmetric quiver of type A2n+1, in the orthog-
onal case, Vn+1 = V ∗n+1 is a orthogonal space. We proceed by induction on
n. For n = 1 we have the orthogonal representation

V1
V (a)−→ V2 = V ∗2

−V (a)t−→ V ∗1

where V1 is a vector space of dimension α1, V2 is a orthogonal space of
dimension α2 and V (a) is a linear map. By theorem A.1.9

OSI(Q,α) =
⊕
λ∈Λ

(SλV1)SL(V1) ⊗ (SλV2)SO(V2).

By proposition A.2.7 and proposition A.2.9, OSI(Q,α) 6= 0 if and only if

λ = (

α1︷ ︸︸ ︷
k, . . . , k), for some k ∈ 2Z. If α1 > α2 then SλV2 = 0 unless λ = 0 and

in this case OSI(Q,α) = K. If α1 = α2 then ht(λ) = α1 = α2. For every
(g1, g2) ∈ GL(V1)×SO(V2), (g1, g2)k ·detV (a) = det(g1)kdet(g−1

2 )kdetV (a) =
det(g1)kdetV (a), because g2 ∈ SO(V2) so we note that detV (a)k is a semi-
invariant of weight (k, 0). Hence (SλV1)SL(V1) ⊗ (SλV2)SO(V2) is generated
by the semi-invariant detV (a)k, so OSI(Q,α) = K[detV (a)]. Finally if
α1 < α2 for every (g1, g2) ∈ GL(V1)×SO(V2), (g1, g2)k ·det(−V (a)tV (a)) =
(g1, g2)k · det(−V (a)tV (a)) =
det((gt1)k(−V (a)t)(g2)k(g−1

2 )k(V (a))gk1 ) = (det g1)kdet(−V (a)tV (a)), we note
that det(−V (a)tV (a))k is a semi-invariant of weight (k, 0) so (SλV1)SL(V1)⊗
(SλV2)SO(V2) is generated by the semi-invariant det(−V (a)tV (a))k and thus
OSI(Q,α) = K[det(−V (a)tV (a))].
Now we prove the induction step. Let X = ORep(Q,α and by theorem
A.1.9 we obtain

OSI(Q,α) =
(
K[X]

)SO(V ) =

⊕
λ(a1),...,λ(an)∈Λ

(Sλ(a1)V1)SL(V1) ⊗ (Sλ(a1)V
∗

2 ⊗ Sλ(a2)V2)SL(V2)⊗

· · · ⊗ (Sλ(an−1)V
∗
n ⊗ Sλ(an)Vn)SL(Vn) ⊗ (Sλ(an)Vn+1)SO(Vn+1),

where SO(V ) = SL(V1)× · · · × SL(Vn)× SO(Vn+1).
The proof of this theorem is the same of the proof of the theorem 2.1.2 up
to when we have to consider αn+1. As in the proof of theorem 2.1.2 we can
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suppose α1 ≤ · · · ≤ αn, otherwise, by induction, we can reduce to a smaller
quiver.
By lemma 1.6.1, we have the generators det V (ai) = det V (σ(ai)) if αi =
αi+1, 1 ≤ i ≤ n− 2.
By proposition A.2.8, we obtain that there exist k1, . . . , kn ∈ Z≥0 such that

λ(ai) = (

α1︷ ︸︸ ︷
ki + · · ·+ k1, . . . , ki + · · ·+ k1, . . . ,

αi−αi−1︷ ︸︸ ︷
ki, . . . , ki),

for every i ∈ {1, . . . , n}.
Now, by proposition A.2.9, λ(an) must have even rows. If αn+1 = αj ≤
αj+1 ≤ · · · ≤ αn for some j ∈ {1, . . . , n} then Sλ(an)V

∗
n+1 = 0 unless kn +

· · · + kj+1 = 0, so λ(an) = · · · = λ(aj+1) = λ(aj). As before, by lemma
1.6.1, we can consider the smaller quiver Q1 : 1 −→ 2 · · · j −→ n + 1 −→
2n− j + 2 · · · 2n −→ 2n+ 1 and then

OSI(Q,α) ∼= (Sλ(a1)V1)SL(V1) ⊗ · · · ⊗ (Sλ(aj−1)V
∗
j ⊗ Sλ(aj)Vj)

SL(Vj)⊗

(Sλ(aj−1)V
∗
n ⊗ Sλ(aj)Vn)SL(Vn) ⊗ (Sλ(aj)Vn+1)SO(Vn+1), (2.2)

where

λ(aj) = (

α1︷ ︸︸ ︷
kj + · · ·+ k1, . . . , kj + · · ·+ k1, . . . ,

αn+1−αj−1︷ ︸︸ ︷
kj , . . . , kj ),

and kj + · · · + k1, . . . , kj have to be even otherwise, by proposition A.2.9,
(Sλ(aj)Vn+1)SO(Vn+1) = 0. Hence kl has to be even for every l ∈ {1, . . . , j}.
Now to complete the proof it’s enough to find the generators of the algebra
(2.2) for αn+1 = αj ≤ αj+1 ≤ · · · ≤ αn.

(a) By proposition A.2.8, for every l ∈ {1, . . . , j}, (Sλ(al−1)V
∗
l ⊗Sλ(al)Vl)

SL(Vl)

is generated by a semi-invariant of weight (0, . . . , 0, kl, 0, . . . , 0) where
kl ∈ 2Z≥0, is l-th component. Since gk · det(V (a2n−l+1) · · ·V (al)) =
det((g−1

σ(l))
kV (a2n−l+1) · · ·V (al)(gl)k) =

(det gl)kdet(V (a2n−l+1) · · ·V (al)) for every g = {gi}i∈Q0 ∈ SO(V ), we
note that

V (a2n−l+1) · · ·V (al) ∈ OSI(Q,α) 7→ (det(V (a2n−l+1) · · ·V (al)))
kl
2

is a semi-invariant of weight (0, . . . , 0, kl, 0, . . . , 0), so it generates
(Sλ(al−1)V

∗
l ⊗ Sλ(al)Vl)

SL(Vl). Since λ(al) = λ(al−1) + (kl)αl , then
det(V (a2n−l+1) · · ·V (al)) is a generator of OSI(Q,α).

(b) In the summand of OSI(Q,α) indexed by the families of partitions in

which λ(aj) = (

αj=αn+1︷ ︸︸ ︷
kj , . . . , kj), with kj ∈ 2Z≥0, we have that (Sλ(aj)Vj)

SL(Vj)⊗
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(Sλ(aj)Vn+1)SO(Vn+1) is generated by a semi-invariant of weight
(0, . . . , 0, kj , 0, . . . , 0, 0) where kj is the j-th component and we note,
as before, that (det(V (an) · · ·V (aj)))kj is a semi-invariant of weight
(0, . . . , 0, kj , 0, . . . , 0, 0). Since λ(aj) = λ(aj−1) + (kj)αj=αn+1 ,
det(V (an) · · ·V (aj)) is a generator of OSI(Q,α). 2

Proof of theorem 2.1.7. Using the theorem 2.1.8, the proof is similar to the
proof of theorem 2.1.1. 2
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Chapter 3

Semi-invariants of symmetric
quivers of tame type

In this chapter we prove conjectures 1.2.1 and 1.2.2 for the symmetric quiv-
ers of tame type. We recall that the underlying quiver of a symmetric quiver
of tame type is either Ã or D̃ as in proposition 1.1.15. As done for the fi-
nite case we again reduce the proof to particular orientations (orientations
in proposition 1.3.8 for Ã and orientation of D̃eq for D̃). In section 3.1, we
prove the conjectures for dimension vector ph (for definition, see proposi-
tion B.2.2). In section 3.2, we treat the other regular dimension vectors.

3.1 Semi-invariants of symmetric quivers of tame type
for dimension vector ph

In this section we deal with dimension vector ph. By lemma 1.3.14 and
proposition 1.5.4 and 1.5.5, it’s enough to consider particular orientations
of symmetric quivers of type Ã in proposition 1.3.8 and orientation of sym-
metric quiver D̃eq. First we prove case by case some theorems by which
conjectures 1.2.1 and 1.2.2 follow. Finally, in section 3.1.8, we conclude
proofs of conjectures 1.2.1 and 1.2.2. We note that h is preserved under
reflection functor.
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3.1.1 Ã2,0,1
k,l for dimension vector ph

Theorem 3.1.1. Let (Q, σ) be a symmetric quiver of type (2, 0, k, l) of orientation

◦ a // ◦
σ(v l

2
)

��
◦

v l
2

OO

◦

◦ ◦
σ(v1)��

◦
u1 ��

v1

OO

◦

◦ ◦
σ(u1)
OO

◦
u k

2 ��

◦

◦
b
// ◦.
σ(u k

2
)

OO

Then
Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) det V (a) and det V (b);

d) the coefficients ci of ϕp−iψi, 0 ≤ i ≤ p, in det(ψV (ā) + ϕV (b̄)), where
ā = σ(v1) · · ·σ(v l

2
)av l

2
· · · v1 and b̄ = σ(u1) · · ·σ(u k

2
)bu k

2
· · ·u1.

O) OSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) pf V (a) and pf V (b);

d) the coefficients ci of ϕp−2iψ2i, 0 ≤ i ≤ p
2 , in pf(ψV (ā) + ϕV (b̄)), where

ā = σ(v1) · · ·σ(v l
2
)av l

2
· · · v1 and b̄ = σ(u1) · · ·σ(u k

2
)bu k

2
· · ·u1;

if p is odd,

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2}.
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Proof. We proceed by induction on k
2 + l

2 . The smallest case is Ã2,0,1
0,0

1 a

b
+3 σ(1).

The induction step follows by lemma 1.6.2, so it’s enough to prove the the-
orem for Ã2,0,1

0,0 .
Let V be a representation of Ã2,0,1

0,0 of dimension ph for some p ∈ Z≥0, in this
case h = 1.
Sp) The ring of symplectic semi-invariants is

SpSI(Ã2,0,1
0,0 , ph) =

⊕
λ(a),λ(b)∈ERΛ

(Sλ(a)V ⊗ Sλ(b)V )SLV .

By proposition A.2.8 we have

λ(a)j + λ(b)p+j−1 = t (3.1)

for some t ∈ Z≥0 and for every 0 ≤ j ≤ p.
We consider the summand in which t = 2 because the other ones are gen-
erated by products of powers of the generators of this summand. The so-
lutions of (3.1) are λ(a) = (2i) and λ(b) = (2p−i) for every 0 ≤ i ≤ p. So
the considered summand

⊕p
i=0(S(2i)V⊗S(2p−i)V )SLV is generated by semi-

invariants of weight 2, i.e. the coefficients ci of ϕp−iψi in det(ψV (a)+ϕV (b))
(see [R2]). In particular we have c0 = det V (b) and cp = det V (a).
O) The ring of orthogonal semi-invariants is

OSI(Ã2,0,1
0,0 , ph) =

⊕
λ(a),λ(b)∈ECΛ

(Sλ(a)V ⊗ Sλ(b)V )SLV .

By proposition A.2.8 we have

λ(a)j + λ(b)p+j−1 = t (3.2)

for some t ∈ Z≥0 and for every 0 ≤ j ≤ p.
We consider the summand in which t = 1 because the other ones are gen-
erated by products of powers of the generators of this summand. Let p be
odd. (λ(a)′)1 and (λ(b)′)p have to be even but (λ(a)′)1 + (λ(b)′)p = p is odd,
this is an absurd, and so OSI(Ã2,0,1

0,0 , ph) = K.
Let p be even. The solutions of (3.2) are λ(a) = (12i) and λ(b) = (1p−2i) for
every 0 ≤ i ≤ p

2 . So the considered summand
⊕p

i=0(S(12i)V ⊗S(1p−2i)V )SLV

is generated by semi-invariants of weight 1, i.e. the coefficients ci ofϕp−2iψ2i

in pf(ψV (a)+ϕV (b)). In particular we have c0 = pf V (b) and c p
2

= pf V (a).
2
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3.1.2 Ã2,0,2
k,l for dimension vector ph

Theorem 3.1.2. Let (Q, σ) be a symmetric quiver of type (2, 0, k, l) with orienta-
tion

◦ a // ◦
σ(v l

2
)

��
◦

v l
2

OO

◦

◦ ◦
σ(v1)��

◦
u1 ��

v1

OO

◦

◦ ◦
σ(u1)
OO

◦
u k

2 ��

◦

◦ ◦.
b

oo
σ(u k

2
)

OO

Then
Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) det V (a) and det V (b);

d) the ci coefficients of ϕiψi, 0 ≤ i ≤ p, in det
(

ϕV (ā) V (c)
V (σ(c)) ψV (b))

)
, where

ā = σ(v1) · · ·σ(v l
2
)av l

2
· · · v1 and c = u k

2
· · ·u1.

O) OSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) pf V (a) and pf V (b);

d) the coefficients ci of ϕiψi, 0 ≤ i ≤ p−1
2 , in pf

(
ϕV (ā) V (c)
V (σ(c)) ψV (b))

)
,

where ā = σ(v1) · · ·σ(v l
2
)av l

2
· · · v1 and c = u k

2
· · ·u1.

if p is odd,

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};
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c) the coefficients ci of ϕiψi, 0 ≤ i ≤ p−1
2 , in pf

(
ϕV (ā) V (c)
V (σ(c)) ψV (b))

)
,

where ā = σ(v1) · · ·σ(v l
2
)av l

2
· · · v1 and c = u k

2
· · ·u1.

Proof. We proceed by induction on k
2 + l

2 . The smallest case is Ã2,0,2
2,0

1

c

��

a // σ(1)

2 σ(2)
b

oo

σ(c)

OO

and so it’s enough to study the semi-invariants of Ã2,0,2
2,0 .

The induction step follows by lemma 1.6.2 and by lemma 1.6.1, so it’s
enough to prove the theorem for Ã2,0,2

2,0 .
Sp) The ring of symplectic semi-invariants is

SpSI(Ã2,0,2
2,0 , ph) =

⊕
λ(a),λ(b)∈ERΛ

λ(c)∈Λ

(Sλ(a)V1⊗Sλ(c)V1)SLV1⊗(Sλ(b)V
∗

2 ⊗Sλ(c)V
∗

2 )SLV2 .

By proposition A.2.8 we have{
λ(a)j + λ(c)p+j−1 = k1

λ(b)j + λ(c)p+j−1 = k2
(3.3)

for some k1, k2 ∈ Z≥0 and for every 0 ≤ j ≤ p.
We consider the summands in which k1 = 0, 1, 2 and k2 = 0, 1, 2 because
the other ones are generated by products of powers of the generators of
this summands. If k1 = 2 and k2 = 0 we have λ(b) = 0 = λ(c) and so
the summand is (S(2p)V1)SLV1 which is generated by a semi-invariant of
weight (2, 0), i.e. det V (a). If k1 = 0 and k2 = 2 as before we obtain the gen-
erator of ring of semi-invariant det V (b) of weight (0,−2). The summand
in which k1 = 1 and k2 = 0 (respectively k1 = 0 and k2 = 1) doesn’t exist
because otherwise we have λ(a) (respectively λ(b)) with odd columns. If
k1 = 1 = k2 we have λ(a) = 0 = λ(b) and λ(c) = (1p) and so the summand
is (S(1p)V1)SLV1 ⊗ (S(1p)V

∗
2 )SLV2 which is generated by a semi-invariant of

weight (1,−1) which is det V (c) = det V (σ(c)). If k1 = 2 = k2, the solutions
of (3.3) are λ(a) = (2i) = λ(b) and λ(c) = (2p−i). The corresponding sum-
mand is

⊕p
i=0(S(2i)V1⊗S(2p−i)V1)SLV1 ⊗ (S(2i)V

∗
2 ⊗S(2p−i)V2)SLV

∗
2 and it is

spanned by the coefficients of ϕiψi in

det

(
ϕV (a) V (c)
V (σ(c)) ψV (b)

)
,

semi-invariants of weight (2,−2). In particular for i = 0 we have (det V (c))2

and for i = p we have det V (a) · det V (b).
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O) The ring of orthogonal semi-invariants is

OSI(Ã2,0,2
2,0 , ph) =

⊕
λ(a),λ(b)∈ECΛ

λ(c)∈Λ

(Sλ(a)V1⊗Sλ(c)V1)SLV1⊗(Sλ(b)V
∗

2 ⊗Sλ(c)V
∗

2 )SLV2 .

By proposition A.2.8 we have{
λ(a)j + λ(c)p+j−1 = k1

λ(b)j + λ(c)p+j−1 = k2
(3.4)

for some k1, k2 ∈ Z≥0 and for every 0 ≤ j ≤ p.
We consider the summands in which k1 = 0, 1 and k2 = 0, 1 because the
other ones are generated by the monomials of these. Let p be even. If
k1 = 1 and k2 = 0 we have λ(b) = 0 = λ(c) and so the summand is
(S(1p)V1)SLV1 which is generated by a semi-invariant of weight (1, 0), i.e.
pf V (a). If k1 = 0 and k2 = 1 as before we obtain the generator of ring of
semi-invariant pf V (b) of weight (0,−1). If k1 = 1 = k2, the solutions of
(3.4) are λ(a) = (12i) = λ(b) and λ(c) = (1p−2i) with 0 ≤ i ≤ p

2 . So the

summand is
⊕ p

2
i=0(S(12i)V1 ⊗ S(1p−2i)V1)SLV1 ⊗ (S(12i)V

∗
2 ⊗ S(1p−2i)V

∗
2 )SLV2

which is generated by the coefficients of ϕiψi in

pf

(
ϕV (a) V (c)
V (σ(c)) ψV (b)

)
,

semi-invariants of weight (1,−1). In particular for i = 0 we have det V (c) =
det V (σ(c)) and for i = p we have pf V (a) · pf V (b). Let p be odd. In this
case the summand (S(1p)V1)SLV1 (respectively (S(1p)V2)SLV2) doesn’t exist
since λ(a) (respectively λ(b)) must have even columns. If k1 = 1 = k2,
the solutions of 3.4 are λ(a) = (12i) = λ(b) and λ(c) = (1p−2i) with 0 ≤
i ≤ p−1

2 . So the summand is
⊕ p−1

2
i=0 (S(12i)V1 ⊗ S(1p−2i)V1)SLV1 ⊗ (S(12i)V

∗
2 ⊗

S(1p−2i)V
∗

2 )SLV2 which is generated by the coefficients of ϕiψi in

pf

(
ϕV (a) V (c)
V (σ(c)) ψV (b)

)
,

semi-invariants of weight (1,−1). In particular for i = 0 we get det V (c) =
det V (σ(c)). 2
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3.1.3 Ã0,2
k,l for dimension vector ph

Theorem 3.1.3. Let (Q, σ) be a symmetric quiver of type (0, 2, k, l) with orienta-
tion

• σ(v l
2

)

��@@@@

◦

v l
2
??~~~~

◦
σ(v l

2−1
)

��
◦

v l
2−1

OO

◦

◦ ◦
σ(v1)��

◦
u1 ��

v1

OO

◦

◦ ◦
σ(u1)
OO

◦
u k

2−1 ��

◦

◦
u k

2
��@@@@ ◦

σ(u k
2−1

)
OO

• σ(u k
2

)

??~~~~
.

Then
O) OSI(Q, ph) is generated by the following indecomposable semi-invariants:

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) the coefficients ci of ϕp−iψi, 0 ≤ i ≤ p, in det(ψV (σ(ā)ā) + ϕV (σ(b̄)b̄)),
where ā = σ(v1) · · ·σ(v l

2
)v l

2
· · · v1 and b̄ = σ(u1) · · ·σ(u k

2
)u k

2
· · ·u1.

Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) the coefficients ci of ϕ
p
2
−iψi, 0 ≤ i ≤ p

2 , in pf(ψV (σ(ā)ā) + ϕV (σ(b̄)b̄)),
where ā = σ(v1) · · ·σ(v l

2
)v l

2
· · · v1 and b̄ = σ(u1) · · ·σ(u k

2
)u k

2
· · ·u1;

if p is odd, SpSI(Q, ph) = K.

Proof. We proceed by induction on k
2 + l

2 . The smallest case is Ã0,2
2,2

2
σ(a)

!!CCCCC

1

b ��;;;;

a
AA����

σ(1)

3
σ(b)

=={{{{{
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and so it’s enough to study the semi-invariants of Ã0,2
2,2.

The induction step follows by lemma 1.6.1, so it’s enough to prove the the-
orem for Ã0,2

2,2.
O) The ring of orthogonal semi-invariants is⊕

λ(a),λ(b)∈Λ

(Sλ(a)V1 ⊗ Sλ(b)V1)SLV1 ⊗ (Sλ(a)V2)SO V2 ⊗ (Sλ(b)V3)SO V3 .

By proposition A.2.8 we have

λ(a)j + λ(b)p−j+1 = k1 (3.5)

for every 0 ≤ j ≤ p and for some k1 ∈ Z≥0. By proposition A.2.9 we have
λ(a) = 2µ+(lp) and λ(b) = 2ν+(mp) for some µ, ν ∈ Λ and for some l,m ∈
Z≥0. We consider the summands in which k1 = 1, 2 because the other ones
are generated by products of powers of the generators of this summands.
If k1 = 1 the only solutions of (3.5) are λ(a) = (1p), λ(b) = 0 and λ(a) = 0,
λ(b) = (1p). Respectively, the summand (S(1p)V1)SLV1 ⊗ (S(1p)V2)SO V2 is
generated by a semi-invariant of weight (1, 0, 0), i.e det V (a) = det V (σ(a)),
and the summand (S(1p)V1)SLV1 ⊗ (S(1p)V3)SO V3 is generated by a semi-
invariant of weight (1, 0, 0), i.e det V (b) = det V (σ(b)). If k1 = 2, the solu-
tions of (3.5) are λ(a) = (2i), λ(b) = (2p−i) with 0 ≤ i ≤ p. So the summand
is

p⊕
i=0

(S(2i)V1 ⊗ S(2p−i)V1)SLV1 ⊗ (S(2i)V2)SO V2 ⊗ (S(2p−i)V3)SO V3

which is generated by the coefficients ofϕp−iψi in det(ψV (σ(a)a)+ϕV (σ(b)b)),
semi-invariants of weight (2, 0, 0). In particular for i = 0 we have det V (σ(b)b)
and for i = p we have det V (σ(a)a).
Sp) The ring of symplectic semi-invariants is⊕

λ(a),λ(b)∈Λ

(Sλ(a)V1 ⊗ Sλ(b)V1)SLV1 ⊗ (Sλ(a)V2)SpV2 ⊗ (Sλ(b)V3)SpV3 .

By proposition A.2.8 we have

λ(a)j + λ(b)p−j+1 = k1 (3.6)

for every 0 ≤ j ≤ p and for some k1 ∈ Z≥0. By proposition A.2.9 λ(a) and
λ(b) have to be in ECΛ.
Let p be even. We consider the summands in which k1 = 1 because the
other ones are generated by products of powers of the generators of this
summands. The solutions of (3.6) are λ(a) = (12i), λ(b) = (1p−2i) with
0 ≤ i ≤ p

2 . So the summand is
p
2⊕
i=0

(S(12i)V1 ⊗ S(1p−2i)V1)SLV1 ⊗ (S(12i)V2)SO V2 ⊗ (S(1p−2i)V3)SO V3
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which is generated by the coefficients ofϕ
p
2
−iψi in pf(ψV (σ(a)a)+ϕV (σ(b)b)),

semi-invariants of weight (1, 0, 0). In particular for i = 0 we have pf V (σ(b)b) =√
det V (σ(b)b) =

√
det V (σ(b)) · det V (b) =

√
(det V (b))2 = det V (b) and

for i = p
2 we have pf V (σ(a)a) = det V (a).

If p is odd there not exist any non-trivial symplectic representations because
a symplectic space of dimension odd doesn’t exist. So we have SpSI(Q, ph) =
K. 2

3.1.4 Ã1,1
k,l for dimension vector ph

Theorem 3.1.4. Let (Q, σ) be a symmetric quiver of type (1, 1, k, l) with orienta-
tion

• σ(v l
2

)

  BBBB

◦

v l
2
??~~~~

◦
σ(v l

2−1
)

��
◦

v l
2−1

OO

◦

◦ ◦
σ(v1)��

◦
u1 ��

v1

OO

◦

◦ ◦
σ(u1)
OO

◦
u k

2 ��

◦

◦
b
// ◦.
σ(u k

2
)

OO

Then
O) OSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) pf V (b)

d) the coefficients ci of ϕp−2iψ2i, 0 ≤ i ≤ p
2 , in det(ψV (σ(ā)ā) + ϕV (b̄)),

where ā = vσ(1) · · ·σ(v l
2
)v l

2
· · · v1 and b̄ = σ(u1) · · ·σ(u k

2
)bu k

2
· · ·u1;

if p is odd,

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) the coefficients ci of ϕp−2iψ2i, 0 ≤ i ≤ p−1
2 , in det(ψV (σ(ā)ā) + ϕV (b̄)),

where ā = vσ(1) · · ·σ(v l
2
)v l

2
· · · v1 and b̄ = σ(u1) · · ·σ(u k

2
)bu k

2
· · ·u1.
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Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) det V (uj) with j ∈ {1, . . . , k2};

b) det V (vj) with j ∈ {1, . . . , l2};

c) det V (b)

d) the coefficients ci of ϕp−2iψ2i, 0 ≤ i ≤ p
2 , in det(ψV (σ(ā)ā) + ϕV (b̄)),

where ā = vσ(1) · · ·σ(v l
2
)v l

2
· · · v1 and b̄ = σ(u1) · · ·σ(u k

2
)bu k

2
· · ·u1;

if p is odd, SpSI(Q, ph) = K.

Proof. We proceed by induction on k
2 + l

2 . The smallest case is Ã1,1
0,2

2
σ(a)

!!CCCCC

1
b
//

a
AA����

σ(1)

and so it’s enough to study the semi-invariants of Ã1,1
0,2.

The induction step follows by lemma 1.6.2 and by lemma 1.6.1, so it’s
enough to prove the theorem for Ã1,1

0,2.
O) The ring of orthogonal semi-invariants is⊕

λ(a)∈Λ
λ(b)∈ECΛ

(Sλ(a)V1 ⊗ Sλ(b)V1)SLV1 ⊗ (Sλ(a)V2)SO V2 .

By proposition A.2.8 we have

λ(a)j + λ(b)p−j+1 = k1 (3.7)

for every 0 ≤ j ≤ p and for some k1 ∈ Z≥0. By proposition A.2.9 we
have λ(a) = 2µ + (lp) for some µ ∈ Λ and for some l ∈ Z≥0. We consider
the summands in which k1 = 1, 2 because the other ones are generated by
products of powers of the generators of this summands. Let p be even. If
k1 = 1 the only solutions of (3.7) are λ(a) = (1p), λ(b) = 0 and λ(a) = 0,
λ(b) = (1p). Respectively, the summand (S(1p)V1)SLV1 ⊗ (S(1p)V2)SO V2 is
generated by a semi-invariant of weight (1, 0), i.e det V (a) = det V (σ(a)),
and the summand (S(1p)V1)SLV1 is generated by a semi-invariant of weight
(1, 0), i.e pf V (b). If k1 = 2, the solutions of (3.7) are λ(a) = (22i), λ(b) =
(2p−2i) with 0 ≤ i ≤ p

2 . So the summand is

p
2⊕
i=0

(S(22i)V1 ⊗ S(2p−2i)V1)SLV1 ⊗ (S(22i)V2)SO V2
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which is generated by the coefficients ofϕp−2iψ2i in det(ψV (σ(a)a)+ϕV (b)),
semi-invariants of weight (2, 0). In particular for i = 0 we have det V (b) and
for i = p

2 we have det V (σ(a)a).
Let p be odd. If k1 = 1 the only solutions of (3.7) are λ(a) = (1p), λ(b) =
0. The summand (S(1p)V1)SLV1 ⊗ (S(1p)V2)SO V2 is generated by a semi-
invariant of weight (1, 0), i.e det V (a) = det V (σ(a)). If k1 = 2, the solutions
of (3.7) are λ(b) = (22i), λ(a) = (2p−2i) with 0 ≤ i ≤ p−1

2 . So the summand
is

p−1
2⊕
i=0

(S(2p−2i)V1 ⊗ S(22i)V1)SLV1 ⊗ (S(2p−2i)V2)SO V2

which is generated by the coefficients ofϕ2iψp−2i in det(ψV (σ(a)a)+ϕV (b)),
semi-invariants of weight (2, 0). In particular for i = p−1

2 we have det V (σ(a)a).
Sp) The ring of symplectic semi-invariants is⊕

λ(a)∈Λ
λ(b)∈ERΛ

(Sλ(a)V1 ⊗ Sλ(b)V1)SLV1 ⊗ (Sλ(a)V2)SpV2 .

