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Introduction

The representations of quivers can be viewed as a formalization of some lin-
ear algebra problems. Symmetric quivers have been introduced by Derksen
and Weyman in [DW2] to provide similar formalization for other classical
groups.

In the recent years the quiver representations were used to prove interest-
ing results related to general linear groups.

Derksen and Weyman in [DW1] gave a proof of saturation property for
Littlewood-Richardson coefficients.

Magyar, Weyman and Zelevinsky in [MWZ1] classified products of flag va-
rieties with finitely many orbits under the diagonal action of general linear
groups. We hope that the representations of symmetric quivers are a tool
to solve similar problems for classical groups.

Another interesting aspect and direction for future research is the connec-
tion with Cluster algebras (see [FZ1]). Igusa, Orr, Todorov and Weyman
in [IOTW] generalized the semi-invariants of quivers to virtual representa-
tions of quivers. They associated, via virtual semi-invariants of quivers, a
simplicial complex 7 (@) with each quiver Q. In particular, if @ is of finite
type, then the simplices of 7(Q) correspond to tilting objects in a corre-
sponding Cluster category (defined in [BMRRT]). It would be interesting to
carry out a similar construction for symmetric quivers of finite type and to
relate it to Cluster algebras (see [FZ2]).

The results of this thesis are first steps in this direction. We describe the
ring of semi-invariants for symmetric quivers of finite and tame type.

A symmetric quiver is a pair (@, o) where @ is a quiver (called underlying
quiver of (Q, o)) and o is a contravariant involution on the union of the set
of arrows and the set of vertices of (). The involution allows us to define a
nondegenerate bilinear form <, > on a representation V" of (). We call the
pair (V, <, >) orthogonal representation (respectively symplectic) of (Q, o)
if <, > is symmetric (respectively skew-symmetric). We define SpRep(Q, 3)
and ORep(Q, B) to be respectively the space of symplectic 3-dimensional
representations and the space of orthogonal $-dimensional representations
of (Q, o). Moreover we can define an action of a product of classical groups,
which we call SSp(Q, ) in the symplectic case and SO(Q, ) in the orthog-
onal case, on these space. We describe a set of generators of the ring of



semi-invariants of O Rep(Q, [3)
0SI(Q, 8) = K[ORep(Q, 3)]°@F) =

{f € K[ORep(Q,B)]lg - f = f Vg € SO, B)}

and of the ring of semi-invariants of SpRep(Q, «)

SpSI(Q. B) = K[SpRep(Q, §)|5(@P) =

{f € K[SpRep(Q,B)]|g- f = f Vg € SSp(Q, 5)},

where K[ORep(Q, )] is the ring of polynomial functions on ORep(Q, )
and K[SpRep(Q, ()] is the ring of polynomial functions on SpRep(Q, ().
Let (Q, o) be a symmetric quiver and V' a representation of the underlying
quiver @ such that (dim V, 3) = 0, where (-, -) is the Euler form of Q). Let

\4
0—P P —V-—0

be the canonical projective resolution of V' (see [R1]). We define the semi-
invariant ¢V := det(Homg(d",-)) of OSI(Q, 3) and SpSI(Q, 3) (see [DW1]
and [S]).

Let 7 be the Auslander-Reiten translation functor and let V be the duality
functor. We will prove in the symmetric case the following

Theorem 1. Let (Q, o) be a symmetric quiver of finite type or of tame type such
that the underlying quiver () is without oriented cycles and let 3 be a symmetric
dimension vector. The ring SpSI1(Q, [3) is generated by semi-invariants

(i) ¢ if V € Rep(Q) is such that (dim V, ) = 0,

(ii) pf¥ := VvV if V € Rep(Q) is such that (dimV, ) = 0, 7V = VV and
the almost split sequence 0 — VV — Z — V' — 0 has the middle term Z
in ORep(Q).

Theorem 2. Let (Q, o) be a symmetric quiver of finite type or of tame type such
that the underlying quiver () is without oriented cycles and let 3 be a symmetric
dimension vector. The ring OSI(Q, ) is generated by semi-invariants

(i) ¢V if V € Rep(Q) is such that (dim V, 3) = 0,

(ii) pf¥ = VvV if V € Rep(Q) is such that (dimV,3) = 0, 7V = VV and
the almost split sequence 0 — VV — Z — V' — 0 has the middle term Z
in SpRep(Q).

The strategy of the proofs is the following. First we set the technique of
reflection functors on the symmetric quivers. Then we prove that we can
reduce theorems 1 and 2, by this technique, to particular orientations of the
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symmetric quivers. Finally, we check theorems 1 and 2 for these orienta-
tions.

In the first chapter we give general notions and results about symmetric
quivers and their representations. First, we state main results 1 and 2. Next,
we adjust to symmetric quivers the technique of reflection functors and we
describe particular orientations for every symmetric quiver of finite type
and tame type. Finally, we prove general results about semi-invariants of
symmetric quivers and we check that we can reduce theorems 1 and 2 to
these particular orientations.

In the second chapter, using classical invariant theory and the technique
of Schur functors, we prove case by case theorems 1 and 2 for symmetric
quivers of finite type with the orientations described in chapter 1.

In the third chapter we prove theorems 1 and 2 for symmetric quivers of
tame type with the orientations described in chapter 1. First, we deal with
symplectic and orthogonal representations of dimension 3 = ph, where
p € Nand h is the homogeneous simple regular dimension vector. We give
a proof of theorems 1 and 2 case by case. Next, we adjust to symmetric
quivers some general results of Dlab and Ringel about regular representa-
tions of tame quivers (see [DR]) and we describe generic decomposition of
dimension vectors of symplectic and orthogonal representations (see [K1]
and [K2]). Finally, by these results, we describe case by case the ring of
semi-invariants of symmetric quivers of tame type for any regular dimen-
sion vectors.

At last, in appendix A we recall some results of representations of gen-
eral linear group and of invariant theory. In appendix B we recall general
definitions and results about quiver representations and semi-invariants of
quivers.



Chapter 1

Main results

1.1 Symmetric quivers

Throughout all this section, we use the notation of section B.1.

Definition 1.1.1. A symmetric quiver is a pair (Q), o) where Q is a quiver (called
the underlying quiver of (Q, o)) and o is an involution from the disjoint union
Qo [ Q1 to itself, such that

(i) 0(Qo) = Qoand o(Q1) = Q1,
(ii) to(a) = o(ha) and ho(a) = o(ta) forall a € @1,
(iii) o(a) = a whenever a € Q1 and o(ta) = ha.

Definition 1.1.2. Let (Q, o) be a symmetric quiver and

V = {V(@)}eeqo: {V(0) }acq: }

be a representation of the underlying quiver (). We define the duality functor V :
V — V*with V* = {{V*(2)}2ey, {V*(a) }acq, } where V*(z) := V(o(z))*
for every x € Qo and V*(a) := =V (o(a))* for every a € Q1. Moreover if W is
another representation of Q and f : V. — W is a morphism, then Vf : VW —
VV is defined by (Vf)(z) := f(o(x))* : W*(z) — V*(x), for every x € Qo.
We shall call V selfdual if VV = V.

Definition 1.1.3. An orthogonal (resp. symplectic) representation of a symmetric
quiver (Q, o) is a pair (V, < -,- >), where V is a representation of the underlying
quiver () with a nondegenerate symmetric (resp. skew-symmetric) scalar product
< >onP,eq, V() such that

(i) the restriction of < -,- >to V(z) x V(y)is 0ify # o(z),

(ii) < V(a)(v),w > + < v,V(o(a))(w) >= 0 for all v € V(ta) and all
w € V(o(ha)).



By properties (i) and (ii) of definition 1.1.3, an orthogonal or symplectic
representation (V, < -,- >) of a symmetric quiver is selfdual.

Definition 1.1.4. An orthogonal (respectively symplectic) representation is called
indecomposable orthogonal (respectively indecomposable symplectic) if it cannot be
expressed as a direct sum of orthogonal (respectively symplectic) representations.

We denote ) (respectively ()]) the set of vertices (respectively arrows)
fixed by 0. Thus we have partitions

Qo= Q7 UQFUQy
Q1=0QUQTUQy
such that Q; = 0(Q) and Q] = o(Q7), satisfying:

i) Ya € Q7 , either {ta, ha} C QF or one of the elements in {ta, ha} is in
Qar while the other is in QF;

ii) VmeQar,ifaeQlwithta:xorha:x,thenaGQTUQ‘{.

Definition 1.1.5. Let (Q), o) be a symmetric quiver. We define a linear map ¢ :
Zgg — Zgg by setting {0a(i) }icq, = {a(o (%)) }ieq, for every dimension vector
a.

Remark 1.1.6. Since o is an involution, also J is one.

Remark 1.1.7. If V is a representation of dimension o then éov = dim(VV'). In
particular if V' is an orthogonal or symplectic representation of (Q), o) of dimension
o, then da = . Such « is called symmetric dimension vector.

Proposition 1.1.8. Let § : Zgg — Zgg as in definition 1.1.5. If o and 3 are
dimension vectors, then

(o, B) = (00, 0cx). (1.1)
Proof.

(038) = T ugg B + Dicos alo(i)5o(0)
+ Zalequ a(ta)B(ha) + Zale a(to(a))B(ho(a)) . (1.2)

By definition of o, we have
(08, 0a) =
Y Blo()ale(i) + > Bla(o(i))alo(o(i)+
i€QFUQg icQd
> Blo(ta)alo(ha)) + Y Blo(to(a))a(o(ha(a))) =

acQiuQ? acQ;f
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Y Bla@)alo(@) + Y pliali)+

i€Qd i€Qg

> B@ali)+ Y Blho(a))alto(a)+

iEQg aEQf
Y Blho(a)alto(a) + Y Blo?(ha))a(o?(to(a))
ac@y acQy
which is the right hand side of (1.2), recalling that ¢ is an involution. O

The space of orthogonal a-dimensional representations of a symmetric
quiver (@, o) can be identified with

ORep(Q, @) @ Hom( Ke(te) gl h“) EB /\ Ko‘(t“) (1.3)
GEQ+ GEQU

The space of symplectic a-dimensional representations can be identified
with

SpRep(Q, ) @ Hom Ka (ta) g ha @ So Ka t“ : (1.4)
a€Q+ CLGQ‘7
We define the group
0@ )= [] CLEK a(2)) x ][] OK,a(x) (1.5)
erg z€QF

and the subgroup

=[] SLK, a@@) x J] SOK,a(x)). (1.6)

xEQS z€Q]

Here O(K, a(x)) is the group of orthogonal transformations for the sym-
metric form < -, - > restricted to V().

Assuming that a(x) is even for every « € QF, we define the group

(@ 0) = [ GLEK, a(x)) x [] Sp(K, a(x)) (1.7)
erg zeQf
and the subgroup
SSp(@,e) = ] SLK,a(z)) x ] Sp(K, a(z)). (1.8)
zeQd zeQg



Here Sp(K, a(z)) is the group of isometric transformations for the skew-
symmetric form < -, - > restricted to V' (z).

The action of these groups is defined by
g- V= {ghav(a)gtafl}alequ

where g = (92)zcq, € O(Q, @) (respectively g € Sp(Q, «))and V' € ORep(Q, a)
(respectively in SpRep(Q, «)). In particular we can suppose g, (») = (9, )¢
for every x € Qo.

Example 1.1.9. (1) Consider the symmetric quiver (Q, o)

O — e — O

where o interchanges the antipodal nodes and fixes the closed node. An
orthogonal representation of (Q, o) is a quadruple (V1,Va, ¢, (-,-)) where
Vi and Vy are vector spaces, ¢ : Vi — Va is a linear map and (-,-) is a
non-degenerate symmetric bilinear form on Va. We also have the dual map
—¢* : Vo' =2 Vo — V)" and so we have the following diagram:

Vi S Ve vy
Hence the isomorphism classes of orthogonal representations of (Q, o) are
the GL(V1) x O(Va)-orbits in Hom(Vy, Va).
(2) Consider the symmetric quiver (Q, o)

O—0—>0—>0

where o sends the first vertex to the last one and the second one to the
third one. A symplectic representation of (Q), o) is a quadriple (V1, Va, ¢, )
where V1 and Vs are vector spaces, ¢ : Vi — Vi is linear map and ¢ € SaVy'.
We also have the dual map —¢* : Vo — Vi*. We consider the following dia-
gram:

VRN VAR Ve A VA

Hence the isomorphism classes of symplectic representations of (Q, o) are
the GL(V1) x GL(Va)-orbits in Hom(Vy, Va) @ Sa V'

Definition 1.1.10. (i) Let K[ORep(Q, )] be the ring of polynomial functions
on ORep(Q, o).

0SI(Q, a) = K[ORep(Q, a)]50@) =
{f € K[ORep(Q,a)llg- f = f ¥g € SO(Q, )} (1.9)

is the ring of orthogonal semi-invariants of (Q, «).
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(ii) Let K[SpRep(Q, )] be the ring of polynomial functions on SpRep(Q, a),
SpSI(Q, @) = K[SpRep(Q, )] 3P @) —

{f € K[SpRep(Q, @)llg - f = f Vg € S5p(Q, )} (1.10)
is the ring of symplectic semi-invariants of (Q, ).

1.1.1 Symmetric quivers of finite type

Definition 1.1.11. A symmetric quiver is said to be of finite representation type
if it has only finitely many indecomposable orthogonal (resp. symplectic) represen-
tations up to isomorphisms.

We recall the following theorem proved by Derksen and Weyman in
[DW2]

Theorem 1.1.12. A symmetric quiver (Q), o) is of finite type if and only if the
underlying quiver @ is of type A,

Proof. See [DW2, theorem 3.1 and proposition 3.3] U

1.1.2 Symmetric quivers of tame type

Definition 1.1.13. A symmetric quiver is said to be of tame representation type if
is not of finite representation type, but in every dimension vector the indecompos-
able orthogonal (symplectic) representations occur in families of dimension < 1.

Theorem 1.1.14. A symmetric quiver (Q), o) with Q) connected is tame if and
only if the underlying quiver () is an extended Dynkin quiver.

Proof. See [DW2, theorem 4.1]. O

One can classify the symmetric tame quivers with connected underlying
quiver.

Proposition 1.1.15. Let (Q, o) be a symmetric tame quiver with () connected.
Then (Q, o) is one of the following symmetric quivers.

(1) Of type A2

o— o0

with arbitrary orientation reversed under o if () = ggnﬂ (> 1). Here o is
a reflection with respect to a central vertical line (so o fixes two arrows and
no vertices).

11



(2)

(3)

4

Of type ﬁ%’m:

0<—— 0

with arbitrary orientation reversed under o if Q = ggnﬂ (> 1). Here o is
a reflection with respect to a central vertical line (so o fixes two arrows and
no vertices).

Of type Ay*:

0/.\0

with arbitrary orientation reversed under o if ) = Zgn_l (n <1). Here o
is a reflection with respect to a central vertical line (so o fixes two vertices
and no arrows).

Of type A"

O————>20

with arbitrary orientation reversed under o if () = Ay, (n > 1). Here o is
a reflection with respect to a central vertical line (so o fixes one arrow and
one vertex).

12



(5) Of type A"

7N\

with arbitrary orientation reversed under o if ) = AVQn+1 (n >1). Here o
is a central symmetry (so o fixes neither arrows nor vertices).

(6) Of type D,°

(¢} (¢]

with arbitrary orientation reversed under o if () = Day, (n > 2). Here o is
a reflection with respect to a central vertical line (so o fixes one arrow and
no vertices).

(7) Of type Dy*

(¢] (¢]

N\ /

O i O = @ ———3= O e O

/ N\

O (0]

with arbitrary orientation reversed under o if ) = ﬁgn_l (n > 2). Here o
is a reflection with respect to a central vertical line (so o fixes one vertex and
10 arrows).

Proof. See [DW2, proposition 4.3]. O
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1.2 The main results

In this thesis we describe the rings of semi-invariants of symmetric quiv-
ers in the finite type and in the tame cases. We also conjecture in general
the following results. Below we use the notations of section B.4 and we
conjecture the following theorems

Conjecture 1.2.1. Let (Q, o) a symmetric quiver such that the underlying quiver
Q is without oriented cycles and let 3 be a symmetric dimension vector. The ring
SpSI1(Q, B) is generated by semi-invariants

(i) ¢V if V € Rep(Q) is such that (dimV, 3) = 0,

(i) pfV =V if Ve Rep(Q) is such that (dimV,3) =0,V = 7-VV and
the almost split sequence 0 — VV — Z — V' — 0 has the middle term Z
in ORep(Q).

Conjecture 1.2.2. Let (Q), o) a symmetric quiver such that the underlying quiver
Q is without oriented cycles and let (3 be a symmetric dimension vector. The ring
OSI1(Q, B) is generated by semi-invariants

(i) ¢V if V € Rep(Q) is such that (dimV, 3) = 0,

(ii) pf¥ :=VcV if V € Rep(Q) is such that (dimV,3) =0,V = 7-VV and
the almost split sequence 0 — VV — Z — V' — 0 has the middle term Z
in SpRep(Q).

We prove these conjectures for symmetric quivers of finite type (chapter
2) and for symmetric quivers of tame type and regular dimension vectors
B (chapter 3).
We use the following strategy. First we adjust to symmetric quivers the
technique of reflection functors. Next we prove with this technique that
we can reduce the conjectures 1.2.1 and 1.2.2 to a particular orientation of
the quiver. Then we state and prove conjectures 1.2.1 and 1.2.2 for these
orientations.

Definition 1.2.3. We will say that V' € Rep(Q) satisfies property (Op) if
(i) V=1"VV

(ii) the almost split sequence 0 — VV — Z — V — 0 has the middle term Z
in ORep(Q).

Similarly we will say that V' € Rep(Q) satisfies property (Spp) if
(i) V=1"VV
(ii) the almost split sequence 0 — VV — Z — V — 0 has the middle term Z
in SpRep(Q).

14



1.3 Reflection functors for symmetric quivers

In this section we describe the technique of reflection functors for the sym-
metric quivers.

1.3.1 Admissible sink-source pairs
We use the notation of section B.3.

Definition 1.3.1. Let (Q), o) be a symmetric quiver. A sink (respectively source)
x € Qo is called admissible if there are no arrows connecting x and o(x).

By definition of o, x is a sink (respectively a source) if and only if o(x)
is a source, so we can define the quiver c,(,)c.(Q). We shall call (x,0(z))
the admissible sink-source pair. The corresponding reflection is denoted by

Cao(@) = Coa)Ca

Lemma 1.3.2. If (Q,0) is a symmetric quiver and x is an admissible sink or
source, then (¢(y o(2))(Q), o) is symmetric.

Proof. Let x € Qo be an admissible sink of (Q),0). When we apply
C(z,0(x)) tO @, the only arrows which we reverse are the arrows connecting to
r and those connecting to o (). Now in ¢(, (,))(Q),  becomes a source and
o(z) becomes a sink. So if a is an arrow connecting to « or to o(x) we have
o(le(z o) (a)) = o(ha) = to(a) = ho(czo()(a)) and o(he () (a)) =
o(ta) = ho(a) = to(C(y,0())(a)). Hence c(, o(2))(Q) is a symmetric quiver.
One proves similarly if x is a source. O

Definition 1.3.3. Let (Q), o) be a symmetric quiver. A sequence x1, ..., Ty Of
vertices of @ is an admissible sequence of sinks (or sources) for admissible sink-
source pairs if x;1 is a sink such that there are no arrows linking x;11 and o (z;4+1)

in Clzi,0(x)) """ C(zl,U(xl))(Q)fOT’Z’ =1,...,m—1

Proposition 1.3.4. Let (Q,0) and (Q', o) be two symmetric connected quivers,
without cycles, with the same underlying graph and such that Q' differs from Q
only by changing the orientation of some arrows. Then there exists a sequence
Z1,...,Tm € Qo which is an admissible sequence of sinks (or sources) for admis-
sible sink-source pairs such that

Q, = Clam,0(zm)) """ C(zl,a(zl))(Q)'
For the proof of proposition 1.3.4, we need a lemma.

Lemma 1.3.5. If (Q, o) is a symmetric quiver with |{x — o(z)|z € Qo}| > 1,
then (Q, o) has cycles or it is not connected.
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Proof of lemma 1.3.5. If there are more than one arrow z — o(x) for the
same z in () then @ has cycles. Otherwise we suppose that () is connected

and that there are two arrows z % o(z) and y 2, o(y), with z # y in Q.
Since () is connected, these two arrows have to be linked with a sequence of
other arrows (this regarding their orientation). If there exists a sequence of
arrows ay, . . ., a; from x to y then, by definition of o, there exists a sequence
of arrows o(ay),...,0(a:) from o(y) to o(x), reversed respect to ay, ..., a;.
So aj ---atao(a) ---o(ar)b is a cycle. By a similar reasoning for the other
possible three links between z — o(x) and y — o(y) (from x to o(y), from
y to o(x) and from o(x) to o(y)), we obtain the same conclusion. O

Proof of proposition 1.3.4. By lemma 1.3.5 we can suppose that @) has at most
one arrow x — o(x) for some = € (. First of all we notice that the un-
derlying graph of @ and )/, being a connected graph without cycles, is a
tree, i.e. a graph where every vertex  has one parent and a several of chil-
dren each connected by one edge to the vertex . We define ancestor and
descendants in obvious way and we call z € Qg a vertex without children
if there is only one edge connected to z. Let S be a set of vertices without
children in Q.

We observe, by definition of o, that if () # As, in that case there are no
admissible sink or source, and if S contains = € @)y then it contains o(z).
Observe that, using reflection of the admissible sink-source pair at the ver-
tex without children z, we can change arbitrarily orientation of arrow con-
nected to = and so of the arrow connected to o(z).

We proceed by induction on the number m of generations in the tree. If
the number of generations is one, each vertex but one is without children,
applying reflection at the admissible sink-source pairs we can pass from
orientation of @ to orientation of @), by which we observed before.
Assume proposition true for the trees with m — 1 generations. We remove
all vertices without children from @ and @Q’, so the resulting quivers @ and
Q' have m—1 generations and are symmetric. By inductive assumption, we
can go from Q to Q' by a sequence of reflections at admissible sink-source
pairs.

To pass from @ to ' we use the same sequence of reflections at each point,
adjusting the orientations of arrows incident to .S, to get the next admissi-
ble sink-source pair if necessarily. O

We prove some results on orientations of symmetric quivers of tame type.
The underlying graph of D is a tree, so by proposition 1.3.4, we will con-
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sider a particular orientation of D

D% o o (1.11)

Applying a compositions of reflections at admissible sink-source pairs we
can get any orientation of D from D¢,

Now we deal with orientation of symmetric quivers with underlying quiver
of type A. First we prove lemma about possible exchange of orientation of
a quiver @ of type A,, that does not involve reflections at the end points of
Q. We denote vertices of Q with {1,...,n} from left to right.

Lemma 1.3.6. Let

Q :

(o}

N N

with k south-west arrows and h south-east arrows. Then there exists a sequence
of admissible sinks x1, ..., x; with x; # 1,n for every i € {1,...,1}, such that
Cpy - Cyy Q18

Q- o
k arrows . ° ° - h arrows

o o

s N

1 n7

ie. Q has 1,n as only sinks, with k south-west arrows and with h south-east
arrows.

Proof. Let x and y be two sinks closest to 1.

% K’
o h'+1 k' —1 o
k' arrows . h'" arrows
o z—1 z+1 o

e NS N

1 T Y
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From 1 to y, Q has k' + k" south-west arrows and /' + h”” south-east arrows.
We remove z by applying only reflections at vertices with number smaller
than y, as follows. We suppose k' > k' (the other case is similar). Applying
¢, we get

n' K

o s \h/+1 x k’—l/ N o
o rrrrr;zfl/ \erl/;r; o

1 Yy

k' arrows - . h'" arrows

Now we can apply ¢;—1¢z+1 and so on we obtain

K —h'—1 K —h' 41
,—O k' —h/ ° .

a A
I K
k' arrows .

s h'" arro s A r
1 WS Tyt

Finally, applying ci/_p we get

k'—h'

£ A
4 K
K" arrows . B

¥ n N PVV
1 arrows

in which there are (' — 1') + b/ + k" = k' + k" south-west arrows and
K — (K" = 1)+ " = 1/ + h" south-east arrows. Removing internal sinks in
this way proves lemma. O

Definition 1.3.7. We will say that a symmetric quiver is of type (s,t, k,1) if
(i) it is of type A,
(i) Q7] = s and |Q] = ¢,
(iii) it has k counterclockwise arrows and | clockwise arrows in Q7 U Q7 .

By proposition 1.1.15, s, t € {0, 1,2} and if either s or ¢ are not zero, then
s+t = 2. Moreover, by symmetry, we note that £ and [ have to be even.

Proposition 1.3.8. Let (Q, o) be a symmetric quiver of type A such that Q is
without oriented cycles. Then there is an admissible sequence of sinks x1, ...,z
of Q for admissible sink-source pairs such that c(y, o(z1)) " C(zy,0(xs)) @ 1S 0nE Of
the quivers:
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(1)

2270,1 . 0o 5o
koh :
% arrowsé v
o o
b arrows A
0—>0
and
2) )
L T—
’ % arrowsé V
@ 0o
g arrowse A
O=——0
if (Q,0) is of type (2,0, k,1);
(3) 70,2
i AN
o o
%—1 arrows V
o o
%—1 arrows ., A
o o
[} I
if (Q,0) is of type (0,2, k,1);
(4) 71,1
Ak:l : / ° \
o o
%—1 arrows? V
o o
% arrows,, A
o—— >0
if (Q,0)is of type (1,1, k,1);
(5) 10,0
A o
k,k / \
o o
%—2 urrowsA A
o o
O I

if (Q,0) if of type (0,0, k, k).
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Proof. For (Q,o) of types (2,0,k,1), (0,2,k,1) and (1,1, k,1) we apply
lemma 1.3.6 respectively to the subquivers whose the underlying graphs

are
Q/ . ° Q// . ° Q/// . O

0 °
o
AN
[ ]

i.e. the subquivers which have as first and last vertex respectively: the o-
fixed vertex and ta, where a is the o-fixed arrow, for Q’; the o-fixed vertices
for Q”; ta and tb, where a and b are the o-fixed arrows, for Q”. We note
that these three quivers have & counterclockwise arrows and % clockwise

arrows. So for each one of @', Q" and Q" there exists a sequence of sinks

x1,...,2s such that ¢z, -+ ¢z Q') ¢z, - 2, Q" and ¢y, - - - ¢z Q" are respec-
tively
Q/ . ® Q// . ° Q/// . o
/ / % arrowsé
o
%71 arrows é,1 arrows g arrowsé/
o.

k arrows

2

o o
A A
o o
k_1 arrows
\ 2 \
o o

N

Hence, by symmetry, applying c(;, o(2,)) * * * C(xs,0(xs)), We Obtain the desired
orientations.

For (Q, o) of type (0,0, k, k) we consider a sink z of () and we apply lemma
1.3.6 to the subquiver Q" which has as first and last vertex respectively x
and o(x). So there exists a sequence of sinks z1, . .., zs such that ¢z, - - - ¢, Q’
is

k' arrows k" arrows
g < Kamows K arows > o ().

Hence, by symmetry, applying c(;, o(z,)) * * * C(xs,0(xs)) W€ Obtain

(e]

R
k—k' arrows .- . k—Ek'" arrows
x o(x)
¥ Kl

k' arrows . - k' arrows

i.e. the desired orientation. O
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1.3.2 Reflection functors for symmetric quivers

Let (Q,0) be a symmetric quiver, (z,0(x)) a sink-source admissible pair.
For every V € Rep(QQ), we define the reflection functors

Cloawy = Caw @V
and
Clowa)V = Ca Co)V:
We note that C;(I)Cj V=Cf C )V (respectively Cf C;F(I)V Coin CrV)

since there are no arrows connecting x and o(z).

Proposition 1.3.9. Let (Q, o) be a symmetric quiver and V' be a representation of
the underlying quiver.

(i) If v is an admissible sink, then VO, |V = CL )

(ii) If x is an admissible source, then VC’(; oo ))V C(; (@)

In particular for every x admissible sink and y admissible source we have

VV.

VV.

+ _ + - —
V=WV Chooen)V = VoV < Chuown’ = Voyown"
Proof. We prove (i) (the proof of (ii) is similar). Recall that z # o(z),
otherwise z is not a sink. Let {a1, ..., ax} be the set of arrows whose head
is x.
(VCoan Vv = (CF Co)V o) =
( a(y)) ~ U(y) 7& U($) Z
h *
(Coker (Vy(z) — @f 1 Vhota)))" oly) = (m)
(Ker(@D, Via, = Va))* o(y) =

where h(v) = (V(a( 1))(),...,V(c(ax))(v)) withv € V) and W (v1, ..., vp) =
V(ar)(v1) + - - + V(ag) (vp) with (v1,...,0) € DY, Via,-

(Clro@nVVy =
(vvy)y } y #o(x),x
Coker((VV) @y —— B 1 (VVhotan) ¥ = 0(2)
Ker(@le(VV)mi LN (VV)2) Y=z,

where h/(v) = (VV(0(a1))(),...,VV(o(az))(v)) with v € (VV)o(e) and

h(vi, ... k) = VV(a1)(v1)+ - +VV (ag) (vp) with (vi, ..., v5) € B (VV )i,
Since (VV), = (Vy())" for every y € Qo and VV(a) = —V(o(a))*, we

21



have h = —h* and W = —}/ *; moreover if ¢ is a linear map, in gen-
eral we have (Ker(p))* = Coker(¢*) and (Coker(p))* = Ker(p*), so

(VC(J;J(QC))V)Z, & (C’&O(QC))VV)Z/ for every y € Q.
We note that
Co(z)0(a;) a=a; withie {1,... k}
O (Clz,0(2))@) = 0(CaCo(z)a) = { C20i a=o(a;)withi e {1,... k}
o(a) a # aj,o(a;) withi € {1,... k}.
So we have
(VO o@n V) Caon@) = —(CLC yV)(0(erco(n)a))” =
—V(o(a))* a# aj,o(a;) with j € {1,...,k}
—(Va = PF, ‘;mi — Vig,)* a=o(a;) withj € {1,...,k}
_(Vha(aj) — @i:l th(ai) —» Vg(x))* a = a; Wlth] S {1, . ,k}
and
(C(j;,g(x))vv)(c(m,a(x))a) =
VV(a) a # aj,o(a;) with j € {1,...
(VV)o = B (VV)ta; = (VV)ia, a=a;withje{l,... k}
(VV)hg(aj) — @?:1(vv)ho(ai) —» (VV)U(I) a = aj with j € {1, cee k}
Hence VO V=Ch VV.Oo

(z,0(2)) (z,0(z))

Corollary 1.3.10. Let (Q, o) and (Q’, o) be two symmetric quivers with the same
underlying graph. We suppose there exists a sequence x1, . .., Ty, of admissible
sinks for admissible sink-source pairs such that Q' = c(z,. o(zm)) " Cla1,0(21)) Q-
Let V € Rep(Q) and V' = C&mvg(xm)) - C(J;M(m))V € Rep(Q'). Then

V=1rVV&V=7rvVV.

Proof. By proposition 1.3.9, we have

VYV =717VC! .COF — = CF .OF _
T VV =71 VC(Z'm,O'(.Z’m)) C(ml,o(ml))V_T C(xm’a(xm)) C’(xlﬁ(xl))vv_
Oy i - TtV =0 -C+ e
T Co-(xm)me”'Cg(wl)Cle V—Cg(xm)T Cxa"Cg(zl)T Clv=-. =
” T TCF TV =Cf .OF _ v/
C‘T(m"lj”C‘T(ml)T T Cfffﬁ"cfflv_c(:vmp(:vm)) C(m,a(m))v_v' =

Proposition 1.3.11. Let (Q, o) be a symmetric quiver and let x be an admissible
sink. Then

(i) V is a symplectic representation of (Q, o) if and only if C(J;C o))V 18 @ sym-
plectic representation;
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(i)) 'V is a orthogonal reﬁresentation of (Q, o) if and only lfC’(J;J(x))V is a or-
thogonal representation.

Similarly if x is an admissible source then Clao(@) sends symplectic representa-
tions to symplectic representations and orthogonal representations to orthogonal
representations.

V=

yV. To define an orthogonal (respectively symplectic) structure

Proof. By proposition 1.3.9 we have V' = VV if and only if C’(; ()
vCr-

(z,0(x
on C(tc - the only problem could occur at the vertices fixed by o. But,
by definition of admissible sink and of the involution o, fixed vertices and
fixed arrows don’t change under our reflection. The proof is similar for

C’(; (@) with z an admissible source. O

Next we prove that the reflection functors for symmetric quivers preserve
the rings of orthogonal and symplectic semi-invariants. We need some ba-
sic property of Grasmannians.

Definition 1.3.12. Let W be a vector space of dimension n. Consider the set of
all decomposable tensor wy A ... A\ w,, with wy, ..., w, € W, inside \" W. This
set is an affine subvariety of the space vector \" W, called affine cone over the

Grasmannian. It will be denoted by Gr(r, W).

Definition 1.3.13. The Grasmannian Gr(r, W) is the projective subvariety of
P(A\" W) corresponding to Gr(r, W).

This variety can be thought as the set of r-dimensional subspaces of .
The identification between A" W and A"™" W* induces an identification
between Gr(r, W) and (Z"(n —r, W*) and so between Gr(r, W) and Gr(n —
r, W*). By the first fundamental theorem (FFT) for SLV (see [P, chapter 11
section 1.2 ]), it follows that

K[V @ W]tV >~ K[Gr(r, W),
where r = dim(V).

Lemma 1.3.14. If x is an admissible sink or source for a symmetric quiver (Q), o)
and o is a dimension vector such that c(, 5(»yya(z) > 0, then

i) if C(z,0(x)) () > O there exist isomorphisms

S
Pala

SpSI(Q, Oé) — SpSI(C(x,U(x))Qu C(:p,o’(a:))a)

and
09 o

OSI(Qv Oé) - OSI(C(:v,a(x))Q7 C(m,a(w))a)a
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i) if ¢(y o(x))(z) = O there exist isomorphisms

SpSI(Q, )—>SPSI( )@ ¢ ya) [y]
and
OSI(Q, @) % OSI(e(r.0 () @ cloten @)y

where Aly| denotes a polynomial ring with coefficients in A.

Proof. We will prove the lemma for the symplectic case because the
orthogonal case is similar. Let z € )y be an admissible sink. Put r = «o(z)
and n = )., a(ta). We note that ¢, ;(p)a(z) = n —r. PutV = K",
V' =K' " and W = @,,,_, K9 = K". We define

7 - @ Hom Ka (ta) Ka ha @ S2 Ka(ta

H.GQ+ GEQG
ha.;éz
and
G= ][] SLew) x [] Se(e
veQy yeQF
y#T

Proof of i). If ¢ (4 »(x))(x) > 0 we have
SpSI(Q, a) = K[SpRep(Q, )] ¥57(@) =
K[Z x Hom(W,V)|“*SEV = (K[Z] @ K[Hom(W, V)]°LV]¢ =
(K[2] @ K[Gr(r, W™)))“

and
SPSI(¢(a,0(2) @> C(a,0(x)) ) =

K[SpRep(C(x,g(x))Q, C(x,o(af))a)]Ssp(c(m’a(m))Q7C(z’a(z))a) =
K[Z x Hom(V',W)]®*5EV" — (K[Z] @ K[Hom/(V',W)]3L V¢
(K[Z] ® K[Gr(n —r, W)])°.

Since 627"(7“, W*) and évr(n — r, W) are isomorphic as G-varieties, it follows
that SpSI(Q, a) and SpSI(c(y,0(2)) @) C(z,0(z))@) are isomorphic.

