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Chapter 1

Introduction

Urban areas occupy a relatively small portion of the earth surface. At the

same time they represent one of the most complex, intricate, and variable of

all land covers and land use and are also among the most rapidly expanding

and changing elements of the landscape. A timely manner of monitoring urban

areas is needed to be able to accurately assess the impact of human activi-

ties on the environment; in particular, monitoring the existence, distribution

and changing patterns of cities which play a crucial role in the allocation and

conservation of natural resources, environmental and ecosystem management,

and economic development. Also, an understanding the dynamics of the urban

area and its impact of the human activities on the environment is needed to

assess and to assess the supporting land carrying capacity. Usually land cover

and classification maps are provided by government administration and field

surveys, collecting, for example, aerial pictures and national censuses.

However, the data collection provided by these techniques is costly and

time consuming, often not updated and lacking in detailed information. Real-

istically, the only feasible source of information on land cover over large areas

which allows data to be acquired in a regularly repeatable manner is satellite

remote sensing. Indeed, in principle, remote sensing systems could measure en-
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1. Introduction 7

ergy emanating from the earth’s surface in any reasonable range of wavelenghts

(Richards (1993)). However, in spite of the great potential of remote sensing as

a source of information on land cover and the long history of research devoted

to the extraction of land cover information from remotely sensed imagery, many

problems have been encountered, and the accuracy of land cover maps derived

from remotely sensed imagery has often been viewed as too low for operational

users (Bernard et al. (1997), Binaghi et al. (1996) and Foody (2002)).

Many factors may be responsible for these problems. These include the

nature of the land cover classes (e.g. discrete or continuous), the properties of

the remote sensor (e.g., its spatial and spectral resolutions), the nature of the

land cover mosaic (e.g., degree of fragmentation), and the methods used to ex-

tract the land cover information from the imagery (e.g., classification methods)

(Foody and Ajay (2004)). These various problems have driven research into

a diverse range of issues focused on topics such as image analysis techniques.

Many of the problems in mapping land cover noted in the literature are asso-

ciated with the methods used to extract the land cover information from the

imagery. This has motivated a considerable amount of research into classifica-

tion methods and supervised classifications in particular. Early work based on

basic classifiers such as the minimum distance to means algorithm prompted

the adoption of more sophisticated statistical classifiers such as the maximum-

likelihood classification. Problems associated with satisfying the assumptions

required by such classification methods has driven research into nonparamet-

ric alternatives including techniques such as evidential reasoning (Peddle and

Franklin (1992), Wilkinson and Megier (1990)) and more recently neural net-

works (Benediktsson et al. (1990), Kanellopoulos and Wilkinson (1997), Liu

et al. (2003), and Del Frate et al. (1999)), decision trees (Goel et al. (2003),

McIver and Friedl (2002) and Friedl and Brodley (1997)) and genetic algorithms

(Nabeel et al. (2006)). Indeed, the accuracy with which land cover may be

classified by these techniques has often been found to be higher than that de-
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rived from the conventional statistical classifiers (e.g. Peddle et al. (1994),

Rogan et al. (2002), Li et al. (2003) and Pal and Mather (2003)).

The advent of the recent generation of very high spatial resolution satellites

has lead to a new set of applications made possible by the geometrical preci-

sion and high level of thematic detail in these images. In particular monitoring

urban areas has captured the researchers attention. In fact, urban analysis

using high spatial resolution involves a large number of applications such us

road network mapping, government survey map updating, monitoring of ur-

ban growth and over building. These kinds of applications were not feasible

with the previous generation of moderate-resolution satellites (e.g. Landsat

Thematic Mapper). However, further improvements in the accuracy of auto-

mated classification algorithms are needed to satisfy the end-user requirements

in all application domains. In particular, the number of classes extracted by

classification algorithms is relatively low when compared with the number of-

ten required by environmental mapping agencies to describe land cover uses

at regional, national and continental scales (e.g. the European Environment

Agency’s hierarchical CORINE Land Cover Data Set: 44 classes; the U.S. Na-

tional Land-Cover Data 2001: 26 classes at level II). This lack of classification

efficiency still leads to time consuming and expensive photointerpretation pro-

cedures.

For these reasons, it is important that the remote sensing community in-

vests more energy to define advanced and effective methods to address the

classification problem. Thus, research into new classification methods contin-

ues, and support vector machines (SVMs) have recently attracted the attention

of the remote sensing community (Huang et al. (2002), Brown et al. (1999) and

Halldorsson et al. (2003)). A key attraction of the SVM-based approach to im-

age classification is that it seeks to fit an optimal hyperplane between classes

and may require only a small training sample (Huang et al. (2002), Mercier

and Lennon (2003) and Belousov et al. (2002)). Although the potential of
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SVM is evident and early studies have demonstrated considerable success in

using them to map land cover accurately, there are problems in their usage

(Foody and Ajay (2004)). One of the main concerns is that SVMs were origi-

nally defined as binary classifiers and their use for multiclass classifications is

problematic, requiring strategies that reduce the multiclass problem to a set of

binary problems. Therefore, the researchers have sought to extend the basic

binary SVM approach to form a multiclass classifier (Perez-Cruz and Artes-

Rodriguez (2002), Angulo et al. (2003), Lee et al. (2003), Zhu et al. (2003))

and recently an approach for “one-shot” multiclass SVM classification has been

reported (Hsu and Lin (2002)). However, at the present state of the art there

is no discernible evidence in the classification accuracy advantages between the

neural and non-neural approaches (Wilkinson (2005)).

In this context, one of the major problem related to high resolution image

processing is to handle the extremely large set of data, therefore challenging,

the general ability of the chosen classification algorithm. With respect to clas-

sical methods, neural networks represent a fundamentally different approach to

problems like pattern recognition. They do not rely on probabilistic assump-

tions and do not need assumptions about normality in data sets. Moreover,

they show a considerable ease in using multi-domain data sources. The effec-

tiveness of neural networks is related to their self-adaptive characteristic; in

particular, they can adjust themselves to the input data without any a priori

assumptions (e.g., they do not require any explicit specification of the data dis-

tribution), and can approximate any function with arbitrary accuracy (Bishop

(1995)). Therefore, neural network algorithms are well suited to the classifica-

tion of remote sensing images.

A crucial issue which the classification accuracy depends on, is the decision-

making process related to the assignment of the classes (e.g, in a pixel based

classification, to assign a pixel to one class rather than a different one). The

class assignment process performed by a classifier based on neural network al-



1. Introduction 10

gorithms has been found to be effective (Del Frate et al. (1999), Del Frate et

al. (2004)). For this reason Neural Networks (NN) have received considerable

attention, as a tool in the field of remote sensing, after a new training scheme

was developed. This new principle of a back-propagation algorithm was initially

proposed by Werbos (1974) and rediscovered by Rumelhart et al. (1986). As

explained above, since the early 1990s, several researchers have compared the

performance of NN with conventional statistical approaches for remote sensing

image classification. Benediktsson et al. (1990) evaluated the both methods

for multi-source remote sensing data classification. They noted that a neural

network has a great potential as a pattern recognition method for multi-source

remotely sensed data due to its underlying distribution-free nature. Bishof et

al. (1994), Paola and Schowengerdt (1995) compared methods for multispectral

classification of Landsat TM data and both found that with proper training,

a neural network was able to perform better than the maximum-likelihood

classifier. However, even if these studies seem to show that NN performance

is comparable or better than those provided by other techniques, they were

mainly focused on medium resolution Landsat images and on the use of a sin-

gle neural network for classifying and/or extracting specific features from a

single image, namely the same image from which the examples training the

network are taken.