By proposition A.2.8 we have

λ(a)j + λ(b)p−j+1 = k1 (3.8)

for every 0 ≤ j ≤ p and for some k1 ∈ Z≥0. By proposition A.2.9 we have
λ(a) ∈ ECΛ. We consider the summands in which k1 = 1, 2 because the
other ones are generated by products of powers of the generators of this
summands. Let p be even. If k1 = 1 the only solutions of (3.8) are λ(a) =
(1p), λ(b) = 0. The summand (S(1p)V1)SLV1⊗(S(1p)V2)SpV2 is generated by a
semi-invariant of weight (1, 0), i.e det V (a) = det V (σ(a)) = pf V (σ(a)a). If
k1 = 2, the solutions of (3.8) are λ(a) = (22i), λ(b) = (2p−2i) with 0 ≤ i ≤ p

2 .
So the summand is

p
2⊕
i=0

(S(22i)V1 ⊗ S(2p−2i)V1)SLV1 ⊗ (S(22i)V2)SpV2

which is generated by the coefficients ofϕp−2iψ2i in det(ψV (σ(a)a)+ϕV (b)),
semi-invariants of weight (2, 0). In particular for i = 0 we have det V (b) and
for i = p

2 we have det V (σ(a)a).
If p is odd there not exist any non-trivial symplectic representations because
a symplectic space of dimension odd doesn’t exist. So we have SpSI(Q, ph) =
K. 2
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3.1.5 Ã0,0
k,k for dimension vector ph

Theorem 3.1.5. Let (Q, σ) be a symmetric quiver of type (0, 0, k, k) with orien-
tation

◦
��@@@@

◦

??~~~~
◦
��

◦

OO

◦

◦ ◦
vk��

◦
σ(vk) ��

v1

OO

◦

◦ ◦
σ(v1)
OO

◦
��

◦

◦
��@@@@ ◦

OO

◦

??~~~~
.

Then
OSI(Q, ph) = SpSI(Q, ph) is generated by the following indecomposable semi-
invariants:

a) det V (vj) with j ∈ {1, . . . , k};

b) pf(V (ā) + V (σ(ā)))

c) the coefficients ci of ϕp−iψi, 0 ≤ i ≤ p, in det(ψV (ā) + ϕV (σ(ā))), where
ā = vk · · · v1.

Proof. We proceed by induction on k
2 + h

2 . The smallest case is Ã0,0
2,2

2
σ(b)

$$IIIIII

1

b   
AAAAA

a
=={{{{{{

σ(1)

σ(2)
σ(a)

;;wwwww

and so it’s enough to study the semi-invariants of Ã0,0
2,2.

The induction step follows by lemma 1.6.1, so it’s enough to prove the the-
orem for Ã0,0

2,2.
In this case we have ORep(Q, ph) = SpRep(Q, ph) and so OSI(Q, ph) =
SpSI(Q, ph). The ring of semi-invariants is⊕

λ(a),λ(b)∈Λ

(Sλ(a)V1 ⊗ Sλ(b)V1)SLV1 ⊗ (Sλ(a)V
∗

2 ⊗ Sλ(b)V2)SLV2 .
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By proposition A.2.8 we have{
λ(a)j + λ(b)p−j+1 = k1

λ(a)j = λ(b)j + k2
(3.9)

for every 0 ≤ j ≤ p and for some k1, k2 ∈ Z≥0. We consider the summands
in which k1 = 1, 2 and k2 = 0, 1 because the other ones are generated by
products of powers of the generators of this summands. Let p even. If k1 =
1 and k2 = 0 the only solution of (3.9) are λ(a) = (1

p
2 ), λ(b) = (1

p
2 ). The

summand (S
(1
p
2 )
V1 ⊗ S(1

p
2 )
V1)SLV1 ⊗ (S

(1
p
2 )
V ∗2 ⊗ S(1

p
2 )
V2)SLV2 is generated

by a semi-invariant of weight (1, 0), i.e. pf(V (σ(b)a) + V (σ(a)b)). If k1 = 2
and k2 = 0, the solutions of (3.9) are λ(a) = (2i, 1p−2i), λ(b) = (2i, 1p−2i)
with 0 ≤ i ≤ p

2 . So the summand is

p
2⊕
i=0

(S(2i,1p−2i)V1 ⊗ S(2i,1p−2i)V1)SLV1 ⊗ (S(2i,1p−2i)V
∗

2 ⊗ S(2i,1p−2i)V2)SLV2

which is generated by the coefficients ofϕp−iψi with 0 ≤ i ≤ p
2 in det(ψV (σ(b)a)+

ϕV (σ(a)b)), semi-invariants of weight (2, 0). In particular for i = 0 we have
det V (σ(b)a) = det V (σ(a)b). Let p be odd. If k1 = 1 and k2 = 0 we don’t
have any solutions of (3.9). If k1 = 2 and k2 = 0, the solutions of (3.9) are
λ(a) = (2i, 1p−2i), λ(b) = (2i, 1p−2i) with 0 ≤ i ≤ p−1

2 . So the summand is

p−1
2⊕
i=0

(S(2i,1p−2i)V1 ⊗ S(2i,1p−2i)V1)SLV1 ⊗ (S(2i,1p−2i)V
∗

2 ⊗ S(2i,1p−2i)V2)SLV2

which is generated by the coefficients of ϕp−iψi with 0 ≤ i ≤ p−1
2 in

det(ψV (σ(b)a) + ϕV (σ(a)b)), semi-invariants of weight (2, 0). In particu-
lar for i = 0 we have det V (σ(b)a) = det V (σ(a)b).
If k2 = 1, in both cases p even or odd, k1 can’t be 0 otherwise we have
λ(b)j + λ(b)p−j+1 = −1 but this is impossible. So k1 = 1 and the only
solutions of (3.9) are λ(a) = (1p), λ(b) = 0 and λ(a) = 0, λ(b) = (1p);
respectively we have the summand (S(1p)V1)SLV1 ⊗ (S(1p)V

∗
2 )SLV2 gener-

ated by the semi-invariant det V (a) of weight (1,−1) and the summand
(S(1p)V1)SLV1 ⊗ (S(1p)V2)SLV2 generated by the semi-invariant det V (b) of
weight (1,−1). 2
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3.1.6 D̃1,0
n for dimension vector ph

Theorem 3.1.6. Let (Q, σ) be a symmetric quiver of type D̃1,0
n with orientation

◦
a

��@@@@@@@ ◦

◦ c1 // ◦ ◦ cn−2 // ◦ ◦ σ(c1) // ◦

σ(a)
??~~~~~~~

σ(b) ��@@@@@@@

◦
b

??~~~~~~~
◦

and let c̄ = σ(c1) · · · cn−2 · · · c1. Then
Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:

a) det V (cj) with j ∈ {1, . . . , n− 2}

b) det (V (a), V (b)) = det

(
V (σ(a))
V (σ(b))

)
c) det V (σ(a)c̄a)

d) det V (σ(b)c̄b)

e) det V (σ(b)c̄a) = det V (σ(a)c̄b)

f) the coefficients ci of ϕiψi, 0 ≤ i ≤ p, in

det

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) ψV (σ(b)c̄b)

)
.

O) OSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) det V (cj) with j ∈ {1, . . . , n− 2};

b) det (V (a), V (b)) = det

(
V (σ(a))
V (σ(b))

)
c) pf V (σ(a)c̄a)

d) pf V (σ(b)c̄b)

e) the coefficients ci of ϕiψi, 0 ≤ i ≤ p
2 , in

pf

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) V (σ(b)c̄b)

)
;

if p is odd,

68



a) det V (cj) with j ∈ {1, . . . , n− 2}

b) det (V (a), V (b)) = det

(
V (σ(a))
V (σ(b))

)
c) the coefficients ci of ϕiψi, 0 ≤ i ≤ p−1

2 , in

pf

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) ψV (σ(b)c̄b)

)
.

Proof. We proceed by induction on n. The smallest case is (D̃1,0
3 )eq

1
a

��;;;;;;;; σ(1)

3 c // σ(3)

σ(a)
<<yyyyyyyy

σ(b) ""EEEEEEEE

2
b

AA��������
σ(2)

The induction step follows by lemma 1.6.2, so it’s enough to prove the the-
orem for (D̃1,0

3 )eq.
Let V be a representation of (D̃1,0

3 )eq of dimension ph for some p ∈ Z≥0, in
this case h = (1, 1, 2).
Sp) The ring of symplectic semi-invariants is

SpSI(D̃1,0
3 , ph) =

⊕
λ(a),λ(b)∈Λ
λ(c)∈ERΛ

(Sλ(a)V1)SLV1 ⊗ Sλ(b)V2)SLV2⊗

(Sλ(a)V
∗

3 ⊗ Sλ(b)V
∗

3 ⊗ Sλ(c)V3)SLV3 .

By proposition A.2.7 we have λ(a) = (kp1), λ(b) = (kp2), for some k1, k2 ∈
Z≥0, and by proposition A.1.12 we have

S(kp1)V
∗

3 ⊗ S(kp2)V
∗

3 =
p⊕
i=0

SνiV
∗

3 (3.10)

where

vi = (k1 + λ1, . . . , k1 + λp−i, k1, . . . , k1︸ ︷︷ ︸
i

, k2, . . . , k2︸ ︷︷ ︸
i

, k2 − λp−i, . . . , k2 − λ1)

with 0 ≤ λp−i ≤ . . . ≤ λ1 ≤ k2 and for every 0 ≤ i ≤ p. Moreover we have

(SνiV
∗

3 ⊗ Sλ(c)V3)SLV3 6= 0⇔ λ(c) = vi + (k2p
3 )
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for some k3 ∈ Z≥0.
We consider the summands in which k1 = 0, 1, 2 and k2 = 0, 1, 2 because
the other ones are generated by products of powers of the generators of
these summands.
If λ(c) = 0, then λ(a) = (kp1) 6= 0 6= λ(b) = (kp2) because otherwise if for
example λ(a) = 0 we have (S(kp2)V

∗
3 )SLV3 = 0. We consider the summand

in which λ(c) = 0 and k1 = 1 = k2, the only νi such that (SνiV
∗

3 )SLV3 6= 0 is
νp = (12p). So (S(1p)V1)SLV1⊗(S(1p)V2)SLV2⊗(S(12p)V3)SLV3 is generated by

a semi-invariant of weight (1, 1,−1), i.e. det (V (a), V (b)) = det

(
V (σ(a))
V (σ(b))

)
.

Now we suppose λ(c) 6= 0. We can’t consider k1 = 1, k2 = 0 and k1 = 0,
k2 = 1 because otherwise we haven’t λ(c) with even rows. If k1 = 2, k2 = 0
and k3 = 0 the summand (S(2p)V1)SLV1 ⊗ (S(2p)V

∗
3 ⊗ S(2p)V3)SLV3 is gener-

ated by a semi-invariant of weight (2, 0, 0), i.e. det V (σ(a)c̄a). If k1 = 0, k2 =
2 and k3 = 0 the summand (S(2p)V2)SLV2⊗(S(2p)V

∗
3 ⊗S(2p)V3)SLV3 is gener-

ated by a semi-invariant of weight (0, 2, 0), i.e. det V (σ(b)c̄b). If k1 = 0 = k2,
then k3 has to be even. So, considering k3 = 2, (S(22p)V3)SLV3 is generated
by a semi-invariant of weight (0, 0, 2), i.e. det V (c). If k1 = k2 = 1, by (3.10),
λ(c) = (2p). So (S(1p)V1)SLV1 ⊗ (S(1p)V2)SLV2 ⊗ (S(2p)V

∗
3 ⊗ S(2p)V3)SLV3

is generated by a semi-invariant of weight (1, 1, 0), i.e. det V (σ(b)c̄a) =
det V (σ(a)c̄b). Finally if k1 = k2 = 2, considering k3 = 0, the summand is

(S(2p)V1)SLV1 ⊗ (S(2p)V2)SLV2 ⊗ (
p⊕
i=0

S(4p−2i,24i)V
∗

3 ⊗ S(4p−2i,24i)V3)SLV3

which is generated by the coefficients of ϕiψi in

det

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) ψV (σ(b)c̄b)

)
,

semi-invariants of weight (2, 2, 0). In particular for i = 0 we have
(det V (σ(b)c̄a))2 and for i = p we have det V (σ(a)c̄a) · det V (σ(b)c̄b).
O) The ring of orthogonal semi-invariants is

SpSI(D̃1,0
3 , ph) =

⊕
λ(a),λ(b)∈Λ
λ(c)∈ECΛ

(Sλ(a)V1)SLV1 ⊗ Sλ(b)V2)SLV2⊗

(Sλ(a)V
∗

3 ⊗ Sλ(b)V
∗

3 ⊗ Sλ(c)V3)SLV3 .

By proposition A.2.7 we have λ(a) = (kp1), λ(b) = (kp2), for some k1, k2 ∈
Z≥0, and by proposition A.1.12 we have

S(kp1)V
∗

3 ⊗ S(kp2)V
∗

3 =
p⊕
i=0

SνiV
∗

3 (3.11)
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where

vi = (k1 + λ1, . . . , k1 + λp−i, k1, . . . , k1︸ ︷︷ ︸
i

, k2, . . . , k2︸ ︷︷ ︸
i

, k2 − λp−i, . . . , k2 − λ1)

with 0 ≤ λp−i ≤ . . . ≤ λ1 ≤ k2 and for every 0 ≤ i ≤ p. Moreover we have

(SνiV
∗

3 ⊗ Sλ(c)V3)SLV3 6= 0⇔ λ(c) = vi + (k2p
3 )

for some k3 ∈ Z≥0. Since λ(c) ∈ ECΛ, also νi ∈ ECΛ for every i.
We consider the summands in which k1 = 0, 1 and k2 = 0, 1 because the
other ones are generated by products of powers of the generators of these
summands.
As before if λ(c) = 0, the only νi such that (SνiV

∗
3 )SLV3 6= 0 is νp = (12p).

So (S(1p)V1)SLV1 ⊗ (S(1p)V2)SLV2 ⊗ (S(12p)V3)SLV3 is generated by a semi-

invariant of weight (1, 1,−1), i.e. det (V (a), V (b)) = det

(
V (σ(a))
V (σ(b))

)
. Now

we suppose λ(c) 6= 0.
Let p be even. If k1 = 1, k2 = 0 and k3 = 0 the summand (S(1p)V1)SLV1 ⊗
(S(1p)V

∗
3 ⊗ S(1p)V3)SLV3 is generated by a semi-invariant of weight (1, 0, 0),

i.e. pf V (σ(a)ca). If k1 = 0, k2 = 1 and k3 = 0 the summand (S(1p)V2)SLV2⊗
(S(1p)V

∗
3 ⊗ S(1p)V3)SLV3 is generated by a semi-invariant of weight (0, 1, 0),

i.e. pf V (σ(b)cb). If k1 = 0 = k2, then k3 has to be not zero. So, considering
k3 = 1, (S(12p)V3)SLV3 is generated by a semi-invariant of weight (0, 0, 1),
i.e. pf V (c). Finally if k1 = k2 = 1, considering k3 = 0, the summand is

(S(1p)V1)SLV1 ⊗ (S(1p)V2)SLV2 ⊗ (

p
2⊕
i=0

S(2p−2i,14i)V
∗

3 ⊗ S(2p−2i,14i)V3)SLV3

which is generated by the coefficients of ϕiψi in

pf

(
ϕV (σ(a)ca) V (σ(b)ca)
V (σ(a)cb) ψV (σ(b)cb)

)
,

semi-invariants of weight (1, 1, 0). In particular for i = 0 we have
det V (σ(b)ca) = det V (σ(a)cb) and for i = p

2 we have pf V (σ(a)ca)·pf V (σ(b)cb).
Let p be odd. In this case we can’t consider k1 = 1, k2 = 0, k3 = 0 and
k1 = 0, k2 = 1, k3 = 0 because otherwise we have λ(c) = (1p) with p odd
but λ(c) has to be in ECΛ. As before, if k1 = 0 = k2, then k3 has to be
not zero. So, considering k3 = 1, (S(12p)V3)SLV3 is generated by a semi-
invariant of weight (0, 0, 1), i.e. pf V (c). Finally if k1 = k2 = 1, considering
k3 = 0, the summand is

(S(1p)V1)SLV1⊗(S(1p)V2)SLV2⊗(

p−1
2⊕
i=0

S(2p−(2i+1),14i+2)V
∗

3 ⊗S(2p−(2i+1),14i+2)V3)SLV3
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which is generated by the coefficients of ϕiψi in

pf

(
ϕV (σ(a)ca) V (σ(b)ca)
V (σ(a)cb) ψV (σ(b)cb)

)
,

semi-invariants of weight (1, 1, 0). In particular for i = 0 we have det V (σ(b)ca) =
det V (σ(a)cb). 2

3.1.7 D̃0,1
n for dimension vector ph

Theorem 3.1.7. Let (Q, σ) be a symmetric quiver of type D̃0,1
n with orientation

◦
a

��@@@@@@@ ◦

◦ c1 // ◦ ◦ cn−3 // •σ(cn−3)// ◦ ◦ σ(c1) // ◦

σ(a)
??~~~~~~~

σ(b) ��@@@@@@@

◦
b

??~~~~~~~
◦

and let c̄ = σ(c1) · · ·σ(cn−3)cn−3 · · · c1. Then
O) OSI(Q, ph) is generated by the following indecomposable semi-invariants:

a) det V (cj) with j ∈ {1, . . . , n− 3}

b) det (V (a), V (b)) = det

(
V (σ(a))
V (σ(b))

)
c) det V (σ(a)c̄a)

d) det V (σ(b)c̄b)

e) det V (σ(b)c̄a) = det V (σ(a)c̄b)

f) the coefficients ci of ϕiψi, 0 ≤ i ≤ p, in

det

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) ψV (σ(b)c̄b)

)
.

Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) det V (cj) with j ∈ {1, . . . , n− 2};

b) det (V (a), V (b)) = det

(
V (σ(a))
V (σ(b))

)
c) pf V (σ(a)c̄a)
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d) pf V (σ(b)c̄b)

e) det V (σ(b)c̄a) = det V (σ(a)c̄b)

f) the coefficients ci of ϕiψi, 0 ≤ i ≤ p
2 , in

pf

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) ψV (σ(b)c̄b)

)
;

if p is odd,

a) det V (cj) with j ∈ {1, . . . , n− 2}

b) det (V (a), V (b)) = det

(
V (σ(a))
V (σ(b))

)
c) det V (σ(b)c̄a) = det V (σ(a)c̄b)

d) the coefficients ci of ϕiψi, 0 ≤ i ≤ p−1
2 , in

pf

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) ψV (σ(b)c̄b)

)
.

Proof. We proceed by induction on n. The smallest case is (D̃0,1
3 )eq

1
a

��<<<<<<<< σ(1)

3

σ(a)
>>||||||||

σ(b) !!BBBBBBBB

2
b

@@��������
σ(2)

The induction step follows by lemma 1.6.1, so it’s enough to prove the the-
orem for (D̃0,1

3 )eq.
Let V be a representation of (D̃0,1

3 )eq of dimension ph for some p ∈ Z≥0, in
this case h = (1, 1, 2).
O) The ring of orthogonal semi-invariants is

OSI(D̃0,1
3 , ph) =

⊕
λ(a),λ(b)∈Λ

(Sλ(a)V1)SLV1⊗(Sλ(b)V2)SLV2⊗(Sλ(a)V
∗

3 ⊗Sλ(b)V
∗

3 )SO V3 .

By proposition A.2.7 we have λ(a) = (kp1), λ(b) = (kp2), for some k1, k2 ∈
Z≥0, and by proposition A.1.12 we have

S(kp1)V
∗

3 ⊗ S(kp2)V
∗

3 =
p⊕
i=0

SνiV
∗

3 (3.12)
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where

vi = (k1 + λ1, . . . , k1 + λp−i, k1, . . . , k1︸ ︷︷ ︸
i

, k2, . . . , k2︸ ︷︷ ︸
i

, k2 − λp−i, . . . , k2 − λ1)

with 0 ≤ λp−i ≤ . . . ≤ λ1 ≤ k2 and for every 0 ≤ i ≤ p. Moreover we have

(SνiV
∗

3 )SO V3 6= 0⇔ vi = 2µi + (k2p
3 ) (3.13)

for some k3 ∈ Z≥0 and for some µi ∈ Λ.
We consider the summands in which k1 = 0, 1, 2 and k2 = 0, 1, 2 because
the other ones are generated by products of powers of the generators of
these summands.
We can’t consider k1 = 1, k2 = 0 and k1 = 0, k2 = 1 because otherwise we
haven’t vi = 2µi + (k2p

3 ). If k1 = 2, k2 = 0 the summand (S(2p)V1)SLV1 ⊗
(S(2p)V

∗
3 )SO V3 is generated by a semi-invariant of weight (2, 0, 0),

i.e. det V (σ(a)a). If k1 = 0, k2 = 2 the summand (S(2p)V2)SLV2⊗(S(2p)V
∗

3 )SO V3

is generated by a semi-invariant of weight (0, 2, 0), i.e. det V (σ(b)b). If
k1 = k2 = 1, by (3.12) and by (3.13), νi = (2p) or νi = (12p). So we have
(S(1p)V

∗
3 ⊗ S(1p)V

∗
3 )SO V3 = (S(2p)V

∗
3 ⊕ S(12p)V

∗
3 )SO V3 . Now

(S(1p)V1)SLV1 ⊗ (S(1p)V2)SLV2 ⊗ (S(12p)V
∗

3 )SO V3

is generated by a semi-invariant of weight (1, 1, 0), i.e. det (V (a), V (b)) =

det

(
V (σ(a))
V (σ(b))

)
and (S(1p)V1)SLV1 ⊗ (S(1p)V2)SLV2 ⊗ (S(2p)V

∗
3 )SO V3 is gen-

erated by a semi-invariant of weight (1, 1, 0), i.e. det V (σ(b)a) = det V (σ(a)b).
Finally if k1 = k2 = 2 the summand is

(S(2p)V1)SLV1 ⊗ (S(2p)V2)SLV2 ⊗ (
p⊕
i=0

S(4p−2i,24i)V
∗

3 )SO V3

which is generated by the coefficients of ϕiψi in

det

(
ϕV (σ(a)a) V (σ(b)a)
V (σ(a)b) ψV (σ(b)b)

)
,

semi-invariants of weight (2, 2, 0). In particular for i = 0 we have (det V (σ(b)a))2

and for i = p we have det V (σ(a)a) · det V (σ(b)b).
Sp) The ring of symplectic semi-invariants is

SpSI(D̃0,1
3 , ph) =

⊕
λ(a),λ(b)∈Λ

(Sλ(a)V1)SLV1⊗(Sλ(b)V2)SLV2⊗(Sλ(a)V
∗

3 ⊗Sλ(b)V
∗

3 )SpV3 .

By proposition A.2.7 we have λ(a) = (kp1), λ(b) = (kp2), for some k1, k2 ∈
Z≥0, and by proposition A.1.12 we have

S(kp1)V
∗

3 ⊗ S(kp2)V
∗

3 =
p⊕
i=0

SνiV
∗

3 (3.14)
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where

vi = (k1 + λ1, . . . , k1 + λp−i, k1, . . . , k1︸ ︷︷ ︸
i

, k2, . . . , k2︸ ︷︷ ︸
i

, k2 − λp−i, . . . , k2 − λ1)

with 0 ≤ λp−i ≤ . . . ≤ λ1 ≤ k2 and for every 0 ≤ i ≤ p. Moreover we have

(SνiV
∗

3 )SpV3 6= 0⇔ vi ∈ ECΛ. (3.15)

We consider the summands in which k1 = 0, 1 and k2 = 0, 1 because the
other ones are generated by products of powers of the generators of these
summands.
Let p be even. If k1 = 1, k2 = 0 the summand (S(1p)V1)SLV1 ⊗ (S(1p)V

∗
3 )SpV3

is generated by a semi-invariant of weight (1, 0, 0), i.e. pf V (σ(a)a). If k1 =
0, k2 = 1 the summand (S(1p)V2)SLV2 ⊗ (S(1p)V

∗
3 )SpV3 is generated by a

semi-invariant of weight (0, 1, 0), i.e. pf V (σ(b)b). Finally if k1 = k2 = 1,
the summand is

(S(1p)V1)SLV1 ⊗ (S(1p)V2)SLV2 ⊗ (

p
2⊕
i=0

S(2p−2i,14i)V
∗

3 )SpV3

which is generated by the coefficients of ϕiψi in

pf

(
ϕV (σ(a)a) V (σ(b)a)
V (σ(a)b) ψV (σ(b)b)

)
,

semi-invariants of weight (1, 1, 0). In particular for i = 0 we have
det V (σ(b)a) = det V (σ(a)b) and for i = p

2 we have pf V (σ(a)a)·pf V (σ(b)b).
Let p be odd. In this case we can’t consider k1 = 1, k2 = 0 and k1 = 0, k2 = 1
because otherwise, by (3.15), (S(1p)V3)SpV3 = 0. Finally if k1 = k2 = 1, the
summand is

(S(1p)V1)SLV1 ⊗ (S(1p)V2)SLV2 ⊗ (

p−1
2⊕
i=0

S(2p−(2i+1),14i+2)V
∗

3 )SLV3

which is generated by the coefficients of ϕiψi in

pf

(
ϕV (σ(a)a) V (σ(b)a)
V (σ(a)b) ψV (σ(b)b)

)
,

semi-invariants of weight (1, 1, 0). In particular for i = 0 we have det V (σ(b)a) =
det V (σ(a)b). 2
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3.1.8 End of the proof of conjecture 1.2.1 and 1.2.2 for dimension
vector ph

First of all we note that, by definition of cW and pfW , when we have it, are
not zero if 0 = 〈dimW, ph〉 = p〈dimW,h〉 = −p〈h, dimW 〉, so we have to
consider only regular representationsW . Moreover it is enough to consider
only simple regular representations W , because the other regular represen-
tations are extensions of simple regular ones and so, by lemma B.4.7, we
obtain the cW and pfW with non-simple regular W as products of those
with simple regular W . Now we check only for Ã2,0,1

k,l and D̃1,0
n that the

generators found for SpSI(Q, ph) and OSI(Q, d) are of type cW , for some
simple regularW , and pfW , for some simple regularW satisfying property
(Op) in symplectic case and (Spp) in orthogonal case (see lemma 1.4.6). For
the other types of quivers it is similar (see also [D, section 4.1]).
We use notation of section B.2. For Ã2,0,1

k,l , by definition of cW and pfW ,

Sp) if V is a symplectic representation, we have cE0(V ) = det(V (v l
2
)) =

det(V (v1)) = cE1(V ), cEi(V ) = det(V (vi)) = det(V (vσ(i))) = cEσ(i)(V )

for every i ∈ {2, . . . , l} \ { l2 + 1}, c
E l

2 +1(V ) = det(V (a)), cE
′
0(V ) =

det(V (u k
2
)) = det(V (u1)) = cE

′
1(V ), cE

′
i(V ) = det(V (ui)) = det(V (uσ(i))) =

c
E′
σ(i)(V ) for every i ∈ {2, . . . , k} \ {k2 + 1}, c

E′k
2 +1(V ) = det(V (b)) and

cV(ϕ,ψ)
(V ) = det(ψV (a) + ϕV (b);

O) if V is an orthogonal representation, the only differences with the

symplectic case are, when p is even, we have pf
E l

2 +1(V ) = pf(V (a)),

pf
E′k

2 +1(V ) = pf(V (b)) and pfV(ϕ,ψ)(V ) = pf(ψV (a) + ϕV (b), in fact
E l

2
+1, E′k

2
+1

and V(ϕ,ψ) satisfy property (Spp).