Proof ii). If ¢y o(z))(x) = 0, then n = r and V' = 0. So @"(O, W) is a point
and hence

SpSI(Q, o) = (K[Z] @ K[Hom(W,V))) &SV (1.12)
is isomorphic to

SPSI(Clz.0(e))@: C(ao (@) = (K[Z]@K[Hom(V',W)])*SEV = K[7]F*SEV),
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Now let A = {a € Qf|ha = z}. Using theorem A.1.9, each summand
of (1.12) contains ()¢ 4 S,\(Q)V)SLV as factor. By proposition A.2.8 each
Aa), with a € A, has to contain a column of height «(ta), hence A(a) =
p(a) + (1212), for some y(a) in the set of partitions A. So as factor we have

SLV
Q) (Sgatan K D)3 Ve @ <® 5<1a<t“’>v>

a€A acA

which is generated by det(,,,_, K**®? — K*®)). On the other hand we
have K[Hom(W, V))&V = K[det(P,,,_, K — K**))] and so we
have the statement ii), with y = det(,,,_, K**? — K@), O

1.4 Semi-invariants of symmetric quivers

In this section we prove some general results about semi-invariants of sym-
metric quivers with underlying quiver without oriented cycles.

We assume that (Q,0) is a symmetric quiver with underlying quiver @
without oriented cycles for rest of the thesis.

We recall that, by definition, symplectic groups or orthogonal groups act
on the spaces which are defined on the o-fixed vertices, so we have

Definition 1.4.1. Let V be a representation of the underlying quiver Q) with
dimV = « such that (o, ) = 0 for some symmetric dimension vector 3. The

weight of ¢ on SpRep(Q, B) (respectively on ORep(Q, B)) is {c, '>_erQg Ez,0s

where (. (@)
B a,Nz) y==z
ezaly) = { 0 otherwise. (1.13)

In general we define an involution 7 on the space of weights (a, -) with
o dimension vector.

Definition 1.4.2. Let « be the dimension vector of a representation V of the un-
derlying quiver Q and let (v, -) = x = {x(4) }ieq, be the weight of ¢"'. We define
X = {vx (i) }ieq, where yx(i) = —x(a (i) for every i € Qo

We number vertices in such way that ta < ha for every a € Q). We note

that x = () = (a(j) = X i; bija(i))jeQos
where b;; := [{a € Qilta =i, ha = j}| = [{a € Qi[ta = 0(j), ha = o(i)}| =:

bo(j),0(i)-

Lemma 1.4.3.
vx = (17 da, ) = (dim(7~VV),), (1.14)

i.e. yx is the weight of ¢™ VV. Moreover +y is an involution.
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Proof. By definition of v, yx(j) = —a(a(4)) + X2, bija(o(i)). Now it
follows by theorem B.1.9 that (77 dc,-) = —(-,dcv), thus, for every j € Qo,
(1700, )(§) = —(~0)(j) = —0a(j) + Xoic;bijoa(i) = vx(j). Hence
X = (77 0a,-). O

Moreover, since yyx (i) = v(—x(o(i))) = x(oo(i)) = x(¢) for every i € Qo,
~ is an involution.

If 5 is the dimension vector of a representation W of the underlying quiver
@, we have

(a, B) =0 < (176, 003) = 0. (1.15)
Indeed, by theorem B.1.9,

(o, B) = (36,60) = — (7~ 50, 6). (1.16)

Since f3 is the dimension vector of an orthogonal or symplectic representa-
tion W, we have that 3 is a symmetric dimension vector and so

(, B) = 0 & (17 6a, B) = 0. (1.17)

Lemma 1.4.4. Let (Q, o) be a symmetric quiver. For every representation V of
the underlying quiver Q) and for every orthogonal or symplectic representation W
such that (dim(V'), dim(W)) = 0, we have

(W)= VV(W).
Proof. It follows directly from lemma B.5.3. O

Now we prove in general a crucial lemma which will be useful later. Let
(Q,0) be a symmetric quiver. If V' is a representation of the underlying
quiver @ such that V' = 7= VV then, by the theorem B.1.11, there exists an
almost split sequence 0 — VV — Z — V — 0 with Z € Rep(Q). Moreover
for such V€ Rep(Q) with dimV = « we have o = 77 da and vx = ¥,
where x = (o, ). So x(i) = vx(i) = —x(o(3)) for every i € {1,...,n}, in
particular x (i) = 0if o (i) = i.

Definition 1.4.5. A weight x such that vx = x is called a symmetric weight.

Lemma 1.4.6. Let (Q), o) be a symmetric quiver of finite type or of tame type. Let
dY . be the matrix of the minimal projective presentation of V € Rep(Q, ) and
let 3 be a symmetric dimension vector such that (o, 3) = 0. Then
fies property (Op);
(2) Homg(dY ., ") is skew-symmetric on ORep(Q, B) if and only if V' satisfies
property (Spp).

(1) Homg(dY ,,,") is skew-symmetric on SpRep(Q, B) if and only if V satis-
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Proof. We use notation of section B.2. We call (@', o) the symmetric
quiver with the same underlying graph of (Q, o) such that

(i) if Qis of type A, then @’ has all the arrows with the same orientations;

(ii) if Q is of type A, then @' is one of the quiver as in proposition 1.3.8 (it
depends on which kind of quiver is Q);

(iii) if @ is of type D, then Q' is D& (see picture (1.11)).
yp p

By propositions 1.3.4 and 1.3.8, there exists a sequence z1, . . ., z,, of admis-
sible sink for admissible sink-source pairs such that c(,,.. s(z.)) = * C(a1,0(21)@ =
Q. Wecal V! := CF - --C(J;I o(zy)V forevery V e Rep(Q) and if

(@m0 (zm))
a=dimV,then & = (3, o(@m)) " Clar,0(z1))@ We note that, by corollary

1.3.10 and proposition 1.3.11, V' satisfies property (Op) (respectively prop-
erty (Spp)) if and only if V' satisfies property (Op) (respectively property
(Spp)). We prove only (1), because the proof of (2) is similar.

Type A. Let (A4,,0) be a symmetric quiver of type A. We enumerate ver-
tices with 1,...,n from left to right and we call a; the arrow with ¢ on the
left and i + 1 on the right. We define o0 by o(i) =n — i + 1 for every i € Qo
and o(a;) foreveryi € {1,...,n—1}. Let V! =V, ;;)_y, i.e. is the indecom-
posable of A,, such that

_ 1 jedli,... o)1}
(dimV; o(i)-1)j = { 0 otherwise.

We note that VV' = Vi 5,y = 77V"and Z' = V; ;) @ Vii1,0(:)-1- So, by
definition 1.1.3, on Z’ we can define a structure of orthogonal representa-
tion if n is odd and a structure of symplectic representation if n is even. So
it'’s enough to check when Homg(dY.. ,-) is skew symmetric and, for type
A, we do it explicitly.

Let x = (o, ) — Zzng £2,o be the symmetric weight associated to a. If my
is the first vertex such that x(m1) # 0, in particular we suppose x(m1) =1,
then the last vertex m such that x(ms) # 0is mgs = o(mq) and x(ms) = —1.
Between m; and ms, -1 and 1 alternate in correspondence respectively of
sinks and of sources. Moreover, by definition of symmetric weight, we

have s = 2[ for some [ € N. We call is,...,4 the sources, ji,...,75_1
the sinks, iy = my and j; = ms. Hence we have o(i;) = j;_¢++1 and
i1 < j1 < ... <1 < j. Now the minimal projective resolution for V
is ' '
i g
0—Ppr@r—VvV-—0 (1.18)
J=J1 1=11
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and for the remark above we have

0—>@P W"@P H—V-—0, (1.19)
J=i J=n
with
Qi1 i h=1—-k
(AYin)nk = 3 @iy ji if h=1-k+1 (1.20)
0 otherwise,
where a; ; is the oriented path from i to j.
Hence
Ju Ji
Hom(dy,, QB W(e(j) =P wiu) — Pwi) 121
J=j J=j1 J=
where
Wiai,.\4,) if k=1-h
(Hom(dY i, W)he = & Wai, ) if k=1—-h+1 (1.22)
0 otherwise.

Now W is orthogonal or symplectic, so for k # h, if k = — h + 1 we have
(Hom(dyin, W))ne = Wiai,gn) = Wao(_yi1)n) = _W(aﬂ(jh):jthﬂ)t =

_W(ail—h+17jl—h+1)t = _W(a’ilm]k) = ((Hom(dmma W))kh>t'

In a similar way it proves that if k¥ = | — h then (Hom(dY,, ,W))u =
—(Hom(dY,5,, W))ir)"

Finally the only cases for which (Hom(d}),;,,W))n, # 0 are when h =

I —h+1and h =1 — h. In the first case (the second one is similar) we have

(Hom(dy, W))in = W (ai, j,) = W(ao(s,) 5,) and —((Hom(dy,.,, W))n)" =

—W (@i )" = =W ag(j,) )" But W(ag(;,).5.) = =W l(ao(j,),j.)" for n even

if and only if W € ORep(Q), for n odd if and only if W € SpRep(Q).

We consider the tame case. First we note, by Auslander-Reiten quiver of
Q, that if (Q, o) is a symmetric quiver of tame type, then the only represen-
tations V' € Rep(Q) such that 7~ VV = V are regular ones.

Type A. We prove lemma only for Q of type (1,1,k,1) because for the
other cases it proceeds similarly. We consider the following labelling for
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v% ° o(v%)
/N
o o
gl ey

° :
o

Ulq\ i/U(Ul)
(@] o

Uli/ ﬁ\a(ul)
o o
o o

wpo ey
O —> 0.

b

The following indecomposable representations V' € Rep(Q’) satisfy prop-
erty (Op). The other regular indecomposable representations of Rep(Q')
satisfying property (Op) are extensions of these.

(a) V(o,1); in this case Z' = E} @& E»( where Ej. is the regular indecom-
posable representation of dimension e; + h with socle E.

(b) E;j—1,withl <i<j<Il+1,suchthat VE;; 1 = E;41j; in this case
we have 7/ = Ei+1,j71 D Ei,j-

/
(©) Ei,jflf
I /
case we have 7/ = E,~+17j_1 D Ei,j'

with2 <j <i—1<k+1 suchthat VE]; | = E/,, ;in this

Let x be the symmetric weight associated to «. We order vertices of @) clock-
wise from tb = 1 to hb = k + [ + 1. We use the same notation of type A for
vertices on which the components of x are not zero.

Let W be a symplectic representation. We prove that Homg(d). W) is
skew-symmetric for every regular indecomposable representation V' of type
(a), (b) and (c). First we observe that the associated to V' symmetric weight
X have components equal to 0, 1 and -1. In particular, x(m;) = +1 =
—x(ms) and x(m;) = 1,—1, for every i € {2,...,s — 1}, respectively if m;
is a source or a sink. We note that, for every Homg(dY,.., W) with V one
representation of type (a), (b) and (c), we can restrict to the symmetric sub-
quiver of type A which has first vertex m; and last vertex m and passing
through the o-fixed vertex of ). Hence it proceeds as done for type A.
Finally, if V is the middle term of a short exact sequence 0 — V1 — V —
V2 — 0, with V! and V2 one of the representations of type (a), (b) or (c), we

have the blocks matrix

vl
Homo () = [ MmO .
Homg(B,:) Homg(d"",")

29



where dV. : P! — P} is the minimal projective presentation of V!, d""

P? — P? is the minimal projective presentation of V2 and for some B €

Homg(PE, Py). In general for every blocks matrix we have < 61 g > _

( _ 3151—1 IOd ) : ( g g ) if A is invertible. Hence using rows opera-

tions on Homg(d).., ), we obtain

min’

vt
HOmQ (dx;znv ) ~ HomQ (dmZTN ) 0 a ‘
0 Homg (d )

min
So it’s enough to prove the skew-symmetry of Homg(dY,

mins ) for V one of
representations of type (a), (b) and (c).

Type D. We prove lemma only for Q = D;'' because for the case D"
it proceeds similarly. We consider the following labelling for (D")ee:

[0} [0}
\\a* o(a)/’
c1 cn—3 o(cn—3) o(er)
00— >0 0O — > @— 50 i O — 5 0O

/ o(b)
o o

We consider again indecomposable representations V' € Rep(Q') satisfy-
ing property (Op). The other regular indecomposable representations of
Rep(Q') satisfying property (Op). are extensions of these.

a) B, 1, withl<i<j<2n-3o0r2<j<i—1<2n—4,such that
7j
VE; -1 = Ej;1,; in this case we have Z/ = E; 1 ;1 ® E; j.

(b) Ej and E}. We note that VE{ = Ef = 7T E{, VE| = E = 7" E} and
the respective Z’ are

K\m am/K and K\m <1,1>/K-
K2'>K2 K2">K2
S e ey

where linear maps defined on ¢;, with 1 < ¢ < n — 3, are identity
maps.

(¢) Vio,1y and V(q yy; respectively Z' = Eﬁfl ® Epon—¢ and Z' = E}L S
E,—60 where E} and E}"! are the regular indecomposable repre-
sentations respectively of dimension e; + h and e,,—1 + h.
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We consider the following labelling of vertices end arrows for DY

1 (b) 2n—2=o0(1)
AN —
3 2n —3 =0(3)
A o(a)
9 2n — 1 =0(2)

and we call ¢;_5 the arrow such that t¢;_o = 1.

Let x be the symmetric weight associated to V. We use the same notation
of type A for vertices from 3 to 2n — 3 on which the components of x are
not zero. Suppose that 1 and 2 are source (the other cases are similar). We
check when Homg(dY .., ) is skew-symmetric, for V of type (a), (b) and (c)

(a) Let V be one of representation of type (a). We note that either x(1) =
0 = x(2) or x(1) # 0 # x(2). If x(1) = 0 = x(2), then we have
x(m1) = £1 = —x(m,) and x(m;) =1, -1, foreveryi € {2,...,s—1},
respectively if m; is a source or a sink. Hence it proceeds as in type A.
If x(1) # 0 # x(2) then —x(2n — 2) = x(1) =1 = x(2) = —x(2n — 1
and we have x(m;) =1, -1, foreveryi € {1, ..., s}, respectively if m;
is a source or a sink. Let ¢; < ... < 4; be the sources from 3 to 2n — 3
and let j; < ... < j; be the sinks from 3 to 2n — 3. We also note that
g1 <1 < ... < gp <y

dY . is amatrix (t + 2) x (¢ + 2) whose entries are
—aithk h:t—kandlgkgt—l
Qg 5 h:t—k+1and1§k§t
@k =1 —ai;,  h=t+iandk=1fori=12
—o(a;;,) h=1landk=t+ifori=1,2
0 otherwise

where q; ; is oriented path from i to j.
Finally, as for the type A, we note that Homg(d
if and only if W € SpRep(DY", B).

\4

min’

W) is skew-symmetric

(b) Let V be a representation of type (b). We note that if y if the weight
associated to E{f, then —x(2n —2) = x(1) = 1 and x(m;) = 1, -1, for
everyi € {1,..., s}, respectively if m; is a source or a sink. So we can
proceed as in type A.

(c) Let V be arepresentation of type (c). We use the same notation of part
(a) of type D. We note that —x(2n—2) = x(1) = 1 = x(2) = —x(2n—1
and we have x(m;) = 2, -2, for every i € {1,...,s}, respectively if
m; is a source or a sink.

In the remainder of the proof, we use notation of section B.5. In this

case, d" . is a blocks (2t + 2) x (2t + 2)-matrix < g g ) Here

7 “min

31



(i) Aisa 2t x 2t-matrix with 2 x 2-blocks Ay, 1, defined as follows

(—aikJrl’jk)[dQ h:t—kandlgkgt—l
Ahjkz (aik,jk)[dz h=t—k+landl1 <k <t
0 otherwise.

(ii) Bisa 2 x 2t-matrix, whose entries by, ;, are

(—1)Pthtlg, o h=1,2andk = 1,2
0 otherwise.

(iii) C'isa 2t x 2-matrix, whose entries c;, j, are

(—1)**o(ay ;) h=1,2andk = 1,2
0 otherwise.

Finally, as for the type A, we note that Homg(dY...,
if and only if W € SpRep(Dy", ).

Atlast it remains to prove that lemma is true also for every V' decomposable
representation. But we note thatif V = V! & V2, then

(i) V satisfies property (Op) if and only if V! and V? satisfy property
(Op);

a0
s v min
(11) dmzn - ( 0 d,‘,{jn )'

This concludes the proof. O

1.5 Relations between semi-invariants of (@), o) and of
(Clao(a) (@) 0)

Let (Q, o) be a symmetric quiver and let « be an admissible sink of (Q, o).
First we consider the action of ¢, ,(,)) on the weights of semi-invariants

Lemma 1.5.1. Let (Q, o) be a symmetric quiver and let x be an admissible sink-
source of Q. If x = («,-) — ZxEQg €3, 1S a weight for some dimension vector «
(see definition 1.4.1), then

—x(7) y==u
—x(o(x)) y =o(z)
(Co@)X)W) =9 x() tbayx(z) y¢QFU{z} (1.23)
X(Y) + bo@)yx(®) y & QFU{o(x)}
0 otherwise,

where by, ,, is the number of arrows linking x and y.
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Proof. First we note that, by definition, x(y) = 0 for every y € Q.
(i) Ify ==, theny ¢ QF and

(C(x,a(a:))X)(w) = (C(m,a(x))a)(‘r) = Z a(ta) - CY(JZ) = —X(.T)

Similarly one proves the case y = o(x).

(ii) If y = ta ¢ QF U {z} such that ha = z in Q, then y = hc(; () a such
that tc(%o.(x))a =z in C(J;’U(x))Q and

(Clao@)X)(Y) =
(Cao@n)W)— D> (Coe@@ta)— D (Cuo@))(r) =
a€c<z7o_(z)>Q1: aec(z,o—(z))Ql:
ha=y and ta#zx ha=y and ta=z
aly)— Y alta)+ Y (a(z) = Y alta) =
ahte: ahEQ1: ahEQ1f
a=y a=x a=x

X(y) + beyx(z).
Similarly one proves the case y = ho(a) ¢ QF U {o(z)} such that
to(a) = zin Q.

(iii) Finally we have to consider y such that there are no arrows linking y
and z (i.e. by 4 = 0) and no arrows linking y and o(x). In this case

(Clao@)X)(Y) =

(Cao@n@®) = D, (Cuo@))(ta) =

A€(g,0(x)) @1
ha=y

aly) — Y alta) =

a€Qq:
ha=y

x(y)-

Similarly one proves for o(z). O

Next we study the relation between SpSI(Q, a) and SpSI(¢(z,0(2)) Q> C(z,0(z)) )
(respectively between OSI(Q, o) and
OS1(C¢(z,0(2))@> C(z,0(2)) ) With the following lemmas

Lemma 1.5.2. Let (Q, o) be a symmetric quiver, let x be a sink and let o be the
dimension vector of a symplectic representation.
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(i) If V. € Rep(Q) is indecomposable, not projective, such that C’(; —a
not projective and (dimV, o) = 0, then ¢V € SpSI(Q, o) and Ll ¢

SPSI(C(z,0(2)) @5 C(a,0(2))Q)-

(i) If V = Sy and (dimSq, ¢(y 5 (2))) = 0, then ¢+ and C %@ in
SpSI(C(z,0(2)) @5 C(a,0(2))@), Where Sy and S, ;) are considered as repre-

sentation of c(y ()@, but ¢ and ¢ %@ are zero for Q. Moreover
S = 0 %@,

(iii) If V. = C~S, and (dimC~S,,a) = 0, then we have ¢~ % %@ ¢
SpSI(Q, a) but they are zero for ¢, »(z)) Q. Moreover ¢S = O~ 5=,

Lemma 1.5.3. Let (Q, o) be a symmetric quiver, let x be a sink and let o be the
vector dimension of an orthogonal representation.

(i) If V € Rep(Q) is indecomposable, not projective and such that C(J; —a
not projective and (dimV, o) = 0, then ¢ € OSI(Q, o) and Ll e

OSI(C(z,0(2)@> Cla,o () Q)

(i) If V. = Sy and (dimSy, ¢z 5(z))) = 0, then we have S and ¢© So
in OSI(C(y,0(2)Q) Cla,0(z)) ), Where Sy and S, are considered as rep-

resentation of ¢, 5(2))@Q, but e and € %@ are zero for Q. Moreover
S = 0 5o,

(iii) If V.= C= S, and (dimC~ Sy, ) = 0, then we have C 8 (Se@) e
OSI(Q, cv) but they are zero for ¢(; () Q. Moreover ¢ = ¢C~ 5=,

We prove only lemma 1.5.2 because the proof of lemma 1.5.3 is similar.
Proof. First of all we note that if z is an admissible sink, then S, #
T VSse and C7 S, # 77 V(O™ S, and so, by lemma 1.4.6, we can not de-
fine both pf° @ and pfC¢ 5. It's enough to prove the first one because,
by lemma B.3.9, 7~ VC~S, = 7V7~ S, = Vrtr=§, = VS, = SU(I). If
Se(z) =T VSs(z), by theorem B.1.11 there exists an almost split sequence

0— VSU(CC) =S, —7Z— Sg(m) — 0. (1.24)

1 ify=ux0(x)
0 otherwise
is an absurd because (1.24) would be a split sequence, or Z is indecompos-
able and thus there is an arrow o(z) — x which is not possible since z is an
admissible sink.

1 ifo(z)=y

We recall that (dimS,(,))y = { 0 otherwise
x € Qo and, by theorem B.1.9, that (dimC~S,, «) = —(a,dimS,). So, for

Hence (dim Z), = { and so either Z = S, © S, (,) which

, that a; = a,(,) for every
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a dimension vector o of a symplectic (respectively orthogonal) representa-
tion, <msa(x)7a> = Qg(z) — ZaElehazx Qo(ta) = Qo — ZaEleh(z:x Qta =
(a, dimSy) = —(dimC~S;, ). Similarly we have (dimS,, C($7U($))C)é> =
—(dimC~ S, (), C(z,0())@)- Hence, since z is a sink of @ and o () is a sink of
C(z,0(x)) @, it's enough to apply lemma B.6.1 to both Q and ¢(,, (,)) Q- Finally
vasg(x) =75, =C™S; and T*VC*SU(@ = 7'77'+VSU($) = S, so, by
lemma 1.4.4, 5= = ¢ %@ and ¢S = ¢ %, O

We observe that, by proposition 1.3.9, 7~ VV = V if and only if T_VC(J; —

Ca o)V Let a be a symmetric dimension vector. We recall that o =

Ca,o(x)) 0ty for every y # z,0(x) and (¢(z.(2)) @)z = Xaeqiihams Ha — o =
a0y ha—z Yo (ta) — Yo(x) = (Clz,0(2))¥) (), SO We consider three cases.

(1) 0# aw # D 0cq, hams Vtas 1€ (diMSy (), ) # 0and (dimSy, ¢(z o(2) ) #
0.

(i) 0= s # X 0ecQy hams Otas i€ (dimSy(y), @) # 0and (dimSy, ¢(z,0(2)) ) =
0.

(111) 0 7£ Oy = Zatezha:x Qtq, 1.€. <@Sa(x)7 Oé> = 0and <d7f7m5’xa C(m,a(m))a> 7£
0.

We note that 0 = o, = Zate;ha:x Qg is not possible, unless ay, = 0 for
every a such that ha = x.

Proposition 1.5.4. Let (Q, o) be a symmetric quiver. Let o be a symmetric di-
mension vector, & be an admissible sink and 3%, be as defined in lemma 1.3.14.
Then @58, (cV) = Ceo@nY and 3 (pfV) = pfCaoenW , where V and W are
indecomposables of Q) such that (dimV,o) = 0 = (dim W, «) and W satisfies
property (Op). In particular

(i) 0= p # Y ucorhas Otar then (93) 1 (c57) = 0;

(ii) 0 # 00 = X e ihams Otar then @2l (c5o@) = 0.

Proof. We consider the same notation of proof of lemma 1.3.14. If z is an
admissible sink of (@, o), then we have

ClooteyZ x Hom(V',W)) = C, .y, (SPREP(C(s,0(2)) @5 C(avo(a) @) =
SpRep(Q, ) = Z x Hom(W, V).
So, by definition,
Clao(an|2(SPREP(C(3,0(2))@; C(z0(2)) @) = Z
and

C(TE,U(Q:)) |Hom(V/,W) (SpRep(C(z,o'(x))Qa C(:p,a’(a:))a)) = Hom(T/V, V)
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Now C, (. induces a ring morphism

vl : K[SpRep(Q,@)]  — K[SpRep(C(so(2))@: C(ar(a)) )]
f — f e} C(; o(z))

By proof of lemma 1.3.14, we note that

Z x C7

KlC, (z.0(x))

(2.0(2)) Hom(V’, W)]SSP(Q,(X) — K[Z x Hom(VV, V)]SSP(Q7&)

is isomorphic by 5%, to K[Z x Hom(V', W)]35P(¢.()@C@.o)®) . Hence
go}?f’a = qﬁf& ) and so for every representation Z of dimension vector
a of (Q,0) we have

Do) CE oy Z) = (0 CL ) Cl panZ) = ¢V (2) (1.25)

and
(pia(pfw)( (z,0(z)) Z) = (pf (x g(x)))(ca,g(x))z) = hW(Z)' (1.26)

V(Z) = A Clwen (OF
By lemma B.5.1 and B.5.2 we have ¢" (Z) = X\ - ¢ (=o(@) (C( ()

some A € K. So, by (1.25), goipa sends ¢V to (CGrotn” up to a constant in K.
Similarly for pf"'. Finally (i) and (ii) follow by lemma 1.5.2. O

Z), for

Proposition 1.5.5. Let (Q,0) be a symmetric quiver. Let o be a symmetric di-
mension vector, © be an admissible sink and (p o be as defined in lemma 1.3.14.
Then wga(c‘/) = cCeo@V and & Oé(hW) pfCee@nW where V and W are
indecomposables of ) such that (dzim Viay = 0 = (dim W, «) and W satisfies
property (Spp). In particular

(D) if 0 = w # 300, has Vtas then (©9,) 71 (c5) =0;
(ii) if0# 0w = Y ucorhama Qtas then 9, (c57@) = 0,

Proof. It is similar to that one of proposition 1.5.4. O

By previous propositions and by lemma 1.3.14 it follows that if the con-
jectures 1.2.1 and 1.2.2 are true for a symmetric quiver (@, o), then they are
true for (c(y 5(2)) @, 0)-

1.6 Composition lemmas

We conclude this chapter with general lemmas which will be useful in our
proofs.
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Lemma 1.6.1. Let

a(b)
—5

o(@) X aly) -

be a symmetric quiver. Assume the underlying quiver with n vertices. Also assume
there exist only two arrows in QF incidenttor € Qf, a:y — zandb:x — 2
with y,z € QF U QG. Let V be an orthogonal or symplectic representation with
symmetric dimension vector (au, . .., o) = a such that o, > max{oy, o }.

We define the symmetric quiver Q' = ((Qy, Q}), o) with n — 2 vertices such that

Qp = Qo \{z,0(x)}and Q) = Q1 \ {a,b,0(a),o(b)} U{ba,o(a)o(b)}, ie.

(Q,J);...nyLz...g(z)

Q oy, U(Z)“W)_"S”)U(y)...

and let o/ be the dimension of V' restricted to Q)'.
We have:
(Sp) Assume V symplectic. Then

(a) if oy > max{oy, o} then SpSI(Q, ) = SpSI(Q', ),

(b) if ay = oy > a; then SpSI(Q,a) = SpSI(Q’, /) [detV (a)],

(b') if ay = a, > oy then SpSI(Q, ) = SpSI(Q', &')[detV (b)),

(c) ifay = o = v, then SpSI(Q, ) = SpSI(Q', &')[detV (a), detV (b)].
(O) Assume V' orthogonal. Then

(a) if g > max{oy, o} then OSI(Q, ) = OSI(Q', ),

(b) if oy = oy > v, then OSI(Q, ) = OSI(Q', &)[detV (a)],

(') if ay = a, > oy then OSI(Q, o) = OSI(Q’ detV (b)],

(c) if ay = oy = o, then OSI(Q, ) = OSI(Q', &' )[detV (a), detV (b)].

Proof. We use the notation of section A.1.
(Sp) Using Cauchy formula (theorem A.1.9) we have

55p(Q,)

pSIQ.a)=| P @ (SrVie® G oVie) ® <®S vtd)

AaQf —A c€Q+ deQf
,u:Q‘lj—>ERA

where A is the set of all partitions and E'RA is the set of the partitions with
even rows.
(a) If o, > maz{ay, o}, by theorem A.1.8,

Sx@) Ve =5(0,..0 = A@)ay - —Aa)) Vs
~N ——

ag—oy ay

37



where A\(a) = (A(a)1,...,A(a)a,). By proposition A.2.8, A(a) and A(b) have
to satisfy the following equations

/\(b)Z _/\(b)i-i-l =0, 1€ {ozy—i-l,...,ax— 1}
{ A(b)a, = Ab)ay+1 = Aa)a,
A(B)ay—i = A(D)ay—it1 = AMa)ay—i — M@)a,—it1, ief{l,...,ap—1}.

(1.27)
We call \(b); = k > 0 foreveryi e {ay, +1,...,0,} and so

AB) = AB)1, - Ab)as) = M@ + ks oo M@y + ks, ).
——

ay Qg —0Qy

Now, by theorem A.1.8, S\ V" = 0 unless ht(A(b)) < a.. If @y < @, then
SxeyV> = 0 unless A(b)o.+1 = ... = A(b)a, = 0,ie. k = 0,50 A(b) =
(Ma)1, ..., A(a)ay,,0,...,0) = Aa ) If a, < ay, then Sy4,)V; = 0 unless

Qg —0ly
AB)az41 = .- = A(b)a, =0,ie. k =0and A(a)a. 11 = ... = A(a)a, =0, s0
A(b) = A(a) again.
So let A(a) = A(b) = A. By proposition A.2.8, SyV ® S5V, contains a
semi-invariant of weight zero, which is hence a GL(V,)-invariant. Since
VyeV,eV eV, = Vi Y @ (V)% and since S5V ® S5 V; is a summand in the
Cauchy formula of K[V, @ (V;*)?#], using FFT for GL (theorem A.2.3) we
obtain SL(V') acts trivially on S5V ® S5V, and so (S ) V' @S\@) Va ) Ve =
K. So we have

SpSI(Q,a) = SpSI(Q’, ).

(b) If ap, = ay > a(z), by theorem A.1.8,

@) Ve = S A@)ay=as - Aa)) Ve

By proposition A.2.8, A\(a) and \(b) have to satisfy A(a); — A(a;+1) = A(b); —
A(b)iy1 foreveryi € {1,..., a;} and moreover Sy V," = 0 unless ht(A(b)) <
o, < ay. Hence we have

)\(b)z:O ie{az+1,,._7a$}
{ Ma)i — Ma)ipr = Ab)i = A(b)ir1 i€ {l,...,ap —1} (1.28)

AN@)as+1+ A(bB)a (1.29)

{ Aa); — Ma)it1 = A(0)i = A(b)im1 1€{1,...,a,—1}
)\(a) AMa)it1 ie{as+1,...,a, —1}.

Hence A(a) contains a column of length o, = «a, for some k € N, so we have
)\(CL) = ()\(b)l—l—k?, RN )\(b)az +k k..., k?) then SA(a)Vy(X)S)\(a)V: = S)\(b)Vy®
(A Vy)F @ (A V)R Sy Vit Now (A V,)F & (A V;)¥ is spanned by
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(det V'(a))*. So we have a semi-invariant f of the form (detV (a))* f’ where
/" is of weight zero, hence using theorem FFT for GL (A.2.3) as before and
by lemma A.2.1, we have

SpSI(Q,a) = SpSI(Q',a')[detV (a)].

In the similar way we prove (b’).
(c) If a(x) = a(y) = a(z), by theorem A.1.8,

Sx@) Ve = S(-A\@)ay=azrr—Aa)) Ve

and

SABVE = S AB)apzasrm-ArB)1) Ver
where A(a) = (A(a)1,...,A(a)q,) and A(D) = (A(b)1, ..., A(b)a, ). By propo-
sition A.2.8, A\(a) and A(b) have to satisfy the following equations

AMa)i—1 = AMa); = A(b)i—1 — A(b); (1.30)
for every i € {2,...,a, = ay}. Thus Aa); = A(b); — A(b)a, + A(a)a, for
every i € {1,...,az}. Hence if we set A\(b),, = h and A(a),, = k we have

Ma)i=ADb)i—h+Ek (1.31)

for every i € {1,...,a,}. Soin our case A(a) = (A(b) — (h®*)) + (k)
and A(b) = (A(a) — (k**)) + (h*). We call A\(b) — (h**) = A(b) and
Aa) — (k**) = A(a)’ and we note that A(a)’ = A(b)’ by the system (1. 31)
Then SA(G)V@, 02y S)\( )V X SA(b)V 02y S)\( )V = S/\( b)! y® < (detV( ))
@S\ Ve @ SxayVa® < (detV (D))" > ®SxayV,. So we have a semi-
invariant f of the form (detV (a))*(detV (b))" ' where f’ is of weight zero,
hence using theorem FFT for GL (A.2.3) as before and by lemma A.2.1, we
have
SpSI(Q,a) = SpSI(Q’, /) [detV (a), detV (b)].

(O) Using Cauchy formula we have
50(Q,a)

OSI(Q7 a) = @ ® S)\ c)%c ® S/\(c th <® Sy,(d Wd)

xQF—A  ceQf deQy
;L:Q‘{—>ECA

where A is the set of all partitions and E'CA is the set of the partitions with
even columns. The rest of the proof is similar of the symplectic case. O

Lemma 1.6.2. Let (Q, o) be a symmetric quiver with n vertices such that there
exist only two arrows a and b incident to the vertex x in Qo and b is fixed by o, i.e.

Q;...yL)xL,U(x)@)g(y)...
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Let
Voo, Y@y, YOy

T

_V_(">)t V-

be an orthogonal or symplectic representation of (Q), o) with dimV = o such that

Qg > oy. Moreover define the symmetric quiver (Q', o) = ((Qf, Q}), o) with n—

2 vertices such that Qf = Qo \{z,0(x)} and Q) = Q1 \ {a,b,0(a)}U{c(a)ba},

ie

o(a)ba
—

Ql:...y O’(y).-.‘

Let o be the dimension of V' restricted to Q).

(Sp) If V is symplectic, then
(i) oy > ay = SpSI(Q, o) = SpSI(Q’, &’)[detV (b)]
(ii) oy = ay = SpSI(Q, ) = SpSI(Q’, /) [detV (a)].

(O) If V is orthogonal, then

(i) ag > ay and oy is even = OS1(Q, o)) = OSI(Q', &) [pfV (b))
(il) oy = ay = OSI(Q, ) = OSI(Q', ') [detV (a)).

Proof. We consider again the Cauchy formulas.
(Sp) If oy < a, by proposition A.2.8, A(a) and A\(b) have to satisfy A\(a);—1 —
Aa)i = A(b)i—1 — A(b); for every i € {2,...,ay}.
(i) Let oy < arz, we have

Sx@) Ve = 5(0,0,-A(@)ay - -A@)1) Ve

and so

Oy (%)

A(B) = (@)1, -, M@)ay, 0., 0) + (2K, ..., 2K),

for some k € Z>( and with A(a); even for every i. Then Sy )V ® S\ Ve =
Sx@) Ve ® Sx)Va @ (A Vz)?*. Now (A* V;)? is spanned by (det V (b))*".
So we have a semi-invariant f of the form (detV (b))* f’ where f' is of weight
zero, hence using theorem FFT for GL (A.2.3) as before and by lemma A.2.1,
we have

SpSI(Q,a) = SpSI(Q’,a/)[det V (b)].