A detailed analysis of the pixel-based classification yielded by this type of

NN algorithm on very high resolution images such as those provided by the

QuickBird (QB) or Ikonos platforms is still lacking. Moreover, the potential

of a single neural network as a tool for automatic and sequential processing of

images contained in high-resolution image archives has been scarcely investi-

gated. With sequential processing we mean that the network might be able to

retrieve from the archive all the images that contain or do not contain a specific

class of land cover, or where the ratio between areas corresponding to different

classes is within/out predefined ranges. In other words the NN allows the iden-
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tification of high-level (object or region of interest) spatial features from the

pixel representation contained in a raw image or image sequence, hence being

able to address scientific issues characteristic of the image information mining

field (Datcu et al. (2003) and Hsu et al. (2002)).

As a first step, in this study, we want to assess and optimize the neural net-

work approach for the pixel-based classification of a single very high resolution

image, such as those provided by the QB satellite.

Next we move to the conceptually most innovative part of the study which

is to investigate the capabilities of supervised NN in providing automatic classi-

fication of a collection of images, therefore assessing their potentialities from an

image information mining point of view. This stresses their general capabilities

to adapt to new input patterns different from the patterns on which the nets

have been trained. Several factors interfere with the objective of designing a

NN able to be generalized for their use with images not used in the training

phase. Examples the influences the different incidence angles and/or atmo-

spheric conditions or the fact that different types of material may characterize

the same class. In spite of these problems, the robustness of the spectral infor-

mation has to be investigated and such an analysis needs to concur with the

design of the NN. Addressing this point, we consider both very high (QB) and

moderate (Landsat) resolution images and a specific application domain which

is the feature extraction and information discovery applied to urban areas.

In fact, monitoring changes and urban growth over time is one of the major

challenges of scientific research in remote sensing with a strong potential for the

policy implications of this image analysis that would improve environment and

security monitoring (Jensen and Cowen (1999), Donnay et al. (2001), Carlson

(2003)). For example in Wilson et al. (2003) an urban growth model is devel-

oped. The model, which is based on land cover derived from remotely sensed

satellite imagery, determines the geographic extent, patterns, and classes of

urban growth over time. Synthetic Aperture Radar(SAR) imagery can also be
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used, providing an additional source of information and enhancing the capabili-

ties of optical data (Dell’Acqua et al. (2003), Schiavon et al. (2003)). Therefore

a large volume of satellite data is available, but despite many competing auto-

matic approaches, it is difficult to fully and automatically address the problems

raised by the different application scenarios. In this study the aim of the clas-

sification is to distinguish between areas of artificial cover (sealed surfaces)

including asphalt or buildings, and open spaces such as bare soil or vegetation.

As a by-product this makes possible the retrieval of other features such as the

detection of new buildings or the discovery of modifications in existing ones.

1.1 Relevance of classification and change detection

in monitoring urban areas: evolution and pro-

cesses

Classification

Ever since the first multispectral imagery became available from civilian

remote sensing satellites in the late 1970s, considerable effort has been devoted

to the classification of image data with the aim of producing high-quality the-

matic maps and establishing accurate inventories of spatial classes (Wilkinson

(2005)). Classification is regarded as a fundamental process in remote sensing,

which lies at the heart of the transformation from satellite image to usable

geographic products. In order to produce thematic maps different methodolo-

gies of image classification have been developed. In particular, we can separate

classification methods by the following:

• the development of components of the classification algorithm including

the training or learning strategy and approaches to class separation based

on statistical or other estimators and class separability indexes,
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• the development of novel system-level approaches that augment the un-

derlying classifier algorithms,

• the exploitation of multiple types of data or ancillary information, both

numerical and categorical, in a classification process.

In the first category we can include the development of the supervised

maximum-lakelihood method (Frizzelle and Moody (2001), Benediktsson et

al. (1990)), n-dimensional probability density function methods (Cetin et al.

(1993)), artificial neural networks (Gamba and Houshmand (2001), Yoshi and

Omatu (1994), Bishof et al. (1994), Heerman and Khazenie (1992), Atkinson

and Tatnall (1997), Paola and Schowengerdt (1995), Serpico and Roli (1995),

Kanellopoulos and Wilkinson (1997), Ji (2000) and Dreyer (1993)), decision

trees (Hansen et al. (1996), Kumar and Majumder (2001)), discriminant anal-

ysis (Franklin (1994), Hardin (1994)), genetic algorithms (Tso and Mather

(1999),Sheeren et al. (2006)) and spectral shape analysis (Carlotto (1998)).

In the second category we includ fuzzy or similar approaches that “soften”

the results of a hard classifier (Seong and Usery (2001), Foody (1996), Foody

(2002), Zhang and Foody (1998), Bastin (1997), Du and Lee (1996)), mul-

ticlassifier systems that integrate the outputs of several underlying classifier

algorithms (Wilkinson et al. (1995)), and decision fusion methods (Benedikts-

son and Kanellopoulos (1999), Jimenez et al. (1999), Petrakos et al. (2001)).

The third category includes the use of texture measures extracted from im-

agery (Franklin et al. (2001), Augusteijn et al. (1995)), the use of structural or

spatial context information from the imagery (Barnsley and Barr (1996),Gong

and Howarth (1990)), the use of multisource data (Bruzzone et al. (1997), Bruz-

zone et al. (1999), Zhang (2001)), and the use of ancillary geographical knowl-

edge integrated in the overall classification system through, for example, an ex-

pert system approach (Srinivasan and Richards (1990), Moller-Jensen (1990),

Wilkinson and Megier (1990), Kontoes et al. (1993), Tonjes et al. (1999)). Some
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approaches integrate several of the afore-mentioned, e.g., (Debeir et al. (2002)).

Change Detection

Detection of land-cover changes is one of the most interesting aspects of the

analysis of multitemporal remote sensing images (Richards (1993)). In partic-

ular, change detection is very useful in many applications, like land use change

analysis, assessment of burned areas, studies of shifting cultivation, assessment

of deforestation etc. (Singh (1989), Coppin and Bauer (1994), Green et al.

(1994)). Further, the recent availability of very high resolution images has en-

larged the number of applications especially in urban monitoring such as the

growth of urban areas and discovering building permit infractions (Bruzzone

and Carlin (2006)). Usually, change detection involves a couple of spatially reg-

istered remote-sensing images acquired of the same area at two different times.

Two main approaches to detecting land-cover changes can be distinguished

(Bruzzone and Serpico (1997)):

1. changes detected by comparing the spectral reflectances of multitemporal

satellite images,

2. changes can be detected by using supervised classifiers.

Many change detection algorithms are based on the first approach (Singh

(1989), Fung and LeDrew (1987), Chavez and MacKinnon (1994), Muchoney

and Haack (1994), Fung (1990), Muchoney and Haack (1994)). The Univariate

Image Differencing algorithm (Singh (1989), Fung (1990), Chavez and MacK-

innon (1994), Muchoney and Haack (1994)) performs change detection by sub-

tracting, on a pixel basis, the images acquired at two times to produce a “differ-

ence image”. Under the hypothesis that there are only minor changes between

the two times, changes can be detected in the tails of the probability density

functions of the pixel values in the difference image; this technique is usually
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applied to a single spectral band. Other techniques, like Vegetation Index Dif-

ferencing (Singh (1989), Townshend and Justice (1995)) make the same kind of

comparison by using, instead of a spectral band, vegetation indices (Richards

(1993)) or other linear (e.g., Tasseled Cup Transformation (Richards (1993),

Fung (1990))) or nonlinear combinations of original satellite bands. The widely

used Change Vector Analysis technique (Singh (1989)) exploits a similar con-

cept. In this case, however, the pixels at each time are represented by their

vectors in the feature space. Then, for each couple of pixels, the “spectral

change vector” is computed as the difference between the image feature vectors

at the two times. The statistical analysis of the magnitudes of the spectral

change vectors allows one to detect the presence of changes, while their direc-

tions make it possible to distinguish between different kinds of transitions.