For D̃1,0
n , by definition of cW and pfW ,

Sp) if V is a symplectic representation, we have cE0(V ) = det

(
V (σ(a))
V (σ(b))

)
=

det(V (a), V (b)) = cE1(V ), cEi(V ) = det(V (ci−1)) = det(V (cσ(i−1))) =
cEσ(i)(V ) for every i ∈ {2, . . . , 2n − 3}, cE′0(V ) = det(V (σ(b)c̄a)) =
det(V (σ(a)c̄b)) = cE

′
1(V ), cE

′′
0 (V ) = det(V (σ(a)c̄a)),

cE
′′
1 (V ) = det(V (σ(b)c̄b)) and

cV(ϕ,ψ)(V ) = det

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) ψV (σ(b)c̄b)

)
;

O) if V is an orthogonal representation, the only differences with the
symplectic case are that we have

pfV(ϕ,ψ)(V ) = pf

(
ϕV (σ(a)c̄a) V (σ(b)c̄a)
V (σ(a)c̄b) ψV (σ(b)c̄b)

)
,
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since V(ϕ,ψ) satisfies property (Spp) and cE
′
0(V ) = det(V (σ(b)c̄a)) =

det(V (σ(a)c̄b)) = cE
′
1(V ) is the coefficient of ϕ0ψ0 = 1 in pfV(ϕ,ψ)(V );

moreover, if p is even, we have pfEn−1(V ) = pf(V (cn−2)), pfE
′′
0 (V ) =

pf(V (σ(a)c̄a)) and pfE
′′
1 (V ) = pf(V (σ(b)c̄b)), because En−1, E′′0 and

E′′1 satisfy property (Spp).

3.2 Semi-invariants of symmetric quivers of tame type
for any regular dimension vector

In this section we prove theorems 1.2.1 and 1.2.2 for symmetric quiver of
tame type and any regular symmetric dimension vector d.
We will use the same notation of section 3.1. For the type Ã we call a0 =
tv1 = tu1, xi = hvi for every i ∈ {1, . . . , l2} and yi = hvi for every i ∈
{1, . . . , k2}. For the type D̃ we call t1 = ta, t2 = tb and zi = tci for every i
such that ci ∈ (Q+

1 tQσ1 ) \ {a, b}.
First we consider the canonical decomposition of d for the symmetric quiv-
ers.
Let (Q, σ) be a symmetric quiver of tame type and let ∆ = {ei| i ∈ I =
{0, . . . , u}}, ∆′ = {e′i| i ∈ I ′ = {0, . . . , v}} and ∆′′ = {e′′i | i ∈ I ′′ = {0, . . . , w}}
be the three τ+-orbits of nonhomogeneous simple regular representations
of the underlying quiver Q (see proposition B.2.7).
We shall call Iδ = {i ∈ I| ei = δei} (respectively I ′δ and I ′′δ ).

Lemma 3.2.1. Let [x] := max{z ∈ N| z ≤ x} is the floor of x ∈ R.
(1) For Ã2,0,1

k,l , we have:

(1.1) decomposition I = I+ t Iδ t I− where I+ = {2, . . . , l2 + 1}, Iδ = {1} and
I− = I \ (I+ t Iδ);

(1.2) decomposition I ′ = I ′+ t I ′δ t I ′− where I ′+ = {2, . . . , k2 + 1}, I ′δ = {1} and
I ′− = I ′ \ (I ′+ t I ′δ);

(1.3) I ′′ = ∅.

(2) For Ã2,0,2
k,l , we have:

(2.1) decomposition I = I+ t Iδ t I− where I+ = {2, . . . , [ l+1
2 ] + 2}, Iδ = ∅ and

I− = I \ I+;

(2.2) decomposition I ′ = I ′+ t I ′δ t I ′− where I ′+ = {2, . . . , [k−1
2 ] + 1}, I ′δ =

{1, [k−1
2 ] + 2} and I ′− = I ′ \ (I ′+ t I ′δ);

(2.3) I ′′ = ∅.

(3) For Ã0,2
k,l , we have:
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(3.1) decomposition I = I+ t Iδ t I− where I+ = {2, . . . , [ l−1
2 ] + 1}, Iδ =

{1, [ l−1
2 ] + 2} and I− = I \ (I+ t Iδ);

(3.2) decomposition I ′ = I ′+ t I ′δ t I ′− where I ′+ = {2, . . . , [k−1
2 ] + 1}, I ′δ =

{1, [k−1
2 ] + 2} and I ′− = I ′ \ (I ′+ t I ′δ);

(3.3) I ′′ = ∅.

(4) For Ã1,1
k,l , we have:

(4.1) decomposition I = I+ t Iδ t I− where I+ = {2, . . . , [ l−1
2 ] + 1}, Iδ =

{1, [ l−1
2 ] + 2} and I− = I \ (I+ t Iδ);

(4.2) decomposition I ′ = I ′+ t I ′δ t I ′− where I ′+ = {2, . . . , k2 + 1}, I ′δ = {1} and
I ′− = I ′ \ (I ′+ t I ′δ);

(4.3) I ′′ = ∅.

(5) For Ã0,0
k,k, we have:

(5.1) ∆ = δ∆′ and so I = I ′;

(5.2) I ′′ = ∅.

(6) For (D̃1,0
n )eq, we have:

(6.1) decomposition I = I+ t Iδ t I− where I+ = {2, . . . , [2n−4
2 ] + 1}, Iδ = {1}

and I− = I \ (I+ t Iδ);

(6.2) I ′ = I ′δ = {0, 1} and I ′− = I ′+ = ∅;

(6.3) decomposition I ′′ = I ′′+ t I ′′− where I ′′+ = {0}, I ′′δ = ∅ and I ′′− = I ′′ \ I ′′+.

(7) For (D̃0,1
n )eq, we have:

(7.1) decomposition I = I+ t Iδ t I− where I+ = {2, . . . , [2n−5
2 ] + 1}, Iδ =

{1, [2n−5
2 ] + 2} and I− = I \ (I+ t Iδ);

(7.2) I ′ = I ′δ = {0, 1} and I ′− = I ′+ = ∅;

(7.3) decomposition I ′′ = I ′′+ t I ′′− where I ′′+ = {0}, I ′′δ = ∅ and I ′′− = I ′′ \ I ′′+.

Proof. We prove (1), (2), (3), (4), (6) and (7). By [DR, section 6, page 40]
and by [DR, section 6, pages 40 and 46] we note type by type that we have
|Iδ| = 0, 1, 2 (respectively |I ′δ| = 0, 1, 2 and |I ′′δ | = 0). Now

i) if |Iδ| = 0 we have e3 = δe0, e2 = δe1 and ei = δeu−i+4 for every
i ∈ {4, . . . , [u2 ] + 2},

ii) if |Iδ| = 1 we have e2 = δe0, e1 = δe1 and ei = δeu−i+3 for every
i ∈ {3, . . . , [u2 ] + 1},
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iii) if |Iδ| = 2 we have e2 = δe0, e1 = δe1, ei = δeu−i+3 for every i ∈
{3, . . . , [u2 ] + 1} and e[u

2
]+2 = δe[u

2
]+2

We define I+ ⊆ I such that

i) I+ = {2, . . . , [u2 ] + 2} ⇔ |Iδ| = 0,

ii) I+ = {2, . . . , [u2 ] + 1} ⇔ |Iδ| = 1,

iii) I+ = {2, . . . , [u2 ] + 1} ⇔ |Iδ| = 2.

So respectively decompositions of I of the statement follow. One proceeds
similarly for I ′ and I ′′.
(5) follows by the symmetry and considering [DR, section 6]. 2

We note that in part (5) of previous lemma we can consider Iδ = I− =
I ′δ = I ′− = I ′′δ = I ′′− = I ′′+ = ∅ and so I+ = I = I ′ = I ′+.

Proposition 3.2.2. Let (Q, σ) be a symmetric quiver of tame type and let I+, Iδ,
I ′+, I ′δ, I

′′
+ and I ′′δ be as above. Any regular symmetric dimension vector can be

written uniquely in the following form:

d = ph+
∑
i∈I+

pi(ei+δei)+
∑
i∈Iδ

piei+
∑
i∈I′+

p′i(e
′
i+δe

′
i)+
∑
i∈I′δ

p′ie
′
i+
∑
i∈I′′+

p′′i (e
′′
i +δe′′i )

(3.16)
for some non-negative p, pi, p′i, p

′′
i with at least one coefficient in each family {pi| i ∈

I+tIδ}, {p′i| i ∈ I ′+tI ′δ}, {p′′i | i ∈ I ′′+} being zero. In particular, in the symplectic
case,

i) if Q has one σ-fixed vertex and one σ-fixed arrow (i.e. Q = Ã1,1
k,l ), then

p[ l−1
2

]+2 and p′1 have to be even,

ii) if Q has one or two σ-fixed vertices and it has not any σ-fixed arrows (i.e.
Q = Ã0,2

k,l or D̃0,1
n ), then both pi’s and p′j ’s, with i ∈ Iδ and j ∈ I ′δ, have to

be even.

Proof. It follows by lemma 3.2.1 and by decomposition of any regular
dimension vector of the underlying quiver of (Q, σ). In particular, since
symplectic spaces with odd dimension don’t exist, it implies i) and ii). 2

Graphically we can represent ∆ (similarly ∆′ and ∆′′) as the polygons

e0

tttttt
e1

GGGGG

eu e2

ei+2

IIIII
ei−1

xxxxx

ei+1 ei
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if Q = Ã0,0
k,k and

e2 δe2

e3 δe3

e[u
2

]+1 δe[u
2

]+1

e[u
2

]+2 δe[u
2

]+2

e1

JJJJJJ

uuuuuu

e2 δe2

e[u
2

] δe[u
2

]

e[u
2

]+1 δe[u
2

]+1

e1

NNNNNNN

qqqqqqq

e2 δe2

e[u
2

]+1

JJJJJJ
δe[u

2
]+1

rrrrr

e[u
2

]+2

with a reflection respect to a central vertical line, in the other cases.

Definition 3.2.3. We define an involution σI on the set of indices I such that
eσI(i) = δei for every i ∈ I . Hence σI(I) = I ′ for Ã0,0

k,k and σII+ = I−, σIIδ = Iδ
for the other cases. Similarly we define an involution σI′ and an involution σI′′
respectively on I ′ and on I ′′.

Lemma 3.2.4. (1) For Ã2,0,1
k,l , no one indecomposable regular representation is

orthogonal. The following indecomposable regular representations are symplectic

(1.1) Ei,σI(i) such that
∑σI(i)

k=i ek 6= h and Ei,σI(i) of dimension h containing
E l

2
+1.

(1.2) E′i,σ′I(i) such that
∑σI′ (i)

k=i e′k 6= h and E′i,σ′I(i) of dimension h containing
E′k

2
+1

.

(2) For Ã2,0,2
k,l , no one indecomposable regular representation is orthogonal. The

following indecomposable regular representations are symplectic

(2.1) Ei,σI(i) such that
∑σI(i)

k=i ek 6= h, Ei,σI(i) of dimension h containing E0 and
Ei,σI(i) of dimension h containing E[ l+1

2
]+1.

(2.2) E′i,σI′ (i) such that
∑σI′ (i)

k=i e′k 6= h.

(3) For Ã0,2
k,l , no one indecomposable regular representations is symplectic. The

following indecomposable regular representations are orthogonal

(3.1) Ei,σI(i) such that
∑σI(i)

k=i ek 6= h.

(3.2) E′i,σI′ (i) such that
∑σI′ (i)

k=i e′k 6= h.

(4) For Ã0,2
k,l , the following indecomposable regular representations are orthogonal

(4.1.1) Ei,σI(i), with i ≤ σI(i), such that
∑σI(i)

k=i ek 6= h.
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(4.1.2) E′i,σI′ (i), with i ≥ σI′(i), such that
∑σI′ (i)

k=i e′k 6= h.

The following indecomposable regular representations are symplectic

(4.2.1) Ei,σI(i), with i ≥ σI(i), such that
∑σI(i)

k=i ek 6= h.

(4.2.2) E′i,σI′ (i), with i ≤ σI′(i), such that
∑σI′ (i)

k=i e′k 6= h and E′i,σI′ (i), with i ≤
σI′(i), of dimension h containing E′k

2
+1

.

(5) For Ã0,0
k,k, no one indecomposable regular representation is symplectic or or-

thogonal.

(6) For (D̃1,0
n )eq, no one indecomposable regular representation is othogonal. The

following indecomposable regular representations are symplectic

(6.1) Ei,σI(i) such that
∑σI(i)

k=i ek 6= h and Ei,σI(i) of dimension h containing
En−1.

(6.2) E′0 and E′1.

(6.3) E′′0,1 and E′′1,0.

(7) For (D̃0,1
n )eq, no one indecomposable regular representation is symplectic. The

orthogonal indecomposable regular representations are

(7.1) Ei,σI(i) such that
∑σI(i)

k=i ek 6= h.

(7.2) E′0 and E′1.

(7.3) E′′0,1 and E′′1,0.

Proof. We check only part (1.1), similarly one proves the other parts. Let
Q = Ã2,0,1

k,l . The only Ei,j such that δdimEi,j = dimEi,j are Ei,σI(i). We have
three cases.

(i) If
∑σI(i)

k=i ek 6= h and i < σI(i) then we have for j ∈ Q0

Ei,σI(i)(j) =
{

K j = xs, σ(xs) with i− 1 ≤ s ≤ l
2

0 otherwise

and for c ∈ Q1

Ei,σI(i)(c) =
{
Id c = vs, σ(vs), a with i ≤ s ≤ l

2
0 otherwise.

So we note that we can define on such Ei,σI(i) a symplectic structure.
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(ii) If
∑σI(i)

k=i ek 6= h and i ≥ σI(i) then we have for j ∈ Q0

Ei,σI(i)(j) =
{

0 j = xs, σ(xs) with i ≤ s ≤ l
2

K otherwise

and for c ∈ Q1

Ei,σI(i)(c) =
{

0 c = vs, σ(vs), a with i ≤ s ≤ l
2

Id otherwise.

So we note that we can define on such Ei,σI(i) a symplectic structure.

(iii) If
∑σI(i)

k=i ek = h and Ei,σI(i) contains E l
2

+1, then, by AR quiver of Q,
we note the following almost split sequence

0 −→ E l
2

+1,σI( l
2

) −→ Ei,σI(i) ⊕ E l
2
,σI( l

2
) −→ E l

2
,σ( l

2
)−1 −→ 0.

So we have for every j ∈ Q0, Ei,σI(i)(j) = K and for c ∈ Q1

Ei,σI(i)(c) =
{

0 c = a
Id otherwise.

Finally, we note that we can define on such Ei,σI(i) a symplectic struc-
ture. 2

In the remainder of the section, we shall call

d′ =
∑
i∈I+

pi(ei+δei)+
∑
i∈Iδ

piei+
∑
i∈I′+

p′i(e
′
i+δe′i)+

∑
i∈I′δ

p′ie
′
i+
∑
i∈I′′+

p′′i (e
′′
i +δe′′i ).

(3.17)

Proposition 3.2.5. If d is regular with decomposition (3.16) such that d = d′ or d
is not regular then SpRep(Q, d) (respectivelyORep(Q, d)) has an open Sp(Q, d)-
orbit (respectively O(Q, d)-orbit).

Proof. If d = d′, we have no indecomposable of dimension vector ph
and so there are finitely many orbits. If d is not regular, it follows from [R2,
theorem 3.2]. 2

In the next d shall be a regular symmetric dimension vector with decompo-
sition (3.16) with p ≥ 1 and p 6= 0. Now we shall describe the generators
of SpSI(Q, d) and OSI(Q, d). To do this the following theorem, which we
prove later, is useful.

Theorem 3.2.6. Let (Q, σ) be a symmetric quiver of tame type and the decom-
position (3.16) of a regular symmetric dimension vector with p ≥ 1 and d′ 6= 0.
There exist isomorphisms of algebras

SpSI(Q, d) Φd→
⊕

χ∈char(Sp(Q,d))

SpSI(Q, ph)χ ⊗ SpSI(Q, d′)χ′ (3.18)
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and

OSI(Q, d) Ψd→
⊕

χ∈char(O(Q,d))

OSI(Q, ph)χ ⊗OSI(Q, d′)χ′ , (3.19)

where χ′ = χ|d′ , i.e. the restriction of the weight χ to the support of d′.

By proposition 3.2.5 Sp(Q, d′) (respectivelyO(Q, d′)) acting on SpRep(Q, d′)
(respectively on ORep(Q, d′)) has an open orbit so , by lemma A.2.5, di-
mension of SpSI(Q, d′)χ′ (respectively dimension of OSI(Q, d′)χ′) is 0 or
1. This allows us to identify one non-zero element of SpSI(Q, d)χ (re-
spectively of OSI(Q, d)χ) with the element of SpSI(Q, ph)χ (respectively
of OSI(Q, ph)χ) to which it restricts.
We proceed now to describe the generators of the algebra SpSI(Q, d) (re-
spectively OSI(Q, d)). If the corresponding I, I ′, I ′′ are not empty, we la-
bel the vertices ei, e′i, e

′′
i of the polygons ∆, ∆′, ∆′′ with the coefficients

pi, p
′
i, p
′′
i . We recall that

a) we have to label with pi (respectively with p′i and p′′i ) both vertices
ei and δei, i.e pi = pσI(i) (respectively p′i = p′σ′′I (i) and p′′i = p′′σ′′I (i)), if
ei 6= δei.

and in the symplectic case, by i) and ii) of proposition 3.2.2

b) for Ã1,1
k,l , p[u

2
]+2 and p′1 have to be even,

c) for Ã0,2
k,l and D̃0,1

n , pi ∈ Iδ and p′i ∈ I ′δ have to be even.

We shall call these labelled polygons respectively ∆(d), ∆′(d), ∆′′(d).

Definition 3.2.7. We shall say that the labelled arc pi pj (in clock-
wise orientation) of the labelled polygon ∆(d) is admissible if pi = pj and pi < pk
for every its interior labels pk. We denote such a labelled arc pi pj

by [i, j], and we define pi = pj the index ind[i, j] of [i, j]. Similarly we define
admissible arcs and their indexes for the labelled polygons ∆′(d) and ∆′′(d).

We denote by A(d), A′(d), A′′(d) the sets of all admissible labelled arcs
in the polygons ∆(d), ∆′(d), ∆′′(d) respectively. In particular we note that
if d = ph, then the polygons ∆(d), ∆′(d), ∆′′(d) are labelled by zeros and so
A(d), A′(d), A′′(d) consist of all edges of respective polygons. With these
notations we have the following

Proposition 3.2.8. For each arc [i, j] from A(d) (respectively A′(d) and A′′(d))
there exists in SpSI(Q, d) and in OSI(Q, d) a non zero semi-invariant

(i) of type cEi,j−1 (respectively cE
′
i,j−1 and cE

′′
i,j−1) or of type cV(ϕ,ψ) , with (ϕ,ψ) ∈

{(1, 0), (0, 1), (1, 1)};
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(ii) of type pfEi,j−1 (respectively pfE
′
i,j−1 and pfE

′′
i,j−1) or of type pfV(ϕ,ψ) , with

(ϕ,ψ) ∈ {(1, 0), (0, 1), (1, 1)}, if Ei,j−1, E′i,j−1, E′′i,j−1 and V(ϕ,ψ) satisfy
property (Op) in the symplectic case and property (Spp) in the orthogonal
case.

Let c0, . . . , ct, with t = p−1
2 , p2 and p, defined case by case in section 3.1.

The generators of algebras SpSI(Q, d) and OSI(Q, d) are described by the
following theorem

Theorem 3.2.9. Let (Q, d) a symmetric quiver of tame type and d = ph + d′

the decomposition of a regular symmetric dimension vector d with p ≥ 1. Then
SpSI(Q, d) (respectively OSI(Q, d)) is generated by

(i) c0, . . . , ct;

(ii) cEi,j−1 , cE
′
r,s−1 , cE

′′
t,m−1 and cV(ϕ,ψ) with [i, j] ∈ A(d), [r, s] ∈ A′(d),

[t,m] ∈ A′′(d) and (ϕ,ψ) ∈ {(1, 0), (0, 1), (1, 1)};

(iii) pfEi,j−1 , pfE
′
r,s−1 , pfE

′′
t,m−1 and pfV(ϕ,ψ) with [i, j] ∈ A(d), [r, s] ∈ A′(d),

[t,m] ∈ A′′(d) and (ϕ,ψ) ∈ {(1, 0), (0, 1), (1, 1)}, if Ei,j−1, E′i,j−1, E′′i,j−1

and V(ϕ,ψ) satisfy property (Op) (respectively property (Spp)).

First we note that 〈h, d〉 = 0 and further we have the following

Lemma 3.2.10. For every regular dimension vector d

〈dimEi,j−1, d〉 = 0⇔ pi = pj .

Proof. See [D, section 4.3]. 2

So theorem 3.2.9 is equivalent to conjectures 1.2.1 and 1.2.2.

3.2.1 Proof of theorem 3.2.9 and 3.2.6

In this section we prove the theorem 3.2.9 and theorem 3.2.6. For theorem
3.2.9, by proposition 1.3.8, proposition 1.3.4 and lemma 1.3.14, we can re-
duce the proof to the orientation of Ã as in proposition 1.3.8 and to the
equiorientation for D̃. In the proof we use the notion of generic decompo-
sition of the symmetric dimension vector d (see [K1], [K2], [KR]).

Definition 3.2.11. A decomposition α = β1 ⊕ · · · ⊕ βq of a dimension vector α
is called generic if there is a Zariski open subset U of Rep(Q,α) such that each
U ∈ U decomposes in U =

⊕q
i=1 Ui with Ui indecomposable representation of

dimension βi, for every i ∈ {1, . . . , q}.

Definition 3.2.12. (1) A decomposition α = β1 ⊕ · · · ⊕ βq of a symmetric di-
mension vector α is called symplectic generic if there is a Zariski open sub-
set U of SpRep(Q,α) such that each U ∈ U decomposes in U =

⊕q
i=1 Ui

with Ui indecomposable symplectic representation of dimension βi, for every
i ∈ {1, . . . , q}.
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(2) A decomposition α = β1 ⊕ · · · ⊕ βq of a symmetric dimension vector α is
called orthogonal generic if there is a Zariski open subset U of ORep(Q,α)
such that each U ∈ U decomposes in U =

⊕q
i=1 Ui with Ui indecomposable

orthogonal representation of dimension βi, for every i ∈ {1, . . . , q}.

For tame quivers the generic decomposition of any regular dimension
vector is given by results of [R2, section 3].
We describe this decomposition explicitly for a symmetric regular dimen-
sion vector d with decomposition (3.16).
In the remainder of this section we set

d̄ =
∑
i∈I+

pi(ei + δei) +
∑
i∈Iδ

piei, (3.20)

d̄′ =
∑
i∈I′+

p′i(e
′
i + δe′i) +

∑
i∈I′δ

p′ie
′
i (3.21)

d̄′′ =
∑
i∈I′′+

p′′i (e
′′
i + δe′′i ). (3.22)

Remark 3.2.13. (i) We remember that at least one coefficient in each family
{pi| i ∈ I+ t Iδ}, {p′i| i ∈ I ′+ t I ′δ}, {p′′i | i ∈ I ′′+} is zero.

(ii) We can assume pi = 0 for i ∈ Iδ or pi = 0, for i ∈ I+, and so pσI(i) = 0.

Definition 3.2.14. We divide the polygon ∆(d̄) in two parts:

(i) the up part ∆up(d̄) is the part of ∆(d̄) from pi−1 to pσI(i−1);

(ii) the down part ∆down(d̄) is the part of ∆(d̄) from pi+1 to pσI(i+1).

Similarly for ∆′ and ∆′′.

Remark 3.2.15. We note that if pi = 0 with i ∈ Iδ, then we have only the part
∆up or the part ∆down.

We consider ∆, similarly one proceeds for ∆′ and ∆′′.

Definition 3.2.16. We shall call symmetric arc, an arc invariant under σI , i.e. an
arc of type [i, σI(i)].

Remark 3.2.17. By the division of ∆ in ∆up and ∆down, we note that all symmet-
ric arcs pass through the same σI -fixed vertex of ∆ or through the same σI -fixed
edge of ∆.

Lemma 3.2.18. Let (Q, σ) be a symmetric quiver of tame type.

(i) If n = σI(n) then either there exists unique x ∈ Qσ0 such that en(x) 6= 0 or
there exists unique a ∈ Qσ1 such that en(ta) 6= 0.
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(ii) If n σI(n) is a σI -fixed edge in ∆, then there exists unique a ∈ Qσ1 such
that en(ta) 6= 0.

Proof. One proceeds type by type. We consider Q = Ã2,0,1
k,l since for the

other types one proves similarly.
(i) By lemma 3.2.1, the only σI -fixed vertex of ∆ is 1 and b is the unique
arrow in Qσ1 such that e1(tb) 6= 0.
(ii) The only σI -fixed edge of ∆ is l

2 + 1 σI( l2 + 1) and a is the unique
arrow in Qσ1 such that e l

2
+1(ta) 6= 0. 2

Definition 3.2.19. (i) If n = σI(n), we call x(n) the unique x ∈ Qσ0 such that
en(x) 6= 0.

(ii) If n = σI(n) or n σI(n) is a σI -fixed edge in ∆, we call a(n) the unique
a ∈ Qσ1 such that en(ta) 6= 0.

Definition 3.2.20. For every arc [i, j] in ∆, we define

e[i,j] =
∑
k∈[i,j]

ek.

Definition 3.2.21. (i) A+(d̄) := {[i, j] ∈ A(d̄)| [i, j] ⊂ I+}

(ii) Ak+(d̄) := {[i, j] ∈ A(d̄)| [i, j] ⊂ I+, ind[i, j] = k}.

(iii) AkσI (d̄) = {[i, j] = σI [i, j] ∈ A(d̄)| ind[i, j] = k}.

Remark 3.2.22. [i, j] ⊂ I+ if and only if [σI(j), σI(i)] ⊂ I− and ind[i, j] =
ind[σI(j), σI(i)].

First we consider all the admissible arcs in ArσI (d̄) ∪ Ar+(d̄) such that
r = max{pk}. So we get

=
∑
i∈I+

p̃i(ẽi + δẽi) +
∑
i∈Iδ

p̃iẽi =

∑
i∈I+

pi(ei+δei)+
∑
i∈Iδ

piei−

 ⊕
[i,j]∈Ar+(d̄)

(e[i,j] + δe[i,j]) +
⊕

[i,σI(i)]∈ArσI (d̄)

e[i,σI(i)]

 ,

(3.23)
where max(p̄i) = r − 1. Then we repeat the procedure for (3.23) and so on
we have ∑

i∈I+

pi(ei + δei) +
∑
i∈Iδ

piei =

r⊕
k=1

 ⊕
[i,j]∈Ak+(d̄)

(e[i,j] + δe[i,j]) +
⊕

[i,σI(i)]∈AkσI (d̄)

e[i,σI(i)]

 . (3.24)
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Remark 3.2.23. (i) If [i, j] and [i′, j′] are two admissible arcs in A(d̄) such
that [i, j] ⊇ [i′, j′], then ind[i, j] ≤ ind[i′, j′].