(i) If o, = avy, the proof is similar to the part (b) of lemma 1.6.1.
(O) If ay < ay, by proposition A.2.8, (Syq)Vy ® S,\(b)Vx)SL(Vﬁ) # 0 if and
only if A(a)i—1 — A(a)i = A(b)i—1 — A(b); forevery i € {2,..., oy}

Now the proof is similar to the symplectic case, recalling that V' (b), in this
case, is skew-symmetric, so we can define pf V' (b). O
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Chapter 2

Semi-invariants of symmetric
quivers of finite type

In this chapter we prove conjectures 1.2.1 and 1.2.2 for the symmetric quiv-
ers of finite type. We recall that, by theorem 1.1.12, a symmetric quiver of
finite type has the underlying quiver of type A,. Throughout this chapter

we enumerate vertices with 1,...,n from left to right and we call a; the
arrow with ¢ on the left and ¢ + 1 on the right; moreover we define o by
o(i) =n—1i+1, forevery i € {1,...,n}, and o(a;) = an—;, for every

ied{l,...,n—1}L
First we prove a lemma valid for Q = A,, which is a particular case of
lemma 1.4.6.

Lemma 2.0.3. Let (A,,, o) be a symmetric quiver of type A. Let V- € Rep(Q) such
that V.= 7=V V and let W a selfdual representation such that (dimV, dimW)=0,
then we have the following.

(i) If nis even, dyy, is skew-symmetric if and only if W € ORep(Q, dimW ).
(ii) If nis odd dY; is skew-symmetric if and only if W € SpRep(Q, dimW ).

Proof. It checked in the proof of lemma 1.4.6. O

By proof of lemma 1.4.6 we noted also that an indecomposable represen-
tation V' of A, satisfies property (Spp) if n is even and it satisfies property
(Op) if n is odd.

The conjectures 1.2.1 and 1.2.2 for symmetric quivers of finite type become

Theorem 2.0.4. Let (Q,0) be a symmetric quiver of finite type. Let o be the
dimension vector of a symplectic representation. Then SpSI(Q, ) is generated
by the following semi-invariants.

(n even) ¢V with V indecomposable in Rep(Q) such that (dimV,a) = 0.
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(nodd) (i) ¢V with V indecomposable in Rep(Q) such that (dimV, a) = 0;
(i1) pfV with V € Rep(Q) such that V = 7=VV.

Theorem 2.0.5. Let (Q,0) be a symmetric quiver of finite type. Let o be the
dimension vector of an orthogonal representation. Then OSI(Q, «) is generated
by the following semi-invariants.

(nodd) ¢V with V indecomposable in Rep(Q) such that (dimV, o) = 0.

(n even) (i) " with V indecomposable in Rep(Q) such that (dimV, o) = 0;
(ii) pf¥ with V € Rep(Q) such that V = 7-VV.

By proposition 1.3.4 and by propositions 1.5.4 and 1.5.5, it’s enough to
study the equioriented case, i.e. the case in which all the arrows have ori-
entation from left to right.

Lemma 2.0.6. Let (Q, o) be a symmetric quiver of finite type. Then SpSI(Q, 3)
and OS1(Q, B) are polynomial rings, for every symmetric dimension vector 3.

Proof. Since the isomorphism classes of 3-dimensional symplectic (resp.
orthogonal) representations of (), o) correspond to the orbits of the action

of Sp(Q, B) (resp. of O(Q, 3)) on SpRep(Q, B) (resp. on ORep(Q), 3)), then
lemma follows by definition of symmetric quiver finite type and by lemma

A25.0

2.1 Equioriented symmetric quivers of finite type

In this section we state and prove case by case theorems 2.0.4 and 2.0.5 for
equioriented case. Throughout this section we call V; ; the indecomposable
of A,, with dimension vector

= d LISk
3k = 0 otherwise.

2.1.1 The symplectic case for A,
We rewrite theorem 2.0.4 in the following way

Theorem 2.1.1. Let (Q, o) be an equioriented symmetric quiver of type As, and
let o be the dimension vector of a symplectic representation of (Q, o).
Then SpS1(Q, o) is generated by the following indecomposable semi-invariants:

(i) Vi of weight (dimVj;, -) forevery 1 < j < i < n—1such that (dim V};, o) =
0,

(ii) cVizn—i of weight (dimV; on—i, ) for every i € {1,...,n}.

The result follows from the following statement
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Theorem 2.1.2. Let (Q, o) be an equioriented symmetric quiver of type Asy,

where
Q:Aflq:1£>2---n%n+1---2n71ai>12n,

o(i) =2n — i+ 1and o(a;) = agn—; forevery i € {1,...,n} and let V be a
symplectic representation, dim(V') = (a1,..., o) = o
Then SpSI(Q, «) is generated by the following indecomposable semi-invariants:

(i) det(V(a;)---V(aj)) withj <ie{l,...,n—1}if min{aj1,..., 05} >
A = Qit1,

(ii) det(V(agn—i)---V(a;)) withi € {1,...,n}if min{ait1,...,an} > ;.

Proof. First we recall that if V' is a symplectic representation of dimen-

sion a = (o, ..., a,) of a symmetric quiver of type Ay, then we have
n—1
SpRep(Q, a) = @ V(ta;)* @ V(ha;) ® S2V,;.
i=1

We proceed by induction on n. For n = 1 we have the symplectic represen-
tation
vy
where V; is a vector space of dimension « and V'(a) is a linear map such
that V(a) = V(a)'. So
SpRep(Q. a) = S*Vy'

and by theorem A.1.9

SpSI(Q,a) = €D (Sa1)*HM,
AeERA

where F'RA is the set of the partitions with even rows. By proposition A.2.7
«

r——

and since A € ERA, SpSI(Q, ) # 0if and only if A = (2k, ..., 2k) for some
k € Zso and we have that (S)V;)%L(V1) is generated by a semi-invariant
of weight 2k. Since ¢* - detV (a) = det((¢")*V (a)g*) = (det g)**detV (a)
for every g € GL(V), we note that V(a) € S2V}* + (detV (a))* is a semi-
invariant of weight 2k. So (detV(a))* is a generator of (S)V7)%“(V1) and
thus SpSI(Q, ) = K[detV (a)].

Now we prove the induction step. By theorem A.1.9 we obtain

SpSI(Q, o) = (K[x])**")

& (S V1) 2V @ (Sy(an) Vs @ Saan) Vo) H e

A(aq),..., Aap—1) and
Xan)EERA
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e ® (SA(anil)V; ® S)\(an)vn)SL(Vn)

where SL(V) = SL(Vy) x --- x SL(V,). We suppose that there exists i €
{1,...,n—2}such that oy <--- < > a;4;. By lemma 1.6.1,

SpSI(Q,a) = SpSI(Q', ')

where Q! is the smaller quiver 1 — 2--+i—1 —i+1---2n—i+1—
2n —i+43---2n — 1 — 2n and o! is the restriction of a in Q*.

If i does’t exist, we have oy < - < a;,—1. So, by lemma 1.6.1, we have the
generators det V(a;) = det V(o (a;)) if o = cjy1,1 <i <mn—2.

We note that, by proposition A.2.7,

aq

)\(al) = (/{31, .. .,k‘l)

is a rectangle with k; columns of height o, for some ki € Z>(. Since oy <
.-+ < g1, by proposition A.2.8, we obtain that there exist k;,...,k,—1 €
ZZO such that

aq O —Qi—1

)\(az):(kl—F—|—k¢1,,k‘z—|——|—k‘1,,k‘l,,kl),

forevery i € {1,...,n — 1}. We also know that ),, must have even rows. If
ap=0; <ojp1 <o <y forsomeje{l,...,n—1}thenS,, V=0
unless kp—1+---+kjy1 = 0,50 AN(apn—1) = -+ = A(a;j+1) = A(a;). By propo-
sition A.2.8, (5’/\((17171)‘/72k & S)\(an)vn)SL(V") = (S)\(aj)v;f & SA(an)Vn)SL(V")
contains a semi-invariant if and only if

a1 Qp—Qj—1
N

A(an):(kn—i—k‘j_l—i-”-—i-kl,...,kn—i-kj_l—l—---—i—kl,...,kn,...,k‘n),

butk, +kj_1+---+Fki,ky+kj—1+---+ko,..., k, have to be even and then
kn,kj—1,..., ki have tobe even. As before, by lemma 1.6.1, we can consider
the smaller quiver Q*:1 —2---j —n—n+1—2n—j+1---2n—
1 — 2n and then

SpSI(Q,a) = SpSI(Q?,a?) =
(S)\(GI)VI)SL(%)@. . .®(S)\(aj71)Vj*®5)\(aj)Vj)SL(Vj)®(5’)\(aj)V;®SA(GH)VH)SL(Vn).

Now to complete the proof it’s enough to find the generators of SpST(Q?, a?)
for Qn = O < Q41 <0 <Z Qp—1.

(a) By proposition A.2.8, foreveryl € {1,...,j}, (S/\(al_l)%*@S)\(al)V})SL(Vz)
is generated by a semi-invariant of weight (0,...,0, %;,0, ...,0) where
k; = 2h with h € Z>, is I-th component. Since g"-det(V (agn—) - - - V(a;)) =
det((9,0)"V (azn-1) -+~ V(@) (g)") = det((g])"V (azn—1) - V(@) (a)") =
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(det g;)*det(V (agn—q) - - V(ay)) for every g = {gi}icg, € GL(V), we
note that V (ag,_;) - -- V(a;) € SpSI(Q, ) — (det(V(agn_q)---V(ay)))"
is a semi-invariant of weight (0,...,0, k;,0,...,0), so it generates
(S/\(alil)‘/}*®S)\(al)V})SL(Vl). Now A(a;) = A(aj—1)+ (k") hence, using
lemma A.2.1, det(V (az,—;) - - V(a;)) is a generator of SpSI(Q, «).

(b) Inthe summand of SpSI(Q, o) indexed by the families of partitions in
aj=an
which A(a;) = (kj, ..., k;), with k; € Z>(, we have that (S,\(aj)V})SL(VJ')Q@
(S ,\(aj)V,;“)S L(V2) is generated by a semi-invariant of weight
0,...,0,k4,0,...,0,—k;) where k; and —Fk; are respectively the j-th
and the n-th component and we note, as before, that (det(V (an—1) - - -V (a;)))
is a semi-invariant of weight (0, ...,0,%;,0,...,0, —k;). Since A(a;) =

)\(aj,l)+(k;¥j:a"), det(V(an—1) ---V(a;))is a generator of SpSI(Q, a);

k;

(c) in the summand of SpSI(Q, o) indexed by the families of partitions
Qn
in which A(a,) = (kn,...,k,) with k, € 2Z>(, we note again that
(S,\(an)Vn)SL(V") is generated by (det(V (a,)))*" of weight (0, ..., 0, k,)
where n-th component k,, is even. Since A(a,) = A(aj—1) + (k&),
det(V (ay)) is a generator of SpSI(Q, a). O

Proof theorem 2.1.1. First we note that det(V(a;)---V(a;)) = det(V; —
Vig1) = ¢54(V) and o = a1 is equivalent to (dim Vj;, dim V) = 0. We
recall, in fact, that the definition of ¢'3* doesn’t depend to the choose of pro-
jective resolution of V;;. If we consider the minimal projective resolution
of Vj;, we have

—
0— Pp1 — P —Vji —0

and applying the Hom-functor we have

Hom(a;--a;,V) : Hom(P;, V) = V; ) Vit = Hom(Py, V).

In the same way one proves that det(V (agn—;) - - - V(a;)) = det(V; — Vop—iy1 =
V) = cVi2n=i(V), but in this case, since dimV = dimVV, we have o; =
Q2n—i+1 and so (dimV; 2, —i, dimV) = 0 for every i € {1,...,n}. Moreover
we note that

(i) cV2n-i2n=i(V) = ¢¥5i(V), by lemma 1.4.4, since 7~ VV;; = Vap—ion—j;

(ii) forevery j € {1,...,n— 1} and foreveryi € {n+1,...,2n — 1} \
{2n — j} there exists j < k € {1,...,n — 1} such that 2n — k = i and
50 Vi (V) = Vik=1(V) - Ve2n—k (V).

Now, using theorem 2.1.2, we obtain the statement of the theorem. O
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2.1.2 The orthogonal case for A,,
We rewrite theorem 2.0.5 in the following way

Theorem 2.1.3. Let (Q, o) be an equioriented symmetric quiver of type As, and
let o be the dimension vector of an orthogonal representation of (Q), o).
Then OSI1(Q), o) is generated by the following indecomposable semi-invariants:

(i) "5 of weight (dimV;,-) forevery 1 < j <i < n—1suchthat (dimV};, o) =
0,

(i) pfVizn=i of weight % for every i € {1,...,n} such that o is
even.

The result follows from the following statement

Theorem 2.1.4. Let (Q, o) be an equioriented symmetric quiver of type Asap,

where
a2n—

o(i) = 2n —i+ 1land o(a;) = agn—; forevery i € {1,...,n} and let V be an
orthogonal representation, dim(V') = (a1,...,an) = .
Then OSI1(Q, o) is generated by the following indecomposable semi-invariants:
(i) det(V(a;)---V(aj)) withy <ie{l,...,n—1}ifmin(ojq1,...,04) >
o = Qiy1;
(ii)) pf(V(agn—i) - V(a;)) withi € {1,...,n}ifmin(ait1,...,an) > cand

«; 1S even.

Proof. First we recall that if V' is a orthogonal representation of dimen-

sion a = (o, ..., a,) of a symmetric quiver of type As,, then
n—1 2
ORep(Q,0) = P V(ta:)* @ V(hai) & [\ V;;.
i=1

We proceed by induction on n. For n = 1 we have the orthogonal represen-

‘ 71 ((l) ‘ 71*

where V; is a vector space of dimension a and V' (a) is a linear map such
that V(a) = -V (a)*.

2
ORep(Q,a) = A\ V¥
and by theorem A.1.9

0SI(Q,a) = P (SHVi)*HM
AEECA
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where with FCA we denote the set of partitions with even columns. By
«

—
proposition A.2.7since A € ECA, OSI(Q,a) # Oifand onlyif A = (%, ..., k)
with « even, for some k. Since for every g € GL(V), ¢* - pfV(a) =

g~ \/detV (a) = \/ det((g")2V (a)g?) = (det g)*pfV (a), we note that V(a) €
A2 V* — (pfV(a))* is a semi-invariant of weight k so (S)V;)5%("1) is gener-
ated by the semi-invariant (pf V (a))* if « iseven and OSI(Q, ) = K[pfV (a)].
Now we prove the induction step. Let X = ORep(Q, &) and by theorem
A.1.9 we obtain

0SI(Q, ) = (K[X])*"V) =

D )T @ SV @ Sy V)P

Aay),--»A(ap—1) and
A an)EECA

e ® (SA(an_l)V; ® SA(an)Vn)SL(Vn)7

where SL(V) = SL(Vy) x -+ x SL(V,,).

The proof of this theorem is the same of the proof of the theorem 2.1.2 up
to when we have to consider «,. As in the previous proof we can sup-
pose a1 < --- < a1, otherwise, by induction, we can reduce to a smaller
quiver.

By lemma 1.6.1, we have the generators det V' (a;) = detV(o(a;)) if o =
ai+1,1§i§n—2.

By proposition A.2.8, we obtain that there exist k1,...,k,—1 € Z>¢ such
that

%& Qi —Q—1
/\(az) :(k‘i+"‘+/€1,...,ki+"'+k1,...,ki,...,ki),
foreveryi e {1,...,n —1}.
Now we consider the hypothesis on A(a,) by which it must have even
columns. If o, = aj < aj41 < -+ < ay—q forsome j € {1,...,n — 1}
then Sy, )V, = Ounless k1 + -+ + kjp1 = 0,80 AMap—1) = -+ =

Alaj+1) = A(aj). By proposition A.2.8, (Sy(, )V ® S,\(an)Vn)SL(V") =
(Sx@)Va ® S ,\(an)Vn)S L(V») contains a semi-invariant if and only if

[e%1 Qn—Qj—1

)\(an):(k‘n—i-kj_l+"-+k1,...,kn+k‘j_1—I—---—I-k‘l,...,kn,...,k‘n),

but ai,a2 — aq,...,a, — a;_1 have to be even and then ay,...,a;_1,ay,
have to be even. As before, by lemma 1.6.1, we can consider the smaller
quiver Q' : 1 —2---j —n-—n+1-—2n—j+1---2n—1— 2n
and then

OSI(Q, @) = (SxanV) W @ - ® (o, V)" ® Srap Vi)MW
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(Sx(ay) Vir @ Sa(an) Vi) 2LV,
Now to complete the proof it’s enough to find the generator of this algebra
fora, =a; < a1 < < apot.
(a) By proposition A.2.8, for every [ € {1,...,j} such that ¢ is even,
(Sxa_ V@S )\(al)VZ)S L(V1) js generated by a semi-invariant of weight
(0,...,0,k,0,.. ) where k; € Z>0, is I-th component. Since g* -

pf(V(azn 1) ) = \Jdet(g,4)5V (azn1) - Vi(a)(gn)?) =

(det gi)*pf(V (aanfz) V(ar)) for every 9 = {9iticqo € GL(V), we
note that V' (ag,—;) - - V(al) € 0SI(Q, ) — (pf(V(agn_y)--- V()™
is a semi-invariant of weight (0, ...,0, k;,0, ...,0), so it generates
(Sxar_) Vi* ® SxanV1)SFW. Since A(a;) = Aaj—1) + (k}),
pf(V(agn—1)---V(ar)) is a generator of OSI(Q, cv).

(b) Inthe summand of OSI(Q, «) indexed by the families of partitions in

aj=an
——
which A(a;) = (kj, ..., k;), with k; € Z>(, we have that (S/\(aj)Vj)SL(Vf)®

Si(an V)LV is generated by a semi-invariant of weight
0,...,0,k4,0,...,0,—k;) where k; and —Fk; are respectively the j-th

and the n-th component and we note, as before, that (det(V (a,,—1) - - - V (a;)))*s

is a semi-invariant of weight (0, ...,0,k;,0,...,0, —k;). Since A(a;) =
)\(aj,l)Jr(k]O-éj:a"), det(V(ap—1)---V(a;))is a generator of OSI(Q, ov);

(c) in the summand of OSI(Q, «) indexed by the families of partitions

——
in which A(ay,) = (kn, ..., ky) with k, € Z>o, we note again that if
oy, is even (SA(an)Vn)SL(Vn) is generated by (pf(V (a,)))* of weight
(0,...,0,ky). Since A(an) = A aj—1) + (k5"), pf(V(ay,)) is a generator
of SpSI(Q, «). O
Proof of theorem 2.1.3. By lemma 2.0.3, we can define pf" if V = 7-VV,
since we are dealing with orthogonal case. Moreover we note that V; 2,,—; =

7~ V'V, 2n—i. Hence using the theorem 2.1.4, the proof is similar to the proof
of theorem 2.1.1. O

2.1.3 The symplectic case for Ay, 1

We rewrite theorem 2.0.4 in the following way

Theorem 2.1.5. Let (Q, o) be an equioriented symmetric quiver of type Azy i1
and let o be the dimension vector of an symplectic representation of (Q, o).
Then SpSI1(Q, «) is generated by the following indecomposable semi-invariants:

(i) Yo of weight (dimVi;, ) — eny1,,, for every 1 < j < i < n such that
(dim Vj;, o) = 0, where
_ [ (dimVji, ) (n+1) if h=n+1
Ent1;:(h) = { 0 otherwise,
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(ii) pfVizn+i-i of weight <dﬂvl"é—"+l‘i")for every i € {1,...,n} such that a; is
even.

The result follows from the following statement

Theorem 2.1.6. Let (Q, o) be an equioriented symmetric quiver of type Agnt1,
where

Q:1% 2. .ntn4 128 p 4220 2% 2 41,

o(i) =2n—i+2and o(a;) = agn—i+1 foreveryi € {1,...,n+ 1} and let V be
an symplectic representation, dim(V') = (o, ..., apt1) =
Then SpSI(Q, «) is generated by the following indecomposable semi-invariants:

(i) det(V(a;)---V(aj)) withy <ie{l,...,n+ 1} if min(ajt1,...,04) >
Qj = Qiq1;

(ii) pf(V(agn—it1)---V(a;)) withi € {1,...,n}if min(cit1,...,0n41) >
«; and oy 1s even.

Proof. First we recall that if V' is a symplectic representation of dimen-
sion & = (av,...,an11) of a symmetric quiver of type Az, 1, in the sym-
plectic case, V,, 1 = V7, | is a symplectic space, soif V;, ;1 # 0 then dim V11
has to be even. We proceed by induction on n. For n = 1 we have the sym-
plectic representation

i 2y, — vy Yy

By theorem A.1.9

SpSI(Q; @) = @(SAVI)SL(VI) & (S,\VQ)SP(VQ).
AEA

By proposition A.2.7 and proposition A.2.9, SpSI(Q,«) # 0 if and only
a1

—

if A\ = (k,...,k), for some k, and ht(\) has to be even. If a; > ag then
S)\Va = 0 unless A = 0 and in this case SpSI(Q,a) = K. If a; = ay then
ht(\) = a1 = ag. For every (g1, 92) € GL(Vi) x Sp(Va), (g1, g2)* - detV (a) =
det(g1)edet(gy ') *detV (a) = det(gy)*detV (a), because go € Sp(Vz) so we
note that detV (a) is a semi-invariant of weight (&, 0). Hence (S\V;)*1 ("
(S\V2)P(12) is generated by the semi-invariant detV (a)*, so SpSI(Q, o) =
K[detV (a)]. Finally if a1 < ag then ht(\) = «; has to be even. We re-
call that in the symplectic case —V (a)'V (a) is skew-symmetric. Since for
every (g1,92) € GL(V1) x Sp(Va), (g1,92)" - pf(=V(a)'V(a)) = (g1,92)" -
VetV (a) V(@) =

Vdet((g) (—V(a))(g2)5
note thatpf(—V (a)'V (a))

k
(9512 (V(@)g7) = (det 91)"pf(~V(a)'V (a)), we
¥ is a semi-invariant of weight (k, 0) so (SyV1)°*("1) @
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(S\V2)P(12) is generated by the semi-invariant pf(—V (a)'V (a))* if ay is
even and thus SpSI(Q,a) = K[pf(=V(a)'V (a))].

Now we prove the induction step. Let X = SpRep(Q, «) and by theorem
A.1.9 we obtain

SpSI(Q,a) = (K[x])*"Y) =

D GV @ (Saa)Vs © iy 12)T e
Aa1),A(an) EA

@ (Sx(an1) Vit @ Sx(am Vi) EV @ (S Vi) P01,

where SSp(V) = SL(Vy) x -+ x SL(V,,) x Sp(Vp41)-

The proof of this theorem is the same of the proof of the theorem 2.1.2 up
to when we have to consider ;1. As in the proof of theorem 2.1.2 we can
suppose a1 < - - - < ayp, otherwise, by induction, we can reduce to a smaller
quiver.

By lemma 1.6.1, we have the generators det V' (a;) = det V(o(a;)) if o =
ai+1,1§i§n—1.

By proposition A.2.8, we obtain that there exist k1, ..., k,, € Z>( such that

ai Q=1

)\(ai):(ki+'”—l—]ﬁl,...,ki—i-”-—i-kl,...,ki,...,ki),

foreveryi € {1,...,n}.

Now, by proposition A.2.9, A(a,,) must have even columns. If a,, 11 = a; <
ajy1 < oo < oy forsome j € {1,...,n} then Sy, V5 = 0 unless &, +
<+ kjy1 = 0,50 AMan) = -+ = AMajy1) = Aa;). As before, by lemma
1.6.1, we can consider the smaller quiver Ql:1—2--j —n+1—
2n—j+2---2n — 2n + 1 and then

SpSI(Q, ) = (Sk(al)vl)SL(V” Q- Q (SA(aj—l)Vj* ® S)x(aj)v})SL(Vj)(X)

(Sxta; ) Vit ® S(ay) Vi) “FV) @ (Sy(ay) Vi) PV, (2.1)
where

(o310 Qn41—0j—1
N

—
A(aj):(kj—‘r~--—i—kl,...,kj+--~+k1,...,kj,...,kj),

and a1, a2 —aq, ..., 41 — aj—1 have to be even otherwise, by proposition
A209, (S/\(a].)VnH)Sp(V"H) = 0. Now to complete the proof it’s enough to
find the generators of the algebra (2.1) for aip41 = a5 < 1 < -+ < .

(a) By proposition A.2.8, for every [ € {1,...,j} such that o; is even,
y prop y
(Sxa_ V@S )\(al)Vl)S L) is generated by a semi-invariant of weight
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(0,...,0,k;,0,...,0) where k; € Z>o, is I-th component. Since gk -
k
2

PV (azt2) -+ V@) = \Jdet((g,}) 5V (@z0—r01) -+ V(@) () ) =

(det g)*pf (V(azn—i41) -+ V(a)) for every g = {gi}ico, € Sp(V), we

note that V (ag,,—i41) - V(a;) € SpSI(Q, ) — (pf(V(agn—141) - V(a)))"

is a semi-invariant of weight (0, ...,0, k;,0,...,0), so it generates
(SA(GZ—OVE* ® Sk(al)w)SL(Vl)' Since )‘(al) = )‘(al—l) + (kl)al/ then
pf(V(agn—i+1)---V(ar)) is a generator of SpSI(Q, «).

(b) Inthe summand of SpSI(Q, o) indexed by the families of partitions in
Q;j=0n+1

which A(a;) = (kj, ..., k;), with k; € Z>(, we have that (S/\(aj)V})SL(Vf)®
(S ,\(aj)VnH)Sp(V"H) is generated by a semi-invariant of weight
0,...,0,k4,0,...,0,0) where k; is the j-th component and we note,
as before, that (det(V (ay,)---V(a;)))* is a semi-invariant of weight
0,...,0, k;,0,...,0, 0). Since )\(CL]‘) = /\(aj_l) + (k]) JT Nt
det(V(ay)---V(a;)) is a generator of SpSI(Q, a). O

Proof of theorem 2.1.5. By lemma 2.0.3, we can define pf" if V = 7= VV/, since
we are dealing with symplectic case. Moreover we note that V; 2, 41-; =
T VViont1—i, foreveryi € {1,...,n} . Hence using the theorem 2.1.6, the
proof is similar to the proof of theorem 2.1.1. O

2.1.4 The orthogonal case for A,
We rewrite the theorem 2.0.5 in the following way

Theorem 2.1.7. Let (Q, o) be an equioriented symmetric quiver of type Azp i1
and let « be the dimension vector of an orthogonal representation of (Q, o).
Then OSI1(Q, o) is generated by the following indecomposable semi-invariants:

(i) ¢¥ii of weight (dimVj;,-) — eny1,,, for every 1 < j < i < n such that
(dim V};, ) = 0, where
[ dimVi, Y +1) if h=n+1
Entl,,(h) = { 0 otherwise,

(ii) cVizn+1-i of weight (dimV; on1-i, ) for every i € {1,...,n}.
The result follows from the following statement

Theorem 2.1.8. Let (Q), o) be an equioriented symmetric quiver of type Aspi1,
where

Q:1LQ---n&n—i—lan—ﬂn+2~-2nﬂ>2n+1,

o(i) =2n—i+2and o(a;) = agn—it1 foreveryi € {1,...,n+ 1} and let V be
an orthogonal representation, dim(V) = (aq, ..., any1) = .
Then OSI1(Q, ) is generated by the following indecomposable semi-invariants:
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(i) det(V(a;)---V(aj)) withy <ie{1,...,n+ 1} if min(ajq1,...,0) >
Q5 = QG41,

(ii) det(V(agn—it1)---V(a;)) withi € {1,...,n} if min(®it1,...,0n41) >
(671

Proof. First we recall that if V' is a orthogonal representation of dimen-
sion a = (ayq,. .., ap41) of a symmetric quiver of type Agy+1, in the orthog-
onal case, V;,y1 = V7, ; is a orthogonal space. We proceed by induction on
n. For n = 1 we have the orthogonal representation

a - (It
e e

‘/‘1*
where V; is a vector space of dimension «;, V» is a orthogonal space of
dimension o and V'(a) is a linear map. By theorem A.1.9

0S1(Q.) = DS & (5V5)790.
AEA

By proposition A.2.7 and proposition A.2.9, OSI(Q,«) # 0 if and only if
ay

——
A= (k,...,k), for some k € 2Z. If a; > a then S\V5 = 0 unless A = 0 and
in this case OSI(Q,a) = K. If a; = a3 then ht(\) = a1 = ag. For every
(91,92) € GL(V1)xSO(V2), (g1, 92)*-detV (a) = det(g1)"det (g5 ") detV (a) =
det(g1)*detV (a), because g» € SO(V3) so we note that detV (a)* is a semi-
invariant of weight (k, 0). Hence (S\V;)%L(1) @ (S\V4)99(2) is generated
by the semi-invariant detV (a)*, so OSI(Q,a) = K[detV(a)]. Finally if
a1 < ag forevery (g1,92) € GL(V1) x SO(WV2), (g1, 92)* - det(—V (a)'V (a)) =
(91, 02)* - det(—V (){V(a)) =
det((g))*(~V (@)%)(92)* (g5 V*(V (@))gt) = (det g1)*det(~V (a)'V (a)), we note
that det(—V (a)'V (a))* is a semi-invariant of weight (k,0) so (S V7)) @
(S\Va)99(V2) is generated by the semi-invariant det(—V (a)'V (a))* and thus
OSI(Q,a) = K[det(—V (a)'V (a))].
Now we prove the induction step. Let X = ORep(Q, a and by theorem
A.1.9 we obtain

0SI1(Q,a) = (K[Xx])%7") =

@ (S)\(al)vl)SL(vl) & (S)\(al)VQ* ® SA(a2)V2)SL(V2)®
A(al)v"v)\(an)e/\
e (S)‘(anfl)vs ® S)\(an)Vn)SL(Vn) ® (S)\(an)vn-i-l)so(vnﬂ)a

where SO(V) = SL(V;) x -+ x SL(V,,) x SO(Vp41).
The proof of this theorem is the same of the proof of the theorem 2.1.2 up
to when we have to consider a;,11. As in the proof of theorem 2.1.2 we can
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suppose a1 < - - - < ayp, otherwise, by induction, we can reduce to a smaller
quiver.

By lemma 1.6.1, we have the generators det V' (a;) = detV(o(a;)) if o =
ai+1,1§i§n—2.

By proposition A.2.8, we obtain that there exist k1, ..., k,, € Z>( such that

ai Q=1

)\(ai):(ki+'”—l—]ﬁl,...,ki—i-”-—i-kl,...,ki,...,ki),

foreveryi € {1,...,n}.

Now, by proposition A.2.9, A(a,) must have even rows. If a1 = a; <
ajy1 < - < ay, forsome j € {1,...,n} then Sx(an) Vg1 = 0 unless ky, +
<+ kjr1 = 0,50 AMan) = -+ = Aajy1) = Aa;). As before, by lemma
1.6.1, we can consider the smaller quiver Ql:1—2--j —n+1—
2n—j+2---2n — 2n + 1 and then

0SI(Q,a) = (Sk(al)VI)SL(VI) ® @ (Sxa, Vi @ S}\(aj)Vj)SL(Vj)®

(Sxta; ) Vit ® Sagay) Vi) FV) @ (S(ay) Vi) 5OV, (2.2)
where

ay Qp1—05—1
N

—
A(aj):(kj—‘r~--—i—kl,...,kj+--~+k1,...,kj,...,kj),

and k; + --- + k1,...,k; have to be even otherwise, by proposition A.2.9,
(SA(aj)VnH)SO(V”“) = 0. Hence k; has to be even for every [ € {1,...,j}.
Now to complete the proof it’s enough to find the generators of the algebra
(22) for Ont1 = Q4 < Q11 <. < Q.

(a) By proposition A.2.8, foreveryl € {1,...,j}, (S)\(alfl)W*@S,\(GZ)VI)SL(VZ)
is generated by a semi-invariant of weight (0,...,0, k;,0,...,0) where
ky € 2Z>y, is I-th component. Since gk - det(V(agn—i+1) - V(ay)) =
det((9,0)"V (azn—i+1) -+~ V(@) (g)") =
(det gi)*det(V (agn_141) - -- V() for every g = {gi}icg, € SO(V), we
note that

I

!

V(azn—iy1) -+ V() € OSI(Q, a) = (det(V(agn—i41) - V()2

is a semi-invariant of weight (0,...,0, k;,0,...,0), so it generates
(S)\(alil)vl* ® SA(QZ)Vl)SL(Vl). Since )\(al) = )\(Cbl_l) + (kl)al, then
det(V(azn—i4+1) - - V(a;)) is a generator of OSI(Q, o).

(b) In the summand of OSI1(Q, ) indexed by the families of partitions in

Q¥j=0Cn+1

—
which A(a;) = (kj, ..., k;), with k; € 2Z>(, we have that (SA(%)V],)SL(V]-)@
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(S ,\(a].)VnH)SO(V"H) is generated by a semi-invariant of weight
(0,...,0,k;,0,...,0,0) where k; is the j-th component and we note,
as before, that (det(V(ay,)---V(a;)))¥ is a semi-invariant of weight
0,...,0, k;,0,...,0, 0). Since )\(aj) = /\(aj_l) + (k]) JTnd1,
det(V(ay)---V(a;)) is a generator of OSI(Q, cr). O

Proof of theorem 2.1.7. Using the theorem 2.1.8, the proof is similar to the
proof of theorem 2.1.1. O
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Chapter 3

Semi-invariants of symmetric
quivers of tame type

In this chapter we prove conjectures 1.2.1 and 1.2.2 for the symmetric quiv-
ers of tame type. We recall that the underlying quiver of a symmetric quiver
of tame type is either Aor D asin proposition 1.1.15. As done for the fi-
nite case we again reduce the proof to particular orientations (orientations
in proposition 1.3.8 for A and orientation of D®? for D). In section 3.1, we
prove the conjectures for dimension vector ph (for definition, see proposi-
tion B.2.2). In section 3.2, we treat the other regular dimension vectors.

3.1 Semi-invariants of symmetric quivers of tame type
for dimension vector ph

In this section we deal with dimension vector ph. By lemma 1.3.14 and
proposition 1.5.4 and 1.5.5, it’s enough to consider particular orientations
of symmetric quivers of type Ain proposition 1.3.8 and orientation of sym-
metric quiver D, First we prove case by case some theorems by which
conjectures 1.2.1 and 1.2.2 follow. Finally, in section 3.1.8, we conclude
proofs of conjectures 1.2.1 and 1.2.2. We note that h is preserved under
reflection functor.
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3.1.1 ﬁiz?’l for dimension vector ph

Theorem 3.1.1. Let (Q, o) be a symmetric quiver of type (2,0, k, 1) of orientation

o—2 - o

vy

2 oty
(@] O

O

Ul\L o(u1)
(0]
o o

"4 fotuy)
O —> 0.

Then
Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:

a) detV(uj) withj e {1,... ,% ;
b) detV(v;) withj € {1,...,L};
¢) detV(a)and det V (b);

d) the coefficients c; of ¢P~")', 0 < i < p, in det(yV(a) + ¢V (b)), where

a=o(v1)---o(v)avy ---vyand b= o(uy) - o(ur)bur - - - uy.
2 2 2 2

0) OSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) detV(u;) with j € {1,..., %}
b) detV(v;) with j € {1,..., L},
¢) pfV(a)and pf V(b);

d) the coefficients ¢; of P~ *4*, 0 < i < B, in pf(4¥V(a) + ¢V (b)), where
2 2 2

2

if pisodd,

}
).

a) detV(uj) with j € {1,...,% ;
1
2

b) detV(vj) withj € {1,...,
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Proof. We proceed by induction on £ + L. The smallest case is 2328,1

1=—==0(1).