Another technique similar to those described above is Image Rationing; in

this case, the comparison between spectral bands at two times is performed

by computing the ratio, instead of the difference, between images. Techniques

based on Principal Component Analysis (Singh (1989), Fung and LeDrew (1987),

Muchoney and Haack (1994)) can also be used to perform change detection

by applying the principal component transformation separately to the feature

space at each time or as to the merged feature space at two times. In the

first case, change detection is performed with Vegetation Index Differencing

using principal components instead of vegetation indices. In the second case

land-cover changes are detected by analyzing the minor components of the

transformed feature space (Singh (1989)). The above techniques usually do

not aim to identify explicitly what kinds of land-cover transitions have taken

place in an area (e.g., the fact that a vegetated area has been urbanized). Only

the Change Vector Analysis technique allows one to distinguish among differ-

ent kinds of land cover changes but, not being supervised, it does not explicitly

identify the specific typologies of transitions. The above techniques are suitable

for applications like, the definition of burned areas, the detection of pollution,
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deforestation, etc. However, they cannot be applied when the information on

change character is not sufficient, like, for example, in the monitoring of chang-

ing cultivation, where it is necessary to recognize the kinds of changes that have

taken place in the agricultural area investigated. In addition, the performances

of such technique is generally degraded by several factors like:

• differences in illumination at two times,

• differences in atmospheric conditions, in sensor calibration and in ground

moisture conditions,

that make difficult a direct comparison between the raw images acquired at

different times.

To overcome these problems, one can use the techniques based on a su-

pervised classification of multitemporal images (Singh (1989)). The simplest

technique in this category is Post-Classification Comparison (Singh (1989)). It

performs change detection by comparing the classification maps obtained by in-

dependently classifying two remote-sensing images of the same area acquired at

different times. In this way, it is possible to detect changes and to understand

the kinds of transitions that have taken place. Furthermore, the classification

of multitemporal images avoids the need to normalize for atmospheric condi-

tions, sensor differences etc., between the two acquisitions. However, the per-

formances of the Post-Classification Comparison technique critically depend

on the accuracies of the classification maps. In particular, the final change

detection map exhibits an accuracy close to the product of the classification

accuracies yielded at the two times (Singh (1989)). This is due to the fact that

Post-Classification Comparison does not take into account the dependence ex-

isting between two images of the same area acquired at two different times.

Supervised Direct Multidata Classification, (Singh (1989)), is able to over-

come this problem. In this technique, pixels are characterized by a vector

obtained by “stacking” the feature vectors related to the images acquired at
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two times. Change detection is then performed by considering each transition

as a class and by training a classifier to recognize the transitions. Appropriate

training sets are required for the success of this method: the training pixels at

the two times should be related to the same points on the ground and should

accurately represent the proportions of all the transitions in the entire images.

Usually, in real applications, it is difficult to have training sets with such char-

acteristics. In general the approach based on supervised classification is more

flexible than that based on the comparison of multitemporal image data. In

addition to the already mentioned capability to explicitly recognize land-cover

transitions and to reduce the effects of different acquisition conditions at two

different times, it also allows us to perform change detection using different

sensors at different times. This is a useful property when change detection on a

large time difference has to be performed and available images are provided by

different sensors. The spatial resolution plays a key role in urban monitoring

related to the detection of fine-scale objects present in urban scenes. In partic-

ular high spatial resolution is required to reduce the problem of mixed pixels

(i.e. the pixels that represent the spectral signature of more than one class due

to the insufficient spatial resolution of the sensor) present in the medium res-

olution images (e.g. Landsat imagery). Also the multispectral information is

required to discriminate between the different surfaces/materials that compose

the urban areas.

1.2 Type of surfaces to be classified

Since the appearance of very high resolution sensors and the object-oriented

image analysis (OOIA), new questions about the acquisition of knowledge for

classification procedures can be posed. The OOIA approach is characterized

by the extraction of object primitives from images where each object corre-

sponds to a group of homogeneous pixels. The object recognition methods are
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generally based on the use of knowledge related to spectral, spatial and contex-

tual properties (e.g. mean of spectral and textural values, shape, length, area,

adjacency and inclusion relationship...) (Sheeren et al. (2006)). While there

are several studies that compare object-oriented and pixel-based classification

techniques (Rego and Koch (2003)), only few works focus on the development

of the knowledge base used to recognize the objects. No urban objects dictio-

nary or ontology exists to create the knowledge base. Most of the time, the

knowledge is implicit and is held only by the domain experts. However, the

experts are rarely able to supply an explicit description of the knowledge they

use in their reasoning. Data mining techniques, such as genetic algorithms, can

help to derive this knowledge and to extract classification rules automatically.

These rules are intended to enrich an ontology in the urban remote sensing

imagery domain (Sheeren et al. (2006)). The algorithm has been succesfully

tested on a very high resolution QuickBird multi-spectral (MS) image of an ur-

ban area. In this work we use the results obtained in the above study: we make

the assumption that the spectral signatures allows us to separate, at the first

hierarchical level, these basic “elementary” classes, such as: vegetation, bare

soil and “mineral”. The second hierachical level includes the segmentation of

“mineral” surfaces into “man made” elements such as roads and buildings. Fi-

nally, in the third hierachical level the “man made”surfaces are subdivided into

residential, commercial, industrial etc.



Chapter 2

Remote Sensing Data

2.1 Optical/IR and radar available today and in near

future

Airborne and satellite remote sensing techniques have been investigated for

human settlement detection, population estimation, and urban analysis since

the mid-1950s (Henderson and Xia (1997)). Systems operating in the visible

and near-infrared regions of the electromagnetic spectrum have received most

of the attention and thus offer the most advanced and widely employed tech-

niques. Starting in the early 1980s airborne imaging radar systems have also

been used for urban land cover mapping, and offer some distinct advantages

over optical sensors as well as contributing to potential synergistic benefits

of merged data set. In fact, the reflectance measurements acquired in visible

and infrared regions of the spectrum, are primarily related to molecular reso-

nances of surface materials and visible radiometers are not able to sense the

surface, under adverse meteorological conditions and during the night. The

radar backscattering measurements are primarily related to the physical prop-

erties of surface objects such as surface roughness and the dieletric constant.

In particular, in a built up area, a radar backscatter signal depends on the ori-

19
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entation of facets and on the presence of dihedral corner reflectors, formed by

the intersection of horizontal and vertical built features, and trihedral corner

reflectors, formed by two orthogonal vertical walls and the ground (Schiavon

and Solimini (2000)). Moreover, the radar sensor is able to collect data under

all meteorological conditions and at any time of the day. However, the urban

landscape is highly variable and complex and the radar signal interaction with

the urban built-up area is not easy to interpret. Recently, modelling returns

from urban structures have been carried out using L-band images of groups of

buildings at linear polarizations and different incidence angles (Schiavon et al.

(2001)).

Satellite Source Launch Sensors Types No.of Resolution

Name Channels (meters)

ERS-2 ESA 1995 AMI Radar 1 26

RADARSAT-1 Canada 1995 SAR Radar 1 9, 100

Lansat-7 US 1999 ETM+ MS

6 30

1 60

PAN 1 15

ROCSAT-1 Taiwan 1999 n/a

MS n/a 2

PAN n/a 8

IKONOS SpaceImaging 1999 IKONOS
MS 4 4

PAN 1 1

EROS-A1 ImageSat 2000 PAN PAN 1 1.5

Table 2.1 - Earth Observation Satellites: optical/IR and radar current missions. Satellites

launched between 1995-2000.
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QuickBird DigitalGlobe 2001
MS MS 4 2.44

PAN PAN 1 0.61

MTI US 2001 MTI MS 15 5

Envisat-1 ESA 2002 ASAR Radar 1 30, 150

SPOT-5 France 2002 HRV MS

3 10

1 20

PAN 1 2.5, 5

OrbView-3 Orbimage 2003
Orbview MS 4 4

PAN PAN 1 1

ROCSAT-2 Taiwan 2004 MS
MS 4 8

PAN 1 2

IRS-P6 India 2004 LISS 3/4 MS 7 5.8, 23.5

ALOS Japan 2004

PALSAR Radar 1 10, 100

AVNIR-2 MS 4 10

PRISM PAN 1 2.5

EROS-B1 ImageSat 2004 PAN PAN 1 0.82

IRS-P5 India/US 2005 PAN PAN 1 2.5

KOMPSAT-1 Korea 1999 EOC PAN 1 6.6

KOMPSAT-2 Korea 2006

PAN PAN 1 1

MS MS 4 4

IRS-P5 India-US 2005 PAN PAN 1 2.5

CARTOSat-2 India-US 2005 PAN PAN 1 2.5

Table 2.2 - Earth Observation Satellites: optical/IR and radar current missions. Satellites

launched between 2001-2005.
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2.2 Relevance of Very-High-Resolution (VHR) op-

tical data

Remote sensing data with spatial resolutions of 0.5 − 10 m are required to

adequately define the high wavenumber detail which characterizes the urban

scene. This level of spatial resolution corresponds to scales between 1 : 10, 000

and 1 : 25, 000 (ignoring the effects of relief distortion etc.), that are typical of

projects dealing with urban planning (Donnay et al. (2001)). The use of very

high resolution (VHR) images, however, brings with it some major problems:

1. the majority of the highest resolution images are presently recorded in

panchromatic mode only,

2. the corresponding large data set creates difficulties in terms of image

storage, data exchange and processing time.