(ii) If there not exists [i, j] ∈ AhσI (d̄) ∪ Ah+(d̄) such that [i, j] ⊇ [i′, j′] for some
[i′, j′] ∈ AkσI (d̄)∪Ak+(d̄), then the symmetric dimension vector correspond-
ing to [i′, j′] appears k-times in the decomposition (3.24), with 1 ≤ h < k.

Definition 3.2.24. Let [i1, j1], . . . , [ik, jk] be the admissible arcs such that [i1, j1] ⊇
· · · ⊇ [ik, jk], with k ≥ 1. We define q[ih,jh] = ind[ih, jh] − ind[ih−1, jh−1] for
every 1 ≤ h ≤ k, where ind[i0, i0] = 0.

We note that for every [i, j] ∈ AkσI (d̄) ∪Ak+(d̄), q[i,j] is the multiplicity of
the symmetric dimension vector corresponding to [i, j] in the decomposi-
tion (3.24).
Finally we have ∑

i∈I+

pi(ei + δei) +
∑
i∈Iδ

piei =

⊕
[i,j]∈A+(d̄)

(e[i,j] + δe[i,j])
⊕q[i,j] +

⊕
[i,σI(i)]∈A(d̄)

(e[i,σI(i)])
⊕q[i,σI (i)] . (3.25)

Example 3.2.25. If ∆ is of the form

e1 = δe1

wwwwwwwwww

NNNNNNNNNNN

e2 δe2 = eσI(2)

e3

GGGGGGGGGG δe3 = eσI(3)

ppppppppppp

e4 = δe4

(3.26)

and p1 = 2, p2 = 3, p3 = 0 and p4 = 2, then [2, σI(2)] = {2, 1, σI(2)} ⊂
I+ t Iδ t I− with q[2,σI(2)] = ind[2, σI(2)] = 2, [2, 2] = {2} ∈ I+ with q[2,2] =
ind[2, 2] − ind[2, σI(2)] = 1 and [4, 4] = {4} ∈ Iδ with q[4,4] = ind[4, 4] = 2.
So we have∑

i∈I+

pi(ei + δei) +
∑
i∈Iδ

piei = ((e2 + δe2) + e1)⊕2 ⊕ (e2 + δe2)⊕ (e4)⊕2.

Similarly we proceed with the decomposition of d̄′ and d̄′′. So we have
the following
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Proposition 3.2.26. Let (Q, σ) be a symmetric quiver of tame type and let d be
a symmetric dimension vector of a representation of the underlying quiver Q with
decomposition (3.16). Then

d =
p⊕
i=1

h+
⊕

[i,j]∈A+(d̄)

(e[i,j] + δe[i,j])
⊕q[i,j] +

⊕
[i,σI(i)]∈A(d̄)

(e[i,σI(i)])
⊕q[i,σI (i)]+

⊕
[i,j]∈A′+(d̄′)

(e′[i,j] + δe′[i,j])
⊕q′

[i,j] +
⊕

[i,σI′ (i)]∈A′(d̄′)

(e′[i,σI′ (i)])
⊕q′

[i,σI′ (i)]+

⊕
[i,j]∈A′′+(d̄′′)

(e′′[i,j] + δe′′[i,j])
⊕q′′

[i,j] +
⊕

[i,σI′′ (i)]∈A′′(d̄′′)

(e′′[i,σI′′ (i)])
⊕q′′

[i,σI′′ (i)] (3.27)

is the generic decomposition of d.

We restrict to dimension vectors of regular symplectic representations
and of regular orthogonal representations. We modify generic decomposi-
tion (3.27) of d = (di)i∈Q0 to get symplectic generic decomposition of d or
orthogonal generic decomposition of d.
Let [i, j] be an arc in ∆up and let [h, k] be an arc in ∆down. IfE[i,j] is the regu-
lar indecomposable symplectic (respectively orthogonal) representation of
(Q, σ) corresponding to [i, j] and E[h,k] is the regular indecomposable sym-
plectic (respectively orthogonal) representation of (Q, σ) corresponding to
[h, k], then

HomQ(E[i,j], E[h,k]) = 0 = HomQ(E[h,k], E[i,j])

and
Ext1Q(E[i,j], E[h,k]) = 0 = Ext1Q(E[h,k], E[i,j]).

So we deal separately with ∆up and ∆down. We consider I = Iup t Idown,
I+ = Iup+ t Idown+ and Iδ = Iupδ t I

down
δ . We have the decomposition d̄ =

d̄up + d̄down, where

d̄up =
∑
i∈Iup+

pi(ei + δei) +
∑
i∈Iupδ

piei (3.28)

and
d̄down =

∑
i∈Idown+

pi(ei + δei) +
∑

i∈Idownδ

piei. (3.29)

By what has be said, the symplectic (respectively orthogonal) generic de-
composition of d̄ is direct sum of the symplectic (respectively orthogonal)
generic decomposition of d̄up and the symplectic (respectively orthogonal)
generic decomposition of d̄down.
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Remark 3.2.27. (i) In the symplectic case, since d̄x has to be even for every
x ∈ Qσ0 , we have to modify the symmetric dimension vectors corresponding
to the arcs passing through the σI -fixed vertex n such that there exists x =
x(n) ∈ Qσ0 such that en(x) 6= 0.

(ii) In the orthogonal case, we have to modify the symmetric dimension vectors
corresponding to the arcs passing through the σI -fixed vertex n such that
d̄ta(n) is even and those corresponding to the arcs passing through the σI -
fixed edge n σI(n) such that d̄ta(n) is even.

(iii) We have to modify also ph+e[i,σI(i)], with p odd, if [i, σI(i)] is like in part (i)
(respectively part (ii)), since h + e[i,σI(i)] is the dimension vector of regular
indecomposable symplectic (respectively orthogonal) representation.

Definition 3.2.28. (i) Aup(d̄) = {[i, j] ∈ A(d̄)| [i, j] ⊂ Iup}.

(ii) Aup+ (d̄) = {[i, j] ∈ A(d̄)| [i, j] ⊂ Iup+ }.

(iii) Adown(d̄) = {[i, j] ∈ A(d̄)| [i, j] ⊂ Idown}.

(iv) Adown+ (d̄) = {[i, j] ∈ A(d̄)| [i, j] ⊂ Idown+ }.

Let d̄ = d̄up + d̄down be a regular symplectic dimension vector. We
consider ∆up. ∆up contains either a σI -fixed vertex nup or a σI -fixed edge
nup σI(nup) . Starting from generic decomposition (3.27) of d̄up we mod-

ify it as follows.

(1) We keep the summands (e[i,j] + δe[i,j])⊕q[i,j] corresponding to the arc
[i, j] ⊂ Iup+ .

(2) If nup is such that there exists a = a(nup) ∈ Qσ1 , then we keep the sum-
mands (e[i,σI(i)])

⊕q[i,σI (i)] corresponding to the symmetric arcs [i, σI(i)]
of ∆up.

(3) If nup is such that there exists x = x(nup) ∈ Qσ0 , we have the symmet-
ric dimension vectors

e[i1,σI(i1)], . . . , e[i2s,σI(i2s)]

corresponding to the arcs [i1, σI(i1)], . . . , [i2s, σI(i2s)] such that [i1, σI(i1)] ⊇
· · · ⊇ [i2s, σI(i2s)]. Then we divide them into pairs

([i2k, σI(i2k)], [i2k−1, σI(i2k−1)]),

with 1 ≤ k ≤ s. For each pair we consider [i2k, σI(i2k−1)]∪[i2k−1, σI(i2k)]
and we substitute e[i2k,σI(i2k)] ⊕ e[i2k−1,σI(i2k−1)] for

e[i2k,σI(i2k−1)] + e[i2k−1,σI(i2k)].
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So, by equation 3.25, in the symplectic case we get

(i) if nup is such that there exists a = a(nup) ∈ Qσ1 ,

d̄up =
⊕

[i,j]∈Aup+ (d̄)

(e[i,j] + δe[i,j])
⊕q[i,j] +

⊕
[i,σI(i)]∈Aup(d̄)

(e[i,σI(i)])
⊕q[i,σI (i)] ;

(3.30)

(ii) If nup is such that there exists x = x(nup) ∈ Qσ0 ,

d̄up =
⊕

[i,j]∈Aup+ (d̄)

(e[i,j] +δe[i,j])
⊕q[i,j] +

s⊕
k=1

(e[i2k,σI(i2k−1)] +e[i2k−1,σI(i2k)]).

(3.31)

Similarly one proceeds for ∆down.
Finally we have to modify like in (3) the dimension vector ph+e[i,σI(i)] if p is
odd and [i, σI(i)] passes through nup such that there exists x = x(nup) ∈ Qσ0 .

Example 3.2.29. Let (Q, σ) be the symmetric quiver Ã1,1
0,6. We recall that x l

2
=

σ(x l
2
). ∆ has the form (3.26).

As in example 3.2.25, let p1 = 2, p2 = 3, p3 = 0 and p4 = 2. The σI -fixed vertex
4 is such that e4(x l

2
) 6= 0. The only symmetric arc passing through 4 is [4, 4].

Thus we substitute (e4)⊕2 for 2e4. So, in the symplectic case we get∑
i∈I+

pi(ei + δei) +
∑
i∈Iδ

piei = ((e2 + δe2) + e1)⊕2 ⊕ (e2 + δe2)⊕ 2e4.

Similarly we proceed with the decomposition of d̄′ and d̄′′.
Let d̄ = d̄up + d̄down be a regular orthogonal dimension vector. We consider
∆up. Starting from generic decomposition (3.27) of d̄up we modify it as
follows.

(1) We keep the summands (e[i,j] + δe[i,j])⊕q[i,j] corresponding to the arc
[i, j] ⊂ Iup+ .

(2) If nup is such that there exists a = a(nup) ∈ Qσ1 such that d̄ta is odd or
nup is such that there exist x = x(nup) ∈ Qσ0 , then we keep the sum-
mands (e[i,σI(i)])

⊕q[i,σI (i)] corresponding to the symmetric arcs [i, σI(i)]
of ∆up.

(3) If nup is such that there exists a = a(nup) ∈ Qσ1 such that d̄ta is even,
we have the symmetric dimension vectors

e[i1,σI(i1)], . . . , e[i2s,σI(i2s)]
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corresponding to the arcs [i1, σI(i1)], . . . , [i2s, σI(i2s)] such that [i1, σI(i1)] ⊇
· · · ⊇ [i2s, σI(i2s)]. Then we divide them into pairs

([i2k, σI(i2k)], [i2k−1, σI(i2k−1)]),

with 1 ≤ k ≤ s. For each pair we consider [i2k, σI(i2k−1)]∪[i2k−1, σI(i2k)]
and we substitute e[i2k,σI(i2k)] ⊕ e[i2k−1,σI(i2k−1)] for

e[i2k,σI(i2k−1)] + e[i2k−1,σI(i2k)].

So, by equation 3.25, in the orthogonal case we get

(i) if nup is such that there exists a = a(nup) ∈ Qσ1 such that d̄ta is odd or
nup is such that there exist x = x(nup) ∈ Qσ0 ,

d̄up =
⊕

[i,j]∈Aup+ (d′)

(e[i,j] + δe[i,j])
⊕q[i,j] +

⊕
[i,σI(i)]∈Aup(d′)

(e[i,σI(i)])
⊕q[i,σI (i)] ;

(3.32)

(ii) if nup is such that there exists a = a(nup) ∈ Qσ1 such that d̄ta is even,

d̄up =
⊕

[i,j]∈Aup+ (d′)

(e[i,j]+δe[i,j])
⊕q[i,j] +

s⊕
k=1

(e[i2k,σI(i2k−1)]+e[i2k−1,σI(i2k)]).

(3.33)

Similarly one proceeds for ∆down.
Finally we have to modify like in (3) the dimension vector ph+e[i,σI(i)] if p is
odd and [i, σI(i)] passes through nup such that there exists a = a(nup) ∈ Qσ1
such that d̄ta is even.

Example 3.2.30. Let (Q, σ) be the symmetric quiver Ã1,1
0,6. We recall that b =

σ(b). ∆ has the form (3.26).
As in example 3.2.25, let p1 = 2, p2 = 3, p3 = 0 and p4 = 2. The σI -fixed vertex
1 is such that e1(tb) 6= 0 and d̄tb is 2. The only symmetric arc passing through 1
is [2, σI(2)]. Thus we substitute ((e2 + δe2)) + e1)⊕2 for 2((e2 + δe2)) + e1). So,
in the orthogonal case we get∑

i∈I+

pi(ei + δei) +
∑
i∈Iδ

piei = (e4)⊕2 ⊕ (e2 + δe2)⊕ 2((e2 + δe2) + e1).

Similarly we proceed with the decomposition of d̄′ and d̄′′.
In general we have

Proposition 3.2.31. Let (Q, σ) be a symmetric quiver of tame type.
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(1) If d is a regular symplectic dimension vector with decomposition (3.16).
Then

d =
p⊕
i=1

h⊕ d̄up ⊕ d̄down ⊕ d̄′up ⊕ d̄′down ⊕ d̄′′up ⊕ d̄′′down (3.34)

is the symplectic generic decomposition of d.

(2) If d is a regular orthogonal dimension vector with decomposition (3.16).
Then (3.16). Then

d =
p⊕
i=1

h⊕ d̄up ⊕ d̄down ⊕ d̄′up ⊕ d̄′down ⊕ d̄′′up ⊕ d̄′′down (3.35)

is the orthogonal generic decomposition of d.

For the proof, we need two propositions. We state and prove these
propositions only for regular indecomposable symplectic (respectively or-
thogonal) representations related to polygon ∆, because for those related
to polygon ∆′ and to polygon ∆′′ the statement and the proof are similar.

Proposition 3.2.32. Let (Q, σ) be a symmetric quiver of tame tape. Let V1 6= V2

be two regular indecomposable symplectic (respectively orthogonal) representa-
tions of (Q, σ) with symmetric dimension vector corresponding respectively to the
arc [i, j] and the arc [h, k] of ∆ (∆′ or ∆′′). Moreover we suppose that [i, j] and
[h, k] don’t satisfy the following properties

(i) [i, j] ∩ [h, k] 6= ∅ and [i, j] doesn’t contain [h, k];

(ii) [i, j] ∩ [h, k] 6= ∅ and [h, k] doesn’t contain [i, j];

(iii) [i, j] and [h, k] are linked by one edge of ∆ (respectively ∆′ or ∆′′).

Then Ext1Q(V1, V2) = 0.

Proof. We restrict to decomposition d̄j =
∑

i∈I+ p
j
i (ei + δei) +

∑
i∈Iδ p

j
iei,

for j = 1, 2. We have nine cases:

(1) V1 = Ei,σI(i), V2 = Ej,σI(j) and V1 = EσI(j),j , V2 = EσI(i),i with i, j ∈
I+ t Iδ.

(2) V1 = Ei,σI(i), V2 = EσI(j),j and V1 = EσI(j),j , V2 = Ei,σI(i) with i, j ∈
I+ t Iδ such that j > i+ 1.

(3) V1 = Ei,j ⊕ EσI(j),σI(i), V2 = Ek,σI(k) and V1 = Ek,σI(k), V2 = Ei,j ⊕
EσI(j),σI(i) with i, j, k ∈ I+ t Iδ such that either j > k + 1 or k ≥ i.

(4) V1 = Ei,j ⊕ EσI(j),σI(i), V2 = EσI(k),k or V1 = EσI(k),k, V2 = Ei,j ⊕
EσI(j),σI(i) with i, j, k ∈ I+ t Iδ such that either j ≥ k or k > i+ 1.
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(5) V1 = Ei,j ⊕ EσI(j),σI(i) and V2 = Eh,k ⊕ EσI(k),σI(h) with i, j, k, h ∈
I+ t Iδ such that either k ≤ j and i ≤ h or k ≥ j and i ≥ h.

(6) V1 = Ei,σI(j) ⊕ Ej,σI(i), V2 = Eh,σI(k) ⊕ Ek,σI(h) and V1 = EσI(j),i ⊕
EσI(i),j and V2 = EσI(k),h ⊕ EσI(h),k) with i, j, k ∈ I+ t Iδ.

(7) V1 = Ei,σI(j) ⊕ Ej,σI(i), V2 = EσI(k),k (resp. V1 = EσI(k),k, V2 =
Ei,σI(j) ⊕ Ej,σI(i)) with i, j, k ∈ I+ t Iδ such that k > i + 1 and
i > j and V1 = EσI(j),i ⊕ EσI(i),j , V2 = Ek,σI(k) (resp. V1 = Ek,σI(k),
V2 = EσI(j),i ⊕ EσI(i),j) with i, j, k ∈ I+ t Iδ such that i > k + 1 and
i < j.

(8) V1 = Ei,σI(j) ⊕ Ej,σI(i), V2 = Eh,k ⊕ EσI(k),σI(h) (resp. V1 = Eh,k ⊕
EσI(k),σI(h), V2 = Ei,σI(j) ⊕ Ej,σI(i)) with i, j, k ∈ I+ t Iδ such that
i > j and either k > i + 1 or i ≥ h and V1 = EσI(j),i ⊕ EσI(i),j , V2 =
Eh,k⊕EσI(k),σI(h) (resp. V1 = Eh,k⊕EσI(k),σI(h), V2 = EσI(j),i⊕EσI(i),j)
with i, j, k ∈ I+ t Iδ such that i < j and either k ≥ i or i > h+ 1.

(9) V1 = Ei,σI(j) ⊕ Ej,σI(i) and V2 = EσI(k),h ⊕ EσI(h),k (resp. V1 =
EσI(k),h ⊕ EσI(h),k and V2 = Ei,σI(j) ⊕ Ej,σI(i)) with i, j, k ∈ I+ t Iδ
such that h > i+ 1, i > j and h < k.

We consider (1). By [D, lemma 4.1],

HomQ(Ei,σI(i), Ej,σI(j)) = 0 = HomQ(EσI(j),j , EσI(i),i)

and by lemma B.2.9,

〈dim(Ei,σI(i)), dim(Ej,σI(j))〉 = 0 = 〈dim(EσI(j),j), dim(EσI(i),i)〉.

So we get

Ext1Q(Ei,σI(i), Ej,σI(j)) = 0 = Ext1Q(EσI(j),j , EσI(i),i).

Similarly for (2), by [D, lemma 4.1] and by lemma B.2.9, we getExt1Q(V1, V2) =
0.
We consider (3). We suppose j > k + 1. By [D, lemma 4.1], we have

HomQ(Ei,j , Ek,σI(k)) = 0 = HomQ(EσI(j),σI(i), Ek,σI(k))

and so
HomQ(Ei,j ⊕ EσI(j),σI(i), Ek,σI(k))

= HomQ(Ei,j , Ek,σI(k))⊕HomQ(EσI(j),σI(i), Ek,σI(k)) = 0.

Moreover, by lemma B.2.9

〈dim(Ei,j), dim(Ek,σI(k))〉 = 0 = 〈dim(EσI(j),σI(i)), dim(Ek,σI(k))〉
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and hence
〈dim(Ei,j ⊕ EσI(j),σI(i)), dim(Ek,σI(k))〉 =

〈dim(Ei,j), dim(Ek,σI(k))〉+ 〈dim(EσI(j),σI(i)), dim(Ek,σI(k))〉 = 0.

So we have
Ext1Q(Ei,j ⊕ EσI(j),σI(i), Ek,σI(k)) = 0.

Similarly to (3), one proceeds for the other cases. 2

Proposition 3.2.33. Let (Q, σ) be a symmetric quiver of tame tape. Let V be
a regular indecomposable symplectic (respectively orthogonal) representation of
(Q, σ) such that dim(V ) = h or d̄. Moreover we suppose V 6= Ei,j ⊕ EσI(j),σI(i)

with i, j ∈ I+ such that ei(ta) 6= 0 or ej(ta) 6= 0 for a ∈ Qσ1 . Then, for every
non-trivial short exact sequence

0→ V →W → V → 0,

W is not symplectic (respectively it is not orthogonal).

Proof. We give a proof for (Q = Ã2,0,1
k,l , σ) for the symplectic case, one

proves similarly the other cases.
(i) Let dim(V ) = h. By lemma 3.2.4, the regular indecomposable symplectic
representation of dimension h is Ei,σI(i) containing E l

2
+1, i.e. the represen-

tation V defined by V (x) = K for every x ∈ Q0 and

V (c) =
{

0 if c = a
Id otherwise,

for c ∈ Q1.
By [D, lemma 4.1],HomQ(V, V ) = K and since 〈h, h〉 = 0, thenExt1Q(V, V ) =
K. One non-trivial auto-extension W of V is defined by W (x) = K2 for ev-
ery x ∈ Q0, and

W (c) =



(
0 1
0 0

)
if c = a

(
1 0
0 1

)
otherwise,

for c ∈ Q1. Finally we note that W is not symplectic, because W (a) is not
symmetric. Since Ext1Q(V, V ) = K, the non-trivial auto-extensions of V is
not symplectic.
(ii) Let dim(V ) = d̄. The only regular indecomposable symplectic represen-
tations which we have to consider areEi,σI(j)⊕Ej,σI(i) andEσI(j),i⊕EσI(i),j
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with i, j ∈ I+ t Iδ.
Let V = Ei,σI(j) ⊕ Ej,σI(i), with j < i.

V (x) = V (σ(x))


K if x ∈ {xr| em(xr) 6= 0, m ∈ {j + 1, . . . , i}}
0 if x ∈ {xr| em(xr) = 0,m ∈ I+}
K2 otherwise

for x ∈ Q0 and

V (c) = −V (σ(c))t =


1 if c ∈ {vr| em(tvr) 6= 0, m ∈ {j + 1, . . . , i}}
(1, 1) if c = vr s.t. ej(tvr) 6= 0
0 if c ∈ {vr| em(tvr) = 0,m ∈ I+} ∪ {a}
Id2×2 otherwise

for c ∈ Q+
1 and V (b) = Id2×2.

By [D, lemma 4.1],

dimK(HomQ(Ei,σI(j) ⊕ Ej,σI(i), Ei,σI(j) ⊕ Ej,σI(i))) = 3

and by lemma B.2.9,

〈dim(Ei,σI(j) ⊕ Ej,σI(i)), dim(Ei,σI(j) ⊕ Ej,σI(i))〉 = 2.

So we have

Ext1Q(Ei,σI(j) ⊕ Ej,σI(i), Ei,σI(j) ⊕ Ej,σI(i)) = K.

Let

A =
(

1 1 0 0
0 0 1 1

)
and B =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

One non-trivial auto-extension W of V is defined by

W (x) = W (σ(x))


K2 if x ∈ {xr| em(xr) 6= 0, m ∈ {j + 1, . . . , i}}
0 if x ∈ {xr| em(xr) = 0,m ∈ I+}
K4 otherwise

for x ∈ Q0 and

W (c) = −W (σ(c))t =


Id2×2 if c ∈ {vr| em(tvr) 6= 0, m ∈ {j + 1, . . . , i}}
A if c = vr s.t. ej(tvr) 6= 0
0 if c ∈ {vr| em(tvr) = 0,m ∈ I+} ∪ {a}
Id4×4 otherwise,

for c ∈ Q+
1 andW (b) = B. Finally we note thatW is not symplectic because

W (b) is not symmetric. Since Ext1Q(V, V ) = K, this concludes the proof for
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(Ã2,0,1
k,l , σ). 2

Proof of 3.2.31. (1) Let d be a symplectic regular dimension vector with de-
composition (3.34). First we note that the symmetric dimension vectors ap-
pearing in decomposition (3.2.31) are not dimension vectors of the regular
indecomposable symplectic representations which are exceptions of propo-
sition 3.2.32 and 3.2.33. LetO(d) be the open orbit of the regular symplectic
representations of dimension d. By [Bo1] and [Z], we obtain each represen-
tation V in O(d) as follows.
There are representations Mi, Ui, Vi and short exact sequences

0→ Ui →Mi → Vi → 0

such that Mi+1 = Ui ⊕ Vi and V = Un+1 ⊕ Vn+1, with 1 ≤ i ≤ n for some
n ∈ N.
By propositions 3.2.32 and 3.2.33, we have

(i) If Ui 6= Vi, then Ext1Q(Vi, Ui) = 0.

(ii) If Ui = Vi, then either Ext1Q(Ui, Ui) = 0 or no one non-trivial auto-
extension of Ui is symplectic. So, if Ext1Q(Ui, Ui) 6= 0 then Ui doesn’t
appear in decomposition of a symplectic representation.

Hence V decomposes in regular indecomposable symplectic representa-
tions of dimension βi, where βi are regular symmetric dimension vectors
appearing in decomposition (3.34) of d.
(2) One proves similarly to (1). 2

Let d be a regular symmetric vector with a decomposition (3.34) or (3.35).
We note that if d = d1 + d2 with d1 and d2 summands of this generic de-
composition, we have canonical embeddings

SpSI(Q, d) Φd→
⊕

χ∈char(Sp(Q,d))

SpSI(Q, d1)χ|d1 ⊗ SpSI(Q, d2)χd2 (3.36)

and

OSI(Q, d) Ψd→
⊕

χ∈char(O(Q,d))

OSI(Q, d1)χ|d1 ⊗OSI(Q, d2)χd2 , (3.37)

induced by the restriction homomorphism. We prove theorem 3.2.9 by in-
duction on the number of the summands e[i,j]+δe[i,j], e[i,σI(i)], e[i2k,σI(i2k−1)]+
e[i2k−1,σI(i2k)] and respective summands corresponding to the admissible
arcs in A′(d) and in A′′(d). If this number is 0, then d = ph and it was al-
ready proved. We suppose that the generic decomposition of d contains one
of those summands and, without loss of generality, we can assume that this
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summand is one of those corresponding to the arcs inA(d). In particular we
suppose that this summand is e[s,σI(s)] (one proceeds similarly for the other
types), with s ∈ I+ t Iδ, and we can assume ind[s, σI(s)] = r = max{pk}.
We call d2 = e[s,σI(s)] and so d1 = d − e[s,σI(s)]. Now we compare the gen-
erators of the algebras SpSI(Q, d) and SpSI(Q, d1) (respectivelyOSI(Q, d)
and OSI(Q, d1)). By induction the generators of SpSI(Q, d1) (respectively
of OSI(Q, d1)) are described by theorem 3.2.9. Since ∆′(d) = ∆′(d1) and
∆′′(d) = ∆′′(d1), the generators c0, . . . , ct (with t = p

2 , p−1
2 or p), those cor-

responding to the arcs fromA′(d) and those corresponding to the arcs from
A′′(d) occur. So it’s enough to study the behavior of the semi-invariants
corresponding to the arcs from A(d). We describe the link between the ad-
missible arcs of the polygons ∆(d) and ∆(d1). We have

d1 = ph+
∑

i∈I+\(I+∩[s,σI(s)])

pi(ei + δei) +
∑

i∈Iδ\(Iδ∩[s,σI(s)])

piei+

∑
i∈I+∩[s,σI(s)]

pi(ei + δei) +
∑

i∈Iδ∩[s,σI(s)]

piei+

∑
i∈I′+

p′i(e
′
i + δe′i) +

∑
i∈I′δ

p′ie
′
i +

∑
i∈I′′+

p′′i (e
′′
i + δe′′i ).