The induction step follows by lemma 1.6.2, so it’s enough to prove the the-
orem for gg;g’l.

Let V be a representation of 11(2)38’1 of dimension ph for some p € Z>, in this
case h = 1.

Sp) The ring of symplectic semi-invariants is

SpSIAGY ph) = €D (SaV @ SV,
Aa),A\(b)EERA

By proposition A.2.8 we have
)\(a)j + )\(b)p+j_1 =1 (3.1)

for some t € Z>( and for every 0 < j < p.

We consider the summand in which ¢ = 2 because the other ones are gen-
erated by products of powers of the generators of this summand. The so-
lutions of (3.1) are A(a) = (2) and A(b) = (2P7%) for every 0 < i < p. So
the considered summand @;_(S(2i)V @S 20— V)LV is generated by semi-
invariants of weight 2, i.e. the coefficients ¢; of oP~%)? in det(y)V (a)+oV (b))
(see [R2]). In particular we have ¢y = det V' (b) and ¢, = det V(a).

O) The ring of orthogonal semi-invariants is

OSI(Ayyt,ph) = P GSwVesiy)t.
Aa) ABDYEECA

By proposition A.2.8 we have
Aa)j + A(0)ptj—1 =1t (3.2)

for some t € Z>¢ and for every 0 < j < p.

We consider the summand in which ¢ = 1 because the other ones are gen-
erated by products of powers of the generators of this summand. Let p be
odd. (A(a)); and (A(b)"), have to be even but (A(a)"); + (A(b)'), = pis odd,
this is an absurd, and so OSI(ZS:g’l,ph) =K.

Let p be even. The solutions of (3.2) are A(a) = (1%) and A\(b) = (1P~2) for
every 0 < i < £. So the considered summand @fZO(S(lﬁ)V®S(1p72i)V)SLV
is generated by semi-invariants of weight 1, i.e. the coefficients c; of ¢P~ 2%
inpf(yV(a)+¢V(b)). In particular we have ¢y = pf V' (b) and cp =pf V(a).
g
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3.1.2 ﬁiz?’Q for dimension vector ph

Theorem 3.1.2. Let (Q, o) be a symmetric quiver of type (2,0, k, [) with orienta-
tion

o

Ul\L o(u1)
(0]
o o

"4 fotuy)
O<——0.

Then
Sp) SpSI1(Q, ph) is generated by the following indecomposable semi-invariants:

a) detV(uj) withj € {1,...,%};
b) detV(v;) withj € {1,...,L};
c) detV(a)and det V(b);

V@) V(o)
V(o(e) oV(b) > where

a=o(vy)---o(wi)avy ---vyand ¢ = ug - - uy.
2 2 2

d) the c; coefficients of p'4p', 0 < i < p, in det <

0) OSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) detV(u;) with j € {1,..., %}
b) detV(v;) with j € {1,..., L},
c) pfVi(a)and pf V(b),
.. . i : p—1
d) the coefficients c; of '), 0 < i < Po=, in Pf< V(eo(c)) ¥V (b)
where @ = o(vy)---o(ve)avy -~ -viand ¢ = up - - - uy.
2 2 2
if pis odd,
a) detV(uj) withj e {1,..., g}/
]
2

b) detV(vj)withj e {1,...,5};
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c) the coefficients c; of ©*', 0 < i < 21 in pf < pVia) V() >

2
where a = o(vy)---o(vi)avy -+ -vyand ¢ = ug - - uy.
2 2 2

Proof. We proceed by induction on £ + L. The smallest case is 2338’2

1

C|(

2

and so it’s enough to study the semi-invariants of /E’B’Q.

The induction step follows by lemma 1.6.2 and b§} lemma 1.6.1, so it’s

enough to prove the theorem for ﬁg:g’z.
Sp) The ring of symplectic semi-invariants is

—2>0(1)

~——0(2)

SPSI(ESZS’Q, ph) = @ (Sr(@) Vi®Sx () V1) T V1 @(S\t) Vo @S (o) Vo) FE V2.
A(a),A\(b)EERA
A(e)eA

By proposition A.2.8 we have

Aa)j + AW)prj—1 =k
{ /\(b)j + )‘(C)z+j—1 = ko (3.3)

for some k1, k2 € Z>¢ and for every 0 < j < p.

We consider the summands in which £ = 0,1,2 and ky = 0,1, 2 because
the other ones are generated by products of powers of the generators of
this summands. If k; = 2 and k2 = 0 we have A\(b) = 0 = A(c) and so
the summand is (S(20yV1)*""* which is generated by a semi-invariant of
weight (2,0), i.e. det V(a). If k; = 0 and ky = 2 as before we obtain the gen-
erator of ring of semi-invariant det V' (b) of weight (0, —2). The summand
in which k1 = 1 and k2 = 0 (respectively k1 = 0 and ky; = 1) doesn’t exist
because otherwise we have A(a) (respectively A(b)) with odd columns. If
k1 =1 = ko we have A\(a) = 0 = A(b) and A(c) = (17) and so the summand
is (S(lp)Vl)S i g (S(lp)VQ*)SL V2 which is generated by a semi-invariant of
weight (1, —1) which is det V' (¢) = det V(o (c)). If k1 = 2 = ko, the solutions
of (3.3) are A\(a) = (2) = A\(b) and A(c) = (2P~. The corresponding sum-
mand is @57:0(5(21)‘/1 & S(gp—i)VI)SL Vi X (S(Zl)VQ* &® S(Qp—i)VQ)SL V2" and it is
spanned by the coefficients of p't’ in

SVia) V()
det( Vio(e) ¥V () ) ’

semi-invariants of weight (2, —2). In particular for i = 0 we have (det V(c))?
and for ¢ = p we have det V' (a) - det V' (b).
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O) The ring of orthogonal semi-invariants is

051(2318’2,1711) = @ (S Vi®@Sxo) V1) V1@ (S Vo @Sy (o V)71 V2.
A(a),x((z;)eEcA
A(c)eA

By proposition A.2.8 we have

A@)s + M)yt = ki
Lo e 54)

for some k1, ks € Z>( and for every 0 < j < p.

We consider the summands in which k; = 0,1 and ks = 0, 1 because the
other ones are generated by the monomials of these. Let p be even. If
ki = 1 and k; = 0 we have A\(b) = 0 = A(c¢) and so the summand is
(SarV1)%E"" which is generated by a semi-invariant of weight (1,0), i.e.
pfV(a). If k; = 0and ko = 1 as before we obtain the generator of ring of
semi-invariant pf V' (b) of weight (0, —1). If k; = 1 = ko, the solutions of
(34) are Ma) = (1*) = A(b) and A(c) = (17"%) with 0 < i < £. So the

summand is @?:0(5(12")‘/1 ® S(lp—zi)vl)SL 1@ (S(lzi)V; & S(lp—zi)VQ*)SL V2
which is generated by the coefficients of ¢'¢* in

V) V()
pf ( V(o(e) 4V(b) > ’

semi-invariants of weight (1, —1). In particular for i = 0 we have det V' (¢) =
det V(o(c)) and for i = p we have pf V(a) - pf V(b). Let p be odd. In this
case the summand (S(lp)Vl)SL V1 (respectively (S(lp)Vg)SL V2) doesn’t exist
since A(a) (respectively A(b)) must have even columns. If k; = 1 = ko,
the solutions of 3.4 are A\(a) = (1121) = A(b) and A\(c) = (1P=%) with 0 <
i < 251, So the summand is @::TO(S(lZi)‘/l ® Sap-20yV1)%E V1 @ (S(q20) V5" ©
Saw-20)V5") L V2 which is generated by the coefficients of ¢’ in

V) V()
rf ( V(o(e) $V(b) > ’

semi-invariants of weight (1, —1). In particular for i = 0 we get det V(c) =
det V(o(c)). O
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3.1.3 212;? for dimension vector ph

Theorem 3.1.3. Let (Q, o) be a symmetric quiver of type (0, 2, k, l) with orienta-
tion

/\

Then
0) OSI(Q, ph) is generated by the following indecomposable semi-invariants:

a) detV(u;) withj € {1,..., %}/
b) detV(v)) withj € {1,...,L};

c) the coefficients c; of pP~ b, 0 < i < p, in det(yV (a(a)a) + oV (a(b)b)),
where a = o(vy)---o(vi)vy ---vyand b= o(uy) - o(ur)ur

Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) detV(uj) with j € {1,...,5};
b) detV(vj) withj € {1,...,L};

¢) the coefficients c; of o2 i, 0 < i < L inpf(¥V(e(a)a)+ ¢V (o(b)b)),
where a = o(vy) -+ o(vi)ve ---vyandb=o(uy) - o(ur)us -

ifpisodd, SpSI(Q,ph) =K.

Proof. We proceed by induction on £ + L. The smallest case is 2123

/ \(a)
\ /

61



and so it’s enough to study the semi-invariants of ﬁgg

The induction step follows by lemma 1.6.1, so it’s enough to prove the the-
orem for Ag:g.

O) The ring of orthogonal semi-invariants is

B SV ® V)T @ (Sy@V2)™? Y @ (Sap) Va) .
@), \(b)EA

By proposition A.2.8 we have
)\(a)j + )‘(b)p—j-‘rl =k (3.5)

for every 0 < j < p and for some k; € Z>(. By proposition A.2.9 we have
Aa) = 2p+ (IP) and A(b) = 2v+ (mP) for some p, v € A and for some [, m €
Z>n. We consider the summands in which k; = 1, 2 because the other ones
are generated by products of powers of the generators of this summands.
If k1 = 1 the only solutions of (3.5) are A(a) = (17), A(b) = 0 and A(a) =0,
A(b) = (1P). Respectively, the summand (S(lp)Vl)SL g (S(lp)Vg)SO V2 is
generated by a semi-invariant of weight (1,0, 0), i.e det V(a) = det V(o (a)),
and the summand (S(,)V1)%%"1 ® (S(15)V3)°C " is generated by a semi-
invariant of weight (1,0,0), i.e det V(b) = det V(o (b)). If k1 = 2, the solu-
tions of (3.5) are A(a) = (2%), A(b) = (2P~%) with 0 < i < p. So the summand

1S
p

B (S Vi @ Soe-yVi)* M @ (Sa1yV2) 5O V2 @ (S (9-1) V5) 5O

i=0
which is generated by the coefficients of o?~“)" in det(¢YV (o (a)a)+¢V (a(b)b)),
semi-invariants of weight (2,0, 0). In particular for i = 0 we have det V(o (b)b)
and for ¢ = p we have det V(o (a)a).
Sp) The ring of symplectic semi-invariants is

B GrwVi @S V)* Y @ (Saa) Vo) @ (SypVa) P Y.
Ma) A(b)eA

By proposition A.2.8 we have
)\(a)j + A(b)p_j+1 =k (3.6)

for every 0 < j < p and for some k; € Z>(. By proposition A.2.9 A\(a) and
A(b) have to be in ECA.

Let p be even. We consider the summands in which k; = 1 because the
other ones are generated by products of powers of the generators of this
summands. The solutions of (3.6) are A(a) = (1%%), A(b) = (1P~2)) with
0 <4 < £. So the summand is

[SiS]

@(S(lzi)vl X S(lp—Qi)Vl)SL Vi ® (S(lzi)VQ)SOVQ &® (S(lp—Qi)Vg)SO Vs
1=0
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which is generated by the coefficients of o2 it inpf(WV (o(a)a)+V (o (b)b)),
semi-invariants of weight (1, 0, 0). In particular for i = Owe have pf V(o (b)b) =
VdetV(a(b)b) = /det V(o (b)) - detV(b) = /(detV(b))2 = det V(b) and
fori = § wehavepfV(o(a)a) = det V(a).

If p is odd there not exist any non-trivial symplectic representations because

a symplectic space of dimension odd doesn’t exist. So we have SpSI(Q, ph) =
K. DO

3.14 E,{j for dimension vector ph

Theorem 3.1.4. Let (Q, o) be a symmetric quiver of type (1, 1, k, 1) with orienta-
tion

g;egSI (Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,
a) detV(u;) with j € {1,..., 5},
b) detV(v;) withj € {1,...,L};
c) pfV(b)

d) the coefficients c; of pP=2p?, 0 < i < B, in det(wV( (@)a) + oV (b)),
b= U
3

where G = Vg1 - - 'U(U%)Ué ++-vy and o(ur)-- (“’“) U
if pisodd,
a) detV(uj) with j € {1,.. %}
b) detV (v;) withj € {1,...,L};

c) the coefficients c; of pP~*p%, 0 < i < EZL,in det(yV (o(@)a) + ¢V (b)),
where @ = V(1) -+ o(ve)vr - -vrand b= o(ur)---o(uk)bus - u.
2 2 2 2
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Sp) SpSI1(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,
a) detV(uj) with j € {1,...,5};
b) detV(v)) with j € {1,...,L};
c) detV(b)

d) the coefficients ¢; of P~ **, 0 < i < &,
where @ = vy(1y---o(vi)ve -+ vy and b=
2 2

1) o(ux)bu

/

121 det(4V (o(a)a )+<PV(5))

if p is odd, SpSI1(Q, ph) =

Proof. We proceed by induction on £ + £. The smallest case is g(l)é

/ 2 \i(a)

1 —b>a(1)

and so it’s enough to study the semi-invariants of A

The induction step follows by lemma 1.6.2 and by lemma 1.6.1, so it’s
enough to prove the theorem for A1 }

O) The ring of orthogonal semi- 1nvar1ants is

P a1 @ SapyVi)*EY @ (Syo)V2) %O "2,
A(a)eA
A(b)EECA

By proposition A.2.8 we have
Aa)j + A(b)p—j+1 = k1 3.7)

for every 0 < j < p and for some k; € Z>o. By proposition A.2.9 we
have A(a) = 2u + (I?) for some p € A and for some [ € Z>(. We consider
the summands in which k; = 1,2 because the other ones are generated by
products of powers of the generators of this summands. Let p be even. If
k1 = 1 the only solutions of (3.7) are A(a) = (17), A(b) = 0 and A(a) = 0
A(b) = (1P). Respectively, the summand (S(10) V1) "1 ® (S(10)V2)59 "2 is
generated by a semi-invariant of weight (1,0), i.e det V(a) = det V(o (a)),
and the summand (S(lp)Vl)S LV1 is generated by a semi-invariant of weight
(1,0), i.e pf V(b). If k; = 2, the solutions of (3.7) are A(a) = (2%)), A(b) =
(2P~2) with 0 < i < &. So the summand is

P

(5(221)‘/1 & S(gp—Qi)Vl)SL 1® (5(221')‘/2)50 V2
=0
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which is generated by the coefficients of ¢?~211)% in det(v)V (o(a)a)+pV (b)),
semi-invariants of weight (2, 0). In particular for i = 0 we have det V' (b) and
for i = § we have det V(o(a)a).

Let p be odd. If k; = 1 the only solutions of (3.7) are A(a) = (17), A(b) =
0. The summand (S(»)V1)%""1 ® (S(10)V2)%? "2 is generated by a semi-
invariant of weight (1,0), i.e det V(a) = det V(o (a)). If k1 = 2, the solutions
of (3.7) are \(b) = (2%), M(a) = (2P~%) with 0 < i < 271, So the summand
is

p—1
2

@(S(przi)vl & S(gzi)vl)SL 1® (S(prm)VQ)SO V2

=0
which is generated by the coefficients of p?*'1/P~% in det()V (c(a)a)+pV (b)),
semi-invariants of weight (2, 0). In particular for i = % we have det V(o (a)a).
Sp) The ring of symplectic semi-invariants is

P W @ SipV) T @ (SywVe)™ 2.
A(a)eA
A(b)EERA

By proposition A.2.8 we have
A@a)j + A(b)p—j+1 = k1 (3.8)

for every 0 < j < p and for some k; € Z>. By proposition A.2.9 we have
Aa) € ECA. We consider the summands in which k; = 1,2 because the
other ones are generated by products of powers of the generators of this
summands. Let p be even. If k; = 1 the only solutions of (3.8) are A(a) =
(1P), A(b) = 0. The summand (S(lp)Vl)SL Vi ®(S(1p)V2)Sp V2 is generated by a
semi-invariant of weight (1,0),i.e det V(a) = det V(o(a)) = pf V(o(a)a). If
ki = 2, the solutions of (3.8) are A(a) = (2%%), A(b) = (2P~%) with 0 < i < B.
So the summand is

P

2
@(5(221')‘/1 X S(przi)Vl)SL Vi ® (5(221.)‘/2)517%
=0

which is generated by the coefficients of ¢~ 24/ in det(y)V (o (a)a)+oV (b)),
semi-invariants of weight (2, 0). In particular for ¢« = 0 we have det V' (b) and
for i = § we have det V(o(a)a).

If p is odd there not exist any non-trivial symplectic representations because

a symplectic space of dimension odd doesn’t exist. So we have SpSI(Q, ph) =

K. O
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3.1.5 Ilgf,; for dimension vector ph

Theorem 3.1.5. Let (Q, o) be a symmetric quiver of type (0,0, k, k) with orien-
tation

O/O\O

o —
O <—

Then
OSI1(Q,ph) = SpSI(Q,ph) is generated by the following indecomposable semi-
invariants:

a) detV(vj) withj € {1,...,k};

b) pf(V(a) +V(a(a)))

c) the coefficients c¢; of P, 0 < i < p, in det(yV (a) + ¢V (o(a))), where
a =V -V1.

Proof. We proceed by induction on £ + 2. The smallest case is Eg;g

N
\b\ /O'a)
o(2)

1 (1)

and so it’s enough to study the semi-invariants of ﬁgg

The induction step follows by lemma 1.6.1, so it’s enough to prove the the-
orem for ggg

In this case we have ORep(Q,ph) = SpRep(Q,ph) and so OSI(Q,ph) =
SpSI1(Q, ph). The ring of semi-invariants is

B GV @Sy V)* Y @ (Saa) Ve @ Sap Vo)™ 2.
NOBYOEN
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By proposition A.2.8 we have

Aa); +Ab)p_ji1 =k
{ )‘(]a)j = A(b)ﬂﬁ ko 1 (3.9)

for every 0 < j < p and for some k1, ka2 € Z>(. We consider the summands
in which k1 = 1,2 and k3 = 0,1 because the other ones are generated by
products of powers of the generators of this summands. Let p even. If k; =
1 and ko = 0 the only solution of (3.9) are A(a) = (1%), A(b) = (1%). The
summand (S(lg)‘/i ® 5(1%)V1)SL Vi g (S(lé})vz* ® S(lg)VQ)SL V2 is generated
by a semi-invariant of weight (1,0), i.e. pf(V(c(b)a) + V(o (a)b)). If k; = 2
and ky = 0, the solutions of (3.9) are A(a) = (2¢,1P2), A\(b) = (2¢,1P~%)
with 0 < i < §. So the summand is

b

2
@(S(2i71p72i)‘/1 &® 5(22‘71;3721‘)‘/1)51‘ i (S(2i71p72i)‘/2* ® S(2i71p—2i)‘/2)SLV2
=0

which is generated by the coefficients of P~ with 0 < i < L indet(¢V (o(b)a)+
¢V (o(a)b)), semi-invariants of weight (2, 0). In particular for i = 0 we have
det V(o(b)a) = det V(o(a)b). Let pbe odd. If k; = 1 and ky = 0 we don't
have any solutions of (3.9). If k1 = 2 and k» = 0, the solutions of (3.9) are

Aa) = (21, 1P72)), \(b) = (2!,17"%) with 0 < i < E*. So the summand is

-

2
@(S(Qi’lp—%)‘/i & S(Qin—Qi)Vl)SL 1 (S(Qi’lp—Zi)‘/Q* & S(Qi’lp—Qi)‘/Q)SLVQ
=0

]

which is generated by the coefficients of ¢P~“)* with 0 < i < p%l in
det(yV(o(b)a) + ¢V (o(a)b)), semi-invariants of weight (2,0). In particu-
lar for i = 0 we have det V(o (b)a) = det V(o (a)b).

If k&, = 1, in both cases p even or odd, k; can’t be 0 otherwise we have
A(b); + A(b)p—j+1 = —1 but this is impossible. So k; = 1 and the only
solutions of (3.9) are A(a) = (17), A(b) = 0 and A(a) = 0, A(b) = (17);
respectively we have the summand (S(10)V1)%*"1 @ (S(10) V5 )54"2 gener-
ated by the semi-invariant det V' (a) of weight (1,—1) and the summand
(S(lp)Vl)SL 1 ® (S(lp)Vg)SL V2 generated by the semi-invariant det V (b) of
weight (1,—-1). O
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3.1.6 D0 for dimension vector ph

Theorem 3.1.6. Let (Q,0) be a symmetric quiver of type Dy° with orientation
(¢]
\i
C1
O— =0 0 —30 O ——>0
a
(e]

andlet ¢ =o(cy)---cp—2---c1. Then
Sp) SpSI(Q,ph) is generated by the following indecomposable semi-invariants:

a) detV(c;)withj e {1,...,n—2}

b) det (V(a), V(b)) = det( “;EZ ((‘b?)) )

c) detV(o(a)ca)
d) detV(o(b)cb)
e) detV(o(b)ca) = det V(o(a)ch)

the coefficients c; of @'t 0 < i < p, in
f © P

oV(o(a)ea) V(o(b)éa)
det( V(o(a)eh) bV (o(b)ab) >

0) OSI(Q, ph) is generated by the following indecomposable semi-invariants:
if p is even,

a) detV(c;) with j € {1,...,n—2};
b) det (V(a),V (b)) = det( “;(U(CL)) )
c) pfV(o(a)éa)

d) pfV(o(b)cb)

e) the coefficients c; of ', 0 < i < B in

V(o(a)éa) V(o(b)ca) \ |
v/ < Vi) V )

if pis odd,
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a) detV(c;) withj € {1,...,n—2}

b) det (V(a), V(b)) = det( ‘V/'E‘O{ ((Z;)) )

c) the coefficients c; of piabt, 0 < i < E==, in

V(o(a)ea) V(o(b)ca)
pf ( V(o(a)ch) wv<o<b>cb>)'

Proof. We proceed by induction on n. The smallest case is (5;0)6‘1

\:H o
2 o(2)

The induction step follows by lemma 1.6.2, so it’s enough to prove the the-
orem for (D é 0)eq,

Let V' be a representation of (D ; 9)ea of dimension ph for some p € Z>0, in
this case h = (1,1, 2).
Sp) The ring of symplectic semi-invariants is

SpSI(Dy°,ph) = @ (Sa@ V)% @ Sy iy Vo)1 2@

A(a),A(b)EA
A(c)EERA

(S)\(a)‘/?)* & SA(b)VE),* ® S)\(c)vé)SL Vg‘

By proposition A.2.7 we have A(a) = (k¥), A(b) = (kB), for some kq, ko €
Z>0, and by proposition A.1.12 we have

Swn)Vs ® Sup Vs = @syyg (3.10)

where

Uz:(]{?1—l—)\l,...,kl—i—)\p_i,kl,...,kl,kg,...,kg,k'g—)\p_i,...,kg—Al)

1 1

with 0 < A,—; <... < A < ko and for every 0 < i < p. Moreover we have

(S0, V5 @ Sy Va)¥LVs £ 0 & A(e) = v; + (k3)
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for some k3 € Z>o.

We consider the summands in which k1 = 0,1,2 and ky = 0,1, 2 because
the other ones are generated by products of powers of the generators of
these summands.

If A(c) = 0, then A(a) = (k}) # 0 # \(b) = (k%) because otherwise if for
example A(a) = 0 we have (S(kg)V3*)SL Vs = (. We consider the summand
in which A(¢) = 0 and k; = 1 = k», the only v; such that (S, VS*)SL Vs £ 0is
vp = (127). S0 (S1p) V1) 55 V1 @ (S(10y V2) 1 V2 @ (S 120y V3) 51 V3 is generated by
a semi-invariant of weight (1,1, —1), i.e. det (V'(a), V(b)) = det < “;((ZEZ;)) )
Now we suppose A\(c) # 0. We can’t consider k; = 1, k2 = 0 and k1 = 0,
ko = 1 because otherwise we haven’t A\(c) with even rows. If k; =2, ks =0
and k3 = 0 the summand (S(zp)Vl)SL i (Sn Vs ® S(Qp)Vg)SL Vs is gener-
ated by a semi-invariant of weight (2, 0,0), i.e. det V(o (a)ca). If k1 =0, ko =
2 and k3 = 0 the summand (S(zp)Vg)SL V2@ (S(an) Vs ®S(2p)V3)SL Vs is gener-
ated by a semi-invariant of weight (0, 2,0), i.e. det V(o (b)cb). If ky = 0 = ko,
then k3 has to be even. So, considering k3 = 2, (S(sz)V},)SL Vs is generated
by a semi-invariant of weight (0,0, 2), i.e. det V' (c). If k; = ka2 = 1, by (3.10),
Ae) = (2°). So (SunV1)* "t @ (SamVa)¥i"2 @ (S(an) Vs @ S(on V3)5H Y8
is generated by a semi-invariant of weight (1,1,0), i.e. detV(o(b)ca) =
det V(o (a)cb). Finally if ky = ko = 2, considering k3 = 0, the summand is

p
(S V1)*EY1 @ (S(2n) V2)F V2 @ (P S(ar-2i 210y Vi @ S(ap-2i 9ai)V3) *F V3
=0

which is generated by the coefficients of ¢'¢)* in
o Pyt Voo
V(e(a)eb) V(a(b)cb) )’

semi-invariants of weight (2, 2,0). In particular for i = 0 we have
(det V(o (b)éa))? and for i = p we have det V(o (a)éa) - det V(o (b)eb).
O) The ring of orthogonal semi-invariants is

SpSI(D3%,ph) = P  (SywW)*" @ Sy V) 2@

A(a),A(b)EA
A(c)€ECA

(Sa@ Vs ® Sxp) Vi @ Sy Va)o" V2.

By proposition A.2.7 we have A(a) = (k¥), A\(b) = (kb), for some ki, ks €
Z>0, and by proposition A.1.12 we have

Swn)Vs @ S Vi = @s,,yg (3.11)
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where

Ui:(]{71—l—)\l,...,kl—i—)\p_i,kl,...,kl,kg,...,kg,k'g—)\p_i,...,kg—Al)

1 1

with 0 < A\p—; < ... < A1 < kg and for every 0 < i < p. Moreover we have
(S0, Vs @ Sy Va)*" " £ 0 & Ae) = v + (k3F)

for some k3 € Z>¢. Since A\(c) € ECA, also v; € ECA for every i.

We consider the summands in which k; = 0,1 and ky = 0, 1 because the
other ones are generated by products of powers of the generators of these
summands.

As before if A(c) = 0, the only v; such that (S,,V5)5T"s #£ 0is v, = (1?).
So (SanV1)*EV1 @ (SanVa)*H "2 @ (S(lzp)Vg)SLV?’ is generated by a semi-

invariant of weight (1,1, —1),i.e. det (V(a), V(b)) = det ( Vio(a)) ) Now

V(a(b))

we suppose A(c¢) # 0.

Let pbeeven. If k1 = 1, ko = 0 and k3 = 0 the summand (S(lp)Vl)SL I'g
(Sam Vs ® S(lp)Vg)SL Vs is generated by a semi-invariant of weight (1,0, 0),
ie.pfV(c(a)ca). If ky =0, ks = 1 and k3 = 0 the summand (515 V2)% "2 ®
(S V5 ® S(1V3) L V5 is generated by a semi-invariant of weight (0,1,0),
ie. pf V(o(b)cb). If ky = 0 = ko, then k3 has to be not zero. So, considering
ks = 1, (Saz

ie.pfV(c). F

V3)9E Vs is generated by a semi-invariant of weight (0,0, 1),
nally if ky = k2 = 1, considering k3 = 0, the summand is

—e

P

2
(SanVa)* Y @ (SanVa)™ 12 @ (D S(ar-2i 100) Vi™ ® Sap-2i 120 Va) *H 7
=0

which is generated by the coefficients of ¢'¢’ in

oV (o(a)ea) V(o(b)ea)
lﬁ(vw@w>deww>’

semi-invariants of weight (1, 1,0). In particular for i = 0 we have
detV(o(b)ca) = det V(o (a)cb) and fori = £ wehave pf V(o (a)ca)-pf V(o(b)cb).
Let p be odd. In this case we can’t consider k1 = 1, ks = 0, k3 = 0 and

k1 =0, ko = 1, ks = 0 because otherwise we have A(c) = (17) with p odd
but A\(c) has to be in ECA. As before, if ky = 0 = kg, then k3 has to be
not zero. So, considering k3 = 1, (S(lzp)Vg)SL Vs is generated by a semi-
invariant of weight (0,0,1), i.e. pf V(¢). Finally if k; = ko = 1, considering

ks = 0, the summand is

p—1

2
(S(lp) Vl)SL Vi ®(S(1p) V2>SL VQ®(@ S(Qp—(2i+1)’14i+2)‘/3*®S(2p—(2i+1)’14i+2)‘/3)SL Vs
=0
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which is generated by the coefficients of ¢’ in

V(o(a)ea) Vi(o(b)ea)
Pf ( V(o(a)ch) wv<o<b>cb>>’

semi-invariants of weight (1,1, 0). In particular for i = 0 we have det V(o (b)ca) =

det V(o(a)cb). O

3.1.7 DU! for dimension vector ph

Theorem 3.1.7. Let (Q,0) be a symmetric quiver of type Dy with orientation

\& 0’((1/
C1 Cn—3 U(Cn—3) U(Cl)
O —>20O (o) @ — O s
/ o(b)
0 O

andlet ¢ = o(cy) - o(cp—3)cn—3---c1. Then
0) OSI(Q, ph) is generated by the following indecomposable semi-invariants:

a) detV(c;) withj € {1,...,n —3}

b) det (V(a), V(b)) = det( “ii‘; ((g)) )

c) detV(o(a)ca)
d) detV(o(b)cb)
e) detV(o(b)ca) = det V(o (a)cb)

the coefficients c; of ¢'1)t, 0 < i < p, in
f © P

o (Yl Vot ),
V(a(a)eh) 4V (a(b)eb)
Sp) SpSI(Q, ph) is generated by the following indecomposable semi-invariants:

if p is even,
a) detV(cj) withj € {1,...,n —2};
b) det (V(a), V(b)) = det( “ii‘; ((‘[3; )
¢) pfV(o(a)ca)
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d) pf V(o (b)eb)
e) detV(o(b)ca) = det V(o (a)cb)
P the coefficients c; of p'¢", 0 < i < &, in

ot ( Yot Vo)

if pisodd,
a) detV(c;) withj e {1,...,n—2}

b) det (V(a), V(b)) = det< “ii‘; ((Cbb;)) )

c) detV(o(b)ca) = det V(o (a)cd)

d) the coefficients c; of p'1p%, 0 < i < %, in
V(o(a)ea) V(o(b)ea)
o (it ov e )

Proof. We proceed by induction on n. The smallest case is (f)g’l)eq

1 o(1)
a o(a)
\ 3 /
/{;Q\
2 o(2)

The induction step follows by lemma 1.6.1, so it’s enough to prove the the-
orem for (50’1)6(1

Let V be a representation of (D DY 1)eq of dimension ph for some p € Z>g, in
this case h = (1,1, 2).

O) The ring of orthogonal semi-invariants is

OSI(Dg'.ph) = D  (Sra)V1) "1 @(Srp) V)L P @(Sy(a) Vi ®Sap Vi) 5O V5.
Aa) A(b)EA

By proposition A.2.7 we have A(a) = (k}), A(b) = (k%), for some ky, ko €
Z>0, and by proposition A.1.12 we have

SunyVs ® S Vs = Q}s,,y3 (3.12)
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where

Ui:(kl—l—)\l,...,kl—l—)\p_i,kl,...,kl,kz,...,kg,kg—)\p_i,...,kig—)\l)

7 7

with 0 < A,; <... < A < kg and for every 0 < i < p. Moreover we have
(S, Va)5OVs £ 0 & v; = 2u; + (k3P) (3.13)

for some k3 € Z>( and for some p; € A.

We consider the summands in which £ = 0,1,2 and k; = 0, 1,2 because
the other ones are generated by products of powers of the generators of
these summands.

We can’t consider k1 = 1, ks = 0 and k1 = 0, ks = 1 because otherwise we
haven’t v; = 2u; + (kgp). If ki = 2, kg = 0 the summand (S(gp)Vl)SLVl ®
(S(20V5)%9 V5 is generated by a semi-invariant of weight (2,0,0),
ie.detV(o(a)a). If k; =0, ks = 2 the summand (S(zp)VQ)SL V2®(S(2p)V3*)SO Va
is generated by a semi-invariant of weight (0,2,0), i.e. detV(o(b)b). If
k1 = kg = 1, by (3.12) and by (3.13), v; = (2P) or v; = (1?). So we have
(Saum Vi ® S V5) %0 = (S(an Vi* © Sazn) Vi) 0 V5. Now

(Sam Vi)V @ (SanyVa) 512 @ (S (420 V) SOV
is generated by a semi-invariant of weight (1, 1,0), i.e. det (V(a),V (b)) =

Vv .
det ( VEZ((Z))S ) and (S(lP)VI)SLV1 ® (S(lp)VZ)SLVg ® (S(gp)V;)SO Vs is gen-
erated by a semi-invariant of weight (1,1, 0),i.e. det V(o(b)a) = det V (c(a)b).
Finally if k1 = k2 = 2 the summand is
P
(S(Qp)vl)SL \%1 ® (S(Qp)VYQ)SL 1%} ® (@ S(4p72i724¢)V3*)SO V3
i=0

which is generated by the coefficients of ¢¢)* in
o FYte Vet
Vie(a)b) V(a(b)b) )’

semi-invariants of weight (2, 2, 0). In particular for i = 0 we have (det V(o (b)a))
and for ¢ = p we have det V(o (a)a) - det V(o (b)b).
Sp) The ring of symplectic semi-invariants is

2

SPSI(ﬁg’laph): @ (SA(a)Vl)SLVl®(5,\(b)V2)SLVQ®(SA(a)V3*®S,\(b)V3*)SpV3~
Aa) A(b)EA

By proposition A.2.7 we have \(a) = (kV), A\(b) = (k%), for some ki, ks €
Z>0, and by proposition A.1.12 we have

p
S0 Vi © S Vi = DS Vi ar
=0
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where

’U@:(/{1—I—)\l,...,kil—I—)\pfi,kl,...,k‘l,kg,...,k‘g,kg—)\p,i,...,kz—)\l)
(A (A
with 0 < A\p—; < ... <A1 < kg and for every 0 < i < p. Moreover we have

(S, Vi)5PVs £ 0 o v; € ECA. (3.15)

We consider the summands in which k; = 0,1 and ky = 0, 1 because the
other ones are generated by products of powers of the generators of these
summands.