The first problem could be solved by using different data fusion techniques,

i.e. merging the higher resolution panchromatic data with lower resolution

multispectral data (Ackerman (1995), Jones et al. (1991), Wald et al. (1997)).

Transforms in the color space (RGB/HSI), principal components analysis, spa-

tial filtering and wavelets methods are among the most common means of

achieving such integration (Carper et al. (1990), Chavez and et al. (1990) and

Pohl and Van Genderen (1998)). Data fusion methods are also suitable for

processing merged data sets involving sensors with different spatial resolutions

and physical measurements such as radar and optical system (Schiavon et al.

(2003)). This synergy can expand the optical system limits and improve the

relatively poor spectral information related to the high-resolution data and im-

prove the classification accuracy. In fact, in non-urban areas, it is generally

possible to derive relatively direct relationships between the spectral responses

in the four MS bands of natural components such as water, vegetation and

soil and the measured image pixels reflectance values. In urban area, identi-
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cal spectral reflectance values correspond to very different surface structures in

terms of materials and fabrics, complicates the feature extraction process and

the final output map.

The problems concerning the volume of data might appear of secondary im-

portance given the rapid and continuing improvements in computer technology.

Nevertheless, they remain significant at the scale of the urban region (typically

several tens of square kilometers) and they necessitate the consideration of data

compression techniques. In this context, wavelet and other transform methods

are promising avenues of research. They not only allow efficient data compres-

sion while preserving the original spectral values, but they can also be used

to fuse images at different resolutions, thereby simultaneously dealing with the

two main problems outlined above.

2.3 Features of data available today

Satellite Source Launch Sensors Types No.of Resolution

Name Channels (meters)

RADARSAT-2 Canada 2007 SAR Radar 1 3

CARTOSat-2 India-US 2007 PAN PAN 1 1

EROS-B2 ImageSat 2007 PAN PAN 1 0.7

EROS-C ImageSat 2008
PAN PAN 1 0.7

MS MS n/a 2.8

WorldView-1 DigitalGlobe 2007 PAN PAN 1 0.5

TerraSAR-X Germany 2007 SAR Radar 1 1

Table 2.3 - Earth Observation Satellites: optical/IR and radar future missions. Satellites

missions for 2007 and later.



Chapter 3

Classification Methods of

High Resolution Remote

Sensing Data

As discussed in 2.2 Supervised classification is the procedure most often

used for quantitative analysis of remote sensing image data. It is based on using

suitable algorithms to label pixels in an image representing particular ground

cover types, or classes. A variety of algorithms is available for this analysis,

ranging from those based on probability distribution models for the classes

of interest to those in which the multipsectral space is partitioned into class-

specific regions using optimally located surfaces. Irrespective of the particular

method chosen, the essential practical steps are:

• Decide the set of ground cover types into which the image is to be sub-

divided. These are the information classes, for example, water, urban

regions, vegetated areas, etc.

• Choose representative pixels for each of the desired classes. These pixels

form the training set. Often the training pixels for a given class are in

24
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a common region enclosed within a border often called the Region of

Interest (ROI);

• Use the training data to estimate the values of the particular classifier

algorithm to be used; these parameters will be the properties of the prob-

ability model used to define partitions in the multispectral space. The

set of parameters for a given class is sometimes called the signature of

that class;

• Using the trained classifier, label or classify every pixel in the image into

one of the desired ground cover types (information classes). Here the

whole image is classified;

• Produce tabular summaries (typically the confusion or accuracy matrices)

and thematic or classification maps which summarise the results of the

classification.

In the recent literature, many papers have addressed the development of

novel techniques for the classification of high resolution remote sensing images.

In (Unsalan and Boyer (2004)), the authors present a technique for the identifi-

cation of land developments over regions. The proposed technique uses straight

lines, statistical measures (length, orientation, and periodicity of straight line),

and spatial coherence constraints to identify three classes, namely 1) urban; 2)

residential; 3) rural. In (Shackelford and Davis (2003)), a standard maximum-

likelihood classifier is used to discriminate four spectrally similar macroclasses.

Subsequently, each macroclass can be hierarchically subdivided according to

class-dependent spatial features and a fuzzy classifier.

The main problem of these techniques is that they are highly problem de-

pendent. This means that they cannot be considered as a general operational

tool. In (De Martino et al. (2003)), the authors analyze the effectiveness of the

gray-shade co-occurrence matrix (GLCM) texture features in modeling the spa-
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tial context that characterizes high-resolution images. The fact that the analy-

sis depends on the sample window and different heuristic parameters along with

the intrinsic inability to model the shape of the objects leads to unsatisfactory

classification accuracies. A more promising family of approaches for the anal-

ysis of high resolution images is inspired by the behaviour of the human vision

system, is based on an object-oriented analysis and/or multilevel/multiscale

strategies. In these approaches each image is made up of interrelated objects

of different shapes and sizes. Therefore, each object can be characterized with

shape, topological measures, and spectral features. Objects can be extracted

from images according to one of the standard segmentation techniques proposed

in the literature (Haralick and Shapiro (1985)). The main idea of this multi-

level analysis is that for each level of detail, it is possible to identify different

objects that are peculiar to that level and should not appear in other levels. In

other words, each object can be considered to be its “optimal” representation

level. Moreover, other aspects considered in this analysis are: 1) that objects

at the same level are logically related to each other and 2) that each object

at a generic level is hierarchically related to those at higher and lower levels

(Binaghi et al. (2003), Benz et al. (2004), Burnett and Blaschke (2003)).

For example, in the multiscale analysis of a high resolution image, using the

highest resolution, we can identify houses, gardens, streets, and single trees; at

moderate levels, we can identify urban aggregates, group of trees, and agri-

cultural fields; finally, at the coarsest level, we can identify towns and cities,

forests, and agricultural areas as single objects. The exploration of the hierar-

chical tree results in a precise analysis of the relations between these objects.

For example, we can count the number of houses that belong to a specific

urban area (Benz et al. (2004)). In (Binaghi et al. (2003)), the authors pro-

pose an approach based on the analysis of a high-resolution scene through a

set of concentric windows. The concentric windows analyze the pixel under

investigation and the effects of its neighbors at different resolutions. To reduce
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the computational burden, the information contained in each analysis window

is compressed using a Gaussian pyramidal resampling approach. The classi-

fication task is accomplished by a soft multilayer perceptron neural network

that can be used adaptively as a pixel-based or an area-based classifier. One

of the limitations of this approach is the fixed shape and choice of the analy-

sis window size. In (Shackelford and Davis (2003)), an object-based approach

is proposed for classification of dense urban areas from pan-sharpened multi-

spectral Ikonos imagery. This approach exploits a cascade combination of a

fuzzy-pixel classifier and a fuzzy object-based classifier. The fuzzy pixel-based

classifier uses spectral and simple spatial features to discriminate between roads

and buildings, which are spectrally similar. Subsequently, a segmented image

is used to model the spectral and spatial heterogeneities and to improve the

overall accuracy of the pixel-based thematic map. Shape features and other

spatial features (extracted from the segmented image) as well as the previously

generated fuzzy classification map are used as inputs to an object-based fuzzy

classifier.