We have two cases

(1) ps−1 = pσI(s)+1 < r − 1 with s− 1 ∈ I+,

(2) ps−1 = pσI(s)+1 = r − 1 with s− 1 ∈ I+.

in the case (1) the only difference between the structure of A(d) and A(d1)
is that the admissible arcs [s, s + 1], [s + 1, s + 2], . . . , [σI(s) − 1, σ(s)] are
of index r in A(d) and of index r − 1 in A(d1). In the case (2) we have
the admissible arc [s − 1, σI(s) + 1] of index r − 1. The admissible arcs
[s, s + 1], [s + 1, s + 2], . . . , [σI(s) − 1, σI(s)] are of index s in A(d) and the
admissible arcs [s− 1, s], [s, s+ 1], . . . , [σI(s)− 1, σI(s)], [σI(s), σI(s) + 1] are
of index r − 1 in A(d1).
Now we prove that the embeddings Φd and Ψd are isomorphisms and
this will be done in two steps. The first step is to show case by case that
the semi-invariants corresponding to the admissible arcs [i, j] are non zero
cV for some V ∈ Rep(Q) and, if V satisfy property (Spp) or (Op), they
are non zero pfV . The second step is to give an explicit description of
the generators of the algebras on the right hand side of Φd and Ψd. This
is based on the knowledge, given by inductive hypothesis, of the alge-
bra SpSI(Q, d1) (respectively OSI(Q, d1)). We can describe explicitly the
generators of the algebra SpSI(Q, d2) (respectively OSI(Q, d2)) and we
can note that they are determinants or pfaffians, knowing that the group
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Sp(Q, d2) (respectivelyO(Q, d2)) has an open orbit in SpRep(Q, d2) (respec-
tively ORep(Q, d2)) and hence that SpSI(Q, d2) (respectively OSI(Q, d2))
is a polynomial ring (lemma A.2.5). At this point we know the generators
of the algebras on the right hand side of Φd and Ψd. Now, using the fact
that these are determinants or pfaffians, we prove that they actually are in
SpSI(Q, d) (respectively inOSI(Q, d)) and that the embeddings Φd and Ψd

are isomorphisms.
We will consider case by case the semi-invariants corresponding to each
admissible arc [i, j]. To simplify the notation we shall call a both the arrow
a ∈ Q1 and the linear map V (a) defined on a, where V is a representation
of Q.

3.2.1.1 Ã2,0,1
k,l

We have at most two τ+-orbits ∆ and ∆′ of the dimension vectors of nonho-
mogeneous simple regular representation. We assume n ≥ 2 and we con-
sider the τ -orbit {e1 = δe1, e2, . . . , e[ l

2
]+1, δe[ l

2
]+1, . . . , δe2}. Let [i, j] ∈ A(d).

If we consider the arc [1, 1] of index 0, i.e. p1 = 0, p2 6= 0, . . . , p[ l
2

]+1 6= 0, we
have the minimal projective resolution of V(0,1)

0 −→ Pσ(a0)

d
V(0,1)
min−→ Pa0 −→ V(0,1) −→ 0

where d
V(0,1)

min = σ(v1) · · ·σ(v l
2
)av l

2
· · · v1 and so

cV(0,1) = det(HomQ(d
V(0,1)

min , ·)) = det(σ(v1) · · ·σ(v l
2
)av l

2
· · · v1)

in the symplectic case and pfV(0,1) = pf(σ(v1) · · ·σ(v l
2
)av l

2
· · · v1) in the or-

thogonal case, since in this case a is skew-symmetric and σ(vi) = −(vi)t. If
we consider the arc [σI(2), 2] = [0, 2] of index 0, i.e. pσI(2) = 0 = p2, p1 6= 0,
we have the minimal projective resolution of V(1,0)

0 −→ Pσ(a0)

d
V(1,0)
min−→ Pa0 −→ V(1,0) −→ 0

where d
V(1,0)

min = σ(u1) · · ·σ(u k
2
)bu k

2
· · ·u1 and so

cV(1,0) = det(HomQ(d
V(1,0)

min , ·)) = det(σ(u1) · · ·σ(u k
2
)bu k

2
· · ·u1)

in the symplectic case and pfV(1,0) = pf(σ(u1) · · ·σ(u k
2
)bu k

2
· · ·u1) in the

orthogonal case, since in this case b is skew-symmetric and σ(ui) = −(ui)t.
We note that for l = 2 we have only the admissible arcs [1, 1] an [σI(2), 2].
We assume now that l ≥ 4 (l is even) and [i, j] is not an admissible arc
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considered above. If 1 ≤ i < j ≤ l
2 + 1, then we identify [i, j] with the path

vj−1 · · · vi in Q and we have the minimal projective resolution of Ei,j−1

0 −→ Pxj−1

d
Ei,j−1
min−→ Pxi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min = vj−1 · · · vi and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det(vj−1 · · · vi).

We note that

cτ
−∇Ei,j−1 = cEσI (j),σI (i)−1 = det(σ(vi) · · ·σ(vj−1)) = det(vj−1 · · · vi) = cEi,j−1 .

If j = σI(i) then in the symplectic case we get cEi,σI (i)−1 = det(σ(vi) · · · a · · · vi)
and in the orthogonal case, we get pfEi,σI (i)−1 = pf(σ(vi) · · · a · · · vi), since
σ(vi) · · · a · · · vi is skew-symmetric. Now we consider the arcs [i, j] which
have e1 as internal vertex. For these arcs, 2 ≤ j < i− 1 < l and [i, j] can be
identify with the path in Q consisting of the path vl · · · vi−1 = σ(v1) · · · vi−1,
then coming back by σ(u1) · · · b · · ·u1 and at last passing for vj−1 · · · v1. We
have the minimal projective resolution of Ei,j−1

0 −→ Pσ(a0) ⊕ Pxj−1

d
Ei,j−1
min−→ Pa0 ⊕ Pxi−2 −→ Ei,j−1 −→ 0

where dEi,j−1

min =
(
σ(u1) · · · b · · ·u1 vj−1 · · · v1

σ(v1) · · · vi−1 0

)
and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det

(
σ(u1) · · · b · · ·u1 σ(v1) · · · vi−1

vj−1 · · · v1 0

)
.

In particular we note that if i = σI(j), in the orthogonal case, we get

pfEσI (j),j−1 = pf

(
σ(u1) · · · b · · ·u1 σ(v1) · · ·σ(vj−1)
vj−1 · · · v1 0

)
,

since b is skew-symmetric and σ(vi) = −(vi)t. Finally we note that V(0,1),
V(1,0), Ei,σI(i)−1 and EσI(j),j−1 satisfy property (Spp). Similarly we define
the semi-invariants for the admissible arcs [i, j] in A′(d), exchanging the
upper paths of Ã2,0,1

k,l with the lower ones.

3.2.1.2 Ã2,0,2
k,l

We have at most two τ+-orbits ∆ and ∆′ of the dimension vectors of non-
homogeneous simple regular representation. We assume n ≥ 2 and we
consider the τ -orbit

{e2, . . . , e[ l
2

]+2, δe[ l
2

]+2, . . . , δe2 = e1}.
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Let [i, j] ∈ A(d). If we consider the arc [σI(2), 2] = [1, 2] of index 0, i.e.
p2 = 0, p3 6= 0, . . . , p[ l

2
]+2 6= 0, we have the minimal projective resolution of

V(1,0)

0 −→ Pσ(a0)

d
V(1,0)
min−→ Pa0 −→ V(1,0) −→ 0

where d
V(1,0)

min = σ(v1) · · ·σ(v l
2
)av l

2
· · · v1 and so

cV(1,0) = det(HomQ(d
V(1,0)

min , ·)) = det(σ(v1) · · ·σ(v l
2
)av l

2
· · · v1)

in the symplectic case and pfV(1,0) = pf(σ(v1) · · ·σ(v l
2
)av l

2
· · · v1) in the or-

thogonal case, since in this case a is skew-symmetric and σ(vi) = −(vi)t. If
we consider the arc [σI(3), 3] = [0, 3] of index 0, i.e. p3 = 0, p2 6= 0, we have
the minimal projective resolution of V(0,1)

0 −→ Py k
2

⊕ Pσ(a0)

d
V(0,1)
min−→ Pσ(y k

2
) ⊕ Pa0 −→ V(0,1) −→ 0

where d
V(0,1)

min =

(
b σ(u1) · · ·σ(u k

2
)

u k
2
· · ·u1 0

)
and so

cV(0,1) = det(HomQ(d
V(0,1)

min , ·)) = det

(
b u k

2
· · ·u1

σ(u1) · · ·σ(u k
2
) 0

)

in the symplectic case and

pfV(0,1) = pf

(
b u k

2
· · ·u1

σ(u1) · · ·σ(u k
2
) 0

)

in the orthogonal case, since b is skew-symmetric and σ(ui) = −(ui)t. We
note that for l = 2 we have only the admissible arcs [σI(2), 2] an [σI(3), 3].
We assume now that l ≥ 4 and [i, j] is not an admissible arc considered
above. If 2 ≤ i < j ∈ I ≤ l

2 + 2, then we identify [i, j] with the path
vj−2 · · · vi−1 in Q and we have the minimal projective resolution of Ei,j−1

0 −→ Pxj−2

d
Ei,j−1
min−→ Pxi−2 −→ Ei,j−1 −→ 0

where dEi,j−1

min = vj−2 · · · vi−1 and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det(vj−2 · · · vi−1).

We note that

cτ
−∇Ei,j−1 = cEσI (j),σI (i)−1 = det(σ(vi−1) · · ·σ(vj−2)) = det(vj−2 · · · vi−1) = cEi,j−1 .
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Moreover, if j = σI(i) then, only in the orthogonal case, we get pfEi,σI (i)−1 =
pf(σ(vi−1) · · · a · · · vi−1) since σ(vi−1) · · · a · · · vi−1 is skew-symmetric. Now
we consider the arcs [i, j] which have δe2 = e1 and e2 as internal vertex.
For these arcs, 3 ≤ j < i − 1 < l + 1 and we have the minimal projective
resolution of Ei,j−1

0 −→ Py k
2

⊕ Pσ(a0) ⊕ Pxj−2

d
Ei,j−1
min−→ Pσ(y k

2
) ⊕ Pa0 ⊕ Pxi−3 −→ Ei,j−1 −→ 0

where dEi,j−1

min =

 b σ(u1) · · ·σ(u k
2
) 0

u k
2
· · ·u1 0 vj−2 · · · v1

0 σ(v1) · · · vi−2 0

 and so

cEi,j−1 = det

 b u k
2
· · ·u1 0

σ(u1) · · ·σ(u k
2
) 0 σ(v1) · · · vi−2

0 vj−2 · · · v1 0

 .

In particular we note that if i = σI(j), in the orthogonal case, we get

pfEσI (j),j−1 = pf

 b u k
2
· · ·u1 0

σ(u1) · · ·σ(u k
2
) 0 σ(v1) · · ·σ(vj−2)

0 vj−2 · · · v1 0

 ,

since b is skew-symmetric, σ(vi) = −(vi)t and σ(ui) = −(ui)t. Finally we
note that V(0,1), V(1,0), Ei,σI(i)−1 and EσI(j),j−1 satisfy property (Spp). Sim-
ilarly we define the semi-invariants for the admissible arcs [i, j] in A′(d),
exchanging the upper paths of Ã2,0,2

k,l with the lower ones.

3.2.1.3 Ã0,2
k,l

We have at most two τ+-orbits ∆ and ∆′ of the dimension vectors of non-
homogeneous simple regular representation. We assume n ≥ 2 and we
consider the τ -orbit

{e1 = δe1, e2, . . . , e[ l−1
2

]+1, e[ l−1
2

]+2 = δe[ l−1
2

]+2, δe[ l−1
2

]+1, . . . , δe2}.

Let [i, j] ∈ A(d). If we consider the arc [1, 1] of index 0, i.e. p1 = 0, p2 6=
0, . . . , p[ l−1

2
]+2 6= 0, we have the minimal projective resolution of V(0,1)

0 −→ Pσ(a0)

d
V(0,1)
min−→ Pa0 −→ V(0,1) −→ 0

where d
V(0,1)

min = σ(v1) · · ·σ(v l
2
)v l

2
· · · v1 and so

cV(0,1) = det(HomQ(d
V(0,1)

min , ·)) = det(σ(v1) · · ·σ(v l
2
)v l

2
· · · v1)
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in the orthogonal case and pfV(0,1) = pf(σ(v1) · · ·σ(v l
2
)v l

2
· · · v1) in the sym-

plectic case, since by definition of symplectic representation
σ(v1) · · ·σ(v l

2
)v l

2
· · · v1 is skew-symmetric. If we consider the arc [σI(2), 2] =

[0, 2] of index 0, i.e. pσI(2) = 0 = p2, p1 6= 0, we have the minimal projective
resolution of V(1,0)

0 −→ Pσ(a0)

d
V(1,0)
min−→ Pa0 −→ V(1,0) −→ 0

where d
V(1,0)

min = σ(u1) · · ·σ(u k
2
)u k

2
· · ·u1 and so

cV(1,0) = det(HomQ(d
V(1,0)

min , ·)) = det(σ(u1) · · ·σ(u k
2
)u k

2
· · ·u1)

in the orthogonal case and pfV(1,0) = pf(σ(u1) · · ·σ(u k
2
)u k

2
· · ·u1) in the

symplectic case, since by definition of symplectic representation
σ(u1) · · ·σ(u k

2
)u k

2
· · ·u1 is skew-symmetric. We note that for l = 2 we have

only the admissible arcs [1, 1] an [σI(2), 2]. We assume now that l ≥ 4 (l is
even) and [i, j] is not an admissible arc considered above. If 1 ≤ i < j ≤
l + 1, then we identify [i, j] with the path vj−1 · · · vi in Q and we have the
minimal projective resolution of Ei,j−1

0 −→ Pxj−1

d
Ei,j−1
min−→ Pxi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min = vj−1 · · · vi and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det(vj−1 · · · vi).

We note that

cτ
−∇Ei,j−1 = cEσI (j),σI (i)−1 = det(σ(vi) · · ·σ(vj−1)) = det(vj−1 · · · vi) = cEi,j−1 .

Moreover, if j = σI(i) then, only in the symplectic case, we get pfEi,σI (i)−1 =
pf(σ(vi) · · · vi), since σ(vi) · · · vi is skew-symmetric. Now we consider the
arcs [i, j] which have e1 as internal vertex. For these arcs, 2 ≤ j < i− 1 < l
and we have the minimal projective resolution of Ei,j−1

0 −→ Pσ(a0) ⊕ Pxj−1

d
Ei,j−1
min−→ Pa0 ⊕ Pxi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min =
(
σ(u1) · · ·u1 vj−1 · · · v1

σ(v1) · · · vi 0

)
and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det

(
σ(u1) · · ·u1 σ(v1) · · · vi
vj−1 · · · v1 0

)
.
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In particular we note that if i = σI(j), in the symplectic case, we get

pfEσI (j),j−1 = pf

(
σ(u1) · · ·u1 σ(v1) · · ·σ(vj−1)
vj−1 · · · v1 0

)
,

since σ(u1) · · ·u1 and σ(vi) = −(vi)t. Finally we note that V(0,1), V(1,0),
Ei,σI(i)−1 andEσI(j),j−1 satisfy (Op). Similarly we define the semi-invariants
for the admissible arcs [i, j] in A′(d), exchanging the upper paths of Ã0,2

k,l

with the lower ones.

3.2.1.4 Ã1,1
k,l

We have at most two τ+-orbits ∆ and ∆′ of the dimension vectors of non-
homogeneous simple regular representation. We assume n ≥ 2 and we
consider the τ -orbit

{e1 = δe1, e2, . . . , e[ l−1
2

]+1, e[ l−1
2

]+2 = δe[ l−1
2

]+2, δe[ l−1
2

]+1, . . . , δe2}.

Let [i, j] ∈ A(d). If we consider the arc [1, 1] of index 0, i.e. p1 = 0, p2 6=
0, . . . , p[ l−1

2
]+2 6= 0, we have the minimal projective resolution of V(0,1)

0 −→ Pσ(a0)

d
V(0,1)
min−→ Pa0 −→ V(0,1) −→ 0

where d
V(0,1)

min = σ(v1) · · ·σ(v l
2
)v l

2
· · · v1 and so

cV(0,1) = det(HomQ(d
V(0,1)

min , ·)) = det(σ(v1) · · ·σ(v l
2
)v l

2
· · · v1)

in the orthogonal case and pfV(0,1) = pf(σ(v1) · · ·σ(v l
2
)v l

2
· · · v1) in the sym-

plectic case, since by definition of symplectic representation
σ(v1) · · ·σ(v l

2
)v l

2
· · · v1 is skew-symmetric . If we consider the arc [σI(2), 2] =

[0, 2] of index 0, i.e. pσI(2) = 0 = p2, p1 6= 0, then we have the minimal pro-
jective resolution of V(1,0)

0 −→ Pσ(a0)

d
V(1,0)
min−→ Pa0 −→ V(1,0) −→ 0

where d
V(1,0)

min = σ(u1) · · ·σ(u k
2
)bu k

2
· · ·u1 and so

cV(1,0) = det(HomQ(d
V(1,0)

min , ·)) = det(σ(u1) · · ·σ(u k
2
)bu k

2
· · ·u1)

in the symplectic case and pfV(1,0) = pf(σ(u1) · · ·σ(u k
2
)bu k

2
· · ·u1) in the

orthogonal case, since b is skew-symmetric and σ(ui) = −(ui)t. We note
that for l = 2 we have only the admissible arcs [1, 1] an [σI(2), 2]. We assume
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now that l ≥ 4 (l is even) and [i, j] is not an admissible arc considered above.
If 1 ≤ i < j ≤ l + 1, then we identify [i, j] with the path vj−1 · · · vi in Q and
we have the minimal projective resolution of Ei,j−1

0 −→ Pxj−1

d
Ei,j−1
min−→ Pxi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min = vj−1 · · · vi and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det(vj−1 · · · vi).

We note that

cτ
−∇Ei,j−1 = cEσI (j),σI (i)−1 = det(σ(vi) · · ·σ(vj−1)) = det(vj−1 · · · vi) = cEi,j−1 .

Moreover, if j = σI(i) then, only in the symplectic case, we get pf(σ(vi) · · · vi) =
pfEi,σI (i)−1 since σ(vi) · · · vi is skew-symmetric. Now we consider the arcs
[i, j] which have e1 as internal vertex. For these arcs, 2 ≤ j < i− 1 < l and
we have the minimal projective resolution of Ei,j−1

0 −→ Pσ(a0) ⊕ Pxj−1

d
Ei,j−1
min−→ Pa0 ⊕ Pxi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min =
(
σ(u1) · · · b · · ·u1 σ(v1) · · · vi
vj−1 · · · v1 0

)
and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det

(
σ(u1) · · · b · · ·u1 σ(v1) · · · vi
vj−1 · · · v1 0

)
.

In particular we note that if i = σI(j), in the orthogonal case, we get

pfEσI (j),j−1 = pf

(
σ(u1) · · · b · · ·u1 σ(v1) · · ·σ(vj−1)
vj−1 · · · v1 0

)
,

since b is skew-symmetric, σ(vi) = −(vi)t and σ(ui) = −(ui)t. Finally we
note that V(0,1), Ei,σI(i)−1 satisfy (Op) and V(1,0), EσI(j),j−1 satisfy property
(Spp). Similarly we define the semi-invariants for the admissible arcs [i, j] in
A′(d), exchanging the upper paths of Ã1,1

k,l with the lower ones and tracing
out the procedure done for Ã2,0,1

k,l .

3.2.1.5 Ã0,0
k,k

We have at most two τ+-orbits ∆ and ∆′ of the dimension vectors of non-
homogeneous simple regular representation but in this case ∆ = δ∆′ so it’s
enough to study the semi-invariants associated to the arcs inA(d), because
these are equal to those ones associated to the arcs in A′(d). We assume
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k ≥ 2 and we consider the τ -orbit {e0, e1, e2, . . . , ek−1}. Let [i, j] ∈ A(d). If
we consider the arc [1, 1] of index 0, i.e. p1 = 0, p2 6= 0, . . . , pk−1 6= 0, we
have the minimal projective resolution of V(0,1)

0 −→ Pσ(a0)

d
V(0,1)
min−→ Pa0 −→ V(0,1) −→ 0

where d
V(0,1)

min = vk · · · v1 and so

cV(0,1) = det(HomQ(d
V(0,1)

min , ·)) = det(vk · · · v1).

If we consider the arc [0, 2] of index 0, i.e. p0 = 0 = p2, p1 6= 0, then we have
the minimal projective resolution of V(1,0)

0 −→ Pσ(a0)

d
V(1,0)
min−→ Pa0 −→ V(1,0) −→ 0

where d
V(0,1)

min = uk · · ·u1 and so

cV(1,0) = det(HomQ(d
V(1,0)

min , ·)) = det(uk · · ·u1).

We note that for k = 2 we have only the admissible arcs [1, 1] an [0, 2]. We
assume now that k ≥ 3 and [i, j] is not an admissible arc considered above.
If 1 ≤ i < j ≤ k, then we identify [i, j] with the path vj−1 · · · vi in Q and we
have the minimal projective resolution of Ei,j−1

0 −→ Pxj−1

d
Ei,j−1
min−→ Pxi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min = vj−1 · · · vi and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det(vj−1 · · · vi).

Now we consider the arcs [i, j] which have e1 as internal vertex. For these
arcs, 2 ≤ j < i − 1 < k − 1 and we have the minimal projective resolution
of Ei,j−1

0 −→ Pσ(a0) ⊕ Pxj−1

d
Ei,j−1
min−→ Pa0 ⊕ Pxi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min =
(
uk · · ·u1 vj−1 · · · v1

vk · · · vi 0

)
and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det

(
uk · · ·u1 vk · · · vi
vj−1 · · · v1 0

)
.

105



3.2.1.6 D̃1,0
n

In this case there are three τ -orbit ∆ = {e1 = δe1, e2, . . . , en−1, δen−1, . . . , δe2},
∆′ = {e′0 = δe′0, e

′
1 = δe′1} and ∆′′ = {e′′0 = δe′′1}. The only admissible arcs

in ∆′(d) and ∆′′(d) are [0, 0] and [1, 1], recalling that e′0 + e′1 = h = e′′0 + e′′1 .
For such arcs in ∆′ we have the minimal projective resolution of E′0,1

0 −→ Pσ(t1) ⊕ Pσ(t2)

d
E′0,1
min−→ Pt1 ⊕ Pt2 −→ E′0,1 −→ 0

where d
E′0,1
min =

(
σ(a)c̄a 0
σ(a)c̄b σ(b)c̄b

)
, similarly for E′1,0 and so

cE
′
1,0 = cE

′
0,1 = det(HomQ(d

E′0,1
min , ·)) = det

(
σ(a)c̄a σ(a)c̄b

0 σ(b)c̄b

)
.

We note that the matrices σ(a)c̄b, σ(a)c̄a and σ(b)c̄b) have different size for
[0, 0] and for [1, 1]. Whereas in ∆′′ we have we have the minimal projective
resolution of cE

′′
0,1 = cE

′′
1,0

0 −→ Pσ(t1) ⊕ Pσ(t2)

d
E′′0,1
min−→ Pt1 ⊕ Pt2 −→ E′′0,1 −→ 0

where d
E′′0,1
min =

(
0 σ(b)c̄a

σ(a)c̄b σ(b)c̄b

)
and so

cE
′′
1,0 = cE

′′
0,1 = det(HomQ(d

E′′0,1
min , ·)) = det

(
0 σ(a)c̄b

σ(b)c̄a σ(b)c̄b

)
in the symplectic case and

pfE
′′
0,1 = pfE

′′
1,0 = pf

(
0 σ(a)c̄b

σ(b)c̄a σ(b)c̄b

)
in the orthogonal case, since c̄ is skew-symmetric, σ(b) = −bt and σ(a) =
−at. We assume n ≥ 3 and we take [i, j] ∈ A(d). If we consider the arc
[1, 1], we have the minimal projective resolution V(1,1)

0 −→ Pσ(t1) ⊕ Pσ(t2)

d
V(1,1)
min−→ Pt1 ⊕ Pt2 −→ V(1,1) −→ 0

where d
V(1,1)

min =
(
σ(a)c̄a σ(b)c̄a
σ(a)c̄b σ(b)c̄b

)
and so

cV(1,1) = det(HomQ(d
V(1,1)

min , ·)) = det

(
σ(a)c̄a σ(a)c̄b
σ(b)c̄a σ(b)c̄b

)

106



in the symplectic case and

pfV(1,1) = pf

(
σ(a)c̄a σ(a)c̄b
σ(b)c̄a σ(b)c̄b

)
in the orthogonal case. If [i, j] doesn’t contain e1 as an internal vertex, then
we have 1 ≤ i < j ≤ 2n and we have the minimal projective resolution of
Ei,j−1

0 −→ Pzj−1

d
Ei,j−1
min−→ Pzi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min = cj−2 · · · ci−1 and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det(cj−2 · · · ci−1),

where c0 = (a, b) and c2n−1 = σ(c0). In particular in the orthogonal case if
j = σI(i) then pfEi,σI (i)−1 = pf(σ(ci−1) · · · ci−1), since in this case σ(ci) =
−(ci)t and cn−2 is skew-symmetric. If [i, j] contains e1 as an internal vertex,
i.e. 2 ≤ j < i ≤ 2n − 1 and we have the minimal projective resolution of
Ei,j−1

0 −→ Pzj−1 ⊕ Pσ(t1) ⊕ Pσ(t2)

d
Ei,j−1
min−→ Pzi−1 ⊕ Pt1 ⊕ Pt2 −→ Ei,j−1 −→ 0

where dEi,j−1

min =

 0 σ(a)c2n−3,i−1 σ(b)c2n−3,i−1

cj−2,1a σ(a)c2n−3,1a σ(b)c2n−3,1a
cj−2,1b σ(a)c2n−3,1b σ(b)c2n−3,1b

 and so

cEi,j−1 =

 0 cj−2,1a cj−2,1b
σ(a)c2n−3,i−1 σ(a)c2n−3,1a σ(a)c2n−3,1b
σ(b)c2n−3,i−1 σ(b)c2n−3,1a σ(b)c2n−3,1b


where ck,l = ck · · · cl and c0,1 = id. If σI(i) = j then, only in the orthogonal
case, we have

pfEσI (j),j−1 = pf

 0 cj−2,1a cj−2,1b
σ(a)σ(cj−2,1) σ(a)c2n−3,1a σ(a)c2n−3,1b
σ(b)σ(cj−2,1) σ(b)c2n−3,1a σ(b)c2n−3,1b

 ,

since σ(cj−2,1) = −(cj−2,1)t, σ(a) = −at, σ(b) = −bt and c2n−3,1 is skew-
symmetric.
Finally we note that E′′1,0, V(1,1), Ei,σI(i)−1 and EσI(j),j−1 satisfy property
(Spp).
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3.2.1.7 D̃0,1
n

There are again three τ -orbit ∆ = {e1 = δe1, e2, . . . , en−1 = δen−1, . . . , δe2},
∆′ = {e′0 = δe′0, e

′
1 = δe′1} and ∆′′ = {e′′0 = δe′′1}. The only admissible arcs

in ∆′(d) and ∆′′(d) are [0, 0] and [1, 1], recalling that e′0 + e′1 = h = e′′0 + e′′1 .
For such arcs in ∆′ we have the minimal projective resolution of E′0,1

0 −→ Pσ(t1) ⊕ Pσ(t2)

d
E′0,1
min−→ Pt1 ⊕ Pt2 −→ E′0,1 −→ 0

where d
E′0,1
min =

(
σ(a)c̄a 0
σ(a)c̄b σ(b)c̄b

)
, similarly for E′1,0 and so

cE
′
1,0 = cE

′
0,1 = det(HomQ(d

E′0,1
min , ·)) = det

(
σ(a)c̄a σ(a)c̄b

0 σ(b)c̄b

)
.