Let pbe even. If ky = 1, ko = 0 the summand (S(10) V1) "1 ® (S0 Vi) 5P V3
is generated by a semi-invariant of weight (1,0,0), i.e. pf V(o(a)a). If k1 =
0, k2 = 1 the summand (S(lp)Vg)SL V2 @ (S(lp)Vg*)SPVS is generated by a
semi-invariant of weight (0, 1,0), i.e. pf V(o(b)b). Finally if k; = ky = 1,
the summand is

y

(SanVi)*F" @ (S Va)5H Y2 @ (€D Sian-ai 100y V)P
=0

which is generated by the coefficients of ¢¢)* in

V(o(aa) V(o®)a)
2 ( V(o(a)b) wv<a<b>b>>’

semi-invariants of weight (1, 1,0). In particular for i = 0 we have
detV(o(b)a) = det V(o (a)b) and fori = £ wehavepf V(o (a)a)-pf V(o (b)b).
Let p be odd. In this case we can’t consider k1 = 1, ko = 0and k1 =0, ko = 1
because otherwise, by (3.15), (S(lp)Vg)SpV3 = 0. Finally if &y = ko = 1, the
summand is

p—1
2

(S(lp)vl)SL‘/l & (S(lp)VQ)SL V2 @ (@ S(2p7(2i+1)714i+2)‘/3*)SL Vs
=0

which is generated by the coefficients of ¢¢)* in

(0(a)a)  V(o(b)a)
o (Vitaty ot )
semi-invariants of weight (1,1, 0). In particular for i = 0 we have det V(o (b)a) =
det V(o(a)b). O
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3.1.8 End of the proof of conjecture 1.2.1 and 1.2.2 for dimension
vector ph

First of all we note that, by definition of ¢V and pf", when we have it, are
not zero if 0 = (dim W, ph) = p(dim W, h) = —p(h,dim W), so we have to
consider only regular representations WW. Moreover it is enough to consider
only simple regular representations W, because the other regular represen-
tations are extensions of simple regular ones and so, by lemma B.4.7, we
obtain the ¢ and pf" with non-simple regular W as products of those
with simple regular W. Now we check only for gz?l and D, that the

generators found for SpSI(Q,ph) and OSI(Q, d) are of type c"V, for some
simple regular W, and pf", for some simple regular W satisfying property
(Op) in symplectic case and (Spp) in orthogonal case (see lemma 1.4.6). For
the other types of quivers it is similar (see also [D, section 4.1]).

We use notation of section B.2. For Ai? ! by definition of ¢V and pf",

Sp) if V is a symplectic representation, we have ¢ (V) = det(V ( )
det(V(v1)) = P (V), P (V) = det(V (v5)) = det(V(vy3))) = )

) =
(V)
for every i € {2,..., I} \ {L + 1}, ¢ 571 (V) = det(V(a)), (V) =

det(V(ug)) = det(V(u1)) = cP1(V), B (V) = det(V (u;)) = det(V (uq(i)))

Fo (V) forevery i € {2, k}\ {E +1 cE%“V = det(V (b)) and
y ) ) 2 s (
Vi (V) = det(¥V (a) + @V (b);
O) if V is an orthogonal representation, the only differences with the

symplect1c case are, when p is even, we have p f (V) = pf(V(a)),

pf 5 (V) = pf(V (b)) and pf¥em (V) = pf(6V(a) + ¢V (b), in fact
E%H' E5+1 and V{,, ;) satisfy property (Spp).

For 5};0, by definition of W and of W

Sp) if V isa symplectic representation, we have c£0 (V) = det “;EU((G)) ) =

det(V (a), V(b)) = "1 (V), Pi(V) = det(V(ci-1)) = det(V (co(i—1)))
cle (V) for every i €{2,....2n - 3}, Fo(V) = det(V(o(b)ea)) =
det,( (o(a)ab)) = cPL(V), ¢ (V) = det(V (o(a)ca)),
E{ (V) = det(V (o (b)éb))and
Vo (V) — deg ( #V(@(@)Ea) V(o (b)ea) .
“W)‘C”< V(o(a)eh) w<o<b>cb>>’

O) if V is an orthogonal representation, the only differences with the
symplectic case are that we have

Ve (V) = pf < <(0'( a)ca) V(o(b)ca) ) ’
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since V(,, ;) satisfies property (Spp) and cFo(V) = det(V(o(b)éa)) =
det(V (o(a)eb)) = cF1(V) is the coefficient of p'¢° = 1in pfView) (V);
moreover, if p is even, we have pfEn—1(V) = pf(V(cn_2)), pf20 (V) =
pf(V(o(a)éa)) and pfF (V) = pf(V(o(b)eb)), because E,_1, Ef and
EY satisfy property (Spp).

3.2 Semi-invariants of symmetric quivers of tame type
for any regular dimension vector

In this section we prove theorems 1.2.1 and 1.2.2 for symmetric quiver of
tame type and any regular symmetric dimension vector d.

We will use the same notation of section 3.1. For the type A we call ag =
tvy = tuy, x; = hv; for every i € {1,...,%} and y; = hv; for every i €
{1,..., %} For the type D wecall t; = ta, ts = tband z; = tc; for every ¢
such that ¢; € (QF L Q9) \ {a,b}.

First we consider the canonical decomposition of d for the symmetric quiv-
ers.

Let (Q,0) be a symmetric quiver of tame type and let A = {e;[i € I =
{0,...,u}}, AV ={elieI'={0,...,v}}and A" = {|i e I" = {0,...,w}}
be the three 71-orbits of nonhomogeneous simple regular representations
of the underlying quiver () (see proposition B.2.7).

We shall call I5s = {i € I|e; = de;} (respectively I and Iy).

Lemma 3.2.1. Let [z] := max{z € N| z < z} is the floor of = € R.
(1) For Aiz?’l, we have:

(1.1) decomposition I = I, U 15U I_ whereI, ={2,..., é +1}, Is = {1} and
I_ =1\ (IyUlIs);

(1.2) decomposition I' = I' LI U T where I, = {2,..., 5+ 1}, I} = {1} and
I' =1\ (I'uIy);

(1.3) I" = 0.

(2) For Zi”?’Q, we have:

(2.1) decomposition I = Iy UIsUI_where I, ={2,..., [HTl] +2},Is = 0and
I =T1\I;
(2.2) decomposition I' = I'. U I} U I' where I'. = {2,...,[55] + 1}, I} =

(1,152 4+ 2} and I = '\ (I}, U T});
(2.3) I" = 0.

(3) For /Tz’?, we have:
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(3.1) decomposition I = I, 15U I_ where Iy = {2,..., [1—71] + 1}, Is =
{15 + 2 and I_ = I\ (I+ U I;);

(3.2) decomposition I' = I'. U I} U I" where I'. = {2,...,[*F] + 1}, I} =
(LI + 2 and I = I'\ (I, L I});

(3.3) I" = 0.

(4) For Akl, we have:

(4.1) decomposition I = I U I; U I_ where I, = {2,...,['51] + 1}, Iy =

{lv[l_Tl]‘i‘Q}ﬂ]’ld[_ :I\(I+|—|I6);

(4.2) decomposition I' = I' L I; U T where I'. = {2,..., 5 +1}, I} = {1} and
I' =I'\ (I'_UIj);

(4.3) 1" = 0.

(5) For ﬁg:g, we have:

(5.1) A=06ANandsoI =1;
(5.2) 1" =10.

(6) For (D)4, we have:

(6.1) decomposition I = I, UIyUI_where I, ={2,...,[2534]+1}, Iy = {1}
and I_ =1\ (I U Iy);

62) I'=1; ={0,1}and I'_ =TI, = ;
(6.3) decomposition I" = I'y L I" where I' = {0}, If =0 and I" = 1"\ I.
(7) For (D)e4, we have:

(7.1) decomposition I = Iy L Is U I_ where I, = {2,..., 2" =51 4 1), Is =
p
{1,228 + 2 and I_ =T\ (I3 U Iy);

(7.2) I' =I; ={0,1} and I' =T =;
(7.3) decomposition I" = I'l U I" where I' = {0}, If =0 and I" = 1"\ 1.

Proof. We prove (1), (2), (3), (4), (6) and (7). By [DR, section 6, page 40]
and by [DR, section 6, pages 40 and 46] we note type by type that we have
|I5| = 0, 1,2 (respectively |I5| = 0,1,2 and |Ij| = 0). Now

i) if |Is] = 0 we have e3 = deg, ea = de; and e; = dey—_it4 for every
ic{4,...,[5]+2},

ii) if |I5| = 1 we have ea = deg, e; = de; and e; = de,—;43 for every
ie{3,...,[5]+1},
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iii) if [I5| = 2 we have ez = deg, e1 = dey, e; = dey—;y3 for every i €
{3,. []+1}ande }+2—(5€[}

We define I, C I such that
) I ={2,....[4+2) & [I] =0,
i) Iy ={2,...,[5] +1} & |I5| =1,
i) Iy ={2,...,[4]+1} & || =2

So respectively decompositions of I of the statement follow. One proceeds
similarly for /" and I”.
(5) follows by the symmetry and considering [DR, section 6]. O

We note that in part (5) of previous lemma we can consider I5 = I_ =
Ij=1=I{=1"=I| =0andso I, =1 =1'=1T.

Proposition 3.2.2. Let (Q, o) be a symmetric quiver of tame type and let 1., I5,
I'., I§, I and I§ be as above. Any regular symmetric dimension vector can be
written uniquely in the following form:

d= ph—i—sz (e;+de;) —1—219162—1-210Z ei+del) +Zp —l—Zp” (e +5el))

i€l i€l ZEI’ zEI’ zEI”
(3.16)
for some non-negative p, p;, p, pi with at least one coefficient in each family {p;| i €
I Uls}, {p;| i € I' UI5}, {p!| i € I'l} being zero. In particular, in the symplectic
case,

i) if QQ has one o-fixed vertex and one o-fixed arrow (i.e. Q = K,lc’ll), then
Pi=i]yo and py have to be even,
2

ii) if Q) has one or two o-fixed vertices and it has not any o-fixed arrows (i.e.
Q = AZZ? or DOY), then both ;s and p;- s, with i € Is and j € I5, have to
be even.

Proof. 1t follows by lemma 3.2.1 and by decomposition of any regular
dimension vector of the underlying quiver of (@, o). In particular, since
symplectic spaces with odd dimension don’t exist, it implies i) and ii). O

Graphically we can represent A (similarly A’ and A”) as the polygons

ep — €1
/ AN
eu €9
ei;rz €i—1
\ /
€i+1 — €4
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€3 ———— des e1 el
| | PN Py
€3 des €2 des €2 Ses
‘(3141 depgrp Y] dery) €1z !
| | | | S~
gz ——dergn S ——— O€lg €l31+2

with a reflection respect to a central vertical line, in the other cases.

Definition 3.2.3. We define an involution oy on the set of indices I such that
€or(i) = O¢; forevery i € I. Hence oy(I) = I’forA Kk andorly =1 07115 = I
for the other cases. Similarly we define an involution oy and an involution o
respectively on I' and on I".

Lemma 3.2.4. (1) For Ai? ', no one indecomposable regular representation is
orthogonal. The following zndecomposable reqular representations are symplectic

(1.1) E; 4,(;) such that Z Ck #+ h and E;

FE,
PR

o1 (i) Of dimension h containing

(1.2) E’ o4 i

/
Bl

(i) such that ZUV e, # hand E! o (0) of dimension h containing

(2) For Ai ? %, no one indecomposable reqular representation is orthogonal. The
following mdecomposable regulur representations are symplectic

(2.1) E; ;) such that Z ek # h, E; 5,(:) of dimension h containing Fy and
E; 5, (s) of dimension h contammg E[li]ﬂ.
2

(22) E;, ;) such that 0@ el o,

(3) For Akl/ no one indecomposable regular representations is symplectic. The
following mdecomposable reqular representations are orthogonal

(3.1) E;,,(; such that ZZI:(Z) er # h.

(32) B! . such that " ¢l £ b,

1,0 7/(%)
(4) For Ag ?, the following indecomposable regular representations are orthogonal

(4.1.1) E; 5, (), withi < o;(i), such that Z e #+ h.
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(41.2) B, withi> op(i), such that S50 ¢l # .
The following indecomposable regular represerltations are symplectic

(4.2.1) E; with i > o(1), such that Z e # h.

or1(3)7

(4.2.2) E@’ (i) With i < op/(i), such that ZU"@ e, # hand E| o0 (i) With @ <

op (i ) of dimension h containing E7+ )

(5) For ﬁg’%, no one indecomposable regular representation is symplectic or or-
thogonal.

(6) For (D°)%4, no one indecomposable regular representation is othogonal. The
following indecomposable regular representations are symplectic

(6.1) Ej,, () such that Z €k %+ h and E;
E, .

o1 (i) Of dimension h containing

(6.2) E{and Ef.
(6.3) Ey, and EY .

(7) For (D")¢4, no one indecomposable reqular representation is symplectic. The
orthogonal indecomposable regular representations are

(7.1) E; 4y )suchthutz e # h.
(7.2) Ejand Ej.
(7.3) Eg,and EY

Proof. We check only part (1.1), similarly one proves the other parts. Let
Q= A2 91 The only E; ;j such that 6dimFE; ; = dimFE; ; are E;io.(i)- We have
three cases.

(i) If Z D en # hand i < o7(7) then we have for j € Qo

N K j=ua0 (:Es)withi—lgsg%
Eiorn(7) = { 0 otherwise
and for ¢ € Q1

Id ¢ =uv,0(vs),awithi <s <L
Bioi(9() = { 0 otherivise.s ’

So we note that we can define on such £; a symplectic structure.

501 (Z)
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(ii) If Z €k # hand i > o(i) then we have for j € Qg

{0 j=amole) withi<s<
Eigr(i)(J) = { K otherwise

N[~

and for ¢ € Q1

|0 c:vs,a(vs),awithigsgé
Eigri)(€) = { Id otherwise.

So we note that we can define on such E£; a symplectic structure.

501 (Z)

(iii) If ka ex = hand E; ,, ;) contains By
we note the following almost split sequence

then, by AR quiver of @,

0= Friontd) = Bt @ Epor(hy = Flothy — 0

2 27

So we have for every j € Qo, E; ,,(;(j) = Kand for c € Q1

0 c=a
EBigr(i)(€) = { Id otherwise.

Finally, we note that we can define on such E; ,, ;) a symplectic struc-
ture. O

In the remainder of the section, we shall call

= Z pi(€i+5€i)+zpi€i+ Z pg(e§+5e§)+2p [+ Z pl (e +del)).

i€l icls icl!, icl) iel’]
(3.17)

Proposition 3.2.5. If d is reqular with decomposition (3.16) such that d = d’' or d
is not regular then SpRep(Q, d) (respectively O Rep(Q, d)) has an open Sp(Q, d)-
orbit (respectively O(Q, d)-orbit).

Proof. 1f d = d’', we have no indecomposable of dimension vector ph
and so there are finitely many orbits. If d is not regular, it follows from [R2,
theorem 3.2]. O

In the next d shall be a regular symmetric dimension vector with decompo-
sition (3.16) with p > 1 and p # 0. Now we shall describe the generators
of SpSI(Q,d) and OSI(Q,d). To do this the following theorem, which we
prove later, is useful.

Theorem 3.2.6. Let (Q,0) be a symmetric quiver of tame type and the decom-
position (3.16) of a reqular symmetric dimension vector with p > 1 and d' # 0.
There exist isomorphisms of algebras

SpSIQ.d) ™ P SpSIQ,ph)y ® SpSI(Q,d)y  (3.18)
XxEchar(Sp(Q,d))
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and

0SIQ.4) ™ D  0SI(Q.ph)y ® OSI(Q,d)y, (3.19)
XxEchar(0(Q,d))

where X' = x|, i.e. the restriction of the weight x to the support of d'.

By proposition 3.2.5 Sp(Q, d') (respectively O(Q, d')) acting on SpRep(Q, d’)

(respectively on ORep(Q,d’)) has an open orbit so , by lemma A.2.5, di-
mension of SpSI(Q,d'),s (respectively dimension of OSI(Q,d'),/) is 0 or
1. This allows us to identify one non-zero element of SpSI(Q,d), (re-
spectively of OSI(Q, d),) with the element of SpSI(Q,ph), (respectively
of OSI1(Q,ph)y) to which it restricts.
We proceed now to describe the generators of the algebra SpSI(Q,d) (re-
spectively OSI(Q,d)). If the corresponding I, I’, I" are not empty, we la-
bel the vertices e;, €}, e/ of the polygons A, A’, A” with the coefficients
pi, P, p. We recall that

a) we have to label with p; (respectively with p; and p}) both vertices
e; and de;, i.e p; = py,(;) (respectively pj = p;},(i) and p! = pg}/(i))’ if
€; 75 567;.

and in the symplectic case, by i) and ii) of proposition 3.2.2
b) for gi}, p[u)+2 and p} have to be even,
c) for 22? and 159;1, pi € I5 and p; € I§ have to be even.

We shall call these labelled polygons respectively A(d), A'(d), A”(d).

Definition 3.2.7. We shall say that the labelled arc pi — - — Pj (in clock-
wise orientation) of the labelled polygon A(d) is admissible if p; = p; and p; < p,
for every its interior labels py. We denote such a labelled arc pi — - — Pj

by [i, 7], and we define p; = p; the index indli, j] of [i, j]. Similarly we define
admissible arcs and their indexes for the labelled polygons A’(d) and A" (d).

We denote by A(d), A'(d), A”(d) the sets of all admissible labelled arcs
in the polygons A(d), A’'(d), A”(d) respectively. In particular we note that
if d = ph, then the polygons A(d), A’(d), A”(d) are labelled by zeros and so
A(d), A'(d), A”(d) consist of all edges of respective polygons. With these
notations we have the following

Proposition 3.2.8. For each arc [i, j] from A(d) (respectively A'(d) and A”(d))
there exists in SpSI1(Q,d) and in OS1(Q, d) a non zero semi-invariant

(i) of type cFii—1 (respectively -1 and cPii-1) or of type Vo), with (p, 1) €
{(1,0),(0,1), (1, 1)};
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(ii) of type pfZii=1 (respectively pfZii—t and pfZii-1) or of type pfView), with

(¢, 1) € {(1,0),(0,1), (L, 1)}, if By j—1, B} ;_y, EY;_y and Vi, ) satisfy
property (Op) in the symplectic case and property (Spp) in the orthogonal
case.

Letcg,...,c;, witht = % £ and p, defined case by case in section 3.1.

The generators of algebras SpSI(Q,d) and OSI(Q, d) are described by the
following theorem

Theorem 3.2.9. Let (Q,d) a symmetric quiver of tame type and d = ph + d’
the decomposition of a regular symmetric dimension vector d with p > 1. Then
SpSI(Q,d) (respectively OSI(Q,d)) is generated by

(i) cos.-ct;

(i) cPiri=1, Prs-1, Pim— and Mew) with [i,§] € A(d), [r,s] € A(d),
[t,m] € A"(d) and (p,) € {(1,0),(0,1), (1, 1)},

(iii) pfEui=1, pfPro-1, pflim—1 and pfVew with [i, §] € A(d), [r, s] € A'(d),
[t,m] € A"(d) and (p,v) € {(1,0),(0,1), (1, )}, if By j—1, B} ; 4, El'; 4
and V(,, ) satisfy property (Op) (respectively property (Spp)).

First we note that (h,d) = 0 and further we have the following
Lemma 3.2.10. For every reqular dimension vector d
(dimFE; j—1,d) =0 < p; = pj.
Proof. See [D, section 4.3]. O

So theorem 3.2.9 is equivalent to conjectures 1.2.1 and 1.2.2.

3.2.1 Proof of theorem 3.2.9 and 3.2.6

In this section we prove the theorem 3.2.9 and theorem 3.2.6. For theorem
3.2.9, by proposition 1.3.8, proposition 1.3.4 and lemma 1.3.14, we can re-
duce the proof to the orientation of A as in proposition 1.3.8 and to the
equiorientation for D. In the proof we use the notion of generic decompo-
sition of the symmetric dimension vector d (see [K1], [K2], [KR]).

Definition 3.2.11. A decomposition o = 31 @ --- @ [, of a dimension vector «
is called generic if there is a Zariski open subset U of Rep(Q, o) such that each
U € U decomposes in U = @, U; with U; indecomposable representation of
dimension [3;, for every i € {1,...,q}.

Definition 3.2.12. (1) A decomposition o = 31 & - - - @ [, of a symmetric di-
mension vector « is called symplectic generic if there is a Zariski open sub-
set U of SpRep(Q, o) such that each U € U decomposes in U = @7, U;
with U; indecomposable symplectic representation of dimension [3;, for every

ie{l,...,q}.
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(2) A decomposition o = 1 @ - - @ By of a symmetric dimension vector « is
called orthogonal generic if there is a Zariski open subset U of O Rep(Q, o)
such that each U € U decomposes in U = @_, U; with U; indecomposable
orthogonal representation of dimension [3;, for every i € {1,...,q}.

For tame quivers the generic decomposition of any regular dimension
vector is given by results of [R2, section 3].
We describe this decomposition explicitly for a symmetric regular dimen-
sion vector d with decomposition (3.16).
In the remainder of this section we set

d= Z pi(e; + 0e;) + sz'ei, (3.20)
el i€l
= > pile;+0el) + > pie] (3.21)
iel! iely
Z p// 6” + 56” (3.22)
,LGIII

Remark 3.2.13. (i) We remember that at least one coefficient in each family
{pil i € I Ui}, {pi| i € I UIs}, {p}|ie I} is zero.

(ii) We can assume p; = 0 for i € I5 or p; =0, for i € 1, and 0 p,, ;) = 0.
Definition 3.2.14. We divide the polygon A(d) in two parts:

(i) the up part Ayp(d) is the part of A(d) from p;_1 to p,,i—1);

(ii) the down part Aqoun(d) is the part of A(d) from pi11 t0 Py, (is1)-
Similarly for A" and A".

Remark 3.2.15. We note that if p; = 0 with i € I, then we have only the part
Ayp or the part Agoyn.

We consider A, similarly one proceeds for A’ and A”.

Definition 3.2.16. We shall call symmetric arc, an arc invariant under oy, i.e. an
arc of type [i, o1(7)].

Remark 3.2.17. By the division of A in Ay, and A gy, we note that all symmet-
ric arcs pass through the same or-fixed vertex of A or through the same o -fixed
edge of A.

Lemma 3.2.18. Let (Q, o) be a symmetric quiver of tame type.

(i) If n = or(n) then either there exists unique x € Qf such that e, (x) # 0 or
there exists unique a € QY such that e, (ta) # 0.
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(ii) If n— or(n) isa o-fixed edge in A, then there exists unique a € QY such
that e, (ta) # 0.

,1

Proof. One proceeds type by type. We consider () = ﬁi? since for the

other types one proves similarly.
(i) By lemma 3.2.1, the only o;-fixed vertex of A is 1 and b is the unique
arrow in QY such that e; (tb) # 0.

(i) The only o;-fixed edge of Ais L +1—o(L +1) and a is the unique
arrow in Qf such thate; ,(ta) # 0. O
2

Definition 3.2.19. (i) Ifn = o7(n), we call z(n) the unique x € Qf such that
en(x) # 0.
(ii) Ifn = or(n)or n—or(n) isaoy-fixed edge in A, we call a(n) the unique
a € QF such that e, (ta) # 0.
Definition 3.2.20. For every arc [i, j] in A, we define
6[1'73'] = Z €L.
ke(ig)
Definition 3.2.21. (i) A (d) := {[i,j] € A(d)| [i,5] C I}
(i) AL(d) :={[i, 5] € A(d)| [i, ] C Iy indli, j] = k}.
(iii) AG,(d) = {li, j] = o1li. j] € A(d)| ind[i, j] = k}.
Remark 3.2.22. [i,j] C I; if and only if [o7(j),01(3)] C I- and ind[i,j] =
ind[or(j), o1(i)]-

First we consider all the admissible arcs in A, (d) U A’, (d) such that
r = max{py}. So we get

=Y pile+oE) + Y piei =

i€ly iels

Z pi(€i+56i)+z pi€i— @ (ei) + defij)) + @ elior)] | -

i€ly icls [i.4]€ A% (d) [i.o1()]€A7, (d)

(3.23)
where max(p;) = r — 1. Then we repeat the procedure for (3.23) and so on
we have

Z pile; + 0e;) + Zpiei =
iely icls
(e +0ep)+ D o |- (3.24)
k=1 \ li.jle AL (d) [i,o1(D)]€ A (d)
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Remark 3.2.23. (i) If [i,j] and [i’, j'] are two admissible arcs in A(d) such
that [i, 5] D [¢', 7'], then ind[i, j] < ind[i', j'].

ii) If there not exists [i, j] € 1)U 1) such that [i, 7] D [i’, j'] for some
(ii) If th s "7A’;Id A" (d) such th g
1,7 € U , then the symmetric dimension vector correspond-
/.)€ AL, (d) UAE (d), then the symmetric dimensi pond
ing to (i, j'| appears k-times in the decomposition (3.24), with 1 < h < k.

Definition 3.2.24. Let [i1, j1], . .., [ik, ji| be the admissible arcs such that [i1, j1] 2
) [ik,jk], with k > 1. We deﬁne Q[ih,jh} = ind[z’h,jh] — ind[ih,l,jh,l]for
every 1 < h < k, where ind|ig, ig] = 0.

We note that for every [i, j] € A% (d) U A% (d), q;; ;) is the multiplicity of
the symmetric dimension vector corresponding to [, j] in the decomposi-
tion (3.24).

Finally we have

> pilei+de) + > piei =

icly icls
D (e +0ep )+ D (e ) T (3.25)
li.j]eA4 () li,01 ()| €A(d)

Example 3.2.25. If A is of the form

er = dey (3.26)
N
€2 dez = €4,(2)
es des = €q,(3)
\ /
eq = 0ey

and p1 = 2, po = 3, p3 = 0and py = 2, then [2,0’](2)] = {2,1,0’](2)} C
I Uy with q2,01(2)] = ind[2,07(2)] =2, [2,2] = {2} € I with q2,2] =
ind[2,2) — ind[2,01(2)] = 1 and [4,4] = {4} € I; with qu ) = ind[4,4] = 2.
So we have

Z pi(e; + de;) + Zpiei = ((eg + dez) + €1)P2 @ (ez + dea) ® (eq) 2.

i€ly icls

Similarly we proceed with the decomposition of d’ and d”. So we have
the following
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Proposition 3.2.26. Let (Q), o) be a symmetric quiver of tame type and let d be
a symmetric dimension vector of a representation of the underlying quiver () with
decomposition (3.16). Then

p
d=@Dh+ D (epn+depn)®™+ D (pow) ™+

=1 [i.7]1€A(d) [i,01(i)]€A(d)

D (o)™ + D (e )
[i.5l€A] (d) [i,op (D)€ (d)

D (o)t P (eﬁaw(n)@q““ﬂ’“” (3.27)
[i,4]e A (d") li,o 1 (i) €A (d)

is the generic decomposition of d.

We restrict to dimension vectors of regular symplectic representations

and of regular orthogonal representations. We modify generic decomposi-
tion (3.27) of d = (d;)icq, to get symplectic generic decomposition of d or
orthogonal generic decomposition of d.
Let [i, j] be an arc in A,;, and let [h, k] be an arc in A oy If E; j is the regu-
lar indecomposable symplectic (respectively orthogonal) representation of
(Q, o) corresponding to [i, j] and Ej, 4 is the regular indecomposable sym-
plectic (respectively orthogonal) representation of (Q, o) corresponding to
[h, k], then

Homq(E}; j1, Eppgy) = 0 = Homq(Ej, 1, Eji j)

and
Ez:tlQ(E[i,ﬂ,E[h’k]) =0= E:ctlQ(E[h,k}, Ej; j)-

So we deal separately with A, and Agyn. We consider I = 1P U T d"j”",
I = I'P U I{evm and Is = I L I§o"™. We have the decomposition d =
dup + ddown, Where

dup =Y, pilei +0ei) + Y pie; (3.28)
iely? iely?
and )
ddown = Z pz €; + 562 Z pi€;. (329)
ie[iown leldown

By what has be said, the symplectic (respectively orthogonal) generic de-
composition of d is direct sum of the symplectic (respectively orthogonal)
generic decomposition of d,;, and the symplectic (respectively orthogonal)
generic decomposition of ddown-
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Remark 3.2.27. (i) In the symplectic case, since d, has to be even for every
x € QF, we have to modify the symmetric dimension vectors corresponding
to the arcs passing through the or-fixed vertex n such that there exists x =
x(n) € QF such that e, (z) # 0.

(ii) In the orthogonal case, we have to modify the symmetric dimension vectors
corresponding to the arcs passing through the o-fixed vertex n such that
diq(n) 1s even and those corresponding to the arcs passing through the o;-

fixed edge n — o(n) such that Jta(n) is even.

(iii) We have to modify also ph+ey; », iy, with p odd, if [i, o1 (i)] is like in part (i)
(respectively part (ii)), since h + e; 5,(;) is the dimension vector of regular
indecomposable symplectic (respectively orthogonal) representation.

Definition 3.2.28. (i) A"P(d) = {[i,j] € A(d)] [i, j] C I"P}.

(ii) A (d) = {[i.5] € A(d)| [i,j]  I{}.
(iii) Adown(cz> — {[Z,j] c A(CZ)’ [ij] C Idown}.
(iv) Aiown(d_) — {[Z,]] c A(J)| [Z,]] C Iiown}.

Let d = Jup + dgown be a regular symplectic dimension vector. We
consider A,;,. Ay, contains either a o;-fixed vertex n,, or a or-fixed edge

Nup — o7 (nyp) . Starting from generic decomposition (3.27) of Jup we mod-
ify it as follows.

(1) We keep the summands (ej; ;) + 56[1.’3.])@‘1[@;'] corresponding to the arc
4] C I%.

(2) If nyp is such that there exists a = a(ny,) € Qf, then we keep the sum-
mands (e}; 5, (i) )®4li.o1 ()] corresponding to the symmetric arcs [i, o7(i)]
of Ayp.

(3) If nyyp is such that there exists © = 2(n.,) € QF, we have the symmet-
ric dimension vectors

Clir,or(in)]y -+ s Clins,or(izs)]

corresponding to the arcs [i1, 07 (i1)], . . ., [i2s, 01 (i2s)] such that [i1, o7(i1)] D

-+ D [i2s, 01(i2s)]. Then we divide them into pairs

([i2k, or(i2k)], [i2k—1, 01 (i2k-1)]),

with 1 < k < s. For each pair we consider [iox, o1 (i2k—1)|U[iok—1, o1 (t2k)]

and we substitute Cligg 01 (iz)] © €link_1,01(iar_1)] for

Cliok,01(i2k—1)] + Cliok—_1,01(i2x)]"
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So, by equation 3.25, in the symplectic case we get

(i) if nyp is such that there exists a = a(ny,) € QF,

dp= D (eg+0ep)®™ 1+ D (elom) s

[i.4)€ A% (d) [i.01 (i) € AP (d)
(3.30)

(ii) If ny, is such that there exists z = x(nyp) € QF,

d“p = @ (e[l}j] +5€[i»j])@q[i'j] +@(e[i2k701 (t2k—1)] +€[i2k—1701(i2k)])'
[i,5]€ AL (d) k=1
(3.31)

Similarly one proceeds for A gy
Finally we have to modify like in (3) the dimension vector ph+-e(; 5, (i) if pis
odd and [i, 07(i)] passes through n,,;, such that there exists z = z(n,,) € QF.

Example 3.2.29. Let (Q, o) be the symmetric quiver 2[1“1; We recall that x
o(z1). A has the form (3.26).
2

As in example 3.2.25, let py = 2, p2 = 3, p3 = 0 and ps = 2. The o-fixed vertex
4 is such that eq(x1) # 0. The only symmetric arc passing through 4 is [4, 4].
2

1
2

Thus we substitute (e4)®? for 2e4. So, in the symplectic case we get

Z pi(e; + de;) + sz-ei = ((e2 + dea) + 61)@2 @ (e2 + dez) @ 2ey.
1€l i€l

Similarly we proceed with the decomposition of d’ and d”.
Letd = Jup + dgown be a regular orthogonal dimension vector. We consider
A,,p. Starting from generic decomposition (3.27) of d,;, we modify it as
follows.

(1) We keep ;he summands (e}; ;) + 5e[i’j])@q[ivﬂ corresponding to the arc
[i,4] € I'P.

(2) If nyy is such that there exists a = a(ny,) € QF such that dy, is odd or
Nyp is such that there exist x = x(n.,) € Qf, then we keep the sum-
mands (e}; (i) )®ior) corresponding to the symmetric arcs [i, o7 (7))
of Ayp.

(3) If ny, is such that there exists a = a(n,,) € Qf such that d, is even,
we have the symmetric dimension vectors

Cli1,o7(i1)]s* * *» Clins,or(i2s)]
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corresponding to the arcs [i1, 07 (i1)], . . ., [i2s, 01 (i2s)] such that [i1, o7(i1)] D
-+ D [i2s, 01(i25)]. Then we divide them into pairs

([i2k, or(i2k)], [i2k—1, 01 (i2k-1)]),

with 1 < k < s. For each pair we consider [io, o7 (i25—1)|U[i2k—1, 01 (i2k)]

and we substitute Cligg 01 (iz)] © €link_1,01(iak_1)] for

Clig,01(izp—1)] T Cling—1,07(izk)]"

So, by equation 3.25, in the orthogonal case we get

(i) if nyp is such that there exists a = a(ny,) € QF such that dy, is odd or
nup 1s such that there exist © = z(ny,) € QF,

dup = @ (epi.g) + des ) P%a1 + @ (€[t 07 (i) P71 O
[i,5]€ ALP (d") [i,01(3)]€A“P(d’)
(3.32)

(ii) if ny, is such that there exists a = a(n.,) € QF such that d, is even,
P P 1

dup = @ (e[i’j]—i_(se[ivj])@q[i’j] +@(e[i2ka01(i2k71)]+6[i2k717‘71(i2k)])'
[i,5]1€e AL (d') k=1
(3.33)

Similarly one proceeds for A g,y

Finally we have to modify like in (3) the dimension vector ph+-e(; 5, (i) if pis
odd and [i, o7(7)] passes through n,, such that there exists a = a(n,,) € Q7
such that dy, is even.

Example 3.2.30. Let (QQ, o) be the symmetric quiver ﬁéé We recall that b =
o(b). A has the form (3.26).
As in example 3.2.25, let py = 2, p2 = 3, p3 = 0 and ps = 2. The o-fixed vertex
1 is such that e1(tb) # 0 and dy, is 2. The only symmetric arc passing through 1
is [2,07(2)]. Thus we substitute ((ez + dez)) + e1)®? for 2((ez + Jea)) +e1). So,
in the orthogonal case we get

Z pi(e; + de;) + Zpiei = (e)P? @ (eg + dez) @ 2((ez + dea) + e1).
iely icls

Similarly we proceed with the decomposition of d’ and d”.
In general we have

Proposition 3.2.31. Let (Q, o) be a symmetric quiver of tame type.
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(1) If d is a reqular symplectic dimension vector with decomposition (3.16).
Then

p
d=EDh @ dup® diown ® dypy & dipur, & Ay & Ay, (3.34)
i=1
is the symplectic generic decomposition of d.

(2) If d is a regular orthogonal dimension vector with decomposition (3.16).
Then (3.16). Then

p
d = @ h ® JUP S Jdown D J;p @ Czldown S Jgp D Jgown (335)

i=1
is the orthogonal generic decomposition of d.

For the proof, we need two propositions. We state and prove these
propositions only for regular indecomposable symplectic (respectively or-
thogonal) representations related to polygon A, because for those related
to polygon A" and to polygon A” the statement and the proof are similar.

Proposition 3.2.32. Let (Q, o) be a symmetric quiver of tame tape. Let Vi # V5
be two regular indecomposable symplectic (respectively orthogonal) representa-
tions of (Q, o) with symmetric dimension vector corresponding respectively to the
arc [i, j] and the arc [h, k] of A (A" or A”). Moreover we suppose that [i, j| and
[h, k] don’t satisfy the following properties

(i) [i,7] N [h, k] # 0 and [i, j] doesn’t contain [h, k|;
(i1) [i, 4] N [h, k] # 0 and [h, k] doesn’t contain [i, j];
(iii) [i, 7] and [h, k| are linked by one edge of A (respectively A" or A”).
Then Emtb(vl, V2) = 0.