In (Benediktsson et al. (2003)), morphological operators are exploited within

a multi-scale approach to provide image structural information for automatic

recognition of man made structures. In greater detail, the structural informa-

tion is obtained by applying morphological operators with a multi-scale ap-

proach and analyzing the residual images obtained as a difference between the

multiscale morphological images successive scales. A potential problem with

this technique is the large feature space generated by the application of a series

of opening and closing transforms. In (Benediktsson et al. (2003)), the authors

overcome this problem by proposing the use of different feature-selection algo-

rithms. An adaptive and supervised model for object recognition is presented

in (Binaghi et al. (2003)), where a scale-space filtering process models and a

multi-scale analysis for feature extraction is integrated to a unified framework

within a multilayer perceptron neural network. This means that the error back-
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propagation algorithm used to train the neural network also identifies the most

adequate filter parameters. The main problems of this technique are related

to the choice of the number and type of filters to be used in the input filtering

layer (first layer) of the neural network.

In (Mott et al. (2002)), an algorithm based on selective region growing is

proposed to classify a high-resolution image. In the first step, the image is

classified by taking into account only spectral information. In the second step,

a classification procedure is applied to the previous map by taking into account

not only spectral information but also a pixel distance condition to aggregate

neighboring pixels. By iteration, neighbor pixels that belong to the same class

grow in a selective way, obtaining a final classification map. Nevertheless, as

mentioned before, the few techniques specifically developed for the automatic

analysis of high resolution images (compared with the abundant literature on

the classification of moderate-resolution sensors), do not exhibit sufficient ac-

curacy to satisfy the the end-user requirements in all application domains.

3.0.1 Unsupervised Neural Network Classification Algorithms:

The Self-Organizing Map

In the context of the Unsupervised classification algorithms using NN, it is

worthwhile to highlight the Self-Organizing map. Among the architectures and

algorithms suggested for artificial neural networks, the Self-Organizing Map has

the special property of effectively creating spatially organized “internal repre-

sentation” of various features of input signals and their abstractions (Kohonen

(1990)). Neighboring cells in a neural network compete in their activities by

means of mutual lateral interactions, and develop adaptively into specific de-

tectors of different signal patterns. In this case, learning is called competitive,

unsupervised or self-organizing. The Self-Organizing Map is a sheet-like neural

network, the cells of which becoming specifically tuned to various input signal
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patterns or classes of patterns through an unsupervised learning process. The

locations of the responses tend to become ordered as if some meaningful coor-

dinate system for different input features were being created over the network.

The spatial location or coordinates of a cell in the network then correspond

to a particular domain of input signal patterns. Each neuron or local neuron

group acts like a separate decoder for the same input. It is thus the presence

or absence of an active response at that location, and not the exact input-

output signal transformation or magnitude of the response, that provides an

interpretation of the input information. Due to their characteristics, the Self-

Organizing Maps (SOMs) are suitable for pattern recognition problems (e.g.

image classification). In particular, the training phase is very fast compared to

the supervised NN training phase (i.e. an iterative procedure). The SOMs have

been succesfully used in different application domains with QB images: e.g. for

detection of “man made” structures and changes (Molinier et al. (2006)), and

to distinguish different kind of asphalt surfaces (e.g. concrete etc.) (Del Frate

et al. (2004)).

3.1 Summary of methods used for classification by

spectral radiances

3.1.1 The Neural Net method: Performance and comparison

with other method

The use of neural networks in remote sensing has often been found effective,

since they can simultaneously handle non linear mapping for a multidimensional

input space onto the output classes and can cope with complex statistical be-

haviour (Dawson (1994)). Neural networks, in contrast to statistically-based

classifiers, do not require an explicitly well defined relationship between the

input and output vectors, since they determine their own input-output rela-
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tions directly from a set of training data (Rumelhart et al. (1986)). There are

numerous types of neural networks used in classifying remotely sensed data.

The most commonly used NN is the Multi Layer Perceptron (MLP)(Lippman

(1987)) which has been found to have the best topology for the classification and

inversion problems (Hsu et al. (1992)), trained by the backpropagation (BP)

algorithm (Del Frate et al. (2000)). Minimization of the error function can also

be pursued by a scaled conjugate gradient algorithm (Bishop (1995)). This is

a member of the class of conjugate gradient methods (general purpose second

order techniques) that help to minimize goal functions of several variables. Sec-

ond order indicates that such methods use the second derivatives of the error

function, while a first order technique (like standard back-propagation) only

uses the first derivatives (Del Frate et al. (1999)).

3.1.2 The Neural Network algorithm

The results shown in the following sections are also published in (Del Frate

et al. (2006)) and Appendix. NN models are mainly specified by the net topol-

ogy and training rules (Lippman (1987)). The term topology refers to the struc-

ture of the network as a whole: the number of its input, output, and hidden

layers and how they are interconnected. Among various topologies, multilayer

perceptrons (MLP) have been found to have the best suited topology for clas-

sification and inversion problems (Hsu et al. (1992)). These are feed-forward

networks where the input flows only in one direction to the output, and each

neuron of a layer is connected to all neurons of the successive layer but has no

feedback to neurons in the previous layers. As far as the numbers of hidden

layers and of their sub units are concerned, the topology providing the optimal

performance should be selected. In fact, if the number of neurons is too small,

the input-output associative capabilities of the net are too weak. On the other

hand, this number should not be too large; otherwise, these capabilities might

show a lack of generality being too tailored to the training set which unecessar-
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ily increases the computational complexity of the algorithm. It turns out that

a fair compromise can be found.

The number of hidden layers is another issue to be considered. It has been

shown that networks having two layers of weights, i.e. one hidden layer of

neurons, and one of sigmoidal hidden units can approximate arbitrarily well

any functional continuous mapping, provided the number of hidden units is

sufficiently large (Bishop (1995), Hornik et al. (1989)). However how much the

inclusion of an additional hidden layer might improve the classification perfor-

mance is still an open issue.

In this work we followed a rather heuristic approach. We systematically

analyze the performance of the network varying either the number of hidden

layers (one or two) or the number of hidden units and selecting the best topol-

ogy on the basis of quantitative results. Once the network topology is selected,

the weight or strength of each connection has to be determined via learning

rules to approximate an unknown input-output relation. These rules indicate

how to pursue the minimization of the error function measuring the quality of

the network’s approximation of the restricted domain covered by a training set

(i.e., a set of input-output examples). A typical error function which can be

considered in this context is the sum-of-squares error function (SSE) (Bishop

(1995)), given by a sum over all patterns, and over all outputs, of the form:

SSE =

N∑
n=1

c∑
k=1

{yk(x
n,w) − tnk}

2 (3.1)

Here yk(x
n;w) represents the output of unit k as a function of the input

vector xn and the weight vector w, N is the number of testing patterns, and

c is the number of outputs. The quantity tn
k represents the target value for

output unit k when the input vector is xn. In our case the minimization of the

error function has been carried out using a scaled conjugate gradient (SCG)

algorithm (Moller (1993)). This is a member of the class of conjugate gradient

methods, general purpose second order techniques that help to minimize goal
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functions of several variables.

It should be mentioned that most of the neural net simulations were pro-

vided by the SNNS (Stuttgart Neural Network Simulator) package (Stuttgart

Neural Network Simulator (1995)). For the specific purpose of our image clas-

sification a training-set with a statistically significant number of pixels for each

class has been generated. The training of the neural network has then been car-

ried out by feeding it with pairs of vectors (patterns): the input vector contains

the reflectances of the different channels of the multi-spectral image, the output

vector contains the corresponding known class of the surface. To avoid satura-

tion within the network it has been necessary to scale all the values of the input

vectors in the range between −1 and 1. This is also helpful to mitigate single-

image effects if pixels belonging to different images are included in the training

set. At the same time, the component of the output vector corresponding to

the true class has been set to 1 while the others go to 0. Once the NN have

been trained, they have been used for the classification of new data not used

in the training set. In the test phase, a competitive approach (winner-take-all)

has been considered to decide on the final classification response.