We note that the matrices σ(a)c̄b, σ(a)c̄a and σ(b)c̄b) have different size for
[0, 0] and for [1, 1]. Whereas in ∆′′ we have the minimal projective resolu-
tion of cE

′′
0,1 = cE

′′
1,0

0 −→ Pσ(t1) ⊕ Pσ(t2)

d
E′′0,1
min−→ Pt1 ⊕ Pt2 −→ E′′0,1 −→ 0

where d
E′′0,1
min =

(
0 σ(b)c̄a

σ(a)c̄b σ(b)c̄b

)
and so

cE
′′
1,0 = cE

′′
0,1 = det(HomQ(d

E′′0,1
min , ·)) = det

(
0 σ(a)c̄b

σ(b)c̄a σ(b)c̄b

)
in the orthogonal case and

pfE
′′
0,1 = pfE

′′
1,0 = pf

(
0 σ(a)c̄b

σ(b)c̄a σ(b)c̄b

)
in the symplectic case, since c̄ is skew-symmetric, σ(b) = −bt and σ(a) =
−at. We assume n ≥ 3 and we take [i, j] ∈ A(d). If we consider the arc
[1, 1], we have the minimal projective resolution V(1,1)

0 −→ Pσ(t1) ⊕ Pσ(t2)

d
V(1,1)
min−→ Pt1 ⊕ Pt2 −→ V(1,1) −→ 0

where d
V(1,1)

min =
(
σ(a)c̄a σ(b)c̄a
σ(a)c̄b σ(b)c̄b

)
and so

cV(1,1) = det(HomQ(d
V(1,1)

min , ·)) = det

(
σ(a)c̄a σ(a)c̄b
σ(b)c̄a σ(b)c̄b

)
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in the orthogonal case and

pfV(1,1) = pf

(
σ(a)c̄a σ(a)c̄b
σ(b)c̄a σ(b)c̄b

)
in the symplectic case. If [i, j] doesn’t contain e1 as an internal vertex, then
we have 1 ≤ i < j ≤ 2n− 3 and we have the minimal projective resolution
of Ei,j−1

0 −→ Pzj−1

d
Ei,j−1
min−→ Pzi−1 −→ Ei,j−1 −→ 0

where dEi,j−1

min = cj−2 · · · ci−1 and so

cEi,j−1 = det(HomQ(dEi,j−1

min , ·)) = det(cj−2 · · · ci−1),

where c0 = (a, b) and c2n−4 = σ(c0). In particular in the symplectic case
if j = σI(i) then pfEi,σI (i)−1 = pf(σ(ci−1) · · · ci−1). If [i, j] contains e1 as an
internal vertex, i.e. 2 ≤ j < i ≤ 2n− 4 and we have the minimal projective
resolution of Ei,j−1

0 −→ Pzj−1 ⊕ Pσ(t1) ⊕ Pσ(t2)

d
Ei,j−1
min−→ Pzi−1 ⊕ Pt1 ⊕ Pt2 −→ Ei,j−1 −→ 0

where dEi,j−1

min =

 0 σ(a)c2n−6,i−1 σ(b)c2n−6,i−1

cj−2,1a σ(a)c2n−6,1a σ(b)c2n−6,1a
cj−2,1b σ(a)c2n−6,1b σ(b)c2n−6,1b

 and so

cEi,j−1 =

 0 cj−2,1a cj−2,1b
σ(a)c2n−6,i−1 σ(a)c2n−6,1a σ(a)c2n−6,1b
σ(b)c2n−6,i−1 σ(b)c2n−6,1a σ(b)c2n−6,1b

 .

If σI(i) = j then, only in the symplectic case, we have

pfEσI (j),j−1 = pf

 0 cj−2,1a cj−2,1b
σ(a)σ(cj−2,1) σ(a)c2n−6,1a σ(a)c2n−6,1b
σ(b)σ(cj−2,1) σ(b)c2n−6,1a σ(b)c2n−6,1b

 ,

since σ(cj−2,1) = −(cj−2,1)t, σ(a) = −at, σ(b) = −bt and c2n−6,1 is skew-
symmetric.
Finally we note that E′′1,0, V(1,1), Ei,σI(i)−1 and EσI(j),j−1 satisfy property
(Op).

3.2.1.8 End of proof of theorem 3.2.9, theorem 3.2.6 and proposition 3.2.8

We prove the second step of proof of theorem 3.2.9. By the analysis case by
case we note that if [i, j] is admissible then the semi-invariants associated
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to [i, j] define a nonzero element of SpSI(Q, d) (respectively of OSI(Q, d)).
For a symmetric dimension vector d we denote

SpΓ(Q, d) = {χ ∈ ZQ0 ∪ 1
2

ZQ0 |SpSI(Q, d)χ 6= 0} (3.38)

and
OΓ(Q, d) = {χ ∈ ZQ0 ∪ 1

2
ZQ0 |OSI(Q, d)χ 6= 0} (3.39)

the semigroup of weights of symplectic (respectively orthogonal) semi-
invariants. We note that (3.38) and (3.39) involve also 1

2ZQ0 because in
SpSI(Q, d) and in OSI(Q, d) also pfaffians can appear. To simplify the no-
tation, we shall call χ[i,j], χ′[i,j] and χ′′[i,j] be respectively the weights of the
semi-invariants associated to admissible arcs [i, j] respectively from A(d),
A′(d) and A′′(d). In the next the following proposition will be useful. We
will state it only for ∆, because for ∆′ and ∆′′ the statements are similar. Let
d be a regular symmetric dimension vector with canonical decomposition
d = ph+ d′ with p ≥ 1.

Proposition 3.2.34. Let (Q, σ) be a symmetric quiver of tame type. Let d2 be of
type e[s,σI(s)], e[s,t] + δe[s,t] or e[i2k,σI(i2k−1)] + e[i2k−1,σI(i2k)].
(i) If d2 = e[s,σI(s)], then

(a) For every arc [i, j] of ∆′ and ∆′′ we have χ′[i,j]|supp(d2), χ
′′
[i,j]|supp(d2) ∈

SpΓ(Q, d2) (respectively in OΓ(Q, d2)).

(b) For every arc [i, j] of ∆ that doesn’t intersect [s, σI(s)] or contains [s −
1, σI(s)+1] we have χ[i,j]|supp(d2) ∈ SpΓ(Q, d2) (respectively inOΓ(Q, d2)).

(c) Let ρ1, . . . , ρr be the weights of generators of the polynomial algebra SpSI(Q, d2)
(respectively OSI(Q, d2)). Then r ≥ n′ − s, where n′ ∈ I+ t Iδ is either a
σI -fixed vertex or the extremal vertex of a σI -fixed edge, and ρ1, . . . , ρr can
be reordered such that ρ1 = χ[s,s+1], . . . , ρn′−s = χ[n′−1,n′] and for every
m > n′ − s we have 〈ρm, en〉 = 0 for n = s, . . . , n′.

(ii) Let d2 = e[s,t] + δe[s,t], then

(a) For every arc [i, j] of ∆′ and ∆′′ we have χ′[i,j]|supp(d2), χ
′′
[i,j]|supp(d2) ∈

SpΓ(Q, d2) (respectively in OΓ(Q, d2)).

(b) For every symmetric arc [i, j] of ∆ that doesn’t intersect [s, t]∪[σI(t), σI(s)]
or contains [s− 1, σI(s− 1)] or [σI(t+ 1), t+ 1], we have χ[i,j]|supp(d2) ∈
SpΓ(Q, d2) (respectively in OΓ(Q, d2)).

(c) For every arc [i, j] ⊂ I+ (respectively [i, j] ⊂ I−) that doesn’t intersect [s, t]
(respectively [σI(t), σI(s)] or contains [s−1, t+ 1] we have χ[i,j]|supp(d2) ∈
SpΓ(Q, d2) (respectively in OΓ(Q, d2))..
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(d) Let ρ1, . . . , ρr be the weights of generators of the polynomial algebra SpSI(Q, d2)
(respectively OSI(Q, d2)). Then r ≥ t− s and ρ1, . . . , ρr can be reordered
such that ρ1 = χ[s,s+1], . . . , ρt−s = χ[t−1,t] and for every m > t − s we
have 〈ρm, en〉 = 0 for n = s, . . . , t.

(iii) Let d2 = e[i2k,iσI (i2k−1)] + e[i2k−1,iσI (i2k)], then

(a) For every arc [i, j] of ∆′ and ∆′′ we have χ′[i,j]|supp(d2), χ
′′
[i,j]|supp(d2) ∈

SpΓ(Q, d2) (respectively in OΓ(Q, d2)).

(b) For every arc [i, j] of ∆ that doesn’t intersect [i2k−1, σI(i2k−1)] or contains
[i2k−1−1, σI(i2k−1)+1] we have χ[i,j]|supp(d2) ∈ SpΓ(Q, d2) (respectively
in OΓ(Q, d2)).

(c) Let ρ1, . . . , ρr be the weights of generators of the polynomial algebra SpSI(Q, d2)
(respectively OSI(Q, d2)). Then r ≥ n′ − s, where n′ ∈ I+ t Iδ is either a
σI -fixed vertex or the extremal vertex of a σI -fixed edge, and ρ1, . . . , ρr can
be reordered such that ρ1 = χ[s,s+1], . . . , ρn′−s = χ[n′−1,n′] and for every
m > n′ − s we have 〈ρm, en〉 = 0 for n = s, . . . , n′.

Proof. It proceeds type by type analysis, considering the description of
the weights of symplectic and orthogonal semi-invariants done above. We
recall that γχ[i,j] = χ[σI(j),σI(i)] and we observe that if x is a σ-fixed vertex
and χ is a weight, then χ(x) = 0. We prove only the symplectic case for
Q = Ã1,1

k,l and for d2 = e[s,σI(s)], because the procedure to prove all other
cases is similar. We order the vertices of Ã1,1

k,l such that the only source is 1
(so the only sink is σ(1)), hvi−1 = i for every i ∈ {2, . . . , l2 +1}, hui = l

2 +i+1
for every i ∈ {1, . . . , k2} and then the respective conjugates by σ of these.
We shall call w(t1)i1 ,...,(t

f )if
, where t1, . . . , tf ∈ Z ∪ 1

2Z and {i1, . . . , if} is an

ordered subset of {1, . . . , l2 + k
2 + 1, σ( l2 + k

2 + 1), . . . , σ(1)}, the vector such
that

w(t1)i1 ,...,(t
f )if

(y) =
{

(tj)ij y = ij ,∀j = 1, . . . , f
0 otherwise.

Moreover we can associate in bijective way the vertex i ∈ {2, . . . , l2} ⊂
(Ã1,1

k,l )
+
0 to i ∈ I+, the vertex l

2 + i+ 1 of Ã1,1
k,l to i+ 1 ∈ I ′+ and the vertex l

2

to [ l−1
2 ] + 2 ∈ Iδ.

(a) By section 3.2.1.4 we have

χ′[i,j] = w(1) l
2 +i+1

,(−1) l
2 +j+1

for 1 ≤ i < j ≤ k

2
+ 1,

if [i, j] has not e1 as internal vertex;

χ′[i,j] = w(1)1,(−1) l
2 +j+1

,(1) l
2 +i+1

,(−1)σ(1)
for j < i− 1
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if [i, j] has e1 as internal vertex and in particular if j = σI(i) we have

χ′[i,j] = w( 1
2

)1,(− 1
2

) l
2 +i+1

,( 1
2

)
σ( l2 +i+1)

,(− 1
2

)σ(1)
.

Now if 〈χ′[i,j], e[s,σI(s)]〉 6= 0 then χ′[i,j] 6∈ SpSI(Q, d2), but we note that
〈χ′[i,j], e[s,σI(s)]〉 = 0 for every i and j, so we have (a).
(b) By section 3.2.1.4 we have

χ[i,j] = w(1)i,(−1)j for 1 ≤ i < j ≤ l

2
and χ[ l

2
+1,σ( l

2
+1)] = w( 1

2
) l

2 +1
,(− 1

2
)
σ( l2 +1)

if [i, j] has not e1 as internal vertex;

χ[i,j] = w(1)1,(−1)j ,(1)i,(−1)σ(1)
for j < i− 1.

if [i, j] has e1 as internal vertex.
Now we note that 〈χ[i,j], e[s,σI(s)]〉 6= 0 if [i, j] ∩ [s, t] 6= ∅ and [i, j] + [s −
1, σ(s− 1) = σ(s) + 1], so we have (b).
(c) First we note that we can choose symmetric arcs of each length from a
fixed vertex of ∆, because the result of theorem 3.2.9 is invariant respect
to the Coxeter transformation τ+. We note that [s, σI(s)] has e1 as inter-
nal vector. The generators of SpSI(Q, d2) associated to ∆(d2) are cEi =
det(vi) of weight χ[i,i+1] = w(1)i,(−1)i+1

for every i ∈ {1, . . . , s − 1} and

cEs,σI (s)−1 = det

(
σ(u1) · · · b · · ·u1 σ(v1) · · ·σ(vs)
vs−1 · · · v1 0

)
of weight χ[s,σI(s)] =

w(1)1,(−1)s,(1)σ(s),(−1)σ(1)
. So we call ρi = χ[i,i+1] for every i ∈ {1, . . . , s − 1}

and ρn′−s = χ[s,σI(s)], where in this case n′ = [l−1]
2 + 2. The other generators

are associated to ∆′(d2) and so, as done in the part (a) of this proposition,
their weight ρm, for m ∈ {n′ − s + 1, . . . , r}, are such that 〈ρm, en〉 = 0 for
n ∈ {s, . . . , n′}. 2

We assume now that d = d1 + d2 where d1 = ph + d′1 with p ≥ 1 and
d2 = e[s,σI(s)], e[s,t] + δes,t] or e[i2k,iσI (i2k−1)] + e[i2k−1,iσI (i2k)].. So we take the
corresponding arc in a chosen position (for which we proved proposition
3.2.34).

Proposition 3.2.35. Let d, d1, d2 be as above. We suppose that the semigroup
SpΓ(Q, d1) (respectivelyOΓ(Q, d1)) is generated by the weights χ[i,j], χ′[i,j], χ

′′
[i,j]

for admissible arcs [i, j] of the labelled polygons ∆(d1), ∆′(d1), ∆′′(d1). Then
SpΓ(Q, d1) ∩ SpΓ(Q, d2) (respectively OΓ(Q, d1) ∩ OΓ(Q, d2)) is generated by
the weights χ[i,j], χ′[i,j], χ

′′
[i,j] for admissible arcs [i, j] of the labelled polygons ∆(d),

∆′(d), ∆′′(d).

Proof. We prove it only for the othogonal case and for d2 = e[s,σI(s)],
because the symplectic case is similar.
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We are two cases.
(1) Assume ps−1 = pσI(s)+1 < r − 1. The admissible arcs of ∆(d1), ∆′(d1),
∆′′(d1) and ∆(d), ∆′(d), ∆′′(d) are the same. By proposition 3.2.34OΓ(Q, d2)
contains χ[s,s+1], . . . , χ[σI(s)−1,σI(s)] and all the other weights corresponding
to the admissible arcs of ∆(d), ∆′(d) and ∆′′(d).
(2) Assume ps−1 = pσI(s)+1 = r− 1. We prove that OΓ(Q, d1)∩OΓ(Q, d2) is
generated by χ′[i,j] for every admissible arc [i, j] of ∆′(d1) = ∆′(d), χ′′[i,j] for
every admissible arc [i, j] of ∆′′(d1) = ∆′′(d) and χ[i,j] for every admissible
arc [i, j] of ∆(d1) of index smaller than r−1 or not intersecting [s, σI(s)], i.e.
χ[s,s+1], . . . , χ[σI(s)−1,σI(s)] and χ[s−1,σI(s)+1] = χ[s−1,s] + · · ·+ χ[σI(s),σI(s)+1].
Let

χ =
∑

[i,j]∈A(d1)

ni,jχ[i,j] +
∑

[i,j]∈A′(d1)

n′i,jχ
′
[i,j] +

∑
[i,j]∈A′′(d1)

n′′i,jχ
′′
[i,j],

with ni,j , n
′
i,j , n

′′
i,j ≥ 0, be an element of OΓ(Q, d1). We assume that χ

is also in OΓ(Q, d2). By proposition 3.2.34, we note that all the genera-
tors of OΓ(Q, d1) except of χ[s−1,s] and χ[σI(s),σI(s)+1] are also in OΓ(Q, d2).
Hence, if χ contains neither χ[s−1,s] nor χ[σI(s),σI(s)+1], then χ is a linear
combination of desired generators. So we have to prove that if χ con-
tains χ[s−1,s] (resp. χ[σI(s),σI(s)+1]) with positive coefficient, then it contains
χ[s,s+1], . . . , χ[σI(s),σI(s)+1] (resp. χ[s−1,s], . . . , χ[σI(s)−1,σI(s)]). Thus we can
subtract χ[s−1,σI(s)+1] from χ.
We assume that χ contains χ[s−1,s] with positive coefficient (the proof is
similar for χ[σI(s),σI(s)+1]). We note that 〈χ[s−1,s], es〉 = −1 and, by propo-
sition 3.2.34, the other generators of OΓ(Q, d1), except χ[s,s+1], have zero
product scalar with es. Moreover, χ ∈ OΓ(Q, d2) and so, by proposi-
tion 3.2.34, 〈χ, es〉 ≥ 0. Hence χ contains χ[s,s+1] with positive coefficient.
By proposition 3.2.34, it follows that 〈χ, es + es+1〉 ≥ 0. But 〈χ[s−1,s] +
χ[s,s+1], es + es+1〉 = −1 and χ[s+1,s+2] is the only generator of OΓ(Q, d1)
with positive scalar product with es + es+1. Continuing in this way, we
check that χ contains χ[s−1,s], χ[s,s+1], . . . , χ[σI(s)−1,σI(s)], χ[σI(s),σI(s)+1] with
positive coefficients. So we can subtract χ[s−1.σI(s)+1] from χ and continue.
In this way we complete the proof. 2

Now we can finish the proof of theorem 3.2.9. Since theorem 3.2.9 is equiv-
alent to conjectures 1.2.1 and 1.2.2 for tame type and regular dimension
vectors, then, in this way, we finish also the proof of conjectures 1.2.1 and
1.2.2.
Again we consider the embeddings

SpSI(Q, d) Φd→
⊕

χ∈char(Sp(Q,d))

SpSI(Q, d1)χ|d1 ⊗ SpSI(Q, d2)χ|d2 (3.40)
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and

OSI(Q, d) Ψd→
⊕

χ∈char(O(Q,d))

OSI(Q, d1)χ|d1 ⊗OSI(Q, d2)χ|d2 (3.41)

where Q, d, d1 and d2 are as above. The semigroup of weights of the
right hand side of Φd and Ψd are respectively SpΓ(Q, d1) ∩ SpΓ(Q, d2) and
OΓ(Q, d1) ∩ OΓ(Q, d2). These are generated by χ[i,j], χ′[i,j], χ

′′
[i,j] for admis-

sible arcs [i, j] of the labelled polygons ∆(d), ∆′(d), ∆′′(d), by proposition
3.2.35. So the algebras on the right hand side of Φd and Ψd are generated by
the semi-invariants of weights χ[i,j], χ′[i,j], χ

′′
[i,j] and by the semi-invariants

of weights 〈h, ·〉 (or 1
2〈h, ·〉).

Finally, we note that the embeddings Φd and Ψd are isomorphisms because
they are also isomorphisms in the weight 〈h, ·〉 (or 1

2〈h, ·〉) and so we com-
pleted the proof of theorem 3.2.9. Moreover, in that way, we also proved
proposition 3.2.8, expliciting the semi-invariants of type cV for every ad-
missible arc [i, j], and theorem 3.2.6, by isomorphisms Φd and Ψd consider-
ing d1 = ph and d2 = d′.
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Appendix A

Representations of GL and
invariant theory

A.1 Highest weight theory for GL and Schur modules

We recall the basics of representation theory of general linear group.
We fix an algebraically closed field K.

Definition A.1.1. Let G be an algebraic group. (V, ρ) is a rational representation
if V is a vector space of dimension m, ρ : G× V −→ V such that ρ(g, v) = g · v
is a rational action, i.e.

a) g · (h · v) = (gh) · v for every g, h ∈ G and v ∈ V ,

b) e · v = v for every v ∈ V where e is identity in G,

c) ρ is a morphism of varieties.

Definition A.1.2. G is linearly reductive if and only if every rational linear rep-
resentation of G is semisimple.

Let G be a linearly reductive group and let ρ : G → GL(V ) be a finite
dimensional rational representation of G. Let H be a maximal torus of G, i.e.
a maximal subgroup of G isomorphic to (K∗)h for some h ∈ N, restricting
ρ to H we obtain a rational representation of H . So we can decompose V
into the direct sum of eigenspaces

V =
⊕

χ∈char(H)

Vχ

where char(H) = {homomorphisms of algebraic groups χ : H → K∗} is
the set of characters of H and Vχ = {v ∈ V |ρ(t)(v) = χ(t)v, ∀t ∈ H}.
The elements χ ∈ char(H) such that Vχ 6= 0 are called weights of ρ, Vχ is
called weight space of weight χ and dimVχ is called multiplicity of the weight
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χ. The set of weights char(G) forms a free abelian group X = char(G). Let
Φ = Φ(G,H) be the set of roots of G relative to H . Φ is an abstract root
system in a real vector space E. Let ∆ be a base of Φ. So X has a dual
base by the inner product on E defined by Cartan matrix of Φ (see [Hu,
Appendix]. A weight is called dominant weight if it is a linear combination
of elements of a such base of X with integer non-negative coefficients.

Theorem A.1.3. Let B be a Borel subgroup of G, i.e. a closed, connected and
solvable subgroup of G which is maximal for these properties, containing H .

(a) For every irreducible rational representation V of G there exists a unique
B-stable 1-dimensional subspace which is a weight space Vµ, for some dom-
inant weight µ of multiplicity 1 (µ is called the highest weight of V and any
generator of Vµ is called highest weight vector ).

(b) For every dominant weight µ ∈ char(H) there exists an irreducible ratio-
nal representation V of G with highest weight µ (called the highest weight
representation of G) which is unique up to isomorphism, i.e. if V ′ is another
irreducible rational representation of G with highest weight µ′ then V is
isomorphic to V ′ if and only if µ equals µ′.

Proof. See [Hu, theorem 31.3]. 2

The groups GL(n) and SL(n) are linearly reductive (see [GW, theorem
2.4.5]. Hence for GL(n) = GL(E), where E = Kn with K an algebraically
closed field of characteristic 0, it’s enough to classify irreducible rational
representations.
If V is a vector space of dimensionm, a rational representation ρ : GL(E)→
GL(V ) is called polynomial if and only if the entries ρij(g) of ρ (for 1 ≤
i, j ≤ m) are polynomials in {gij}1≤i,j≤n, where g = (gij)1≤i,j≤n ∈ GL(E).
A polynomial representation ρ : GL(E) → GL(V ) is homogeneous of de-
gree d if and only if the entries ρij(g) of ρ (for 1 ≤ i, j ≤ m) are homoge-
neous of degree d in {gij}1≤i,j≤n.

Proposition A.1.4. a) Every rational representation V of GL(E) is of the
form V = V ′ ⊗ (

∧nE)⊗t for some t, where V ′ is a polynomial representa-
tion and

∧nE is the n-th exterior power of E.

b) Every polynomial representation of GL(E) is a direct sum of homogeneous
representations.

Proof. See [FH, sec. 15.5]. 2

Hence it’s enough to classify irreducible homogeneous representations of
degree d.
Let λ be a partition of d, i.e. λ = (λ1, . . . , λk) with λ = λ1 ≥ . . . ≥ λk ≥ 0
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and λ1+. . .+λk = d. We identify partitions (λ1, . . . , λk, 0) with (λ1, . . . , λk).
We shall denote d = |λ| and we shall call the height of λ, denoted by ht(λ),
the number k of nonzero components of λ. Graphically we represent λ as a
set of boxes with λi boxes in the i-th row (called Young diagram of λ), so |λ|
and ht(λ) are, respectively, the number of boxes and the number of rows of
the diagram of λ. For example, if λ = (4, 3, 1), then the Young diagram of λ
is:

For a partition λ we denote its conjugate (or transpose) partition λ′ =
(λ′1, . . . , λ

′
t), where λ′j is the number of boxes in the j-th column of the

Young diagram of λ. For example, if λ = (4, 3, 1) then λ′ = (3, 2, 2, 1) and
the Young diagram of λ′ is:

.

Let T be a tableau of shape λ, i.e. a filling of the Young diagram of λ with
numbers 1, . . . , d. We define the Young idempotent eT to be an element of
the group ring K[Sd]. In the symmetric group Sd we define the subgroups
RT and CT to be the sets of permutations in Sd preserving respectively the
rows and the columns of T . We define

eT =
∑

σ∈RT ,τ∈CT

sgn(τ)στ.

Finally we define the Schur module

SλV := eTV
⊗d,

where V is a finite dimensional vector space, dimV = n. If T and T ′ are
two tableaux of the same partition λ, then eTV

⊗d and e′TV
⊗d are isomor-

phic as GL(V )-modules [W, lemma 2.2.13]; thus SλV = eTV
⊗d depends on

the partition λ and not on the tableau T . The representations SλV give all
irreducible representations of GL(V ) homogeneous of degree d [P, chap. 9
sec. 8.1].
For the Schur modules sometimes we shall use the notation SλV and some-
times the notation S(λ1,...,λk)V , it depends if we want to consider or not the
components of λ.
Now we give two examples of Schur modules. If V is finite dimensional
vector space we shall call Sn(V ) the n-th symmetric power of V , so the
symmetric algebra of V is S(V ) =

⊕
n≥0 Sn(V ), and

∧n(V ) the n-th exte-
rior power of V , so the exterior algebra of V is

∧
(V ) =

⊕
n≥0

∧n(V ).

117



Example A.1.5. Let V be an n-dimensional vector space

(a) If λ = (d,
n−1︷ ︸︸ ︷

0, . . . , 0) = (d, 0n−1) then S(d,0n−1)V is just the d-th symmetric
power Sd(V ).

(b) If λ = (
d︷ ︸︸ ︷

1, . . . , 1,
n−d︷ ︸︸ ︷

0, . . . , 0) = (1d, 0n−d) then S(1d,0n−d)V is just the d-th ex-
terior power

∧d(V ); in particular if d = dimV , S(1dimV )V =
∧dimV (V ) :=

D is called a determinant representation of G.

c) If k > n and λk > 0, we have S(λ1,...,λk)V = 0.

Introducing the convention
∧n(V ∗) = S(−1, . . . ,−1︸ ︷︷ ︸

n

)V and S(λ1,...,λn)V⊗∧n(V ∗) = S(λ1−1,...,λn−1)V , we see that there is a bijective correspondence
between rational irreducible representations ofGL(n) and vectors (λ1, . . . , λn) ∈
Zn such that λ1 ≥ · · · ≥ λn.
We give an alternative description of Schur modules equivalent to that al-
ready given [W, lemma 2.2.13]. Let V be an n-dimensional vector space.
Let

m :
r∧
V ⊗

s∧
V →

r+s∧
V,

such that

m(u1 ∧ . . . ∧ ur ⊗ v1 ∧ . . . ∧ vs) = u1 ∧ . . . ∧ ur ∧ v1 ∧ . . . ∧ vs,

be the multiplication in the exterior algebra
∧
V and let

∆ :
r+s∧

V →
r∧
V ⊗

s∧
V,

such that

∆(u1∧ . . .∧ur+s) =
∑

σ∈Sr,sr+s

(−1)sgn(σ)uσ(1)∧ . . .∧uσ(r)⊗uσ(r+1)∧ . . .∧uσ(r+s)

where Sr,sr+s = {σ ∈ Sr+s|σ(1) < · · · < σ(r);σ(r+1) < · · · < σ(r+s)}, be the
comultiplication in the exterior algebra

∧
V . We consider λ = (λ1, . . . , λk)

a partition of d. We can define the Schur module as

SλV :=
λ1∧
V ⊗ · · · ⊗

λk∧
V/R(λ, V ),

where

R(λ, V ) =
∑

1≤a≤k−1

λ1∧
V ⊗ · · · ⊗

λa−1∧
V ⊗Ra,a+1(V )⊗

λa+2∧
V ⊗ · · · ⊗

λk∧
V
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where Ra,a+1(V ) is the submodule spanned by the images of the following
maps θ(λ, a, u, v;V ) with u+ v < λa+1:∧u V ⊗

∧λa−u+λa+1−v V ⊗
∧v V

↓1⊗∆⊗1∧u V ⊗
∧λa−u⊗

∧λa+1−v V ⊗
∧v V

↓m12⊗m34∧λa V ⊗
∧λa+1 V.