Proof. We restrict to decomposition d; = 3=, ;. plei+8e) + e Is plei,
for j = 1,2. We have nine cases:

D) Vi = Eig iy, V2 = Ejo,5) and V; = Esi(5)jr Vo = Eg(),i with i, j €
I+ L I5.
(2) Vi = E;5,6), Va = Ey(jy,j and Vi = E, )5, Va = E; 5,3 With i, j €

I, Ulssuchthatj > i+ 1.

(3) Vi = E@j @ Ecn(j),a](i)/ Vo = Ek,a;(k) and V7 = Ekp;(k)/ Vo = E@j S5
Ey,),0r() Withid, 5,k € I U I5 such that either j > k +1or k > u.

4 Vi = Eij ® Eo,(j),00)r V2 = Eoykyk 00 Vi = Eg i)k Vo = Eij @
Eg,(),01() With i, j, k € I, U I such that either j > kor k > i + 1.
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6) Vi = Eij © By (j),o;0) and Va = Ep 1 © By (1),0,n) With 4,5,k h €
I U Issuch thateither k < jandi < hork > jandi > h.

©) Vi = Eio1(j) © Ejortiy V2 = Ehoyh) © Eror(n) and Vi = g, @
Egl(i)?j and V5 = on(k),h S EUI(h)Jﬂ) with i, j, k € I, U I;.

) Vi = Eio(j) © Ejoriy V2 = Eoyiyie (tesp. Vi = Eg gy Vo =
Ei,O'I(j) b Ej,ﬁ[(i)) Wlth i,j,]{? (S I+ L I(S SUCh that k > 9 + 1 and
i >jand Vi = B, ()i © Eg)5 V2 = Eg o) (tesp. Vi = Ej 5,
Vo = Eq ()i ® Eo,(),5) with 4,5,k € I U I such that i > k + 1 and
i <.

B) Vi = Eio,(j) ® Ejoiyy Vo2 = Enk © Egy(k),orn) (tesp. Vi = Epj @
Esi(k),or(n) V2 = Eio) @ Ej,a;(i)) with i,j,k € I, U I5 such that
i > jandeitherk > i+ 1ori>hand Vi = E;,(j); ® Eq, ()5, V2 =
Enk® Lo, (k),0r(h) (tesp- Vi = En k@ Eg (k),01(h) V2 = Eo (), © Eoy(i),5)
with ¢, j,k € I U Is such thati < j and either k > iori > h + 1.

Q) Vi = Ei,o'[(j) @ Ej,a,(z‘) and V» = Egl(k)ﬁ ©® on(h),k (resp. Vi =

EU](k),h &) EO'I(h),k and V, = Ei,U[(j) S Ej,a](i)) with 4,5,k € I, U I
suchthath >i+ 1,7 > jand h < k.

We consider (1). By [D, lemma 4.1],
Homq(Ei o, (i), Ejoi(5)) = 0 = HomQ(Eo, (j) js Eo,(i).i)
and by lemma B.2.9,
(dim(E; o,3:)) A (Ej 5,(j))) = 0 = (dim(E,,(j),;), dim(Eg 3).i))-
So we get
Eaty(Ei o), Bjoy () = 0 = Bat(Eoy (5 5> oy i),i)-

Similarly for (2), by [D, lemma 4.1] and by lemma B.2.9, we get E.ﬂ%? (1, Vo) =
0.
We consider (3). We suppose j > k + 1. By [D, lemma 4.1], we have

,or(i)s

Homq(Eij, By o,k)) = 0 = Homq(Eq,(5),016)» Er,or (k)

and so
Homq(Eij ® Eq,(j),01()s Eryor (k)

= Homq(Eij, Ey.o,(k) © Homq(Es,(),016)» Erork)) = 0-

Moreover, by lemma B.2.9

(dim(E; j), dim(Ey 5, x))) = 0 = (dim(Ey, ()0, () B By o, (k)))
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and hence
(dim(Ei; © Ey,(j),0,(:))> Bm(Ey o (1)) =
(dim(E; ), dim(Ey 5, x))) + (dim(Eq, ()0, 1)) @M By 5, ())) = 0.
So we have
Exto(Ei © Egy().01()s Eror (k) = 0.

Similarly to (3), one proceeds for the other cases. O

Proposition 3.2.33. Let (Q, o) be a symmetric quiver of tame tape. Let V be
a regular indecomposable symplectic (respectively orthogonal) representation of
(Q, o) such that dim (V') = h or d. Moreover we suppose V # E; j & E, () o1(i)
with i,j € I such that e;(ta) # 0 or ej(ta) # 0 for a € QF. Then, for every
non-trivial short exact sequence

0-V->W-=>V —0,
W is not symplectic (respectively it is not orthogonal).

Proof. We give a proof for (Q = ﬁi’?’l, o) for the symplectic case, one
proves similarly the other cases. 7
(i) Let dim (V') = h. By lemma 3.2.4, the regular indecomposable symplectic
representation of dimension h is E; ;,(;) containing F Ly i.e. the represen-

tation V' defined by V' (z) = K for every = € Qp and

V(C):{ 0 ife—a

Id otherwise,

for c € Q1.
By [D,lemma4.1], Homg(V, V) = Kand since (h, h) = 0, then Emtb(V, V)
K. One non-trivial auto-extension W of V is defined by W (z) = K2 for ev-

ery - € (o, and
0 1 .
<O 0) ifc=a

1 0 .
< 0 1) otherwise,

W(e) =

for ¢ € (1. Finally we note that W is not symplectic, because W (a) is not
symmetric. Since El‘té—?(v, V) = K, the non-trivial auto-extensions of V' is
not symplectic.

(ii) Let dim(V') = d. The only regular indecomposable symplectic represen-
tations which we have to consider are E; ;) ® Ej 5, ;) and E,(j): D Es (3,5
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withi,j € I, U ;.
LetV = E; . ;) ® E;

2,01

o1(j) (i)r with j < .
K ifxe{z]en(z,)#0, me{j+1,...,i}}
Vi) =V(e(x))¢ 0 ifze{z]en(z,) =0,mel;}
K? otherwise

for z € Qo and

% | ifce{vrem(t(vr))#o, me{j+1,...,i}}
¢ 1,1) ifc=wv.st e;(tv,) #0
Vie)==Vie(e)' = 0 if ¢ € {v, emgtvr) =0,me I;}U{a}

Idoys otherwise

force Qf and V' (b) = Idaxoa.
By [D, lemma 4.1],

dimx(HomqQ(Ei () ® Ejo,()> Bior () © Ejor(n)) =3
and by lemma B.2.9,

(dim(E; () © Ejor(i))> (B g, (5) ® Ejoy (1)) = 2.

So we have
1
Exto(Ej o) © Ej o)y Eioi () @ Ejors) = K
Let
1 0 0 1
1 1 0 0 01 0 0
A‘<0011> and B=19 91 ¢
0O 0 0 1

One non-trivial auto-extension W of V is defined by

K? ifz € {z|en(z,) #0, me{j+1,...,i}}
W(x)=W(o(x)) 0 ifze{x,|en(z,)=0mecl;}
K* otherwise

for x € Qo and

Idayo ifce{v|en(tv,) #0, me{j+1,...,i}}
A if c = v s.t. ej(tv,) #0

0 if c € {v,| e (tvy) =0,m € I, .} U{a}
Idsws otherwise,

for c € Q] and W (b) = B. Finally we note that W is not symplectic because
W (b) is not symmetric. Since Ea:tb(V, V) =K, this concludes the proof for
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(At o). O
Proof of 3.2.31. (1) Let d be a symplectic regular dimension vector with de-
composition (3.34). First we note that the symmetric dimension vectors ap-
pearing in decomposition (3.2.31) are not dimension vectors of the regular
indecomposable symplectic representations which are exceptions of propo-
sition 3.2.32 and 3.2.33. Let O(d) be the open orbit of the regular symplectic
representations of dimension d. By [Bol] and [Z], we obtain each represen-
tation V in O(d) as follows.

There are representations M;, U;, V; and short exact sequences

0—-U,—-> M, —-V;,—0

such that M;11 = U; @ V;and V = Uy41 @ Vi1, with 1 < ¢ < n for some
n € N.
By propositions 3.2.32 and 3.2.33, we have

(i) If U; # Vi, then Bty (Vi, U;) = 0.

(ii) If U; = V;, then either E:z:tb(Ui, U;) = 0 or no one non-trivial auto-
extension of U; is symplectic. So, if Emtb(Ui, U;) # 0 then U; doesn’t
appear in decomposition of a symplectic representation.

Hence V' decomposes in regular indecomposable symplectic representa-
tions of dimension 3;, where 3; are regular symmetric dimension vectors
appearing in decomposition (3.34) of d.

(2) One proves similarly to (1). O

Let d be a regular symmetric vector with a decomposition (3.34) or (3.35).
We note that if d = d; + d2 with d; and dy summands of this generic de-
composition, we have canonical embeddings

[}
SpSI(Q,d) =4 ) SpSI(Q, dv)y),, © SpSI(Q,do)y,,  (3.36)
xEchar(Sp(Q,d))

and

0SI(Q.d) ™ @  08I(Q.d1)y, ®O0SIQ.da)y,,.  (3.37)
xEchar(0(Q,d))

induced by the restriction homomorphism. We prove theorem 3.2.9 by in-
duction on the number of the summands ej; j;+0¢€(; j1, €5,01(i)]7 Cligg.01 (i 1)) T
€lion_1,01(izx)] aNd TESpective summands corresponding to the admissible
arcs in A'(d) and in A”(d). If this number is 0, then d = ph and it was al-
ready proved. We suppose that the generic decomposition of d contains one
of those summands and, without loss of generality, we can assume that this
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summand is one of those corresponding to the arcs in A(d). In particular we
suppose that this summand is e[ ;, (5)] (one proceeds similarly for the other
types), with s € I U I5, and we can assume ind[s, o;(s)] = r = maz{py}.
We call dy = e[ 4,(s)) and so d1 = d — €[5 5,(s)]- Now we compare the gen-
erators of the algebras SpSI(Q, d) and SpSI(Q, d:) (respectively OSI(Q,d)
and OSI(Q,d)). By induction the generators of SpSI(Q,d;) (respectively
of OSI(Q,dy)) are described by theorem 3.2.9. Since A’(d) = A’(d;) and
A"(d) = A"(dy), the generators cy, ..., ¢; (witht = &, 25= L or p), those cor-
responding to the arcs from A’(d) and those correspondmg to the arcs from
A”(d) occur. So it’s enough to study the behavior of the semi-invariants
corresponding to the arcs from A(d). We describe the link between the ad-
missible arcs of the polygons A(d) and A(d;). We have

di = ph + Z pi(e; + de;) + Z piei+

i€l \(I+N[s,o7(s)]) i€l5\(I5N[s,01(s)])

Z pi(ei + de;) + Z piei+

1€l N[s,or(s)] i€lsN[s,or(s)]

Z pi(e; + del) + Zp -+ Z p (el + dell).

iel! i€l iel!
We have two cases
(1) ps—1 = Poy(s)41 <7 —Lwiths—1 e,
(2) Ps—1 = Poy(s)+1 =7 — L withs —1 € I;.

in the case (1) the only difference between the structure of A(d) and A(d;)
is that the admissible arcs [s,s + 1],[s + 1,s + 2],...,[01(s) — 1,0(s)] are
of index r in A(d) and of index » — 1 in \A(d;). In the case (2) we have
the admissible arc [s — 1,07(s) + 1] of index » — 1. The admissible arcs
[s,s +1],[s+ 1,5+ 2],...,[01(s) — 1,07(s)] are of index s in A(d) and the
admissible arcs [s — 1, 8], [s, s+ 1],...,[o1(s) = 1,01(5)], [o1($),01(s) + 1] are
of index r — 1 in A(dy).

Now we prove that the embeddings ¢, and V¥, are isomorphisms and
this will be done in two steps. The first step is to show case by case that
the semi-invariants corresponding to the admissible arcs [i, j] are non zero
¢V for some V € Rep(Q) and, if V satisfy property (Spp) or (Op), they
are non zero pf". The second step is to give an explicit description of
the generators of the algebras on the right hand side of ®; and ¥,. This
is based on the knowledge, given by inductive hypothesis, of the alge-
bra SpSI(Q,d;) (respectively OSI(Q,d1)). We can describe explicitly the
generators of the algebra SpSI(Q,dz2) (respectively OSI(Q,d2)) and we
can note that they are determinants or pfaffians, knowing that the group
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Sp(Q, dz2) (respectively O(Q), d2)) has an open orbit in SpRep(Q, d2) (respec-
tively ORep(Q, d2)) and hence that SpSI(Q,d2) (respectively OSI(Q, d2))
is a polynomial ring (lemma A.2.5). At this point we know the generators
of the algebras on the right hand side of ®; and ¥,;. Now, using the fact
that these are determinants or pfaffians, we prove that they actually are in
SpSI1(Q, d) (respectively in OSI(Q, d)) and that the embeddings ®; and ¥,
are isomorphisms.

We will consider case by case the semi-invariants corresponding to each
admissible arc [i, j|. To simplify the notation we shall call a both the arrow
a € 1 and the linear map V' (a) defined on a, where V' is a representation

of Q.

12,0,1
3211 A7

We have at most two 71 -orbits A and A’ of the dimension vectors of nonho-
mogeneous simple regular representation. We assume n > 2 and we con-

sider the T-orbit {e; = dej, e, ..., €[Lit1> 5€[L]+1, ...,0ea}. Let [i, ] € A(d).
2 2

If we consider the arc [1, 1] of index 0, i.e. p1 = 0,p2 #0, ... DL #0, we
2
have the minimal projective resolution of V(g )
Vo,
0—>P¢7(a0) = Pao %‘/(0,1) —0
where d;{f;’;) =o(vy)---o(vi)av: ---v1; and so
2 2
Vo = det(HomQ(dXE;’;), ) =det(o(vy)---o(vi)avy ---v1)
2 2

in the symplectic case and pf"©) = pf(o(vy)---o(vi)avy ---v;) in the or-
2 2

thogonal case, since in this case a is skew-symmetric and o (v;) = —(v;)". If
we consider the arc [07(2),2] = [0,2] of index 0, i.e. p,,(2) = 0 = p2,p1 # 0,
we have the minimal projective resolution of V/; g

V(1.0)
min

0 — Prag) = Fag — V(1,00 — 0

v
where d, ;' = o(uy) -+~ o(ux )bux - - -u; and so
2 2

Voo = det(HomQ(dv(l’O) ) =det(o(uy) - o(ux)bu
2

min "ul)

ISES

in the symplectic case and pf"0.0 = pf(o(ur)---o(ux)bur ---up) in the
2 2

orthogonal case, since in this case b is skew-symmetric and o (u;) = —(u;)".
We note that for | = 2 we have only the admissible arcs [1, 1] an [07(2), 2].
We assume now that [ > 4 (I is even) and [i, j] is not an admissible arc
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considered above. If 1 <1i < j < % + 1, then we identify [4, j] with the path
vj_1---v; in @ and we have the minimal projective resolution of E; ;_

E: .
d ’L‘,]—l
0P ™ P i ——0
xj1 i1 4,j—1

Eij-1 _
whered '~ =wv;_1---v; and so

cFii-1 = det(HomQ(di%_l, 1)) = det(vj—1---v;).
We note that

¢ VEiji-1 — Fori)eri-1 = det(o(v;) - - - O'(Ujfl)) = det(vjil cvg) = cFig-1.

If j = 0;(i) then in the symplectic case we get ¢¥or®0-1 = det(a(v;) - --a - - - v;)
and in the orthogonal case, we get pfPieri-1 = pflo(vi)---a---v;), since
o(vi)---a---v; is skew-symmetric. Now we consider the arcs [i, j] which
have e; as internal vertex. For these arcs, 2 < j < i — 1 < [ and [7, j| can be
identify with the path in @) consisting of the path v; - - - v;_; = o(v1) - - - vi_1,
then coming back by o(u1)---b---u; and at last passing for vj_; - - - v1. We
have the minimal projective resolution of E; ;_;

Eij—1

0 —)Pa(ao) ®P1j71 S Pao EBPMfQ —)E’L’:jfl —0

E’L,]*l . O'(ul) .. -b. . -ul Uj*l .. -Ul
whered, 7 = < o(vr) Vi 0 and so
El’_l . Ez‘]71 . . O‘(ul)".b"'ul 0'(1}1)".2}7/_1
7=t = det(Homg(d,,;) ")) = det < vy -eev 0 .

In particular we note that if i = o(j), in the orthogonal case, we get

prUI(j),j—l :pf< J(ul)"'b'“ul 0’(1}1)...0—<,Uj_1) > |

ij_l.../Ul 0

since b is skew-symmetric and o(v;) = —(v;)". Finally we note that V{g 1),
Vi1,0), Eigri)—1 and E, ;) i1 satisfy property (Spp). Similarly we define
the semi-invariants for the admissible arcs [¢, j] in A’'(d), exchanging the
upper paths of gﬁ?l with the lower ones.

12,0,2
3212 A

We have at most two 71 -orbits A and A’ of the dimension vectors of non-
homogeneous simple regular representation. We assume n > 2 and we
consider the 7-orbit

{62,...,e[é]+2,5e[%]+2,...,5€2 = 61}.
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Let [i,j] € A(d). If we consider the arc [07(2),2] = [1,2] of index 0, i.e.

p2=0,p3 #0,..., Pliy42 # 0, we have the minimal projective resolution of
2
Viv0)
V(1,0)
0— Pyg) = Pay — Vi) —0
where dm?f) =o(v1)---o(vi)av, ---v; and so
2 2

Vo) = det(HomQ(d:E;;lO), ) =det(o(vy)---o(vi)ave -+ v1)
2

N~

in the symplectic case and pf"0-0 = pf(o(vy)---o(vi)avy ---v;) in the or-
2 2

thogonal case, since in this case a is skew-symmetric and o (v;) = —(v;)". If

we consider the arc [07(3), 3] = [0, 3] of index 0, i.e. p3 = 0,p2 # 0, we have

the minimal projective resolution of V(g 1)

V(o,1)
0—>Py% @PU(CL()) M PO'(yE)@P(lO —)‘/(071) —>0
2
b U(ul)-"U(Uk)
\% k
where d, /") = < e 0 and so
2
Vo) = det(Hom (dv(o’l) 1)) = det ’ R
- Q@ min ")) = o(up)---o(uz) 0
2
in the symplectic case and
b Uk -+ U
Vio,1) — 2
rf pf( o) o(ur) 0 )
2
in the orthogonal case, since b is skew-symmetric and o (u;) = —(u;)". We

note that for [ = 2 we have only the admissible arcs [07(2),2] an [07(3), 3].
We assume now that | > 4 and [, j] is not an admissible arc considered
above. If2 < i< jel< % + 2, then we identify [i, j| with the path
vj_2---v;—1 in () and we have the minimal projective resolution of F; ; 1

Eij—1
min
0— Py, = Py, — Eij1—0
where dZ9 =y 5---v;_; and so
min — Uj-2 i—1

cFii-1 = det(HomQ(dfﬁfl, 1)) = det(vj—g- - vi—1).
We note that

¢ VB = Forrerin1 = det(o(vi—1)---o(vj—2)) = det(vj_g---vi—1) = ¢
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Moreover, if j = o7(7) then, only in the orthogonal case, we get  pf Biop-1 =
pf(o(vic1)---a---vj_1) since o(vi—1)---a---v;_1 is skew-symmetric. Now
we consider the arcs [i, j] which have des = e; and es as internal vertex.
For these arcs, 3 < j < i —1 < [ + 1 and we have the minimal projective
resolution of E; j_1

E

i5—1
0 —>Py§ ® Po(ag) ® Pr; s = Poly,)® FPag ® Py, y — Ejjjo1 — 0
2
b o(uy)---o(ux) 0
2
where alm;j1 "= ur-w 0 vj_g---v; | and so
2
0 o(vi) - vi—2 0
b Uk - U 0
2
cFii=1 = det (up)---o(ux) 0 o(vy) - vi—g
2
0 Ujfz U1 0

b Uk =+ UL 0
2
pra‘](j)’j—l :pf U(ul)g(ug) 0 0'(1)1)0'(1)]_2) ,
0 Uj_g U1 0
since b is skew-symmetric, o(v;) = —(v;)! and o(u;) = —(u;)". Finally we

note that V(o 1), V(1,0), i i)—1 and Eg ;) j1 satisfy property (Spp). Sim-
ilarly we define the semi-invariants for the admissible arcs [4, j] in A'(d),
exchanging the upper paths of A2 92 with the lower ones.

0,2
3213 Ay

We have at most two 71-orbits A and A’ of the dimension vectors of non-
homogeneous simple regular representation. We assume n > 2 and we
consider the 7-orbit

{61:561,62,...,6[71}+1, [z 1]+2 = de [T1}+2’5 [T1}+1,...,562}.

Let [i, j] € A(d). If we consider the arc [1,1] of index 0, i.e. p; = 0,p2 #

0,... s P[i=1]40 # 0, we have the minimal projective resolution of V(g 1)
2
V(o,1)
0— Poag)y = Fay — Vo) — 0
where dﬂifn” =o(v1)---o(vi)ve -+ v and so
2 2

0.0 = det(Homg(d Vo, ) =det(o(vy)---o(v

min )1} o

"Ul)

|~

L
2
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in the orthogonal case and pfV©) = pf(o(vy) - - O‘(Ué )v% ---v1) in the sym-
plectic case, since by definition of symplectic representation
o(v1)---o(vi)vy --- vy is skew-symmetric. If we consider the arc [07(2),2] =
[0, 2] of inde>2< O,Qi.e. Por(2) = 0 = pa2,p1 # 0, we have the minimal projective
resolution of V{4 g

V(1,0)
min

O—>Pa(ao) - Pao—)‘/(l,O)—>O

Vi1,0)

whered, .

=o(uy)--ou

MES

Juk -+ -u1 and so
2

CV(1,0) = det(fIOTnQ(dv(l’0> )) = det(()'(ul) cee O'(UE)U
2

min

"Ul)

MBS

in the orthogonal case and pf'.0 = pf(o(u)---o(ur)ux ---u1) in the
symplectic case, since by definition of symplectic represeQnta%cion
o(ur)---o(ur)uk ---u; is skew-symmetric. We note that for [ = 2 we have
only the admissible arcs [1,1] an [07(2),2]. We assume now that ! > 4 (/ is
even) and [i, j] is not an admissible arc considered above. If 1 < i < j <
[ 4 1, then we identify [i, j| with the path v;_; - - - v; in Q and we have the
minimal projective resolution of F; ;1

Ei.,jfl
min
0— ijfl — Py, — Eij1—0
here =7t =y, ; and
where d = = v;_;---v; and so

cFii-1 = det(HomQ(dEi’j_l, 1) = det(vj_1---v;).

min
We note that
CT_VE'L"]‘71 — CEG](]')yU](i)—l — det(a(vz) - O-(Uj—l)) — det(v]_l - Ui) — cEi,jfl'

Moreover, if j = o;(%) then, only in the symplectic case, we get p f Biori-1 =
pf(o(v;)---v;), since o(v;) - - - v; is skew-symmetric. Now we consider the
arcs [i, j] which have e; as internal vertex. For these arcs, 2 < j <i—1<
and we have the minimal projective resolution of F; ;_;

Eij—1

0 e Po(ao) ) Pa:j,1 % Pao EB Pxi—l — 2,7—1 — O

where dTEniZ:jL‘l = < Z((le))zll Uj_l(')“vl > and so

cEiyjfl — det(HomQ(dfnlz’ffl,)) — det ( U(Ul) S UL U(Ul) RS ) '
rUj_l A 0
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In particular we note that if i = o/(j), in the symplectic case, we get

For@i-t = o(ur)---uy o(v1)---o(vj-1)
pfror® —pf< 0 J )7

U]—]_ ... /Ul
since o(u1)---u; and o(v;) = —(v;)". Finally we note that V(o1), V{1,0),
E; o1(iy—1 and By (j ;1 satisfy (Op). Similarly we define the semi-invariants

for the admissible arcs [z, j] in A'(d), exchanging the upper paths of 2212
with the lower ones.

3214 Ay

We have at most two 77 -orbits A and A’ of the dimension vectors of non-
homogeneous simple regular representation. We assume n > 2 and we
consider the 7-orbit

{61:561,62,..., [TlH_l, [l 1]+2 = de [Tl}ﬂ,& [T1]+1,...,562}.

Let [i,j] € A(d). If we consider the arc [1,1] of index 0, i.e. p1 = 0,p2 #

0,..., Pty # 0, we have the minimal projective resolution of Vg 1)
Vo.1)
O—>Pa(ao) mf)ao—)V(OI) —0
where dwifn) =o(v1)--o(vi)vs vy and so
2 2

00 = det(Homg(d Voo 1)) =det(o(vy)---o(v

min )U o

'Ul)

N~

L
2

in the orthogonal case and pfV©:) = pf(o(vy) - - a(vé )v% ---v1) in the sym-
plectic case, since by definition of symplectic representation

o(vy)--- a(v%)v% -+ - v1 is skew-symmetric . If we consider the arc [07(2), 2] =
[0,2] of index 0, i.e. p,,(2) = 0 = p2,p1 # 0, then we have the minimal pro-
jective resolution of V{; ¢

2 1.0
O—>Pa(ao) = P, —>‘/(1,0) —0
where dwillno) o(uy) - -o(ur)bu - --ug and so
2 2
Vo = det(HomQ(d:gﬁo), ) =det(o(uy) - o(ur)bug - -uy)

2 2

in the symplectic case and pf"0.0 = pf(o(u1)---o(ur)bur ---up) in the
2

k
2
—(u;)t. We note
1(2),2]. We assume

orthogonal case, since b is skew-symmetric and o (u;)
that for [ = 2 we have only the admissible arcs [1, 1] an [0
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now that! > 4 (lis even) and [i, j] is not an admissible arc considered above.
If 1 <i<j <l+1,then we identify [i, j] with the path v;_; --- v; in Q and
we have the minimal projective resolution of E; j_;

E

Fii—1
0— P$j71 = Py, — ij-1—0
E; i1
whered " =wv;_1---v; and so
cFii-1 = det(HomQ(df;-’[l, ) = det(vj_q1 - v;).
We note that

¢ VEij-1 — EorGeri-1 = det(o(vi) - o(vj_1)) = det(vj_1---v;) = cEii-1

Moreover, if j = o7(7) then, only in the symplectic case, we get pf (o (v;) - - - v;) =
pfFier@-1 since o (v;) - - - v; is skew-symmetric. Now we consider the arcs

[i, 7] which have e; as internal vertex. For these arcs, 2 < j <i—1 < land
we have the minimal projective resolution of E; ;_;

Eij—1

0—)Pa(ao)®PIj71 e Pao@Pxifl—) ’i:jfl—)o

where dZii-1 — < au) --b-ur o(vr) v ) and so

min Vi1 v 0

CEi’j_l — det(HOmQ(dilz’%_l,)) _ det( U(ul)-..b..-ul O'(Ul)...vi ) '
Ujfl"'Ul 0

In particular we note that if i = o/(j), in the orthogonal case, we get

prUI(j),j—l :pf< U(Ul)---b~..u1 O-(’Ul)"‘a'(’Ujfl) > |

Uj—l"'vl 0

since b is skew-symmetric, o(v;) = —(v;)! and o(u;) = —(u;)". Finally we
note that V(g 1), E; 5, ;-1 satisfy (Op) and V(y o), Ey,(;) ;-1 satisfy property
(Spp). Similarly we define the semi-invariants for the admissible arcs [7, j] in
A’(d), exchanging the upper paths of ﬁ,li} with the lower ones and tracing

out the procedure done for gz?l

40,0
3215 A))

We have at most two 7 -orbits A and A’ of the dimension vectors of non-
homogeneous simple regular representation but in this case A = §A’ s0 it’s
enough to study the semi-invariants associated to the arcs in .A(d), because
these are equal to those ones associated to the arcs in A'(d). We assume
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k > 2 and we consider the T-orbit {eg, e1,€2,...,ex_1}. Let [i, 5] € A(d). If
we consider the arc [1,1] of index 0, i.e. p1 = 0,p2 # 0,...,px—1 # 0, we
have the minimal projective resolution of V(g )

V0,1
min,

0— Pylag) — Pay — Vo) — 0

7
where d Y = v --- vy and so

min

Vo = det(HomQ(dv(o’1> ) = det(vg - - v1).

min

If we consider the arc [0, 2] of index 0, i.e. pg = 0 = p2, p1 # 0, then we have
the minimal projective resolution of V; )

V(1,0)
0 — Poag) = Lag — Vo —0
Vo)
whered, .’ = uj - --uy and so

Vo = det(HomQ(dX;;ﬁo), ) = det(ug - - uq).
We note that for £ = 2 we have only the admissible arcs [1,1] an [0, 2]. We
assume now that £ > 3 and [z, j] is not an admissible arc considered above.
If 1 <i < j <k, then we identify [4, j] with the path v;_; - - v; in Q and we
have the minimal projective resolution of £; ;_1

E;j—1
min
0— ij—1 = Py, — Ei,j—l —0

Eij—1
whered '~ =wv;_1---v; and so

cFii-1 = det(HomQ(di%_l, ) = det(vj—1---v;).
Now we consider the arcs [i, j] which have e; as internal vertex. For these
arcs, 2 < j <i—1 < k — 1 and we have the minimal projective resolution
of Ei,j—l

Eij—1

0—>Pa(ao)@P S Poy & Py — Eijj-1 — 0

Tj—1

B, UL U Vi_ ...rUl
where d 517t = ( F -l and so
’l}k .. -’l}l 0

cFii-1 = det(HomQ(dEi’jfl, ) = det < Wt Uk 0% ) .
1

mwn Uj—l cee Y
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32.1.6 DO

In this case there are three 7-orbit A = {e; = dey, e2,...,ep-1,0€n-1,...,0€2},
A" = {ef = dep, e = de)} and A" = {efj = def}. The only admissible arcs
in A’'(d) and A”(d) are [0, 0] and [1, 1], recalling that e, + ¢} = h = ¢} + €/.
For such arcs in A’ we have the minimal projective resolution of £ ;

/
Eo,1

a0
0 — Py(y) @ Pogy) =3 Py ® Py — Egp — 0

B,y [ o(a)ca 0 . /
whered, ;. = < o(a)eh o (b)eb >, similarly for £ ; and so

Fro — Foar — det(HOmQ(deQ, ) = det < U(%)Ea Z((Z))Céz ) '

We note that the matrices o(a)cb, o(a)ca and o(b)cb) have different size for
[0,0] and for [1, 1]. Whereas in A” we have we have the minimal projective

. 1" "
resolution of 0.1 = ¢F1o

"
Eo,1

0 — Py) ® Pypyyy =2 Py & P, — Ejy — 0

Ql

Q

where alEg’1 = 0 o(b)
ol b

min a)eb o (b) )a“d 50

Ql

min

o = P = alet(HomQ(dEO’1 -)) = det < 0(1?)6@ U<a)céb )
in the symplectic case and
E'. R 0 a(a)éb
I =pfe =pf < c(b)aa o(b)ch >
in the orthogonal case, since ¢ is skew-symmetric, o(b) = —b' and o(a) =

—a'. We assume n > 3 and we take [i, j] € A(d). If we consider the arc
[1,1], we have the minimal projective resolution V(; ;)

Vi

dmin
0 — Pyty) ® Pory) ™ Py @ Py — Vigp) — 0

Va1 o(a)éa o(b)ca
where dmzn - ( a(a)éb O'(b)éb and so

‘/(1»1) = ‘/(}’1) . = O'(CL)
c det(Homg(d,,;;" ")) det( o (b)

QI QI

IS
q 9
~—~~
S
N— ~—r
58
N————

a
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in the symplectic case and

L o(a)éa o(a)ch
pffen —pf< o(b)ea o (b)cb >

in the orthogonal case. If [i, j] doesn’t contain e; as an internal vertex, then
we have 1 <7 < j < 2n and we have the minimal projective resolution of
Eij-1

d_"
0— PZj—1 = P, ,— hj—1 — 7 0
here d,;2"* d
whered, =" =cj_o---ci—1 and so

cPri-1 = det(HomQ(di"lfffl, 1)) =det(cj—2---ci—1),
where ¢y = (a,b) and cg,—1 = 0(cp). In particular in the orthogonal case if
j = o1(i) then pfFier@-1 = pf(a(c;_1)---¢; 1), since in this case o(c¢;) =
—(¢;)" and ¢, is skew-symmetric. If 7, j] contains e as an internal vertex,
ie. 2 < j < i< 2n—1and we have the minimal projective resolution of
Eij1

Eij—1

0_>Pz-71@Pa(t1)@Po(t2) i Zi—l@Ptl & h, — i,j—1_>0

J

. 0 o(a)can—3i—1 o(b)can—3,i—1
where dmzi'g;l = Cj—2,10 0(&)0271,3,1@ O’(b)anfg’la and so
cj—21b  o(a)ean—31b  o(b)can—3.1b
0 Cj—210a cj—2,1b
it = | o(a)ean—si-1 o(a)can—sia o(a)can—s1b

o(b)can—3,i—1 o(b)can—31a o(b)can—3.1b

where ¢, = ¢ --- ¢ and ¢g1 = id. If 07(i) = j then, only in the orthogonal
case, we have

0 Cj—2.10a cj—2,1b
pfPorwit =pf | o(a)o(cj21) ola)ezm-sia o(a)ean-s1b |,
O'(b)O'(Cj_271) U(b)an_&la O'(b)CQn_SJb

~

since o(cj_21) = —(¢j—2.1)%, o(a) = —a’, o(b) = —b" and c,,—3 1 is skew-
symmetric.