3.1.3 Single image classification: MLP near-optimal structure

The first applications of NNs in satellite image classification (Benediktsson

et al. (1990)) established an additional merit of their use compared to conven-

tional approaches (e.g. Maximum Likelihood): the ability to easily incorpo-

rate non-spectral ancillary information (e.g. topographic) into the classifica-

tion process without violating any assumption, and as previously showed, NN

outperformed statistical classifiers on several occasions (Kanellopoulos et al.

(1992)). Nevertheless, there is no exact solution to find the optimal topology,

in terms of resulting classification accuracy, of a MLP, until today. There have

been several heuristics, some developed in the context of remotely sensed im-

age classification specifically (Kanellopoulos and Wilkinson (1997)), that could
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be the basis for exploring more efficient topologies by trial and error. These

rules of thumb insure that the topologies, and thus results attained, will not

deviate much from optimum. However, when the classification results are ex-

tracted there is always the uncertainty related to the topology used and the

classification accuracy (e.g., another topology could yield superior accuracy).

There is no guarantee that a near-optimal topology has been found to perform

the classification. The difficult part in determining an optimum MLP topol-

ogy lays in hidden structures identification i.e. the identification of the best

number of hidden neurons for each layer. Currently, there exist two general

categories of approaches, pruning or growing algorithms (Lauret et al. (2006))

on one side and heuristics, which give us the hidden structure as a function

of the number of input and output nodes, on the other (Kanellopoulos and

Wilkinson (1997)). In this work we use the growing method: nodes are added

progressively, e.g. starting with a single hidden node, until performance can no

longer be improved.

The QuickBird commercial remote sensing satellite provides images con-

sisting of four multi-spectral (MS) channels with 2.4 m resolution and a single

panchromatic (PAN) band with a 0.62 m resolution. The four MS bands col-

lect data at red, green, blue, and near-infrared wavelengths, and the data in

each band is stored with an 11-bit quantization. As previously discussed, the

spatial resolution plays a key role in urban monitoring related to the ability to

detect fine-scale objects present in urban scenes. In particular, high resolution

is a requirement to reduce the problem of mixed pixels (i.e. the pixels that

represent the spectral signature of more than one class due to the insufficient

resolution of the sensor) present in the medium resolution images (e.g. Landsat

imagery). However, the high resolution sensors have a limited spectral resolu-

tion, depending on technical constraints, that further increase the classification

problem (Schowengerdt (2002)) and often do not allow a complete characteri-

zation of different roof types, having different spectral signatures. However, a
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method developed exploiting only the Digital Number (DN) belonging to rep-

resentative pixels of each class randomly selected on QB images, is accurate in

terms of classification results.

A QB image taken over the Tor Vergata University campus, located in Italy,

South-East of Rome, on March 13, 2003, will be referred to as QB1. A view of

the area obtained with the Red, Green and Blue bands is shown in Fig. 3.1.

Figure 3.1 - QuickBird image of the Tor Vergata University Campus, Rome, and its sour-

rondings.

Besides the buildings of the campus, different residential areas belonging

to the outskirts of the south-east side of the city can be distinguished in the

image. Our first purpose was to design an optimum neural network able to

classify the multi-spectral image. The land cover classes considered were build-

ings, roads, vegetated areas, and bare soil where the latter class includes not

asphalted road and artificial excavations. The inclusion of additional classes

was discarded for several reasons: the considered classes are those that best

describe the area under consideration and are in themselves sufficient to detect

significant features. The choice of a small number of classes enables a more
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quantitative comparison of the performance obtained using a single net for a

single image classification compared to the use of a single net for multiple im-

age classification. In this latter case we think that the choice of a number of

4 classes represents a rather ambitious target. It also has to be noted that

a recent study analysing satellite image classification experiments over fifteen

years pointed out that using a larger number of classes increases the difficulty

in the classification, which is frequently not supported by the experimental re-

sults shown in the study (Wilkinson (2005)). Once the classification problem

was been configured, a first investigation consisted of analysing the spectral

behaviour of the different surfaces. The selected pixels characterizing one class

belonged to polygons manually drawn in the image. It should be noted that,

at the very high resolution of the images, the edges or boundaries between in-

dividual land cover objects were fairly sharp and it was usually easy to locate

and assign a specific pixel to a land cover class. The mean values of the spectral

signatures of the 4 categories are shown in Fig. 3.2.

The figure clearly discriminates between the classes. This results from the

spectral properties related to the different molecular resonance mechanisms

which characterize the surface materials. Using the same data for the sensitivity

analysis we were able to generate a training-set with a statistically significant

number of pixels for each of the four categories. Previous studies have shown

that the training set, notably in terms of its size and compositions, can have a

marked impact of the classification accuracy (Foody et al. (1995)). The training

datasets were generated considering about 24, 400 pixels. The design of the

network put particular emphasis on the selection of the number of hidden units

to be considered in the net. To this purpose the plot in Fig. 3.3 was produced,

where the SSE value over a test set of more than 1, 000 patterns is reported

that corresponds to different numbers of hidden units. It can be seen that, if

we consider both the SSE error and the network complexity, the best results

were obtained with a 4 − 20 − 20 − 4 topology. Indeed, the increase of the
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Figure 3.2 - Spectral analysis from Quickbird image QB1 for the classes buildings (dashed

line), asphalted surface (solid line), bare soil (dash-dotted line), vegetated areas (dotted line).
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number of hidden units did not significantly change the SSE error.

A similar plot is reported in Fig. 3.4 where now a single hidden layer is

considered. Again the best result are obtained with around 20 neurons in the

hidden layer, however this topology is slightly worse if compared with the two-

hidden layer topology. This indicates that the second layer is able to extract

additional information from what is already discriminated by the first one. The

topology 4−20−20−4 was then finally selected and used to classify the entire

image (3, 506, 832 pixels).

Figure 3.3 - SSE values calculated over the test set changing the number of hidden neurons

in a two hidden layers topology. The number of units is the same in both layers.

Fig. 3.5 shows the classification map derived using this procedure. The

classification accuracy has been assessed by visual comparison with the original

high resolution image and by direct inspections on site. We stress the fact that

our working area is located at the Tor Vergata University campus, that is almost

at the centre of image QB1, allowing direct inspection on site. A ground truth

map, corresponding to a subset of the image, has been manually interpreted.

We observed that the classification provided by the network is accurate due
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Figure 3.4 - SSE values calculated over the test set changing the number of hidden neurons

in a one hidden layer topology.

Figure 3.5 - Classification map of the image QB1 using the optimized topology. Red: bare

soil, blue: asphalted surface, white: buildings, green: vegetated areas.
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to its high-level of resolution and we reached a 93% accuracy in the subimage

considered.

The whole confusion matrix is reported in 3.1.

Classified as

True

Vegetated Areas Asphalt Building Bare Soil

Vegetated Areas 14864 33 750 2207

Asphalt 132 44785 68 27

Building 1225 29 12634 783

Bare Soil 230 2 512 3229

Table 3.1 - Confusion matrix obtained for image QB1 with the 4 − 20 − 20 − 4 topology.

Overall number of pixels: 81510. Overall Error: 5998 pixels (7.36%).