Let us choose an ordered basis {e1, . . . , en} of V. If T is a tableau of shape λ
with entries in {1, . . . , n}, we associate to T the element in SλV

eT (1,1) ∧ . . . ∧ eT (1,λ1) ⊗ . . .⊗ eT (k,1) ∧ . . . ∧ eT (k,λk) +R(λ, V ),

where T (i, j) is the entry of T in the i-th row and j-th column of the Young
diagram of λ.
We recall some properties and some known results about Schur modules.
A filling of the Young diagram of a partition λ with the numbers 1, . . . , n
weakly increasing along each row and strictly increasing along each col-
umn is called column standard tableau corresponding to the basis {e1, . . . , en}.

Theorem A.1.6. Let {e1, . . . , en} be a basis of V . The column standard tableaux
corresponding to this basis form a basis of SλV

Proof. See [W, prop. 2.1.4]. 2

If V is an n-dimensional vector space, a Borel subgroup of GL(V ) = GL(n)
is the subgroup of all upper triangular matrices, the maximal torus H of
GL(n) is the subgroup of diagonal matrices and the sequences (λ1, . . . , λn),
with λi ∈ Z and λ1 ≥ . . . ≥ λn, are the dominant integral weights for GL(n);
we shall write x = diag(x1, . . . , xn) in H for the diagonal matrix with these
entries. The decomposition of V into direct sum of weight spaces is

⊕
a=(a1,...,an)∈Zn

Va = {v ∈ V |x · v =
n∏
i=1

xaii v ∀x ∈ H},

see [B, chap. 3 sec. 8].

Theorem A.1.7. Let V be an n-dimensional vector space.

1) If λ is a partition with at most n components then the representation SλV of
GL(n) is an irreducible representation of highest weight λ = (λ1, . . . , λn).

2) For any µ = (µ1, . . . , µn) with µ1 ≥ · · · ≥ µn integers, there is a unique
irreducible representation of GL(n) with highest weight µ, which can be
realized as SλV ⊗D⊗k, for any k ∈ Z and where λi = µi− k ≥ 0 for every
i ∈ {1, . . . , n}.
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Proof. See [F, sec. 8.2 theorem 2]. 2

By theorem A.1.3 and by the previous one, every irreducible rational rep-
resentation is a Schur module tensored with a power of a determinant rep-
resentation.

Theorem A.1.8 (Properties of Schur modules). Let V be vector space of dimen-
sion n and λ be the highest weight for GL(n).

(i) SλV = 0⇔ ht(λ) > n.

(ii) dim SλV = 1⇔ λ = (

n︷ ︸︸ ︷
k, . . . , k) = (kn) for some k ∈ Z.

(iii)
(
S(λ1,...,λn)V

)∗ ∼= S(λ1,...,λn)V
∗ ∼= S(−λn,...,−λ1)V .

Proof. See [FH, theorem 6.3].

Theorem A.1.9 (Cauchy formulas). Let V and W be two finite dimensional
vector spaces.

a) As a representation of GL(V )×GL(W ), Sd(V ⊗W ) decomposes as

Sd(V ⊗W ) =
⊕
|λ|=d

SλV ⊗ SλW ;

b) As a representation of GL(V )×GL(W ), Sd(V ⊗W ) decomposes as

d∧
(V ⊗W ) =

⊕
|λ|=d

SλV ⊗ Sλ′W ;

c) As a representation of GL(V ), Sd(S2(V )) decomposes as

Sd(S2(V )) =
⊕
|λ|=d

S2λV,

where 2λ = (2λ1, . . . , 2λk) if λ = (λ1, . . . , λk);

d) As a representation of GL(V ) the ring Sd(
∧2(V )) decomposes as

Sd(
2∧

(V )) =
⊕
|λ|=d

S2λ′V.

Proof. See [P] chap. 9 sec. 6.3 and sec. 8.4 , chap. 11 sec. 4.5.

Finally we consider the tensor product of Schur modules
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Lemma A.1.10.
SλV ⊗ SµV =

⊕
ν

cνλµSνV,

where cνλµ’s are called Littlewood-Richardson coefficients.

There is a combinatorial formula to calculate cνλµ.
Let

Dλ = {(i, j)| 1 ≤ i ≤ k 1 ≤ j ≤ λi}

be the Young diagram of λ and let f : Dν/λ → {1, . . . , n} be a column stan-
dard tableau. We denote CST (ν/λ, {1, . . . , n}) the set of column standard
tableaux of shape ν/λ with values in {1, . . . , n}. We define cont(f), the con-
tent of f , to be the sequence {|f−1(1)|, . . . , |f−1(n)|}. We define w(f) to be
the word we get from f when we read it by rows, starting with the first
row, from right to left in each row. A word w = (w1, . . . , wm) on the al-
phabet {1, . . . , n} is a lattice permutation if for each 1 ≤ u ≤ m and for each
1 ≤ i ≤ n− 1 we have

|{1 ≤ j ≤ u|wj = i}| ≥ |{1 ≤ j ≤ u|wj = i+ 1}|.

Finally we define the set

LRνλ,µ = {f ∈ CST (ν/λ, {1, . . . , n})| cont(f) = (µ1, . . . , µn), w(f) is a lattice permutation}.

Theorem A.1.11 (Littlewood-Richardson rule). Let λ, µ, ν be partitions, then

cνλµ = |LRνλ,µ|.

Proof. See [P, chap. 12 sec. 5.3]. 2

Corollary A.1.12. If λ = (ls) and µ = (mt), then SλV ⊗ SµV is multiplicity
free, i.e. SλV ⊗ SµV =

⊕
ν SνV . Moreover if s ≥ t then ν = (ν1, . . . , νs+t)

with νi = l + ci for 1 ≤ i ≤ t, νi = l for t < i ≤ s and νs+i = m − ct−i+1 for
1 ≤ i ≤ t, where m ≥ c1 ≥ . . . ≥ ct ≥ 0 and l + ct ≥ m.

Proof. We note that we can suppose in the statement s ≥ t, since the
tensor product is commutative. The proof is a consequence of Littlewood-
Richardson rule. 2

A.2 Invariant theory

In this section we recall definitions and fundamental results of invariant
theory.
If G is a group which acts on a finite dimensional vector space V , we shall
call V G = {v ∈ V |g · v = v ∀g ∈ G} the space of invariants of V and we
have a general lemma
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Lemma A.2.1. LetG be a group which acts on two finite dimensional vector space
V and W . If G acts trivially on V , then (V ⊗W )G = V ⊗WG.

If G is an algebraic group and V is a rational representation of G, then
G acts on the coordinate ring of V K[V ] as follows: if f ∈ K[V ] and g ∈ G,

(g · f)(v) = f(g−1 · v).

The ring of G-invariants in K[V ] is

K[V ]G = {f ∈ K[V ]|g · f = f ∀g ∈ G}.

Theorem A.2.2 (Hilbert). IfG is linearly reductive and acts rationally on a finite
dimensional vector space V then K[V ]G is finitely generated.

Proof. See [P, chap. 14 sec. 1.1].

Now we formulate the first fundamental theorem for the linear group.

Theorem A.2.3 (FFT for GL). Let V be a finite dimensional vector space. We
take the space (V ∗)p × V q =

{
(α1, . . . , αp, v1, . . . , vq)|αj ∈ V ∗, vi ∈ V ∀j ∈

{1, . . . , p} and ∀i ∈ {1, . . . , q}
}

as a representation of GL(V ). On this space we
consider the pq polynomial functions uij(α1, . . . , αp, v1, . . . , vq) = αj(vi) which
are GL(V )-invariant. Then

K[(V ∗)p × V q]GL(V ) = K[uij ] 1≤i≤q
1≤j≤p

Proof. See [P, chap. 9 sec.1.4].

Now we give the definition of semi-invariant and of character of an al-
gebraic group.

Definition A.2.4. Let G be an algebraic group and let V be a rational representa-
tion of G.

(i) χ : G→ K∗ is a character of G if it is a homomorphism of algebraic groups;

(ii) f ∈ K[V ] is a semi-invariant of weight χ of the action of G on V if for every
g ∈ G, g · f = χ(g)f where χ is a character of G.

If char(G) is the set of characters of G, then the ring of semi-invariants
of the action of G on V is

SI(G,V ) =
⊕

χ∈char(G)

SI(G,V )χ

where SI(G,V )χ = {f ∈ K[V ]|∀g ∈ G, g ·f = χ(g)f} is called weight space.
In general we have the following lemma proved in [SK].
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Lemma A.2.5 (Sato-Kimura). Let G be a linear algebraic group acting ratio-
nally on the vector space V . If there is a Zariski open G-orbit in V then the ring
SI(G,V ) spanned by the semi-invariants is a polynomial ring:

SI(G,V ) = k[f1, . . . , fs]

for some collection of algebraically independent and irreducible semi-invariants
f1, . . . , fs. Moreover if fi ∈ SI(G,V )χi then the χi are linearly independent
over Z in the space of characters of G.

Corollary A.2.6. Under the assumptions of the lemma A.2.5, the set of characters
χ such that SI(G,V )χ 6= 0 forms a free abelian semigroup, isomorphic to Ns. In
particular, if f is any semi-invariant of weight χ, then f = ufa1

1 · · · fass , where u
is a unit in K and the ai ≥ 0 are the unique integers such that χ =

∑s
i=1 aiχi in

the space of characters of G. Thus SI(G,V ) is a polynomial ring.

If G = GL(n), there exists an isomorphism Z ∼= char(GL(n)) which
sends an element a of Z in (det)a (where det associates to g ∈ GL(n) its
determinant). So we have

SI(G,V ) = K[V ]SL(V ).

Finally other two results on Schur modules and invariant theory.

Proposition A.2.7. Let V be a finite dimensional vector space of dimension n.

(SλV )SL(V ) 6= 0⇐⇒ λ = (kn)

for some k and in this case SλV , and so also (SλV )SL(V ), have dimension one.

Proposition A.2.8. Let V be a finite dimensional vector space of dimension n and
let λ and µ be two dominant integral weights. Then

SλV ⊗ SµV contains a semi-invariant

⇐⇒

λ1 − λ2 = µn−1 − µn
λ2 − λ3 = µn−2 − µn−1

...
λn−1 − λn = µ1 − µ2

and in this case the semi-invariant is unique (up to a non zero scalar) and has
weight λ1 + µn = λ2 + µn−1 = · · · = λn + µ1.
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Proof. It is a corollary of (5.6) in [M, I.5]. 2

Let Sp(2n) = {A ∈ GL(2n)|AJA = J} be the simplectic group, let O(n) =
{A ∈ GL(n)|AtA = I} be the orthogonal group and SO(n) = {A ∈
O(n)|detA = 1} be the special orthogonal group, where I is the identity

matrix and J =
(

0 I
−I 0

)
.

Proposition A.2.9. Let V be an orthogonal space of dimension n and let W be a
symplectic space of dimension 2n.

(a) dim (SλV )O(V ) =
{

1 if λ = 2µ
0 otherwise ,

(b) dim (SλV )SO(V ) =
{

1 if λ = 2µ+ (kn)
0 otherwise ,

(c) dim (SλW )Sp(W ) =
{

1 if λ = 2µ′

0 otherwise

for some partition µ and for some k ∈ Z≥0.

Proof. See [P] chap. 11 cor. 5.2.1 and 5.2.2. 2

We end this section recalling definition and properties of the Pfaffian of a
skew-symmetric matrix.
LetA = (aij)1≤i,j≤2n be a skew-symmetric 2n×2nmatrix. Given 2n vectors
x1, . . . , x2n in K2n, with K an algebraically closed field with characteristic
0, we define

FA(x1, . . . , x2n) =
1

n!2n
∑
s∈S2n

sgn(s)
n∏
i=1

(xs(2i−1), xs(2i)),

where S2n is the symmetric group on 2n elements, sgn(s) is the sign of
permutation s and (·, ·) is the skew-symmetric bilinear form associated to
A. So FA is a skew-symmetric multilinear function of x1, . . . , x2n. Since, up
to a scalar, the only one skew-symmetric multilinear function of 2n vectors
in K2n is the determinant, there is a complex number Pf(A), called Pfaffian
of A, such that

FA(x1, . . . , x2n) = Pf(A)det[x1, . . . , x2n]

where [x1, . . . , x2n] is the matrix which has the vector xi for i-th column. In
particular one proves that

Pf(A) =
1

n!2n
∑

s∈S2n\Bn

sgn(s)
n∏
i=1

as(2i−1)s(2i)
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where Bn is a subgroup of S2n isomorphic to the semidirect product Sn n
(Z2)n. We can write the Pfaffian of A avoiding to sum on all possible per-
mutations,

Pf(A) =
∑

i1<j1,...,in<jn
i1<...<in

sgn(s)a11j1 · · · ainjn

where s is the permutation
[

1 2 . . . 2n− 1 2n
i1 j1 . . . in jn

]
.

Proposition A.2.10. Let A be a skew-symmetric 2n× 2n matrix.

(i) For every invertible 2n× 2n matrix B,

Pf(BABt) = det(B)Pf(A);

(ii) det(A) = Pf(A)2.

Proof. See [P, chap. 5 sec. 3.6]. 2

125



Appendix B

Quiver representations and
semi-invariants

B.1 Auslander-Reiten theory

A quiver Q is a pair (Q0, Q1) where Q0 is the set of vertices and Q1 is the
set of arrows. Let

a : ta −→ ha, ta, ha ∈ Q0

be an arrow in Q1. We shall call ta the tail of the arrow a and ha the head
of the arrow a. A path p in Q is a sequence of arrows p = a1 · · · an such that
hai = tai+1, (1 ≤ i ≤ n − 1). For every x ∈ Q0 we also have a trivial path
ex such that hex = tex = x. We say that Q has no oriented cycles if there are
no paths p = a1 · · · an such that ta1 = han.
We fix an algebraically closed field K. A representation V ofQ is a family of
finite dimensional vector spaces {V (x)|x ∈ Q0} and of linear maps {V (a) :
V (ta) → V (ha)}a∈Q1 . The dimension vector of V is a function dim(V ) :
Q0 → Z≥0 defined by dim(V )(x) := dimV (x).
A morphism f : V → W of two representations is a family of linear maps
{f(x) : V (x) → W (x)| f(ha)V (a) = W (a)f(ta)∀a ∈ Q1}x∈Q0 . We denote
the space of morphisms from V to W by HomQ(V,W ) and the space of
extensions of V by W by Ext1Q(V,W ).

Definition B.1.1. The non symmetric bilinear form on the space ZQ0 of dimension
vectors given by

〈α, β〉 =
∑
x∈Q0

α(x)β(x)−
∑
a∈Q1

α(ta)β(ha)

is the Euler form of Q, where α, β ∈ ZQ0 .

If dimV = α and dimW = β, we have

〈α, β〉 = dimHomQ(V,W )− dimExt1Q(V,W )
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We shall call Rep(Q,α) the variety of representations of Q of dimension
vector α.

Definition B.1.2. Let Q be a quiver and let α be a dimension vector. A general
representation of Q is a representation from some nonempty Zariski open set in
Rep(Q,α).

We recall the definitions of simple, projective and injective representa-
tion of a quiver Q = (Q0, Q1). For each vertex x, a simple representation Sx
is the representation for which Sx(x) = K, Sx(y) = 0 for every y ∈ Q0 \ {x}
and Sx(a) is the zero map for every a ∈ Q1. For every x ∈ Q0 we define an
indecomposable projective representation Px as follows:

Px(y) = [x, y] and Px(a) := a◦ : [x, ta]→ [x, ha]

with x, y ∈ Q0 and a ∈ Q1, where [x, y] is a vector space over K with a basis
labelled by all paths from x to y inQ and a◦ is the map which sends the path
p to the path a ◦ p. Every indecomposable projective representation of Q is
isomorphic to Px for some x ∈ Q0 and moreover we have HomQ(Px, V ) ∼=
V (x) for every representation V of Q, see [ARS, sec III.1]. Similarly every
indecomposable injective representation of Q is isomorphic to Ix, where Ix
is defined as follows:

Ix(y) = [y, x]∗ and Ix(a) := (◦a)∗ : [ta, x]∗ → [ha, x]∗

with x, y ∈ Q0 and a ∈ Q1, where [y, x]∗ is the dual space of [y, x] and
◦a : [ha, x]→ [ta, x] is the map which sends p to p ◦ a. In this case we have
HomQ(V, Ix) ∼= V (x)∗ for every representation V of Q, where V (x)∗ is the
dual space of V (x).
Now we recall some definitions and results of Auslander-Reiten Theory,
for deepening see [ARS] and [ASS].
We define the path algebra KQ of a quiver Q, the K-algebra which has the
paths of Q as basis. The multiplication in KQ is defined by

p · q =
{
pq if tp = hq
0 otherwise.

Proposition B.1.3. 1) KQ is a finite-dimensional K-algebra if and only if Q
has no oriented cycles.

2) The categories Rep(Q) of representations of Q and KQ −mod of left KQ-
modules are equivalent.

Proof. See [ARS, sec. 3.1 prop. 1.1 and prop. 1.3] and [ASS, sec. II.1
lemma 1.4(c) and sec. III.1 cor. 1.7]. 2

Let A be a finite-dimensional K-algebra, a morphism f : V → W in the
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category of left A-modules A − mod is called a retraction if there exists
g : W → V such that fg = idW and it is called a section if there exists
g : W → V such that gf = idV .

Definition B.1.4. Let f : V →W be a morphism in A−mod.

(a) f is called minimal right almost split if

(i) every endomorphism h : V → V such that fh = f , is an isomorphism
(right minimal morphism),

(ii) f is not a retraction,

(iii) for every g : V ′ → W which is not a retraction there exists g′ : V ′ →
V such that fg′ = g.

(b) f is called irreducible if it is neither a section nor a retraction and if f = ts,
for some s : V → X and t : X →W , then s is a section or t is a retraction.

Now we are able to define the Auslander-Reiten quiver and the almost
split sequences.

Definition B.1.5. Let Q be a quiver and KQ be the path algebra of Q. The quiver
AR(Q) = (AR(Q)0, AR(Q)1), where the set of vertices AR(Q)0 is the set of
indecomposables of KQ and the set of arrows AR(Q)1 is the set of the irreducible
morphisms not zero between indecomposables, is called Auslander-Reiten quiver
of Q.

Theorem B.1.6. If W is an indecomposable non-projective A-module (respec-
tively V is an indecomposable non-injective A-module) then there exists an exact

sequence 0 → V
f→ Z

g→ W → 0 such that f and g are both irreducible, called
almost split sequence.

Proof. See [ARS, sec. 5.1 theorem 1.15]. 2

If V is an A-module, a right minimal morphism p : P → V , with P pro-
jective, is called a projective cover of V . One can prove that every A-module
V has a minimal projective presentation P1

p1→ P0
p0→ V → 0, i.e. an exact

sequence where p0 is a projective cover of V and p1 is a projective cover of
Ker p0 ([ARS, sec. 1.4 theorem 4.2] and [ASS, sec. I.5 theor. 5.8]).
Let V ∈ A −mod, we assume that V has no projective summands and let
P1

p1→ P0
p0→ V → 0 be a minimal presentation of V . Applying the functor

HomA(·, A) on it, we obtain a minimal presentation

Hom(P0, A)
Hom(p1,A)−→ Hom(P1, A) −→ Coker(Hom(p1, A)) −→ 0.

We define coKer(Hom(p1, A)) := Tr(V ), the transpose of V . Thus the trans-
pose is a contravariant functor Tr : A −mod → mod − A (mod − A is the
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category of right A-modules) which equals zero on projective modules. We
can define also Tr : mod−A→ A−mod considering

mod−A ∼= Aop −mod Tr−→ mod−Aop ∼= A−mod.

Proposition B.1.7. If A = KQ and V is a representation of Q without projective
direct summands, then Tr(V ) = Ext1A(V,A).

Proof. See [ARS, sec. 4.1 corollary 1.14]. 2

Definition B.1.8. The functor

τ+ := ∇ ◦ Tr : A−mod Tr−→ mod−A ∼= Aop −mod ∇−→ A−mod,

where∇ is the duality functor sending the representation V to V ∗, is called Auslander-
Reiten translation (AR-translation). Similarly we can define the functor τ− :=
Tr ◦ ∇.

We note that, by definition,∇τ− = τ+∇ and∇τ+ = τ−∇.
The following theorem records an important property of the AR-translation.

Theorem B.1.9 (Auslander-Reiten duality). Let A = KQ and let V and W be
two A-modules.

(a) If V has no projective summands, then there exist isomorphisms of vector
spaces

HomQ(W, τ+V ) ∼= Ext1Q(V,W )∗ and Ext1Q(W, τ+V ) ∼= HomQ(V,W )∗.

(b) If V has no injective summands, then there exist isomorphisms of vector
spaces

HomQ(τ−V,W ) ∼= Ext1Q(W,V )∗ and Ext1Q(τ−V,W ) ∼= HomQ(W,V )∗.

Proof See [ASS, sec. IV.2 cor. 2.14]. 2

Corollary B.1.10. Let A = KQ and let V and W be two A-modules.

(a) If V and W have no projective summands, then there exist isomorphisms of
vector spaces

HomQ(τ+V, τ+W ) ∼= HomQ(V,W )

and
Ext1Q(τ+V, τ+W ) ∼= Ext1Q(V,W ).

(b) If V and has no injective summands, then there exist isomorphisms of vector
spaces

HomQ(τ−V, τ−W ) ∼= HomQ(V,W )

and
Ext1Q(τ−V, τ−W ) ∼= Ext1Q(V,W ).
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Proof. It is an immediate consequence of theorem 1.9. 2

By AR-duality, if we consider τ+ and τ− as linear transformations on the
space of dimension vectors, i.e. if V is a representation of a quiver with
dimension α then τ±α := dim τ±V , we have, for every α and β dimension
vectors, then

(i) 〈α, β〉 = −〈τ−β, α〉

(ii) 〈α, β〉 = −〈β, τ+α〉

(iii) 〈α, β〉 = 〈τ±α, τ±β〉.

At last another result about the existence of the almost split sequences.

Theorem B.1.11 (Auslander-Reiten 1975). 1) For every finitely generated in-
decomposable non-projective module V there is an almost split sequence
0→ τ+V → X → V → 0 in A−mod with finitely generated modules.

2) For every finitely generated indecomposable non-injective module V there
is an almost split sequence 0 → V → Z → τ−V → 0 in A − mod with
finitely generated modules.

Proof. It is a direct consequence of the theorem 1.8, see also [ASS, sec.
IV.3 theor. 3.1]. 2

B.2 Quivers of tame type

Definition B.2.1. A quiver Q is called of tame type if the underlying graph of Q
is of type Ã, D̃ or Ẽ.

For all of the next results we refer to [DR].

Proposition B.2.2. Let Q be a quiver of tame type, then the quadratic form qQ :
ZQ0 → Z defined by

qQ(α) :=
∑
x∈Q0

α(x)2 −
∑
a∈Q1

α(ta)α(ha)

is positive semi-definite and there exists a unique vector h ∈ NQ0 such that Zh is
the radical of qQ or, equivalently, such that τ+h = h and |h| :=

∑
x∈Q0

h(x) is
minimum in NQ0 . For quivers of type Ã and D̃ the vector h has the following form

1 · · · 1
Ã : 1 1

1 · · · 1
(B.1)
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1 1
D̃ : 2 · · · 2

1 1
(B.2)

Definition B.2.3. Let V be an indecomposable representation of Q.

(i) V is preprojective if and only if (τ+)iV = 0 for i >> 0.

(ii) V is preinjective if and only if (τ−)iV = 0 for i >> 0.

(iii) V is regular if and only if (τ+)iV 6= 0 for every i ∈ Z.

Definition B.2.4. Let V be a representation of Q. The linear map

∂ : NQ0 −→ Z

defined by ∂(dimV ) := 〈h, dimV 〉 is called defect of V .

Lemma B.2.5. Let V an indecomposable representation of Q. V is preprojective,
preinjective or regular if and only if the defect of V is respectively negative, positive
or zero.

The regular representations of Q form an Abelian category RegK(Q).
Moreover RegK(Q) is serial, i.e. every indecomposable regular representa-
tion has only one regular composition series and so it is only determined
by its regular socle and by its regular length.

Definition B.2.6. A simple regular module E is called homogeneous if and only
if dimE = h.

Proposition B.2.7. Let Q be a quiver of tame type. Then there exist at most
three τ+-orbits ∆ = {ei| i ∈ I = {0, . . . , u}}, ∆′ = {e′i| i ∈ I ′ = {0, . . . , v}},
∆′′ = {e′′i | i ∈ I ′′ = {0, . . . , w}}, of dimension vectors of non-homogeneous
simple regular representations ofQ (I , I ′, I ′′ could be empty). We can assume that
τ+(ei) = ei+1 for i ∈ I (eu+1 = e0), τ+(e′i) = e′i+1 for i ∈ I ′ (e′v+1 = e′0) and
τ+(e′′i ) = e′′i+1 for i ∈ I ′′ (e′′w+1 = e0).

We denote the set of all regular representations of Q with Dr. Every
vector d ∈ Dr can be decomposed as

d = ph+
∑
i∈I

piei +
∑
i∈I′

p′ie
′
i +

∑
i∈I′′

p′′i e
′′
i (B.3)

for some p, pi, p′i, p
′′
i ∈ N such that at least one of coefficients in each family

{pi| i ∈ I}, {p′i| i ∈ I ′}, {p′′i | i ∈ I ′′} is zero. The decomposition (B.3) is called
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canonical decomposition of d. It is unique because the only linear relations
between h, ei, e′i and e′′i are

h =
∑
i∈I

ei =
∑
i∈I′

e′i =
∑
i∈I′′

e′′i .

We observe that the category RegK(Q) can be decomposed as direct sum
of categories Rt, with t = (ϕ,ψ) ∈ P1(K). In all categories Rt, but at most
three of these, there is only one simple object Vt which is necessarily homo-
geneous.

Definition B.2.8. (1) We callEi,E′i andE′′i the simple non-homogeneous regular
representations respectively of dimension ei, e′i and e′′i .
(2) We call V(ϕ,ψ), where (ϕ,ψ) ∈ P1(K), the indecomposable regular representa-
tion of dimension h.
(3) We define Ei,j to be the indecomposable regular representations with socle Ei
and dimension

∑j
k=i ek, where ek are vertices of the arc with clockwise orienta-

tion ei ej in ∆, without repetitions of ek. We denote Ei := Ei,i and
similarly we define E′i,j and E′′i,j .

Lemma B.2.9.

〈ei, ej〉 =


1 if i = j
−1 if i = j − 1
0 otherwise.

Proof. By Schur’s lemma, we have

dimK(HomQ(Ei, Ej)) =
{

1 if i = j
0 otherwise.

By [DR, lemma 3.3], we have dimK(Ext1Q(Ei, Ej)) = 0 for every i 6= j − 1.
So by the relation

〈ei, ej〉 = dimK(HomQ(Ei, Ej))− dimK(Ext1Q(Ei, Ej)),

we obtain the thesis. 2

B.3 Reflection functors and Coxeter functors

Definition B.3.1. Let Q be a quiver.

a) The vertex x ∈ Q0 is a sink if there are no arrows a ∈ Q1 such that ta = x.

b) The vertex x ∈ Q0 is a source if there are no arrows a ∈ Q1 such that
ha = x.
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Let Q be a quiver and let x ∈ Q0 be a sink (respectively a source). We
define the quiver cx(Q) in which the direction of the arrows connecting to
x are reversed.

Definition B.3.2. Let {a1, . . . , ak} be the set of arrows in Q whose head (respec-
tively tail) equals x. We put

cx(Q)0 = Q0

cx(Q)1 = {cx(a); a ∈ Q1}

where tcx(ai) = hai, hcx(ai) = tai for every i ∈ {1, . . . , k} and tcx(b) = tb,
hcx(b) = hb for every b ∈ Q1 \ {a1, . . . , ak}.