Finally we note that EY, V(1 1), E; @)1 and E,, ;) j—1 satisfy property
(Spp).
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3217 DYt

There are again three 7-orbit A = {e; = dey, ea,...,ep—1 = d€p_1,...,0€2},
A" = {ef = dep, e = de)} and A" = {efj = def}. The only admissible arcs
in A’(d) and A”(d) are [0,0] and [1, 1], recalling that e{; + ¢} = h = e[} + €.
For such arcs in A" we have the minimal projective resolution of £ ;

/
Eo,1

a0
0 — Py(y) @ Pygy) =3 Py ® Py — Egy; — 0

B,y [ o(a)ca 0 . /
whered, ;. = < o(a)eh o (b)eb >, similarly for £ ; and so

Fro — Foar — det(HOmQ(deQ, ) = det < U(%)Ea Z((Z))Céz ) '

We note that the matrices o(a)cb, o(a)ca and o(b)cb) have different size for
[0,0] and for [1,1]. Whereas in A” we have the minimal projective resolu-
tion of c%01 = P

EQ 1

0 — Py) ® Pypyy =2 Py ®@ P, — Ejy — 0

Ql

Q

where alEg’1 = 0 o(b)
ol b

min a)eb o (b) )a“d 50

Ql

min

o = P = alet(HomQ(dEO’1 -)) = det < 0(1?)6@ U<a)céb )
in the orthogonal case and
B /N 0 a(a)éb
pfo =pfe —pf< c(b)aa o(b)ch >
in the symplectic case, since ¢ is skew-symmetric, o(b) = —b' and o(a) =
ymp y

—a'. We assume n > 3 and we take [i, j] € A(d). If we consider the arc
[1,1], we have the minimal projective resolution V(; ;)

Vi

dmin
0 — Pyty) ® Pory) ™ Py @ Py — Vigp) — 0

Va1 o(a)éa o(b)ca
where dmzn - ( a(a)éb O'(b)éb and so

‘/(1»1) = ‘/(}’1) . = O'(CL)
c det(Homg(d,,;;" ")) det( o (b)

QI QI

IS
q 9
~—~~
S
N— ~—r
58
N————

a
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in the orthogonal case and

L o(a)éa o(a)ch
pffen —pf< o(b)ea o (b)cb >

in the symplectic case. If |7, j] doesn’t contain e; as an internal vertex, then
we have 1 <i < j < 2n — 3 and we have the minimal projective resolution
of Ei7 j—1

d_"
0— PZj—1 = P, ,— hj—1 — 7 0
here d,;2"* d
whered, '~ =cj_o---ci—1 and so

cFii-1 = det(HomQ(di"lfffl, 1)) =det(cj—2---ci—1),
where ¢y = (a,b) and cz,—4 = o(cp). In particular in the symplectic case
if j = o7(i) then pffier®=1 = pf(o(ci_1)---ci1). If [i, j] contains e; as an
internal vertex, i.e. 2 < j < i < 2n — 4 and we have the minimal projective
resolution of E; ;1

Eij—1

0—>Pz~_1@Pa(t1)@Pa(t2) e P, ,ebh, &P, — Eij1—0

J

. 0 o(a)can—6,i—1 0(b)can—6,i—1
where dmzi’f,b_l = Cj—2,10 U(G)an_&la U(b)CQn_GJCL and so
Cj,Q’lb O'(CL)CQn,GJb O‘(b)CQn,(;’lb
0 cj_271a Cj_2,1b
cFiist = | g(a)ean—pi-1 o(a)can_s1a o(a)can_61b

o(b)can—6,i-1 0o(b)can—61a o(b)can—g,1b
If o7(i) = j then, only in the symplectic case, we have

0 ijg,la C];Q’lb
pfFrii=t =pf | o(a)o(cj21) o(a)can—si1a o(a)con—g1b |,
U(b)O'(CJ;Q,l) O'(b)Canf;’la O'(b)CanG’lb
since o(cj_21) = —(cj—21)!, o(a) = —a’, o(b) = —b' and c9p—6 1 is skew-
symmetric.
Finally we note that £, V(11), Ei s, i)-1 and E,, ;) j_1 satisfy property
(Op).

3.2.1.8 End of proof of theorem 3.2.9, theorem 3.2.6 and proposition 3.2.8

We prove the second step of proof of theorem 3.2.9. By the analysis case by
case we note that if [¢, j| is admissible then the semi-invariants associated
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to [i, j] define a nonzero element of SpSI(Q, d) (respectively of OSI(Q, d)).
For a symmetric dimension vector d we denote

Spl(Q,d) = {x € Z% U éZQw SpSI(Q,d)y # 0} (3.38)

and
Or(Q,d) = {x € Z U %ZQO\ 0SI(Q,d), # 0} (3.39)

the semigroup of weights of symplectic (respectively orthogonal) semi-
invariants. We note that (3.38) and (3.39) involve also %ZQO because in
SpSI(Q,d) and in OSI(Q, d) also pfaffians can appear. To simplify the no-
tation, we shall call x; j, X,[i,j] and X,[;,j] be respectively the weights of the
semi-invariants associated to admissible arcs [i, j] respectively from A(d),
A’(d) and A”(d). In the next the following proposition will be useful. We
will state it only for A, because for A’ and A” the statements are similar. Let
d be a regular symmetric dimension vector with canonical decomposition

d = ph + d withp > 1.

Proposition 3.2.34. Let (Q, o) be a symmetric quiver of tame type. Let da be of
tYpe e(s,o1(s))s €ls,t) + 0€[s,1] OF €lingo7 (inp—1)] T Elink—1,07(izk)]-
(i) If dy = €[5 o,(s)], then

"
[#,4]

(a) For every arc [i,j] of A and A" we have X’[i’j]\supp(dﬂ, X
SpI'(Q, d2) (respectively in OT'(Q, d2)).

supp(d2) €

(b) For every arc [i,j] of A that doesn’t intersect [s,or(s)] or contains [s —
1, 01(s)+1] we have x{; j | supp(dz) € SPL(Q, d2) (respectively in OT(Q, d2)).

(c) Let p1, ..., pr be theweights of generators of the polynomial algebra SpSI(Q, d2)
(respectively OSI(Q,dz)). Then r > n' — s, wheren' € 1 LI I is either a

or-fixed vertex or the extremal vertex of a or-fixed edge, and p, . .., pr can
be reordered such that p1 = X[ss41]s- -+ Pn'—s = X[n/—1,n’) 4nd for every
m > n' — swe have (py,,en) =0forn=s,...,n.

(ii) Let dy = e[sy) + Oefs g, then

"
[4,5]

(a) For every arc [i,j] of A and A" we have Xfi’j]\supp(dz),x supp(ds) €

SpI'(Q, d2) (respectively in OT'(Q, d2)).

(b) For every symmetric arc [i, j] of A that doesn’t intersect [s, t|U[o[(t), or(s)]
or contains [s — 1,07(s — 1)] or [o7(t + 1), t + 1], we have x; j| supp(ds) €
SpI'(Q, d2) (respectively in OT'(Q, d2)).

(c) Foreveryarc[i,j| C Iy (respectively [i, j] C I_) that doesn’t intersect [s, t]
(respectively [o1(t), o1(s)] or contains [s — 1, + 1] we have x[; jj|supp(ds) €
SpI'(Q, d2) (respectively in OT'(Q, d2))..
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(d) Let p1, ..., p, be the weights of generators of the polynomial algebra SpS1(Q, d2)
(respectively OSI(Q,d2)). Then r >t — s and p1, ..., p, can be reordered
such that p1 = X(ss41]s- - > Pt—s = X[t—1,] and for every m > t — s we
have (pm,en) =0forn=s,...,t.

(ZZI) Let d2 = e[i2k7ial(i2k_1)] + e[iQk—lviol(iQk)]/ then
7

[4,4]

(a) For every arc [i,j] of A" and A" we have Xfi’j]\supp(dQ), X
SpI'(Q, d2) (respectively in OT'(Q, d2)).

supp(d2) €

(b) For every arc [i, j| of A that doesn’t intersect [iog—1, 01 (i2k—1)] OF contains
liok—1 — 1, 01 (i2k—1) + 1] we have X(; ji|supp(as) € SPL'(Q, d2) (respectively
in OT(Q, d2)).

(c) Let p1, ..., pr be the weights of generators of the polynomial algebra SpSI(Q, d2)
(respectively OSI(Q,dz)). Then r > n' — s, wheren' € I U I is either a

or-fixed vertex or the extremal vertex of a or-fixed edge, and p., . .., p, can
be reordered such that p1 = X[ss41]s- -+ Pn'—s = X[n/—1,n’] 41d for every
m > n' — s we have (py,,en) =0forn=s,...,n.

Proof. It proceeds type by type analysis, considering the description of
the weights of symplectic and orthogonal semi-invariants done above. We
recall that vx(; jj = X(o;(j),0; (i) and we observe that if = is a o-fixed vertex
and x is a weight, then x(z) = 0. We prove only the symplectic case for

Q = 121*11”1 and for dy = e[, 4,(s), because the procedure to prove all other

cases is similar. We order the vertices of ﬁ,lcll such that the only source is 1

(so the only sinkis (1)), hv;—; = i foreveryi € {2,..., %4—1}, hu; = %—l—i—l—l
for every i € {1,...,%} and then the respective conjugates by o of these.
We shall call Wiy et where t!,...,t/ € ZU 1Z and {i1,...,is} isan

ordered subset of {1, ..., % + % + 1,0(% + g +1),...,0(1)}, the vector such

that )
_ S W)y y=i¥i =1, f
Wt )iyt () —{ 0 otherwise.
Moreover we can associate in bijective way the vertex i € {2,..., é} -

(ﬁ,lg})ar toi € I, the vertex é +i+1of ﬁ,lg} toi+ 1 € I and the vertex %

to [SL] +2 € I,
(a) By section 3.2.1.4 we have

R
X/[i,j]:w(l) for 1§’L<]§§+17

%+¢+1’(_1)é+j+1
if [¢, j] has not e; as internal vertex;

/ . .
Xig) = YOm0 150 M 0 (Da for j<i—1
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if [4, j] has e as internal vertex and in particular if j = o;(i) we have

/ —
X6d) = Y1) LB iy (CBo)”
Now if <sz j],e[sm(sm # 0 then x'[i g ¢ SpSI(Q,ds), but we note that
<Xl[i7j]’ €ls,or(s))) = 0 for every i and j, so we have (a).
(b) By section 3.2.1.4 we have

and - X(Lyq (L) = RO TIRCS TS

N | —~

X[i,j] = W(1);,(—1); for 1<i<j<
if [, j] has not e; as internal vertex;

X[i,j] = W(A)1,(=1);,(Di(~1)gy 0T J<i—1.

if [¢, j] has e; as internal vertex.

Now we note that (x; ji, €s,0;(s)]) 7 0if [4,5] N [s,t] # O and [i,5] 2 [s —
1,0(s — 1) = o(s) + 1], so we have (b).

(c) First we note that we can choose symmetric arcs of each length from a
fixed vertex of A, because the result of theorem 3.2.9 is invariant respect
to the Coxeter transformation 7. We note that [s,o;(s)] has e; as inter-
nal vector. The generators of SpSI(Q,ds) associated to A(dy) are c”
det(v;) of weight x[;i11] = wq), (1), for every i € {1,...,s — 1} and

CES,O'I(S)—l = det ( U(Ul) R U1 0‘(’(}1) e U('Us)

—

) of weight X[s,al(s)] =

Vg—1 "M 0
W(1)1,(=1)5, (1o (s (~ D)oy S0 We call pi = X i1] foreveryi € {1,...,s — 1}
and p,/ 5 = X(s,0,(s)), Where in this case n’ = [lg—l] + 2. The other generators

are associated to A’(dy) and so, as done in the part (a) of this proposition,
their weight p,,, for m € {n’ —s+1,...,r}, are such that (p;,, e,) = 0 for
ne{s,...,n'}. 0

We assume now that d = dy + d2 where d; = ph + d} withp > 1 and
dy = €[s,01(s)]/ €[s,1] + 0€s,q) OF Clinkiop iy )] T Elink— 5oy (ig)] " So we take the

corresponding arc in a chosen position (for which we proved proposition
3.2.34).

Proposition 3.2.35. Let d,d;,ds be as above. We suppose that the semigroup
SpI'(Q, dy) (respectively OT'(Q, d1)) is generated by the weights xy; i, X@-,j]/ X/[/i,j}
for admissible arcs [i, j] of the labelled polygons A(dy), A'(dy), A”(dy). Then
SpI'(Q, d1) N SpI'(Q, d2) (respectively OT'(Q,d1) N OI'(Q, d2)) is generated by
the weights x; 1, X/[i,j}’ X/[/i,j} for admissible arcs [i, j] of the labelled polygons A(d),
A'(d), A"(d).

Proof. We prove it only for the othogonal case and for d2 = e[, 5,(s),
because the symplectic case is similar.
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We are two cases.

(1) Assume ps—1 = Py, (s5)+1 < 7 — 1. The admissible arcs of A(dy), A(dy),
A"(dy)and A(d), A’(d), A”(d) are the same. By proposition 3.2.34 OT'(Q, d2)
contains X(s s41]s - - - » X[oy (s)—1,01(s)] @and all the other weights corresponding
to the admissible arcs of A(d), A'(d) and A”(d).

(2) Assume ps_1 = pg;(s)+1 = 7 — 1. We prove that OT'(Q, d1) NOT'(Q, dz) is
generated by XEM for every admissible arc [4, j] of A'(d;) = A'(d), X/[;,j} for
every admissible arc [i, j] of A"(d1) = A”(d) and xj; ; for every admissible
arc [i, j] of A(dy) of index smaller than r — 1 or not intersecting [s, o7(s)], i.e.

X[s,s4+1]s - - - » X[or(s)=1,07(s)] AN X[s—1,07(s)41] = X[s—1,6] T *** F X[os(s),07(s)+1]-
Let
X = Z i, Xij] T Z ng,jX'[i,jﬁ Z ”ZJX/[;,J']’
[i,5]€.A(d1) [i,5]€A"(d1) [i,5]€A” (d1)

with n; j,n; ;,n); > 0, be an element of OT'(Q,d1). We assume that x
is also in OI'(Q, dz2). By proposition 3.2.34, we note that all the genera-
tors of OT'(Q, d1) except of X[s_1,q and X4, (s),0;(s)+1] are also in OT'(Q, d2).
Hence, if x contains neither X[,_1 4 NOT X[o,(s),0;(s)+1), then x is a linear
combination of desired generators. So we have to prove that if x con-
tains X(s_1,5) (T€SP- X[o;(s),01(s)+1]) With positive coefficient, then it contains
X[s,s4+1]s - -5 X[o(s),01(s)+1] (reSP~ X[s—1,s]5 -~ - 7X[U[(s)—1,01(s)])' Thus we can
subtract X(s_1 5, (s)+1) from x.

We assume that x contains x[;_; ,q with positive coefficient (the proof is
similar for Xy, (s),0;(s)4+1])- We note that (x[s_; ,es) = —1 and, by propo-
sition 3.2.34, the other generators of OI'(Q, d;), except X[s,5+1] have zero
product scalar with e;. Moreover, x € OI'(Q,d2) and so, by proposi-
tion 3.2.34, (x,es) > 0. Hence x contains x|, ., 1) with positive coefficient.
By proposition 3.2.34, it follows that (x,es + es+1) > 0. But (x[s_1,4 +
X[s,s+1]» €s + €s+1) = —1 and X[s41 442] is the only generator of OT'(Q, d1)
with positive scalar product with e; + esy;. Continuing in this way, we
check that y contains X[s—1,s]» X[s,54+1]> - - - » X[o7(s)~ 1,07 (5)]s X[o1(s),07 (s)+1] with
positive coefficients. So we can subtract x[s_1.o,(s)+1] from x and continue.
In this way we complete the proof. O

Now we can finish the proof of theorem 3.2.9. Since theorem 3.2.9 is equiv-
alent to conjectures 1.2.1 and 1.2.2 for tame type and regular dimension
vectors, then, in this way, we finish also the proof of conjectures 1.2.1 and
1.2.2.

Again we consider the embeddings

P
SpSIQ,d) = P SpSI(Q,d)y,, @ IpSI(Q,da)y,,  (3:40)
x€char(Sp(Q.d))

113



and

0SI(Q.d) ™ @  0SI(Q.di)y, ®0SI(Q.dy)y,  (341)
xEchar(0(Q,d))

where @, d, di and d are as above. The semigroup of weights of the
right hand side of ¢, and ¥, are respectively SpI'(Q,d;1) N SpI'(Q, d2) and
OT(Q,d1) N OT'(Q, d2). These are generated by xj; ;, X/[i,j}/ x’[;j] for admis-
sible arcs [i, j] of the labelled polygons A(d), A’'(d), A”(d), by proposition
3.2.35. So the algebras on the right hand side of ®; and ¥, are generated by
the semi-invariants of weights x; ji, X/[Lj]’ x’[;j] and by the semi-invariants
of weights (h, ) (or (R, -)).

Finally, we note that the embeddings ®, and ¥, are isomorphisms because
they are also isomorphisms in the weight (h, -) (or 3(h,)) and so we com-
pleted the proof of theorem 3.2.9. Moreover, in that way, we also proved
proposition 3.2.8, expliciting the semi-invariants of type ¢" for every ad-
missible arc [4, j], and theorem 3.2.6, by isomorphisms ¢, and ¥, consider-
ing dy = phand dy = d'.
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Appendix A

Representations of GL and
invariant theory

A1 Highest weight theory for GL and Schur modules

We recall the basics of representation theory of general linear group.
We fix an algebraically closed field K.

Definition A.1.1. Let G be an algebraic group. (V, p) is a rational representation
if V' is a vector space of dimension m, p : G x V.— V such that p(g,v) = g-v
is a rational action, i.e.

a) g-(h-v)=(gh)-vforeveryg,h € Gandv €V,
b) e-v =wv for every v € V where e is identity in G,
c) pis a morphism of varieties.

Definition A.1.2. G is linearly reductive if and only if every rational linear rep-
resentation of G is semisimple.

Let G be a linearly reductive group and let p : G — GL(V) be a finite
dimensional rational representation of G. Let H be a maximal torus of G, i.e.
a maximal subgroup of G isomorphic to (K*)" for some h € N, restricting
p to H we obtain a rational representation of H. So we can decompose V'
into the direct sum of eigenspaces

v= P W

xEchar(H)

where char(H) = {homomorphisms of algebraic groups x : H — K*} is
the set of characters of H and V,, = {v € Vip(t)(v) = x(t)v, Vt € H}.
The elements x € char(H) such that V,, # 0 are called weights of p, V, is
called weight space of weight x and dim V), is called multiplicity of the weight
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X- The set of weights char(G) forms a free abelian group X = char(G). Let
® = ®(G, H) be the set of roots of G relative to H. ® is an abstract root
system in a real vector space E. Let A be a base of ®. So X has a dual
base by the inner product on E defined by Cartan matrix of ® (see [Hu,
Appendix]. A weight is called dominant weight if it is a linear combination
of elements of a such base of X with integer non-negative coefficients.

Theorem A.1.3. Let B be a Borel subgroup of G, i.e. a closed, connected and
solvable subgroup of G which is maximal for these properties, containing H.

(a) For every irreducible rational representation V of G there exists a unique
B-stable 1-dimensional subspace which is a weight space V,,, for some dom-
inant weight 1 of multiplicity 1 (1 is called the highest weight of V and any
generator of V,, is called highest weight vector ).

(b) For every dominant weight p € char(H) there exists an irreducible ratio-
nal representation V' of G with highest weight 1 (called the highest weight
representation of G) which is unique up to isomorphism, i.e. if V' is another
irreducible rational representation of G with highest weight ' then V is
isomorphic to V' if and only if j equals 1.

Proof. See [Hu, theorem 31.3]. O

The groups GL(n) and SL(n) are linearly reductive (see [GW, theorem
2.4.5]. Hence for GL(n) = GL(E), where E = K" with K an algebraically
closed field of characteristic 0, it’s enough to classify irreducible rational
representations.

If V is a vector space of dimension m, a rational representation p : GL(E) —
GL(V) is called polynomial if and only if the entries p;;(g) of p (for 1 <
i,j < m) are polynomials in {g;; }1<i j<n, Where g = (gij)1<i j<n € GL(E).
A polynomial representation p : GL(E) — GL(V') is homogeneous of de-
gree d if and only if the entries p;;(g) of p (for 1 < 4,j < m) are homoge-
neous of degree d in {g;; }1<i j<n-

Proposition A.1.4.  a) Every rational representation V of GL(E) is of the
formV =V'® (A" E)®" for some t, where V' is a polynomial representa-
tion and \" E is the n-th exterior power of E.

b) Every polynomial representation of GL(E) is a direct sum of homogeneous
representations.

Proof. See [FH, sec. 15.5]. O
Hence it’s enough to classify irreducible homogeneous representations of

degree d.
Let A be a partition of d,i.e. A = (A1,..., \p) withA =X > ... > X\ >0
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and A\;+. ..+, = d. We identify partitions (A1, ..., A\g, 0) with (A1, ..., Ag).
We shall denote d = || and we shall call the height of A\, denoted by ht()),
the number k of nonzero components of \. Graphically we represent \ as a
set of boxes with \; boxes in the i-th row (called Young diagram of \), so ||
and ht(\) are, respectively, the number of boxes and the number of rows of
the diagram of \. For example, if A = (4, 3, 1), then the Young diagram of A
is:
|

For a partition A\ we denote its conjugate (or transpose) partition \' =
(M-, A1), where )} is the number of boxes in the j-th column of the
Young diagram of . For example, if A = (4,3,1) then \' = (3,2,2,1) and
the Young diagram of )\ is:

|

Let T" be a tableau of shape ), i.e. a filling of the Young diagram of \ with
numbers 1,...,d. We define the Young idempotent er to be an element of
the group ring K[S;]. In the symmetric group S; we define the subgroups
Rt and Cr to be the sets of permutations in Sy preserving respectively the
rows and the columns of 7". We define

er = Z sgn(T)oT.

UERT,TECT

Finally we define the Schur module
S ,\V = eTV®d,

where V is a finite dimensional vector space, dimV = n. If T and 1" are
two tableaux of the same partition ), then erV® and e’TV®d are isomor-
phic as GL(V)-modules [W, lemma 2.2.13]; thus S,V = epV®d depends on
the partition A and not on the tableau 7. The representations S\V give all
irreducible representations of GL(V') homogeneous of degree d [P, chap. 9
sec. 8.1].

For the Schur modules sometimes we shall use the notation S,V and some-
times the notation Sy, . \,)V, it depends if we want to consider or not the
components of \.

Now we give two examples of Schur modules. If V is finite dimensional
vector space we shall call S, (V') the n-th symmetric power of V, so the
symmetric algebra of V' is S(V) = @,,>, S»(V), and A" (V) the n-th exte-
rior power of V, so the exterior algebra of Vis A(V) = @, A"(V).
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Example A.1.5. Let V' be an n-dimensional vector space

n—1
——
(@) If X = (d,0,...,0) = (d,0"1) then Sqgn—1)V is just the d-th symmetric
power Sg(V').
d n—d

N~
() IfFAx=(1,...,1,0,...,0) = (1¢,0"9) then S(1a gn—ayV is just the d-th ex-
terior power N*(V); in particular if d = dim V, SaimvyV = AV (V) =
D is called a determinant representation of G.

o) If k > nand A\, > 0, we have Sy, \,V = 0.

Introducing the convention \"(V*) = S _1  _1)Vand Sy, a,)V®
) )

n

A" (V*) = S -1,..a.—1)V, we see that there is a bijective correspondence
between rational irreducible representations of GL(n) and vectors (A1, ..., \,) €
Z™ such that A\1 > --- > \,,.

We give an alternative description of Schur modules equivalent to that al-
ready given [W, lemma 2.2.13]. Let V' be an n-dimensional vector space.

Let
r+s

m:/r\V(X)/S\VH /\V,

such that
mug Ao AU QU AL AVs) =up A Aup Avp AL A s,

be the multiplication in the exterior algebra /A V and let
r+s T s
A ANV AVe AV,

such that

A(ul A.. ./\uH_S) = Z (—1)Sgn(a)ua(1) A.. ./\uo(r) ®ug(r+1) A.. ./\uo(Hs)

UGS:’fS

where 57, = {0 € S,45l0(1) < -+ <o(r);o(r+1) <--- < o(r+s)}, be the
comultiplication in the exterior algebra /\ V. We consider A = (A1,..., \)
a partition of d. We can define the Schur module as

A1 Ak
S\Vi=AVe--e AN\V/R\V),

where

)\a—l )\a+2

A1 Ak
RAV)= Y AVe- @ ANV@Run(V)e A Ve oAV

1<a<k—1
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where R, ,+1(V) is the submodule spanned by the images of the following
maps 0(A\, a,u,v; V) withu +v < Mgyt

/\u V& /\)\afqu)\a.va Ve /\v 1%
1Al
A VeN e NV @ AUV
lm12®m34

AV @ AV

Let us choose an ordered basis {ey, ..., e, } of V.If T'is a tableau of shape A
with entries in {1,...,n}, we associate to 7' the element in S,V

era,1) N ANeran) @ ... @epr1) N ANerpn,) T R\, V),

where T'(i, j) is the entry of T" in the i-th row and j-th column of the Young
diagram of .

We recall some properties and some known results about Schur modules.
A filling of the Young diagram of a partition A\ with the numbers 1,...,n
weakly increasing along each row and strictly increasing along each col-
umn is called column standard tableau corresponding to the basis {e1, ..., e,}.

Theorem A.1.6. Let {e, ..., e} bea basis of V. The column standard tableaux
corresponding to this basis form a basis of S\V

Proof. See [W, prop. 2.1.4]. O

If V is an n-dimensional vector space, a Borel subgroup of GL(V') = GL(n)
is the subgroup of all upper triangular matrices, the maximal torus H of
GL(n) is the subgroup of diagonal matrices and the sequences (A1, ..., \y),
with \; € Zand A\ > ... > )\, are the dominant integral weights for GL(n);
we shall write x = diag(x1,...,zy) in H for the diagonal matrix with these
entries. The decomposition of V' into direct sum of weight spaces is

EB Va:{UEV]xm:foiviEH},
a=(at,...,an)EL™ i=1
see [B, chap. 3 sec. 8].
Theorem A.1.7. Let V' be an n-dimensional vector space.

1) If X is a partition with at most n components then the representation S\V of
GL(n) is an irreducible representation of highest weight X\ = (A1, ..., \p).

2) Forany p = (p1, ..., pn) with py > --- > p, integers, there is a unique
irreducible representation of GL(n) with highest weight n, which can be
realized as S\V @ D®*, for any k € Z and where \; = p; — k > 0 for every
ie{l,...,n}
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Proof. See [F, sec. 8.2 theorem 2]. O

By theorem A.1.3 and by the previous one, every irreducible rational rep-
resentation is a Schur module tensored with a power of a determinant rep-
resentation.

Theorem A.1.8 (Properties of Schur modules). Let V' be vector space of dimen-
sion n and X be the highest weight for GL(n).

(i) S\V =0 ht(\) > n.

(ii) dim S\V =1 A= (k,...,k) = (k") for some k € Z.

(i) (SondmV) = Sou )V =2 S V-

Tyeeey

Proof. See [FH, theorem 6.3].

Theorem A.1.9 (Cauchy formulas). Let V' and W be two finite dimensional
vector spaces.

a) As a representation of GL(V') x GL(W), Sq(V ® W) decomposes as

Sq(VeW)= @ S\V @ SHWW;
IN=d

b) As a representation of GL(V') x GL(W), Sq(V ® W) decomposes as

d
AV eW) =P S\VeSyW;
[\=d

c) Asarepresentation of GL(V'), Sq(S2(V')) decomposes as

Su(S2(V)) = € SaaV,

I\=d
where 2\ = (2A1,...,20,) if A = (A1, ..., Ag);
d) As a representation of GL(V) the ring Sq(\*(V')) decomposes as

2
Sd(/\<v)) = @ Sox'V.
IN=d

Proof. See [P] chap. 9 sec. 6.3 and sec. 8.4, chap. 11 sec. 4.5.

Finally we consider the tensor product of Schur modules
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Lemma A.1.10.
SHV @8,V =P8V,

where c5 s are called Littlewood-Richardson coefficients.

There is a combinatorial formula to calculate c§ e
Let
Dy={(,j)|1 <i<kl1<j<N}

be the Young diagram of A and let f : D, /5 — {1,...,n} be a column stan-
dard tableau. We denote C'ST(v/A, {1, ...,n}) the set of column standard
tableaux of shape v/\ with values in {1, ..., n}. We define cont(f), the con-
tent of £, to be the sequence {|f~1(1)|,...,|f 1 (n)|}. We define w(f) to be
the word we get from f when we read it by rows, starting with the first
row, from right to left in each row. A word w = (wy, ..., w,,) on the al-
phabet {1,...,n} is a lattice permutation if for each 1 < v < m and for each
1 <i<n-—1wehave

{1<j<ulwy =i} > [{1<j<ulw;—i+1}]
Finally we define the set
LR, ={f € CST(v/\{1,...,n})|cont(f) = (p,...,un), w(f) is a lattice permutation}.
Theorem A.1.11 (Littlewood-Richardson rule). Let A, u1, v be partitions, then
K = LR, |
Proof. See [P, chap. 12 sec. 5.3]. O

Corollary A.1.12. If A = (I%) and p = (m?), then S\V ® S,V is multiplicity
free, ie. S\V @ S,V = €, S, V. Moreover if s > t then v = (v1,...,Vs4t)
with Vi = l+CifOT 1 <1<ty = lfO?’t <1 <s and Vsyi = M — thi+1f01’
1<i<t,wherem>cy>...>c >0andl+c >m.

Proof. We note that we can suppose in the statement s > ¢, since the
tensor product is commutative. The proof is a consequence of Littlewood-
Richardson rule. O

A.2 Invariant theory

In this section we recall definitions and fundamental results of invariant
theory.

If G is a group which acts on a finite dimensional vector space V, we shall
call V¢ = {v € V|g-v = v Vg € G} the space of invariants of V and we
have a general lemma
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Lemma A.2.1. Let G be a group which acts on two finite dimensional vector space
V and W. If G acts trivially on V , then (V @ W)¢ =V @ WC.

If G is an algebraic group and V' is a rational representation of G, then
G acts on the coordinate ring of V K[V] as follows: if f € K[V]and g € G,

(9-f)v) = flg™" ).
The ring of G-invariants in K[V] is
K[VI® ={feK[V]lg- f = f Vg € G}.

Theorem A.2.2 (Hilbert). If G is linearly reductive and acts rationally on a finite
dimensional vector space V then K[V is finitely generated.

Proof. See [P, chap. 14 sec. 1.1].

Now we formulate the first fundamental theorem for the linear group.

Theorem A.2.3 (FFT for GL). Let V be a finite dimensional vector space. We
take the space (V*)P x V1 = {(a,...,0p,01,...,09)|aj € V*,vu; € V Vj €
{1,....p} and Vi € {1,...,q}} as a representation of GL(V'). On this space we
consider the pq polynomial functions w;j(ou, ..., op, v1,...,0q) = o;(v;) which
are GL(V )-invariant. Then

K[(V*)P x Vq]GL(V) = K[u”] 1<i<q

1<j<p

Proof. See [P, chap. 9 sec.1.4].

Now we give the definition of semi-invariant and of character of an al-
gebraic group.

Definition A.2.4. Let G be an algebraic group and let V' be a rational representa-
tion of G.

(i) x : G — K* isa character of G if it is a homomorphism of algebraic groups;

(ii) f € K[V]is a semi-invariant of weight x of the action of G on V if for every
g€ G,g-f=x(g)f where x is a character of G.

If char(G) is the set of characters of G, then the ring of semi-invariants
of the action of G on V' is

SIG, V)= @ SIG V),
x€char(G)

where SI(G,V), ={f € K[V]|Vg € G,g-f = x(g) f} is called weight space.
In general we have the following lemma proved in [SK].
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Lemma A.2.5 (Sato-Kimura). Let G be a linear algebraic group acting ratio-
nally on the vector space V. If there is a Zariski open G-orbit in 'V then the ring
SI(G, V') spanned by the semi-invariants is a polynomial ring:

SI(G, V) =k[f1,..., fs

for some collection of algebraically independent and irreducible semi-invariants
fi,..., fs. Moreover if f; € SI(G,V)y, then the x; are linearly independent
over Z in the space of characters of G.

Corollary A.2.6. Under the assumptions of the lemma A.2.5, the set of characters
X such that SI(G, V), # 0 forms a free abelian semigroup, isomorphic to N°. In
particular, if f is any semi-invariant of weight x, then f = uf{* --- &, where u
is a unit in K and the a; > 0 are the unique integers such that x = Y7, a;x; in
the space of characters of G. Thus SI1(G,V') is a polynomial ring.

If G = GL(n), there exists an isomorphism Z = char(GL(n)) which
sends an element a of Z in (det)® (where det associates to g € GL(n) its
determinant). So we have

SI(G,V) = K[V]*V),
Finally other two results on Schur modules and invariant theory.
Proposition A.2.7. Let V be a finite dimensional vector space of dimension n.
(S\V)TEY) £ 0 = X = (k)
for some k and in this case S\V', and so also (.S AV)S L(YV) | have dimension one.

Proposition A.2.8. Let V be a finite dimensional vector space of dimension n and
let \ and p be two dominant integral weights. Then

S\V ® S,V contains a semi-invariant

<
A1 — Ao = Hn—1 — Hn
Ay — A3 = Hn—2 — Hn—1
)\n—l - )\n = M1 — p2

and in this case the semi-invariant is unique (up to a non zero scalar) and has
welght/\l‘kﬂn:)@“‘/infl = :)\n+,UJ1
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Proof. It is a corollary of (5.6) in [M, L.5]. O

Let Sp(2n) = {A € GL(2n)|AJA = J} be the simplectic group, let O(n) =
{A € GL(n)|A'A = I} be the orthogonal group and SO(n) = {A €
O(n)|det A = 1} be the special orthogonal group, where I is the identity

. 0 I
matrix and J = < 7 0 )

Proposition A.2.9. Let V be an orthogonal space of dimension n and let W be a
symplectic space of dimension 2n.

1 if A=2u

. o) —
(a) dim (S)\V) { 0 otherwise

1 if A=2pu+ (k")
0 otherwise

(b) dim (S\V)5OV) = { ,
1 if x=2u

. Sp(W) —
(c) dim (SAW) { 0 otherwise

for some partition 11 and for some k € Zx>.

Proof. See [P] chap. 11 cor. 5.2.1 and 5.2.2. O

We end this section recalling definition and properties of the Pfaffian of a
skew-symmetric matrix.

Let A = (a;j)1<i,j<2n be a skew-symmetric 2n x 2n matrix. Given 2n vectors
Z1,...,Toy, in K2*, with K an algebraically closed field with characteristic
0, we define

n
Fa(z1,...,220) = n!12” Z sgn(s) H(%(ziq)yﬂ?s(m))v
5€S2n i=1
where S5, is the symmetric group on 2n elements, sgn(s) is the sign of
permutation s and (-, -) is the skew-symmetric bilinear form associated to
A. So Fy is a skew-symmetric multilinear function of z1, ..., x2,. Since, up
to a scalar, the only one skew-symmetric multilinear function of 2n vectors
in K2 is the determinant, there is a complex number P f(A), called Pfaffian
of A, such that

Fy(x1,...,29n) = Pf(A)det[zy, ..., xa,)

where [x1, ..., x9,] is the matrix which has the vector x; for i-th column. In
particular one proves that

nl2n
SGSQn\Bn

Pf(A) = > sgn(s) [ ] asi-nse
i=1
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where B, is a subgroup of S, isomorphic to the semidirect product S,, x
(Z2)"™. We can write the Pfaffian of A avoiding to sum on all possible per-
mutations,

PfA)= > sgn(s)a,y, - ai,;,

i1<j1 77777 in<Jn

i1 <...<in
. . 1 2 ... 2n—-1 2
where s is the permutation | . " .
1 J1 ... in In

Proposition A.2.10. Let A be a skew-symmetric 2n x 2n matrix.

(i) For every invertible 2n x 2n matrix B,
Pf(BAB") = det(B)Pf(A);

(i) det(A) = Pf(A)2
Proof. See [P, chap. 5 sec. 3.6]. O
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Appendix B

Quiver representations and
semi-invariants

B.1 Auslander-Reiten theory

A quiver @ is a pair (Qo, Q1) where @) is the set of vertices and @), is the
set of arrows. Let
a:ta — ha, ta,ha € Q)

be an arrow in ();. We shall call ta the tail of the arrow a and ha the head
of the arrow a. A path p in @ is a sequence of arrows p = ag - - - a,, such that
ha; = ta;1, (1 <i < n—1). For every x € Qo we also have a trivial path
ez such that he, = te, = x. We say that Q) has no oriented cycles if there are
no paths p = a; - - - a,, such that ta; = ha,,.

We fix an algebraically closed field K. A representation V' of () is a family of
finite dimensional vector spaces {V (z)|x € Qo} and of linear maps {V (a) :
V(ta) — V(ha)}ecq,- The dimension vector of V is a function dim(V') :
Qo — Z>o defined by dim(V)(x) := dimV (z).

A morphism f : V' — W of two representations is a family of linear maps
{f(z) : V() = W(x)| f(ha)V(a) = W(a)f(ta)Va € Q1}req,- We denote
the space of morphisms from V to W by Homg(V,W) and the space of
extensions of V by W by Ext(,(V,W).