Once the network topology for this kind of problem has been optimized and

the performance assessed, we move to investigate the capability of a unique

network to provide the classification of different images rather than of a single

one. To underline the complexity of this new problem we tested the designed

network, developed from the QB1 image, on another QB image. The choice of

this new image should follow some similarity criteria with respect to the already

classified one. For example it would not be very meaningful to consider a new

image characterized by very different land cover classes, such as water, which

does not appear in the QB1 image (hence not integrated at all by the network

during its training process). Failure of the neural network in this case can be

taken for granted and this test would not provide an evaluation of the network

generalization capability. Therefore, we decided to choose as a test image a

QB image quite similar to QB1. Indeed, the new QB image (QB2) is taken

of the same area as the first one, but in a different season and at a slightly

different incident angle. In 3.2 we summarize the basic information of the two

images analyzed so far and of those that will be considered in the following. If
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the trained network fails in its application to this image it will be unlikely to

succeed with many other QB images.

Code Acquisition Date Dimension Off Nadir Location

(pixels) Angle

QB1 03/13/2003 2415 ∗ 1650 8 Degrees Rome, SE outskirts

QB2 05/29/2002 2352 ∗ 1491 11 Degrees Rome, SE outskirts

QB3 07/19/2004 2415 ∗ 1650 23 Degrees Rome, NE outskirts

QB4 07/19/2004 2415 ∗ 1450 23 Degrees Rome city

QB3 07/22/2005 2223 ∗ 1450 12 Degrees Nettuno town

Table 3.2 - Characteristics of the Quickbird images used in the work. All the acquisition

times are between 10 : 00 − 10 : 30 a.m.

Figure 3.6 - Automatic classification map from the image QB2 with a net trained with

examples taken from image QB1. Red: bare soil, blue: asphalted surface, white: buildings,

green: vegetated areas.

In Fig. 3.6 we show the result of the classification of the QB2 image by
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using the net trained on patterns retrieved from image QB1. For the sake of

completeness and for a better interpretation of the results we also produced

the classification, reported in Fig. 3.7, that would be obtained applying to the

image QB2 the single image classification method developed for image QB1 (a

network (4 − 20 − 20 − 4), trained with examples from QB1). The classifica-

tion map shown in Fig. 3.7 seems, as expected, rather accurate. Indeed the

misclassification percentage computed over the same image subset considered

for QB1 is 95% similar to the one obtained in the former case. The classifi-

cation result shown in Fig. 3.6 is completely different. Although the network

recognizes many patterns and assigns the correct class to the corresponding

pixels, entire objects are misclassified, the bare soil class and the built areas

class are definitely overestimated and the general noise level produced by the

classification is significantly increased. From a quantitative point of view the

misclassification rate computed over the subset test image is 56%. Fig. 3.8

Figure 3.7 - Classification map from the image QB2 using a network trained with examples

taken from image QB1. Red: bare soil, blue: asphalted surface, white: buildings, green:

vegetated areas.
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contributes to understanding the classification performance. We observe that

even if the shapes of the signatures resemble those plotted in Fig. 3.2, where we

can still discriminate between classes, the ranges of the digital number values

are significantly different, generating confusion when the network generates its

classification response. Thus, the classification of the QB2 image obtained us-

ing a network trained on another image, even if taken on the same scenario, is

not adequate. This means that to design a network able to provide good clas-

sification accuracy for images not used in the training phase is an ambitious

goal, even if the classification is performed for a limited number of classes.

Figure 3.8 - Spectral analysis from image QB2 for the training set classes: buildings (dashed

line), asphalted surface (solid line), bare soil (dash-dotted line), vegetated areas (dotted line).



Chapter 4

Methods to “globally”

characterize a (large) urban

area

4.1 The Discrete Fourier Transform

4.1.1 The Discrete Spectrum

Consider now the problem of finding the spectrum (i.e. of computing the

Fourier transform) of a sequence of samples. This is the first stage in our com-

putation of the Fourier transform of an image. Indeed, the sequence of samples

to be considered here could be looked at as a single line of pixels in a digital

image. Here we made the assumption that the spectrum of a set of samples is

itself a continuous function of spatial wavenumber (ν). For digital processing

clearly it is necessary that the spectrum itself also be represented by a set of

values, that would, for example, exist in computer memory. Therefore we have

to introduce a suitable sampling function in the wavenumber domain. For this

purpose consider an infinite periodic sequence of impulses in the wavenumber

domain spaced by ∆ν. It can be shown that the inverse transform of this se-
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quence is another sequence of impulses in the spatial domain, spaced ∆ν apart.

In this case we are going from the wavenumber domain to the spatial domain

rather than vice versa.

4.1.2 Discrete Fourier Transform Formulae

Let the sequence φ(k), k = 0, ...,K be the set of K samples taken of f(x)

over the sampling period 0 to x0. The samples correspond to distance kX. Let

the sequence F(r), r = 0, ...,K − 1 be the set of samples of the wavenumber

spectrum. These can be derived from φ(k) by suitably modifying the Fourier

transform:

X(κ) =

∫ ∞

−∞
f(x)e−jωx dx (4.1)

In fact, the integral over time can be replaced by the sum over k=0 to K-1,

with dx replaced by ∆x, the sampling increment. The continuous function

f(x) is replaced by the samples φ(k) and κ = 2πf is replaced by 2πr∆ν with

r = 0, ...,K − 1. Thus κ = 2πr/X0. The spatial variable X is replaced by

kX = kX0/K, k = 0, ...,K − 1. With these changes 4.1 can be written in

sampled form as

F (r) = X
K−1∑
k=0

φ(k)W rk, r = 0, ...,K − 1 (4.2)

with

W = e−j2π/K . (4.3)

Equation 4.2 is known as the discrete Fourier transform (DFT). In a similar

manner a discrete inverse Fourier transform (DIFT) can be derived that allows

reconstruction of the spatial sequence φ(k) from the wavenumber samples F(r).

This is
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φ(k) = X0

K−1∑
r=0

F (r)W rk, k = 0, ...,K − 1 (4.4)

Sobstitution of 4.1 into 4.4 shows that those two expressions form a Fourier

transform pair. This achieved by putting k=l in 4.4 so that

φ(l) =
1

X0

K−1∑
r=0

F (r)W−rl =
1

X0

K−1∑
r=0

·X
K−1∑
k=0

φ(k)W r(k−l) =
1

K

K−1∑
k=0

φ(k)·
K−1∑
k=0

W r(k−l)

(4.5)

The second sum in this expression is zero for k 6= l; when k = l is K, so that

the right hand sid of the equality then becomes φ(l) as required. An interesting

aspect of this development has been that X has cancelled out, leaving 1/K as

the net constant from the forward and inverse transforms. As a result 4.2 and

4.4 could conveniently be written

F (r) =

K−1∑
k=0

φ(k)W rk r = 0, ...,K − 1 (4.6)

φ(k) =
1

K

K−1∑
r=0

F (r)W−rk k = 0, ...,K − 1 (4.7)

4.1.3 Properties of the Discrete Fourier Transform

Three properties of the discrete Fourier transform and its inverse are of

importance here:

• Linearity: Both the DFT and DITF are linear operations. Thus if F1(r)

is the DFT of φ1(k) and F2(r) is the DFT of φ2(k) then for any complex

constants a and b, aF1(r) + bF2(r) is the DFT of aφ1(k) + bφ2(k).

• Periodicity: from 4.3, W K = 1 and W kK = 1 for k integral. Thus for

r′ = r + K
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F (r′) = X
K−1∑
k=0

φ(k)W (r+K)k = F (r) (4.8)

Thus in general

F (r + mK) = F (r) (4.9)

φ(k + mK) = φ(k) (4.10)

where lm is an integer. Thus both the sequence of spatial samples and

the sequence of wavenumber samples are periodic with period K. This

is consistent with the development of Sect. 4.1.1 and has two important

implications. First, to generate the Fourier series components of a pe-

riodic function, samples need only be taken over one period. Secondly,

sampling converts an aperiodic sequence into a periodic one, the period

being determined by the sampling duration.

• Symmetry: Let r′ = K − r in 4.1, to give

F (r′) = X

K−1∑
k=0

φ(k)W−rkW kK (4.11)

Since W kK = 1 this shows F (K−r) = F (r)∗ where ∗ represents the com-

plex conjugate. This implies that the amplitude spectrum is symmetric

about K/2 and the phase spectrum is antisymmetric (i.e. odd).