Now we define the functors C+
x and C−x from Rep(Q) to Rep(cx(Q)).

Definition B.3.3. Let Q be a quiver and x ∈ Q0 be a sink. Let {a1, . . . , ak} be
the set of arrows in Q whose head equals x. Let V ∈ Rep(Q). We define the
representation C+

x (V ) := W ∈ Rep(cx(Q)) as follows.

W (y) =

{
V (y) if x 6= y

Ker
(⊕k

i=1 V (tai)
h−→ V (x)

)
otherwise,

where h(v1, . . . , vk) = V (a1)(v1)+· · ·+V (ak)(vk) with (v1, . . . , vk) ∈
⊕k

i=1 V (tai).

W (cx(a)) =

{
V (a) if ha 6= x

W (x) ↪→
⊕k

i=1 V (tai)
pj−→ V (taj) if a = aj

where pj denotes the projection on the j-th factor.

Definition B.3.4. Let Q be a quiver and x ∈ Q0 be a source. Let {b1, . . . , bl}
be the set of arrows in Q whose tail equals x. Let V ∈ Rep(Q). We define the
representation C−x (V ) := W ∈ Rep(cx(Q)) as follows.

W (y) =

{
V (y) if x 6= y

Coker
(
V (x) h̃−→

⊕l
i=1 V (hbi)

)
otherwise,

where h̃(v) = (V (b1)(v), . . . , V (bl)(v)) with v ∈ V (x).

W (cx(a)) =

{
V (a) if ta 6= x

V (hbj)
ij−→
⊕l

i=1 V (hbi) � W (x) if a = bj

where ij denotes the immersion of the j-th factor.

Let f = (fy)y∈Q0 : V →W be a morphism in Rep(Q).
If x is a sink and {a1, . . . , ak} is the set of arrows whose head equals x, we
define C+

x f = ((C+
x f)y)y∈Q0 : C+

x V → C+
x W a morphism in Rep(cxQ) as
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follows. For every y 6= x, we have fy = (C+
x f)y, whereas (C+

x f)x is the
unique K-linear map which makes the diagram

0 −→ (C+
x V )x −→

⊕k
i=1 Vtai

h−→ Vx
↓(C+

x f)x ↓⊕k
i=1 ftai ↓fx

0 −→ (C+
x W )x −→

⊕k
i=1Wtai

h′−→ Wx

commutative.
If x is a source and {b1, . . . , bl} is the set of arrows whose tail equals x, we
define C−x f = ((C−x f)y)y∈Q0 : C−x V → C−x W a morphism in Rep(cxQ) as
follows. For every y 6= x, we have fy = (C−x f)y, whereas (C−x f)x is the
unique K-linear map which makes the diagram

Vx
h̃−→

⊕l
i=1 Vtbi −→ (C−x V )x −→ 0

↓fx ↓⊕l
i=1 ftbi ↓(C−x f)x

Wx
h̃′−→

⊕l
i=1Wtbi −→ (C−x W )x −→ 0

commutative.
In particular, by definition, we have Hom(V,W ) = 0 if and only if
Hom(C+

x V,C
+
x W ) = 0, with x a sink and Hom(V,W ) = 0 if and only if

Hom(C−x V,C
−
x W ) = 0, with x a source.

C+
x , for every x sink, and C−x , for every x source, are called reflection func-

tors.
We state the main result about reflection functors.

Theorem B.3.5 (Bernstein-Gelfand-Ponomarev). 1) Let x ∈ Q0 be a sink.
Let V ∈ Rep(Q) be an indecomposable representation of dimension α. Then
we have two possibilities

a) V = Sx and then C+
x (V ) = 0,

b) C+
x (V ) is indecomposable and C−x C+

x (V ) ∼= V and the dimension of
C+
x (V ) equals cx(α) where

cx(α)(y) =
{
α(y) if y 6= x∑k

i=1 α(tai)− α(x) otherwise.

2) Let x ∈ Q0 be a source. Let V ∈ Rep(Q) be an indecomposable representa-
tion of dimension α. Then we have two possibilities

a) V = Sx and then C−x (V ) = 0,

b) C−x (V ) is indecomposable and C+
x C
−
x (V ) ∼= V and the dimension of

C−x (V ) equals cx(α) where

cx(α)(y) =
{
α(y) if y 6= x∑l

i=1 α(hbi)− α(x) otherwise.
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3) Let V1, V2 ∈ Rep(Q)

C±x (V1 ⊕ V2) = C±x (V1)⊕ C±x (V2).

Proof. See [BGP, theorem 1.1].

Definition B.3.6. A sequence x1, . . . , xm of vertices of Q is an admissible se-
quence of sinks (respectively of sources) if xi+1 is a sink (respectively a source) in
cxi · · · cx1(Q) for i = 0, 1, . . . ,m− 1.

Corollary B.3.7. Let Q be a quiver and let x1, . . . , xm be an admissible sequence
of sinks.

1) For every i = 1, . . . ,m, C−x1
· · ·C−xi−1

(Sxi) is either 0 or indecomposable
(here Sxi ∈ Rep(cxi−1 · · · cx1(Q))).

2) Let V ∈ Rep(Q) be an indecomposable. We assume Cxk · · ·Cx1(V ) = 0 for
some k. Then there exists i ∈ {0, . . . , k−1} such that V ∼= C−x1

· · ·C−xi−1
(Sxi).

Proof. Follows by induction from theorem 1.7.

Definition B.3.8. Let Q be a quiver with n vertices without oriented cycles. We
choose the numbering (x1, . . . , xn) of vertices such that ta > ha for every a ∈ Q1.
We define

C+ := C+
xn · · ·C

+
x1

and C− := C−x1
· · ·C−xn .

The functors C+, C− : Rep(Q)→ Rep(Q) are called Coxeter functors.

These functors don’t depend on the choice of numbering of vertices
because of the following interpretation of the Coxeter functors in terms of
the Auslander-Reiten functors.

Lemma B.3.9. Let KQ be the path algebra of a quiver Q without oriented cycles
and (x1, . . . , xn) be an admissible numbering of vertices.

(i) If V is an indecomposable nonprojective KQ-module, then there are isomor-
phisms C+V ∼= τ+V and C−C+V ∼= V .

(ii) If W is an indecomposable noninjective KQ-module, then there are isomor-
phisms C−W ∼= τ−W and C+C−W ∼= W .

Proof. See [ASS, chap. VII lemma 5.8]. 2
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B.4 Semi-invariants of quivers without oriented cy-
cles

For a dimension vector α we have

Rep(Q,α) :=
⊕
a∈Q1

Hom(Kα(ta),Kα(ha)),

the space of α-dimensional representations of Q. Moreover we define the
group

GL(Q,α) :=
∏
x∈Q0

GL(K, α(x))

and its subgroup
SL(Q,α) :=

∏
x∈Q0

SL(K, α(x)).

These groups act on Rep(Q,α) as follows: if V ∈ Rep(Q,α) and g =
(gx)x∈Q0 ∈ GL(Q,α), then g · V = {ghaV (a)g−1

ta }a∈Q1 . Finally we denote
the ring of semi-invariants by

SI(Q,α) := K[Rep(Q,α)]SL(Q,α) = {f ∈ Rep(Q,α)|∀g ∈ SL(Q,α)g·f = f},

where the action of GL(Q,α) on K[Rep(Q,α)], the coordinate ring of poly-
nomial functions on Rep(Q,α), is induced by the action of GL(Q,α) on
Rep(Q,α) by the rule

(g · f)(V ) := f(g−1 · V ),

with g ∈ GL(Q,α), f ∈ K[Rep(Q,α)] and V ∈ Rep(Q,α).

Definition B.4.1. If f is a semi-invariant of a quiver Q, we call Z(f) the vanish-
ing set of f .

Lemma B.4.2. Let f and f ′ be two semi-invariants of a quiver Q such that
Z(f) = Z(f ′) is irreducible. Then f = λ · f ′ for some non zero λ ∈ K.

Proof. Since Z(f) is irreducible, also f is an irreducible polynomial.
From Z(f) = Z(f ′) it follows that f ′|f and so f = λ · f ′ for some non zero
λ ∈ K. 2.

Remark B.4.3. Let α be a dimension vector. Any set S of generators of SI(Q,α)
contains a subset of irreducible generators. Indeed if f ∈ S is a reducible polyno-
mial, then it can be expressed as a product of irreducible elements from S.

Now we define the semi-invariants which appear in the principal theo-
rem.
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Lemma B.4.4. The spaces HomQ(V,W ) and Ext1Q(V,W ) are respectively the
kernel and the cokernel of the following linear map

dVW :
⊕
x∈Q0

Hom(V (x),W (x)) −→
⊕
a∈Q1

Hom(V (ta),W (ha))

where dVW is given by

{f(x)|x ∈ Q0} 7−→ {f(ha)V (a)−W (a)f(ta)|a ∈ Q1}.

Proof. See [R].

If a representation V has dimension vector α, then dVW can be seen as the
K-linear map which sends

⊕
x∈Q0

W (x)α(x) to
⊕

a∈Q1
W (ha)α(ta).

For every representation V of a quiver Q without oriented cycles of dimen-
sion α, we can construct a projective resolution, called Ringel resolution of
V :

0 −→
⊕
a∈Q1

V (ta)⊗ Pha
dV−→

⊕
x∈Q0

V (x)⊗ Px
pV−→ V −→ 0 (B.4)

where Px is the indecomposable projective associated to vertex x for every
x ∈ Q0 (see section B.1 of appendix), dV restricted to V (ta) ⊗ Pha sends
v ⊗ eha to V (a)(v) ⊗ eha − v ⊗ a and pV restricted to V (x) ⊗ Px sends v
to v ⊗ ex, see [R]. Moreover, applying the functor HomQ(·,W ) to Ringel
resolution of V , we have HomQ(dV ,W ) = dVW for every representation W
of Q.
Any character τ of GL(Q,α) has the form

τ : {gx ∈ GL(α(x))|x ∈ Q0} 7→
∏
x∈Q0

(detgx)χ(ex)

with ex a dimension vector, defined by ex(x) = 1 and ex(y) = 0 if x = y,
and χ(ex) ∈ Z ∀x ∈ Q0. A vector χ ∈ Z|Q0| is called weight.
The ring SI(Q,α) decomposes in graded components as

SI(Q,α) =
⊕

τ∈char(GL(Q,α)

SI(Q,α)τ

where SI(Q,α)τ =
{
f ∈ K[Rep(Q,α)]|g · f = τ(g)f ∀g ∈ GL(Q,α)

}
.

Remark B.4.5. (1) Each vector χ ∈ Z|Q0| determines a unique character τχ.

(2) A character τ for some semi-invariant might not uniquely determine the
weight of the semi-invariant, e.g. if α(x) = 0, then gx is a 0 × 0 matrix,
in which case det(gx) = 1, therefore for any χ(x) ∈ Z, det(gx)χ(x) =
det(gx) = 1.
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If α and β are dimension vectors such that 〈α, β〉 = 0, V ∈ Rep(Q,α)
and W ∈ Rep(Q, β), then the matrix of dVW is a square matrix.

Definition B.4.6. We define the semi-invariant c(V,W ) := det dVW of the action
of GL(Q,α) × GL(Q, β) on Rep(Q,α) × Rep(Q, β) (see [S]). For a fixed V
the restriction of c to {V } × Rep(Q, β) defines a semi-invariant cV = c(V, ·) in
SI(Q, β) of weight 〈α, ·〉 [S, lemma 1.4]. Similarly, for a fixed W the restriction
of c to Rep(Q,α) × {W} defines a semi-invariant cW = c(·,W ) in SI(Q,α) of
weight −〈·, β〉 [S, lemma 1.4]. These semi-invariants are called Schofield semi-
invariants.

These semi-invariants have the following properties.

Lemma B.4.7. Suppose that V ′, V , V ′′ and W ′, W , W ′′ are representations of Q,
that 〈dim(V ), dim(W )〉 = 0 and that there are exact sequences

0→ V ′ → V → V ′′ → 0, 0→W ′ →W →W ′′ → 0

then

(i) If 〈dim(V ′), dim(W )〉 < 0, then cV (W ) = 0

(ii) If 〈dim(V ′), dim(W )〉 = 0, then cV ′(W ) = cV
′′
(W )cV (W )

(iii) If 〈dim(V ), dim(W ′)〉 > 0, then cV (W ) = 0

(iv) If 〈dim(V ), dim(W ′)〉 = 0, then cV (W ) = cV (W ′)cV (W ′′)

and similarly for cW .

Proof. See [DW1, lemma 1]. 2

Remark B.4.8. A consequence of lemma B.4.4 in [S] is that any projective reso-
lution of V (respectively injective coresolution of W ) can be used to calculate cV

(respectively cW ).So if P is a projective module and I is an injective module then
cP = 0 and cI = 0.

Now we formulate the result of Derksen and Weyman about the set of
generators of the ring of semi-invariants SI(Q,α), defined in section 1.1,
where Q is a quiver without oriented cycles and α is a dimension vector.
So we assume throughout this section that there are no oriented cycles in
Q.

Theorem B.4.9 (Derksen-Weyman). Let Q be a quiver without oriented cycles
and let β be a dimension vector. The ring SI(Q, β) is spanned by semi-invariants
of the form cV of weight 〈dim(V ), ·〉, for which 〈dim(V ), β〉 = 0. It is also
spanned by semi-invariants of the form cW of weight −〈·, dim(W )〉, for which
〈β, dim(W )〉 = 0.
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Proof. See [DW1, theorem 1]. 2

Remark B.4.10. If 〈dim(V ), dim(W )〉 = 0 then we have c(V,W ) = cV (W ) =
cW (V ) = 0 if and only ifHomQ(V,W ) 6= 0 which is equivalent toExt1Q(V,W ) 6=
0 by lemma B.4.4.

Remark B.4.11. i) If V, V ′ ∈ Rep(Q) and V ∼= V ′ then cV and cV ′ are equal
up to a scalar.

ii) If V = V ′ ⊕ V ′′ is decomposable then, by lemma B.4.7, we have cV =
0 in SI(Q, β) if 〈dim(V ′), β〉 6= 0, and cV = cV

′
cV
′′ in SI(Q, β) if

〈dim(V ′), β〉 = 0.
So the algebra SI(Q, β) is generated by all cV where V is indecomposable and

〈dimV, β〉 = 0.

Moreover in [DW1] Derksen and Weyman show the following

Corollary B.4.12 (Reciprocity). Let α and β be the dimension vectors satisfying
〈α, β〉 = 0. Then

dimSI(Q, β)〈α,·〉 = dimSI(Q,α)−〈·,β〉.

B.5 cV , reflection functors and duality functor

The following results show the relation between cV and C+
x (respectively

C−x ).

Lemma B.5.1. Let V be an indecomposable representation of Q of dimension α
such that Z(cV ) is irreducible and let x be a sink of Q. Then

cV = λ · (cC
+
x V ◦ C+

x )

on Rep(Q, β) such that 〈α, β〉 = 0 and for some non zero λ ∈ K.

Proof. First we note that, by remark B.4.3 and by theorem B.4.9, it’s not
restrictive to suppose Z(cV ) is irreducible. By remark B.4.10, the vanishing
set of cV is the hypersurface

Z(cV ) = {W ∈ Rep(Q, β)|HomQ(V,W ) 6= 0}

and the vanishing set of cC
+
x V is the hypersurface

Z(cC
+
x V ) = {C+

x W ∈ Rep(cx(Q), cx(β))|HomQ(C+
x V,C

+
x W ) 6= 0}.

By definition of reflection functor, for every W ∈ Rep(Q, β),

HomQ(V,W ) 6= 0⇔ HomQ(C+
x V,C

+
x W ) 6= 0.
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Hence Z(cV ) = Z(cC
+
x V ).

So, by lemma B.4.2, we conclude that there exist non zero λ ∈ K such that
cV = λ · (cC

+
x V ◦ C+

x ). 2

Similarly one proves the following

Lemma B.5.2. Let V be an indecomposable representation of Q of dimension α
such that Z(cV ) is irreducible and let x be a source of Q. Then

cV = λ · (cC
−
x V ◦ C−x )

on Rep(Q, β) such that 〈α, β〉 = 0 and for some non zero λ ∈ K.

Next we study the relation between cV and duality functor∇.

Lemma B.5.3. Let (Q, σ) be a symmetric quiver. For every representation V of
the underlying quiver Q such that Z(cV ) is irreducible, we have

cV = λ ◦ (cτ
−∇V ◦ ∇) (B.5)

for some non zero λ ∈ K.

Proof. First we note that, by remark B.4.3 and by theorem B.4.9, it’s not
restrictive to suppose Z(cV ) is irreducible. Let β be a dimension vector
such that 〈dimV, β〉 = 0. By equation (1.16) we note that, for every W ∈
Rep(Q, β),

HomQ(V,W ) = 0⇔ HomQ(∇W,∇V ) = 0⇔ HomQ(τ−∇V,∇W ) = 0.
(B.6)

Thus, by remark B.4.10, the vanishing set of cV is the hypersurface

Z(cV ) = {W ∈ Rep(Q, β)|HomQ(V,W ) 6= 0}

and the vanishing set of cτ
−∇V is the hypersurface

Z(cτ
−∇V ) = {∇W ∈ Rep(Q, δβ)|HomQ(∇W,∇V ) 6= 0}.

Finally, by equation (B.6), Z(cV ) = Z(cτ
−∇V ).

So, by lemma B.4.2, we conclude that there exist non zero λ ∈ K such that
cV = λ · (cτ−∇V ◦ ∇). 2

B.6 cV ’s, weights and partitions

Lemma B.6.1. Let Q be a quiver, let x be a sink and let α be a vector dimension.

(i) If V is indecomposable not projective such that C+
x V is not projective and

0 = 〈dimV, α〉(= 〈cxdimV, cxα〉), then cV ∈ SI(Q,α) and cC
+
x V ∈

SI(cxQ, cxα).

140



(ii) If V = Sx and 〈dimSx, cxα〉 = 0, then we have cV ∈ SI(cxQ, cxα), where
Sx is considered as representation of cxQ, but cV is zero for Q.

(iii) If V = C−Sx and 〈dimC−Sx, α〉 = 0, then we have cV ∈ SI(Q,α) but
cC

+
x V is zero for cxQ.

Proof. First of all we observe that if x is a sink and V 6= Sx is projective
then C+

x V is projective since C+ doesn’t depend on any admissible num-
bering of vertices. Moreover 〈dimSx, cxα〉 = 0 and 〈dimC−Sx, α〉 = 0 are
not both zero. By theorem B.1.9 and since x is a sink, 0 = 〈dimC−Sx, α〉 =
−〈α, dimSx〉 = −αx +

∑
a∈Q1:ha=x αta and 0 = 〈dimSx, cxα〉 = (cxα)x −∑

a∈cx(Q)1
(cxα)ha =

∑
a∈Q1:ha=x αta − αx −

∑
a∈Q1:ha=x αta = −αx and so∑

a∈Q1:ha=x αta = 0 which is an absurd unless αta = 0 for every a such that
ha = x but in such case cSx = 0 for cxQ and cC

−Sx = 0 for Q.
Proof of (i). Since 〈dimV, α〉 = 0, by theorem B.4.9, the cV ’s are generators of
SI(Q,α) and cC

+
x V ’s are generators of SI(cxQ, cxα). Moreover we note that

the number of generators of SI(Q,α) is equal to the number of generators
of SI(cxQ, cxα).
Proof of (ii). We can study Sx since if V 6= Sx is projective, by remark above,
we have cV = 0 and also cC

+
x V = 0. Sx is projective in Q and so cSx is zero

in SI(Q,α) but Sx, considered as a representation of cxQ, is injective. So, if
〈dimSx, cxα〉 = 0 then cSx ∈ SI(cxQ, cxα).
Proof of (iii). C−Sx is not projective otherwise Sx = C+(C−Sx) = 0 which
is an absurd. Thus if 〈dimC−Sx, α〉 = 0 then cC

−Sx ∈ SI(Q,α). Moreover
C+C+

x C
−Sx = C+

x C
+C−Sx = C+

x Sx = 0 hence C+
x C
−Sx is projective and

so cC
+
x C
−Sx = 0 in SI(cxQ, cxα). 2

We recall that if Q is Dynkin, then SI(Q,α) has a finite number of gen-
erators by remark B.4.11.

Corollary B.6.2. Let Q be a Dynkin quiver and let x be a sink. We call N(Q,α)
the number of generators of SI(Q,α) and N(cxQ, cxα) the number of generators
of SI(cxQ, cxα). We have three possibilities.

(a) N(Q,α) = N(cxQ, cxα) if 〈dimSx, cxα〉 6= 0 and 〈dimC−Sx, α〉 6= 0;

(b) N(Q,α) + 1 = N(cxQ, cxα) if 〈dimSx, cxα〉 = 0;

(c) N(cxQ, cxα) + 1 = N(Q,α) if 〈dimC−Sx, α〉 = 0.

Proof. (a) follows directly from (i) of the previous lemma. (b): the gen-
erators of SI(cxQ, cxα) are those of SI(Q,α) and cSx . (c): the generators of
SI(Q,α) are those of SI(cxQ, cxα) and cC

−Sx . 2

Now we study weights of a quiver An and associated partitions. We de-
note vertices of An with {1, . . . , n} in increasing way from left to right and
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we call ai the arrow which has i on the left and i + 1 on the right. Let Vi,j
be the indecomposable of An with dimension vector

(vi,j)h =
{

1 if i ≤ h ≤ j
0 otherwise.

Let E = (Ei,j)1≤i,j≤n be the Euler matrix of a quiver Q , i.e the matrix
associated to the Euler form 〈·, ·〉. In general we have

Ei,j =
{

1 if i = j
]{a ∈ Q1|ta = i, ha = j} otherwise.

If Q = An

Ei,j =


1 if i = j
−1 if i→ j
0 otherwise.

Let 〈vi,j , ·〉 = vi,jE = χ = (χl)1≤l≤n be the weight of cVi,j .
We consider the following notation for An, let s, p ≥ 1 be respectively the
number of sources and the number of sinks in An (there are at least one
source and one sink, which occurs in the equioriented case).

i1 i2 i3
↙↘ ↙↘ ↙↘

· · · . . . . . . · · ·
↘↙ ↘↙
j1 j2

where ik and jh in {1, . . . , n}with 1 ≤ k ≤ s and 1 ≤ h ≤ p are respectively
sources and sinks of Q. By the previous picture we note that in An sinks
and sources alternate.
Let K = {k ∈ {1, . . . , s}|i ≤ ik ≤ j} and H = {h ∈ {1, . . . , p}|i ≤ jh ≤ j}

Lemma B.6.3. The weight of cVi,j is χ = (χl)l∈{1,...,n} such that

χl =


1 l = ik with k ∈ K or l = i and tai = i or l = j and taj−1 = j
−1 l = jh with h ∈ H or l = i− 1 and hai−1 = i− 1 or l = j + 1 and haj = j + 1
0 otherwise.

Proof. Since vi,jE = χ = (χl)1≤l≤n is the weight of cVij then χl = Ei,l +
Ei+i,l + · · ·+ Ej,l for every l ∈ {1, . . . , n}. So

χl =



El−1,l + El,l + El+1,l l ∈ {i+ 1, . . . , j − 1}
El+1,l l = i− 1
El−1,l l = j + 1
El,l + El+1,l l = i
El−1,l + El,l l = j
0 otherwise.
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Hence χl = 0 for every l ∈ {1, . . . , i− 2} ∪ {j + 2, . . . , n},

χi−1 =
{
−1 i− 1← i
0 otherwise,

χj+1 =
{
−1 j → j + 1
0 otherwise,

χi =
{

1 i→ i+ 1
0 otherwise,

χj =
{

1 j − 1← j
0 otherwise

and for every l ∈ {i+ 1, . . . , j − 1}

χl =


1 l − 1← l→ l + 1
−1 l − 1→ l← l + 1
0 otherwise. 2

Corollary B.6.4. Let Q = An and let w be the weight of cVi,j .

(i) Let χl = 1 for some l ∈ {i, . . . , j} and let k > l in {i+1, . . . , j−1}∪{j+1}
be the first index such that χk 6= 0, then χk = −1.

(ii) Let χl = −1 for some l ∈ {i+ 1, . . . , j − 1} ∪ {i− 1, j + 1} and let k > l
in {i, . . . , j} be the first index such that χk 6= 0, then χk = 1. 2

Let β be the dimension vector of an indecomposable representation of
An and let χ = 〈β, ·〉. Let m1 be the first vertex such that χ(m1) 6= 0, in par-
ticular we suppose χ(m1) = 1 and mt the last vertex such that χ(mt) 6= 0,
in particular we suppose χ(mt) = 1, the other case proves in a similar way.
Between m1 and mt, -1 and 1 alternate in correspondence respectively to
sinks and to sources. In this case we have [ t2 ]+1 = s+1 occurrences of 1 and
s = [ t2 ] occurrences of -1. We call i0 = m1, js = mt−1, i1, . . . , is the sources
and j1, . . . , js−1=p the sinks between i0 and js. Let V be a representation
with dimV = α such that 〈β, α〉 = 0 and SL(V ) = SL(V1) × · · · × SL(Vn),
so we have, by Cauchy formula

K[Rep(An, α)]SL(V ) = SI(An, α) =

 ⊕
λ:Q1→Λ

⊗
c∈Q1

Sλ(c)Vtc ⊗ Sλ(c)V
∗
hc

SL(V )

where Λ is the set of all partitions.
χ(k) = 0 for every k < i0 so either λ(ak−1) = λ(ak) or λ(ak−1) = 0 = λ(ak)
for every k < i0. Since χ(1) = 0 then λ(a1) = 0 and thus λ(ak) = 0 for
every k < i0. So we have (Sλ(ai0 )Vi0)SLVi0 6= 0 if and only if λ(ai0) =
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(

αai0︷ ︸︸ ︷
1, . . . , 1). Now χ(k) = 0 for every i0 < k < j1 and χ(j1) = −1 then

we have λ(ai0+1) = λ(ai0) otherwise (Sλ(ai0 )V
∗
i0+1 ⊗ Sλ(ai0+1)Vi0+1)SLVi0+1

doesn’t have weight 0. So λ(ak) = λ(ai0) for every i0 < k < j1. For j1
we have λ(aj1) and λ(ai0) are complementary with respect to a column of
height αj1 because −λ(aj1)h − λ(ai0)αj1−h+1 = −1 for every ∈ {1, . . . , αj1},
by proposition A.2.9. We proceed in a similar way with the other vertices
until is for which χ(is) = 1. Since χ(k) = 0 for every k > is, we have
either λ(ak−1) = λ(ak) or λ(ak−1) = 0 = λ(ak) for every k > is but because
λ(an−1) = 0, λ(ak) = 0 for every k > is. Moreover λ(ais−1) is both a column
of height αis and the complementary of λ(ais−1−1) with respect to a column
of height αis−1 .
So we proved the following

Lemma B.6.5. Let Q be a quiver of type An, let α be a dimension vector and β be
a dimension vector of an indecomposable representation of Q. Let χ be the weight
〈β, ·〉 and we suppose it is such that χ(i) 6= 0 for every i ∈ I = {mj}j∈{1,...,t},
where I is a subset of {1, . . . , n}. Then the family of partitions associated to χ
is λ = (λ(a1), . . . , λ(an−1)) such that λ(ai) = 0 for every i ∈ {1, . . . ,m1 −
1} ∪ {mt, . . . , n − 1}, λ(am1) and λ(amt−1) are columns respectively of height
αm1 and αmt and λ(ai) is the complementary of λ(ai−1) with respect to a column
of height αi for every i ∈ {mj}j∈{2,...,t−1}. Moreover we have αmt = αmt−1 −
αmt−2 + . . .± αm1 .
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