Definition B.1.1. The non symmetric bilinear form on the space Z%° of dimension
vectors given by

(@, 8) =Y a(@)B(x) - > alte)B(ha)

€Qo ac@Q1
is the Euler form of Q, where o, 3 € 7%,
IfdimV = aand dim W = 3, we have
(a, B) = dim Homq(V,W) — dim Exty,(V, W)
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We shall call Rep(Q, «) the variety of representations of () of dimension
vector a.

Definition B.1.2. Let ) be a quiver and let o be a dimension vector. A general
representation of Q) is a representation from some nonempty Zariski open set in

Rep(Q, ).

We recall the definitions of simple, projective and injective representa-
tion of a quiver ) = (Qo, @1). For each vertex z, a simple representation S,
is the representation for which S, (z) = K, S;(y) =0 forevery y € Qo \ {z}
and S;(a) is the zero map for every a € ). For every x € Qo we define an
indecomposable projective representation P, as follows:

P,(y) = [z,y] and P,(a) := ao : [z, ta] — [z, ha]

with z,y € Qo and a € @1, where [z, y] is a vector space over K with a basis
labelled by all paths from x to y in ) and ac is the map which sends the path
p to the path a o p. Every indecomposable projective representation of () is
isomorphic to P, for some z € )y and moreover we have Homg(P,, V') =
V (z) for every representation V of @), see [ARS, sec IIL.1]. Similarly every
indecomposable injective representation of () is isomorphic to I, where I,
is defined as follows:

I,(y) = [y, z]" and I;(a) := (ca)" : [ta,z|" — [ha, z]|*

with z,y € Qo and a € Qi, where [y, z]* is the dual space of [y, z] and
oa : [ha,z] — [ta, z] is the map which sends p to p o a. In this case we have
Homg(V, 1) = V(x)* for every representation V' of @), where V' (z)* is the
dual space of V(x).

Now we recall some definitions and results of Auslander-Reiten Theory,
for deepening see [ARS] and [ASS].

We define the path algebra KQ of a quiver ), the K-algebra which has the
paths of @) as basis. The multiplication in K@ is defined by

_J pg iftp=hqg
P 9= 0 otherwise.

Proposition B.1.3. 1) KQ is a finite-dimensional K-algebra if and only if Q

has no oriented cycles.

2) The categories Rep(Q) of representations of Q and KQ — mod of left KQ-
modules are equivalent.

Proof. See [ARS, sec. 3.1 prop. 1.1 and prop. 1.3] and [ASS, sec. 1.1
lemma 1.4(c) and sec. III.1 cor. 1.7]. O

Let A be a finite-dimensional K-algebra, a morphism f : V' — W in the
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category of left A-modules A — mod is called a retraction if there exists
g : W — V such that fg = idy and it is called a section if there exists
g: W — Vsuchthat gf = idy.

Definition B.1.4. Let f : V — W be a morphism in A — mod.
(a) fis called minimal right almost split if

(i) every endomorphism h : V' — V such that fh = f, is an isomorphism
(right minimal morphism),

(ii) f is not a retraction,

(iii) for every g : V! — W which is not a retraction there exists g’ : V' —
V such that f¢' = g.

(b) f is called irreducible if it is neither a section nor a retraction and if f =ts,
forsomes:V — Xandt: X — W, then s is a section or t is a retraction.

Now we are able to define the Auslander-Reiten quiver and the almost
split sequences.

Definition B.1.5. Let Q) be a quiver and KQ be the path algebra of Q. The quiver
AR(Q) = (AR(Q)o, AR(Q)1), where the set of vertices AR(Q)o is the set of
indecomposables of KQ and the set of arrows AR(Q): is the set of the irreducible
morphisms not zero between indecomposables, is called Auslander-Reiten quiver

of Q.

Theorem B.1.6. If W is an indecomposable non-projective A-module (respec-
tively V' is an indecomposable non-injective A-module) then there exists an exact

sequence 0 — V e 7 % W — 0 such that f and g are both irreducible, called
almost split sequence.

Proof. See [ARS, sec. 5.1 theorem 1.15]. O

If V is an A-module, a right minimal morphism p : P — V, with P pro-
jective, is called a projective cover of V. One can prove that every A-module

V has a minimal projective presentation P, 25 Py 22 V — 0, i.e. an exact
sequence where py is a projective cover of V' and p; is a projective cover of
Kerpg (JARS, sec. 1.4 theorem 4.2] and [ASS, sec. 1.5 theor. 5.8]).

Let V € A — mod, we assume that V' has no projective summands and let

P2 Py v - 0be a minimal presentation of V. Applying the functor
Hom(-, A) on it, we obtain a minimal presentation

Hom(Py, A) Hom(py,4) Hom(Py,A) — Coker(Hom(p1,A)) — 0.

We define coKer(Hom(p1, A)) := Tr(V), the transpose of V. Thus the trans-
pose is a contravariant functor 7'r : A — mod — mod — A (mod — A is the
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category of right A-modules) which equals zero on projective modules. We
can define also T'r : mod — A — A — mod considering

mod — A= A — mod - mod — AP = A — mod.

Proposition B.1.7. If A = KQ and V is a representation of () without projective
direct summands, then Tr(V) = Extl (V, A).

Proof. See [ARS, sec. 4.1 corollary 1.14]. O
Definition B.1.8. The functor

Tt ::VOTT:A—modimod—A%AOp—modlA—mod,

where V is the duality functor sending the representation V to V'*, is called Auslander-
Reiten translation (AR-translation). Similarly we can define the functor 7~ :=
TroV.

We note that, by definition, V7~ = 7tV and V7™ =7~ V.
The following theorem records an important property of the AR-translation.

Theorem B.1.9 (Auslander-Reiten duality). Let A = KQ and let V and W be
two A-modules.

(a) If V has no projective summands, then there exist isomorphisms of vector
spaces

Homg(W,7V) = Eaty(V,W)* and Exto,(W,77V) = Homg(V, W)*.

(b) If V' has no injective summands, then there exist isomorphisms of vector
spaces

Homq(t~V,W) = Exty(W, V)* and Exto(t~V,W) = Homg(W, V)*.

Proof See [ASS, sec. IV.2 cor. 2.14]. O
Corollary B.1.10. Let A = KQ and let V and W be two A-modules.

(a) If V and W have no projective summands, then there exist isomorphisms of
vector spaces
Homg(tTV, 7t W) = Homg(V, W)
and
Exty(ttV, 7t W) = Eat,(V, W).

(b) If V and has no injective summands, then there exist isomorphisms of vector
spaces
Homg(t~V, 7 W) = Homg(V,W)

and
Exth(r7V, 7" W) = Exty(V,W).
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Proof. It is an immediate consequence of theorem 1.9. O

By AR-duality, if we consider 77 and 7~ as linear transformations on the
space of dimension vectors, i.e. if V' is a representation of a quiver with
dimension « then 7%« := dim 7+V, we have, for every « and 3 dimension
vectors, then

@) (@, 0) = =(776,a)
(ii) (o, 8) = —(8,7" )
(iii) (o, 8) = (T%a, 750).
At last another result about the existence of the almost split sequences.

Theorem B.1.11 (Auslander-Reiten 1975). 1) For every finitely generated in-
decomposable non-projective module V' there is an almost split sequence
0— 7TV — X =V — 0in A — mod with finitely generated modules.

2) For every finitely generated indecomposable non-injective module V' there
is an almost split sequence 0 — V — Z — 7=V — 0in A — mod with
finitely generated modules.

Proof. 1t is a direct consequence of the theorem 1.8, see also [ASS, sec.
IV.3 theor. 3.1]. O

B.2 Quivers of tame type

Definition B.2.1. A quiver Q is called of tame type if the underlying graph of Q
is of type A, D or E.

For all of the next results we refer to [DR].

Proposition B.2.2. Let () be a quiver of tame type, then the quadratic form qq :
790 — 7. defined by

qo(e) == Z afx)? — Z a(ta)a(ha)

€Qo acQ1

is positive semi-definite and there exists a unique vector h € N9 such that Zh is
the radical of qq or, equivalently, such that 7"h = h and |h| := > weq (@) is

minimum in N9, For quivers of type A and D the vector h has the following form

1 .- 1
A 1 1 (B.1)

130



D: 2 .. 2 (B.2)
1 1

Definition B.2.3. Let V be an indecomposable representation of Q.
(i) V is preprojective if and only if (7+)'V = 0 for i >> 0.
(ii) V is preinjective if and only if (17)'V = 0 for i >> 0.
(iii) 'V is reqular if and only if (17)'V = 0 for every i € Z.
Definition B.2.4. Let V be a representation of Q. The linear map
9:N® —7
defined by O(dim V') := (h, dim V') is called defect of V.

Lemma B.2.5. Let V' an indecomposable representation of (). V' is preprojective,
preinjective or regular if and only if the defect of V' is respectively negative, positive
or zero.

The regular representations of () form an Abelian category Regk(Q).
Moreover Regxk (@) is serial, i.e. every indecomposable regular representa-
tion has only one regular composition series and so it is only determined
by its regular socle and by its regular length.

Definition B.2.6. A simple reqular module E is called homogeneous if and only
ifdimE = h.

Proposition B.2.7. Let Q) be a quiver of tame type. Then there exist at most
three Tt -orbits A = {e;]i € I ={0,...,u}}, A ={el|i € I' ={0,...,v}},
A" = {elli € I" = {0,...,w}}, of dimension vectors of non-homogeneous
simple regular representations of QQ (I, I', I" could be empty). We can assume that
TV (ei) = eip1 fori € I (eyq1 = eo), 71 (€)) = €, fori € I' (e} | = ep) and

H(el) =€l forieI" (e | = eg).

We denote the set of all regular representations of @ with D,. Every
vector d € D, can be decomposed as

d=ph+ Zpiei + Zpgeg + Z pye; (B.3)
el el iel”

for some p, p;, p,, p!! € N such that at least one of coefficients in each family
{pili € I}, {pi|i e I'},{p}|i € I"} is zero. The decomposition (B.3) is called
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canonical decomposition of d. It is unique because the only linear relations
between h, ¢;, €} and e/ are

h:Zei:Zd:Zeg/.

i€l iel’ el

We observe that the category Regk () can be decomposed as direct sum
of categories R¢, with ¢t = (p,¢) € P;(K). In all categories R;, but at most
three of these, there is only one simple object V; which is necessarily homo-
geneous.

Definition B.2.8. (1) We call E;, E! and E!' the simple non-homogeneous regular
representations respectively of dimension e;, e}, and e].
(2) We call Vi, ), where (¢,v) € P1(K), the indecomposable regular representa-
tion of dimension h.
(3) We define E; ; to be the indecomposable regular representations with socle F;
and dimension Z‘ljc:z ex, where ey, are vertices of the arc with clockwise orienta-
tion e; — - — € in A, without repetitions of ey We denote E; := E;; and
similarly we define ] ; and E';.
Lemma B.2.9.

1 ifi=j

<€i,€j>: —1 lf’L':j—l
0  otherwise.

Proof. By Schur’s lemma, we have

1 ifi=j

dimg (Homq(E;, E;)) = { 0 otherwise.

By [DR, lemma 3.3], we have alimK(E:Uté2 (Ei, Ej)) = 0 forevery i # j — 1.
So by the relation
<€i7 6j> = dimK(HOTTlQ(EZ', EJ)) — dimK(E:rtb(Ei, Ej)),

we obtain the thesis. O

B.3 Reflection functors and Coxeter functors

Definition B.3.1. Let () be a quiver.
a) The vertex x € Q) is a sink if there are no arrows a € @y such that ta = x.

b) The vertex x € Qo is a source if there are no arrows a € Q1 such that
ha = x.
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Let @ be a quiver and let x € Qo be a sink (respectively a source). We
define the quiver ¢;(Q) in which the direction of the arrows connecting to
x are reversed.

Definition B.3.2. Let {a1,...,ax} be the set of arrows in Q) whose head (respec-
tively tail) equals x. We put
Cx(Q)O = Qo

cz(@Q)1 = {cz(a);a € @i}
where tcy(a;) = hai, heg(a;) = ta; for every i € {1,... k} and tcy(b) = tb,
hey(b) = hb for every b € Q1 \ {a1,...,ax}.
Now we define the functors C; and C;; from Rep(Q) to Rep(c.(Q)).

Definition B.3.3. Let Q be a quiver and x € Q) be a sink. Let {a1,...,a} be
the set of arrows in () whose head equals x. Let V € Rep(Q). We define the
representation C;F (V) := W € Rep(c,(Q)) as follows.

{V(y) if x4y

W(y) = Ker(@i?:l V (tas) SN V(z)) otherwise,

where h(vy, ..., vp) = V(a1)(v1)+ - +V (ag) (vg) with (vy, ..., v) € BF_, V(tay).

V(a) if ha#x

Wica(a)) = { W (z) — @le V(ta;) KR V(ta;) if a=a;

where p; denotes the projection on the j-th factor.

Definition B.3.4. Let Q) be a quiver and x € Qg be a source. Let {by,..., b}
be the set of arrows in () whose tail equals x. Let V' € Rep(Q). We define the
representation C (V') := W € Rep(cz(Q)) as follows.

{ V(y) if x#vy

W(y) = ;
@) Coker(V () LN @2:1 V(hb;)) otherwise,

where h(v) = (V(b1)(v), ..., V(b)(v)) withv € V(z).

V(a) if ta#ax

Wi(cs(a)) = i
) {V<hbj>—J>®i:1V(hbi)+W(x> if a=b

where i denotes the immersion of the j-th factor.

Let f = (fy)yeqo, : V — W be a morphism in Rep(Q).
If z is a sink and {a1, ..., a;} is the set of arrows whose head equals z, we
define Cf f = ((CF f)y)yeq, : C V. — CFW a morphism in Rep(c,Q) as
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follows. For every y # x, we have f, = (CJ f),, whereas (C; f), is the
unique K-linear map which makes the diagram

0 — (ij)r B @f:l‘/%ai i’ Va

N (o 1B fra; L
0 — (CIW) — O Ww, > W,
commutative.
If = is a source and {by, ..., b;} is the set of arrows whose tail equals x, we

define C, f = ((Cy f)y)yeq, : C; V — C;W a morphism in Rep(c.Q) as
follows. For every y # z, we have f, = (C; f),, whereas (C} f), is the
unique K-linear map which makes the diagram

Vv, 5 @ Ve, — (CiV). — 0

L 1By fu, 1(C7 fa

We o @ Wa, — (W)l — 0
commutative.
In particular, by definition, we have Hom(V, W) = 0 if and only if
Hom(C}V,CfW) = 0, with z a sink and Hom(V,W) = 0 if and only if
Hom(C;V,C;W) = 0, with z a source.
C;, for every x sink, and C, for every x source, are called reflection func-
tors.
We state the main result about reflection functors.

Theorem B.3.5 (Bernstein-Gelfand-Ponomarev). 1) Let z € Qg be a sink.
Let V € Rep(Q) be an indecomposable representation of dimension c. Then
we have two possibilities

a) V=S, and then Cf(V) =0,

b) C;F (V) is indecomposable and C; C;H (V') = V and the dimension of
CH(V) equals ¢, (o) where

a(y) if y#w
co(a)(y) = { Zle a(ta;) — a(z) otherwise.

2) Let x € Qo be a source. Let V' € Rep(Q) be an indecomposable representa-
tion of dimension o. Then we have two possibilities

a) V=S, and then C; (V) =0,

b) C; (V) is indecomposable and C;f C;; (V') = V and the dimension of
C; (V) equals cg(a) where
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3) Let V1,V € Rep(Q)
CE(Vi @ Vo) = CE(W) & CE(Wa).

Proof. See [BGP, theorem 1.1].

Definition B.3.6. A sequence x1, ...,z of vertices of () is an admissible se-
quence of sinks (respectively of sources) if x;11 is a sink (respectively a source) in
Cay Cpy (Q) fori=0,1,...,m—1.

Corollary B.3.7. Let QQ be a quiver and let x1, . .., xp, be an admissible sequence
of sinks.

1) Foreveryi = 1,...,m, C ---C. |
(here Sz, € Rep(cy, -+ ¢z, (Q))).

2) Let V € Rep(Q) be an indecomposable. We assume C, - - - Cy, (V') = 0 for
some k. Then thereexistsi € {0, ..., k—1}suchthat V= C,, ---C, _ (Sy,).

Ti_

(Sg,) is either O or indecomposable

Proof. Follows by induction from theorem 1.7.

Definition B.3.8. Let @) be a quiver with n vertices without oriented cycles. We
choose the numbering (x1, . .., xy) of vertices such that ta > ha for every a € Q.
We define

ct.=cCf ---Cf and C:=C, - Cp .

The functors C*,C~ : Rep(Q) — Rep(Q) are called Coxeter functors.

These functors don’t depend on the choice of numbering of vertices
because of the following interpretation of the Coxeter functors in terms of
the Auslander-Reiten functors.

Lemma B.3.9. Let KQ be the path algebra of a quiver () without oriented cycles
and (z1, ..., xy) be an admissible numbering of vertices.

(1) If V is an indecomposable nonprojective KQ-module, then there are isomor-
phisms CTV 2 7tV and C-CHV 2 V.

(ii) If W is an indecomposable noninjective KQ-module, then there are isomor-
phisms C~W =2 7~ W and CTC~W = W.

Proof. See [ASS, chap. VII lemma 5.8]. O
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B.4 Semi-invariants of quivers without oriented cy-
cles

For a dimension vector o we have

Rep(Q, a) := @ Hom(Ka(to) ga(ka)y
ac@1

the space of a-dimensional representations of (). Moreover we define the
group
GL(Q,a) = [] GL(K, a(x))

z€Qo
and its subgroup
SL(Q, ) == [] SL(K, a(x)).
z€Qo

These groups act on Rep(Q,a) as follows: if V € Rep(Q,«) and g =
(92)zeqo € GL(Q,a), then g -V = {gn.V(a)g;, Yacq,- Finally we denote
the ring of semi-invariants by

SI(Q, @) := K[Rep(Q, a)]°* @) = {f € Rep(Q, a)|Vg € SL(Q,a)g-f = [},

where the action of GL(Q, ) on K[Rep(Q, «)], the coordinate ring of poly-
nomial functions on Rep(Q, «), is induced by the action of GL(Q, a) on
Rep(Q, ) by the rule

(g-HV):=flg™ V),
with g € GL(Q, «), f € K[Rep(Q, )] and V € Rep(Q, ).

Definition B.4.1. If f is a semi-invariant of a quiver (), we call Z( f) the vanish-
ing set of f.

Lemma B.4.2. Let f and [’ be two semi-invariants of a quiver Q such that
Z(f) = Z(f") is irreducible. Then f = X\ - [’ for some non zero A € K.

Proof. Since Z(f) is irreducible, also f is an irreducible polynomial.
From Z(f) = Z(f’) it follows that f'|f and so f = \ - f/ for some non zero
AekK O

Remark B.4.3. Let o be a dimension vector. Any set S of generators of SI(Q, )
contains a subset of irreducible generators. Indeed if f € S is a reducible polyno-
mial, then it can be expressed as a product of irreducible elements from S.

Now we define the semi-invariants which appear in the principal theo-
rem.
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Lemma B.4.4. The spaces Homg(V, W) and Eazté(V, W) are respectively the
kernel and the cokernel of the following linear map

dyy : € Hom(V(x), W (z)) — @ Hom(V (ta), W (ha))

z€Qo acQ1
where dY, is given by
{f(@)|z € Qo} — {f(ha)V(a) — W(a)f(ta)|a € Q1}.
Proof. See [R].

If a representation V' has dimension vector «, then d% can be seen as the
K-linear map which sends (), W ()™ to D.co, W (ha)*(t),
For every representation V of a quiver ) without oriented cycles of dimen-
sion a, we can construct a projective resolution, called Ringel resolution of
V:
0— PVt P S PV er, 25V —0 (B4
a€Q z€Qo

where P, is the indecomposable projective associated to vertex x for every
x € Qo (see section B.1 of appendix), dV restricted to V (ta) ® P, sends
vV ® epq to V(a)(v) ® epg — v ® a and py restricted to V(z) ® P, sends v
to v ® e, see [R]. Moreover, applying the functor Homg(-, W) to Ringel
resolution of V, we have Homg(d",W) = dy;, for every representation W
of Q.

Any character 7 of GL(Q, ) has the form

7: {9z € GL(a())|z € Qo} — H (detg,)X(e=)

€Qo

with e, a dimension vector, defined by e,(z) = 1 and e,(y) = 0if x = y,
and x(e;) € Z Va € Qq. A vector x € ZI?l is called weight.
The ring SI(Q, o) decomposes in graded components as

SIQ,e)= @ SIQa)

Techar(GL(Q,o)

where SI(Q, a), = {f € K[Rep(Q, )llg - f = 7(9)f Vg € GL(Q,a)}.
Remark B.4.5. (1) Each vector x € ZI90| determines a unique character .

(2) A character T for some semi-invariant might not uniquely determine the
weight of the semi-invariant, e.g. if a(x) = 0, then g, is a 0 x 0 matrix,
in which case det(g;) = 1, therefore for any x(x) € Z, det(gm)X(z) =
det(gy) = 1.
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If @ and 3 are dimension vectors such that (o, 3) = 0, V € Rep(Q, «)
and W € Rep(Q, 3), then the matrix of d‘V/V is a square matrix.

Definition B.4.6. We define the semi-invariant c(V, W) := det dY, of the action
of GL(Q,a) x GL(Q, ) on Rep(Q,a) x Rep(Q, 3) (see [S]). For a fixed V
the restriction of c to {V'} x Rep(Q, 3) defines a semi-invariant ¢V = ¢(V,-) in
SI(Q, ) of weight (e, -) [S, lemma 1.4]. Similarly, for a fixed W the restriction
of ¢ to Rep(Q, ) x {W'} defines a semi-invariant cyy = c(-, W) in SI(Q, «) of
weight —(-, B) [S, lemma 1.4]. These semi-invariants are called Schofield semi-
invariants.

These semi-invariants have the following properties.

Lemma B.4.7. Suppose that V', V, V" and W', W, W" are representations of Q,
that (dim(V'), dim(W')) = 0 and that there are exact sequences

0=V -V -V"=0, 0—-W =W —=W"—=0
then

(i) If (dim(V"), dim

9
9

(dim(
(ii) I (dim (V")
(ifi) If (dim(V'), dim(W'

> 0, then ¢V (W) =

(iv) If (dim(V),dim(W')) = 0, then ¢V (W) = ¥ (W)Y (W")

and similarly for cyy.
Proof. See [DW1, lemma 1]. O

Remark B.4.8. A consequence of lemma B.4.4 in [S] is that any projective reso-
lution of V (respectively injective coresolution of W) can be used to calculate ¢V’
(respectively cyy).So if P is a projective module and I is an injective module then
' =0andc¢; = 0.

Now we formulate the result of Derksen and Weyman about the set of
generators of the ring of semi-invariants SI(Q, «), defined in section 1.1,
where (@) is a quiver without oriented cycles and « is a dimension vector.
So we assume throughout this section that there are no oriented cycles in

Q.

Theorem B.4.9 (Derksen-Weyman). Let Q be a quiver without oriented cycles
and let 3 be a dimension vector. The ring S1(Q, (3) is spanned by semi-invariants
of the form ¢V of weight (dim(V'),-), for which {dim(V'),3) = 0. It is also
spanned by semi-invariants of the form cy of weight —(-, dim(W)), for which
(8, dim(W)) = 0.
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Proof. See [DW1, theorem 1]. O

Remark B.4.10. If (dim(V), dim(W)) = 0 then we have c¢(V,W) = ¢V (W) =
ew (V) = 0ifand only if Homg(V, W) # 0 which is equivalent to E:ctb (V,W) #
0 by lemma B.4.4.

Remark B.4.11. i) IfV,V' € Rep(Q) and V = V' then ¢ and ¢V are equal
up to a scalar.

i) If V.= V' ® V" is decomposable then, by lemma B.4.7, we have ¢V =
0 in SI1(Q,p) if (dim(V"),8) # 0, and ¢V = V""" in SI(Q,3) if
(dim(V"), B) = 0.

So the algebra SI(Q, 3) is generated by all ¢V where V is indecomposable and

Moreover in [DW1] Derksen and Weyman show the following

Corollary B.4.12 (Reciprocity). Let o and 3 be the dimension vectors satisfying
(o, B) = 0. Then

dzmSI(Q, ﬂ)(a» = dzmSI(Q, Oé),<.’5>.

B.5 (", reflection functors and duality functor

The following results show the relation between c" and C; (respectively
Cy).

Lemma B.5.1. Let V' be an indecomposable representation of Q) of dimension «
such that Z(cV) is irreducible and let x be a sink of Q. Then

cV:)\-(cC’TVOC';r)
on Rep(Q, ) such that (o, 3) = 0 and for some non zero X € K.

Proof. First we note that, by remark B.4.3 and by theorem B.4.9, it’s not
restrictive to suppose Z(c") is irreducible. By remark B.4.10, the vanishing
set of ¢V is the hypersurface

Z(c¥) = {W € Rep(Q, B)| Homg(V, W) # 0}
and the vanishing set of GV is the hypersurface
(%) = {CEW € Rep(es(Q), e.(8))| Homq(C V. C W) # 0},
By definition of reflection functor, for every W € Rep(Q, ),

Homg(V,W) # 0 < Homg(CV,CW) #£ 0.
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Hence Z(c") = Z(cC;V).

So, by lemma B.4.2, we conclude that there exist non zero A € K such that
cV:)v(chVon). O

Similarly one proves the following

Lemma B.5.2. Let V' be an indecomposable representation of Q) of dimension «
such that Z(cV') is irreducible and let x be a source of Q. Then

& =X (Vo)
on Rep(Q, ) such that (o, 3) = 0 and for some non zero X € K.

Next we study the relation between ¢ and duality functor V.

Lemma B.5.3. Let (Q), o) be a symmetric quiver. For every representation V of
the underlying quiver Q such that Z(c"") is irreducible, we have

& =xo(c™ VVoV) (B.5)
for some non zero A € K.

Proof. First we note that, by remark B.4.3 and by theorem B.4.9, it’s not
restrictive to suppose Z(c") is irreducible. Let 3 be a dimension vector
such that (dimV, 3) = 0. By equation (1.16) we note that, for every W €

Rep(Q, ),

Homg(V,W) =0« Homg(VW,VV) =0« Homg(r~ VV,VI¥V) = 0.
(B.6)
Thus, by remark B.4.10, the vanishing set of ¢ is the hypersurface

Z(") = {W € Rep(Q, B)| Homg(V,W) # 0}

and the vanishing set of ¢ V" is the hypersurface

Z(c™ VYY) = {VW € Rep(Q,68)| Homg(VW,VV) # 0}.

Finally, by equation (B.6), Z(c") = Z(c™ VV).
So, by lemma B.4.2, we conclude that there exist non zero A € K such that
CV =\ (CT_VV o V) O

B.6 c"’s, weights and partitions

Lemma B.6.1. Let ) be a quiver, let = be a sink and let « be a vector dimension.

(i) If V is indecomposable not projective such that C;7'V is not projective and
0 = (dimV,a)(= (cedimV,cyq)), then ¢V € SI(Q,a) and GV e
SI(czQ, ).
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(i) If V = S, and (dimS,, c;a) = 0, then we have " € SI(c,Q, cza), where
S, is considered as representation of c,Q, but ¢V is zero for Q.

(iii) If V = C~8S, and (dimC~S,,a) = 0, then we have ¢V € SI(Q, a) but
G2V is zero for ¢, Q.

Proof. First of all we observe that if x is a sink and V' # S, is projective
then C'V is projective since C*™ doesn’t depend on any admissible num-
bering of vertices. Moreover (dimSy, c;a) = 0 and (dimC~ S, a) = 0 are
not both zero. By theorem B.1.9 and since x is a sink, 0 = (dimC~ S, o) =
—(a,dimS;) = —az + 3 ,c0,:hams Ota aNd 0 = (dimS;, c;a) = (cza)z
ZaEcm(Q)l(Cﬂfa)ha = ZaEtha:m‘ Qtq — Qg — Zatezha:x Qtg = — O and so

4€Qy:-ha—z @ta = 0 which is an absurd unless oy, = 0 for every a such that
ha = x but in such case ¢** = 0 for ¢,Q and ¢¢ = = 0 for Q.
Proof of (i). Since (dimV, o) = 0, by theorem B.4.9, the c"’s are generators of
SI(Q,«)and CdV’s are generators of S1(c,Q, c;a). Moreover we note that
the number of generators of SI(Q, «) is equal to the number of generators
of SI(c,Q,cr).
Proof of (ii). We can study S, since if V' # S, is projective, by remark above,
we have ¢V = 0 and also ¢¢7V = 0. S, is projective in () and so ¢ is zero
in SI(Q, a) but S, considered as a representation of ¢, @, is injective. So, if
(dimSy, c.o) = 0 then ¢ € SI(c,Q, cp0v).
Proof of (iii). C~ S, is not projective otherwise S, = CT(C~S,) = 0 which
is an absurd. Thus if (dimC~S,,a) = 0 then ¢ % ¢ SI(Q, ). Moreover
CTtCrC=S, = CrC*tC~ 8, = Cf Sy = 0 hence C;FC~ S, is projective and
50 G C78 — ()in SI(c,Q,cpx). O

We recall that if () is Dynkin, then SI(Q, «) has a finite number of gen-
erators by remark B.4.11.

Corollary B.6.2. Let Q be a Dynkin quiver and let x be a sink. We call N (Q, «)
the number of generators of SI(Q, ) and N (c,Q, czv) the number of generators
of SI1(czQ, czx). We have three possibilities.

(a) N(Q,a) = N(c;Q,cya) if (dimSy, cya) # 0and (dimC~ S, o) # 0;
(b) N(Q, a) +1= N<C$Q7C$a) #(MS;U, Ca:a> =0;
(c) N(czQ,cza) +1=N(Q,a) if (dimC~S;,a) = 0.

Proof. (a) follows directly from (i) of the previous lemma. (b): the gen-
erators of SI(c,Q, cya) are those of SI(Q, ) and ¢®=. (c): the generators of
SI(Q,«) are those of SI(c,Q, c,a) and € 5=, O

Now we study weights of a quiver A,, and associated partitions. We de-
note vertices of A, with {1,...,n} in increasing way from left to right and

141



we call a; the arrow which has i on the left and i + 1 on the right. Let V; ;
be the indecomposable of 4,, with dimension vector

oy L i<h<
5= 0 otherwise.

Let £ = (E;;)i<ij<n be the Euler matrix of a quiver @ , i.e the matrix
associated to the Euler form (-, -). In general we have

o1 ifi=j
I\ #{a € Qilta =i,ha = j} otherwise.
IfQ=A4,
1 ifi=j
Eij=< -1 ifi—j
0  otherwise.

Let (vij,) = vi;E = x = (X1)1<1<n be the weight of c"ii.

We consider the following notation for A4,, let s,p > 1 be respectively the
number of sources and the number of sinks in A,, (there are at least one
source and one sink, which occurs in the equioriented case).

3 12 Z.3
N N N
N AV
J1 J2
where i, and jp in {1,...,n} with1 <k < sand 1 < h < p are respectively

sources and sinks of (). By the previous picture we note that in A4,, sinks
and sources alternate.
Let K ={ke{l,....s}i<ir<jland H={he{l,...,p}i < jn <j}

Lemma B.6.3. The weight of ¢V is x = (Xt)ief1,...,n} such that

1 l=iywithke Korl=1dand ta;=iorl=jandta_ =j
x1=4 -1 l=jpwithhc Horl=i—1and ha;—1 =i—1orl=j+1and ha; =j+1
0  otherwise.

Proof. Since v; ;E = x = (x1)1<i<n is the weight of c"ii then y; = E;; +
Eiyij+---+E; foreveryl e {1,...,n}. So

(B +Ey+ By le{i+l,...,j—1}
Eri1y l=i-1
= Ei 1, l=7+1
E+ By =i
E 1.+ Ey l=j
L 0 otherwise.
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Hence xy; =0 foreveryl € {1,...,i —2}U{j+2,...,n},

1— 1«1
() otherwise,
-1 7—-5+1
Xj+1 0  otherwise,
1 il
| 0 otherwise,

1 j—1«3
0 otherwise
and foreveryl e {i+1,...,5 — 1}

1 |l —1—[]—=1+1
xit=4¢4 -1 I—-1—=1<1[1+1
0 otherwise. O

Corollary B.6.4. Let Q = A,, and let w be the weight of ¢"ii.

(i) Let x; = 1forsomel € {i,...,j}andletk > lin {i+1,...,j—1}U{j+1}
be the first index such that x # 0, then x;, = —1.

(ii)) Let x; = —1forsomel € {i+1,...,7—1yU{i—1,j+ 1} andletk > |
in {i,...,7} be the first index such that x;, # 0, then x,, = 1. O

Let 3 be the dimension vector of an indecomposable representation of
A, and let x = (f3,-). Let m; be the first vertex such that x(m;) # 0, in par-
ticular we suppose x(m1) = 1 and m, the last vertex such that x(m;) # 0,
in particular we suppose x(m;) = 1, the other case proves in a similar way.
Between m; and my, -1 and 1 alternate in correspondence respectively to
sinks and to sources. In this case we have [£]+1 = s+1 occurrences of 1 and
5= [%] occurrences of -1. We call ig = my, js = mqy_1, i1,. .., 15 the sources
and ji, ..., js—1=p the sinks between iy and j;. Let V' be a representation
with dim V' = a such that (5,a) = 0and SL(V) = SL(V4) x --- x SL(V},),
so we have, by Cauchy formula

SL(V)
K[Rep(An, )"V = SI(Ap,0) = [ B Q) Sro)Vie @ Sae) Ve

A:Q1—A ceQr

where A is the set of all partitions.

X(k) = 0 for every k < ig so either \(ax_1) = A(ag) or A(ag—1) =0 = A ag)
for every k < ip. Since x(1) = 0 then A(a;) = 0 and thus A(a;) = 0 for
every k < ip. So we have (S,\(aio)V;O)SLVZ’o # 0 if and only if A(a;,) =
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Qay,

(1,...,1). Now x(k) = 0 for every i9p < k < j; and x(j1) = —1 then
we have A(aio 1) = Aaig) otherwise (Sx(a,)Vis 11 ® Sx(asyen) Vior1)* Vot
doesn’t have weight 0. So A(ax) = A(as,) for every ig < k < j;. For j;
we have A(a;,) and A(a;,) are complementary with respect to a column of
height «j, because —A(aj, )n — A(aig)a,, —n+1 = —1forevery € {1,...,a;, },
by proposition A.2.9. We proceed in a similar way with the other vertices
until 5 for which x(is) = 1. Since x(k) = 0 for every k& > i5, we have
either A\(ax—1) = A(ag) or Mag—1) = 0 = A(ay) for every k > is but because
Man—1) = 0, AM(ag) = 0 for every k > i,. Moreover \(a;,—1) is both a column
of height o;, and the complementary of A(a;, ,_1) with respect to a column
of height o;, .

So we proved the following

Lemma B.6.5. Let QQ be a quiver of type A, let a be a dimension vector and [3 be
a dimension vector of an indecomposable representation of (). Let x be the weight
(B, ) and we suppose it is such that x (i) # 0 for every i € I = {mj}jcqi, .1}/
where I is a subset of {1,...,n}. Then the family of partitions associated to x
is A = (A(a1),...,A(an—1)) such that X(a;) = O for every i € {1,...,m; —
1} U{me,...,n — 1}, XNam,) and A(am,—1) are columns respectively of height
Qm, and oy, and X(a;) is the complementary of X(a;—1) with respect to a column
of height «; for every i € {m;};eqa,. +—1}. Moreover we have cum, = Qim,_, —
(P S e T
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