4.2 The Discrete Fourier Transform of an Image

4.2.1 Definition

In the foregoing section we have treated functions with a single independent

variable. That variable could have been the position along a line of an image.



4. Methods to “globally” characterize a (large) urban area 47

Now functions with two independent variables will be examined. Let

φ(i, j), i, j = 0, ...,K (4.12)

be the brightness of a pixel at location i, j in an image of KxK pixels. The

Fourier transform of the image, in discret form, is described by

Φ(r, s) =
K−1∑
i=0

K−1∑
j=0

φ(i, j)exp[−j2π(ir + js)/K] (4.13)

An image can be reconstructed from its transform according to

Φ(r, s) =
1

K2

K−1∑
i=0

K−1∑
j=0

φ(i, j)exp[+j2π(ir + js)/K] (4.14)

4.2.2 Evaluation of the Two Dimensional, Discrete Fourier Trans-

form

Equation 4.13 can be written as

Φ(r, s) =
K−1∑
i=0

W ir
K−1∑
j=0

φ(i, j)W js (4.15)

with W = e−j2π/K as before. The term involving the right hand sum can

be recognised as the one dimensional discrete Fourier transform

Φ(i, s) =

K−1∑
j=0

φ(i, j)W js i = 0, ...,K − 1 (4.16)

In fact it is the one dimensional transform of the ith row of pixels in the

image. The result of this operation is that the rows of an image are replaced

by their Fourier transforms; the transformed pixels are then addressed by their

wavenumber index s across a row rather the positional index j. Using 4.16 in

4.15 gives
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Φ(r, s) =
K−1∑
i=0

φ(i, s)W ir (4.17)

which is the one dimensional discrete Fourier transform of the sth column

of the image, after the row transforms of 4.16 have been performed. Thus, to

compute the two dimensional Fourier transform of an image, it is only necessary

to transform each row individually to generate an intermediate image, and then

transform this by column to yield the final result. Both the row and column

transforms would be carried out using the fast Fourier transform algorithm; it

can be seen therefore that the number of multiplications required to transforms

an image is K2 log2 K.

4.2.3 The Concept of Wavenumber

Entries of the Fourier transformed image Φ(r, s) represent the composition

of the original image in terms of its two-dimensional wavenumber components.

Wavenumber is the spatial analog of the frequency of a signal in time. A sinu-

soidal signal with high frequency alternates rapidly, whereas a low frequency

signal changes slowly with time. Similarly, an image with high wavenumber

horizontal exhibits frequent changes of brightness along the respective axis.

An image of a high density residential urban area would be a good example of

high wavenumber spectrum. Both the east-west and north-south dimensions

of the houses are likely to be characterized by high wavenumber. Typically an

image is composed of both east-west and north-south wavenumbers of differing

spectral strengths derived from the discrete Fourier transform. The fundamen-

tal wavenumber is located at the upper left hand pixel in Φ(r, s) (i.e.Φ(0, 0))

and is the average brightness value of the image. This is the component in

the spectrum with zero wavenumber in both directions. Thereafter pixels of

Φ(r, s) both east-west and north-south represent components with wavenum-

bers that increment by 1
K where the original image is of size K ·K. If the scale
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of the image is known then the wavenumber has dimension of length scale−1

(i.e. metres−1). For example the wavenumber increment for a 6250 ·6250 pixel

image that covers 15 km image (i.e. QB MS) is 0.066667 mm−1.

In Sect. 4.1.3 it was shown that the one dimensional discrete Fourier trans-

form is periodic with period K. The same is true of the discrete two dimen-

sional form. Indeed the K · K pixels of Φ(r, s) computed according to 4.13

can be viewed as one period of an infinitly periodic two dimensional array and

the amplitude is symmetric about K/2. Similarly Φ(r, s) is symmetric about

its centre. This can be demonstrated by showing that no new spectral am-

plitude information is shown by displaying pixels east-west and north-south

beyond K/2. Rather than ignore them (since their accompanying phase is

important) the display is adjusted to bring Φ(0, 0) to the centre. This is the

lowest wavenumber of the Fourier transform array and represents the image

average brightness value. Pixels away from the centre represent the regions of

increasing wavenumber components in the image. This is the usual method of

presenting two dimensional image transforms. Example of spectra displayed in

this manner are given in the figures below. To make visible components with

smaller amplitudes, a logarithmic amplitude scaling has been used, according

to

D(r, s) = log[1 + |Φ(r, s)|]. (4.18)

In general, the high wavenumber content of an image is associated with

frequent changes of brightness with position. Edges, lines and some types of

noise are examples of high wavenumber (often noise is by definition “white”,

meaning all wavenumbers). In contrast, gradual changes of brightness with

position, such as are associated with more gradual spatial tonal variations,

account for the low wavenumbers in the spectrum. In particular, with respect

to the QB images, each input pixel in the four multispectral bands in the spatial

domain is identified by the functions f1(x, y), f2(x, y), f3(x, y) and f4(x, y),
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where (x, y) represent the pixel spatial coordinates, which are mapped in the

wavenumber domain by F1(ν1, ν2), F2(ν1, ν2), F3(ν1, ν2), and F4(ν1, ν2).

(a) A picture of the planet Saturn. (b) Display of D(r, s) = |Φ(r, s)|.

(c) Display of D(r, s) = log[1 + |Φ(r, s)|]

.

Figure 4.1 - Picture of the planet Saturn, its normal spectrum and the spectrum processed

by adding 1 to |Φ(r, s)|, taking the log and rescaling the values to the same gray scale used in

displaying |Φ(r, s)|.



Chapter 5

Applications

5.1 Detailed classification of “elementary” surfaces

using the optical/IR spectra

Three more QB images of Rome have been considered in this case for an

overall number of 5 images. As shown in Tab. 3.2 the 5 images are of similar

size but taken from different years, different sites and different seasons. Besides

the QB1 and QB2 images centred on the Tor Vergata University campus, we

have one image (QB3) looking at north-east suburbs, a fourth image quite close

to the old town (QB4), and a fifth image (QB5) which has been taken on a

small urban area a few km away from Rome. A pixel-based classification algo-

rithm has again been implemented to distinguish among the four main classes:

buildings, asphalt surfaces, vegetated areas and bare soils.

In a previous section we showed that a successful classification performance

relies on proper training and design of the network. In particular, it is im-

portant that the patterns included in the training set significantly represent

all potential scene elements that might be encountered during the application

phase, in other words resemble the statistics of the image. To this purpose a

larger archive of spectral signatures has been generated. Images QB1, QB3 and

51
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QB5 have been considered for the training and about 26, 000 examples have

been collected for the generation of the network training set. Optimal per-

formance both in terms of classification accuracy and training time was again

determined by an extensive study whose results are illustrated in Fig. 5.1.

Figure 5.1 - SSE values calculated over the test set changing the number of hidden neurons

in a two hidden layers topology designed for the classification of a collection of Quickbird

images. The number of units is the same in both layers.

With regards to the number of hidden layers we relied on our previous re-

sult indicating that topology with two hidden layers is more effective so the

final selected topology was again 4 − 20 − 20 − 4. Indeed, with respect to the

single image processing case, most of the physics characterizing the classifica-

tion problem have not changed and those that have changed have only minor

implications in terms of the topology to be selected. In Figures 5.2 and 5.3 we

present the classification maps obtained by applying the trained neural network

to the images QB2 and QB4, which did not contain any of the pixels included in

the training sets. From both visual inspection of the original images and direct

on site inspection we observed a general good agreement with the map gener-

ated automatically. All of the main features such as large roads and buildings

are distinguishable with good precision even though some inaccuracies can be
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noted in the objects edge detection, possibly caused by shadow effects. A more

quantitative analysis, computed for the same sub-area of image QB2 considered

in section 2 gave an overall accuracy rate is of about 87%.

Figure 5.2 - Automatic classification map from the image QB2 with a net trained with

examples taken from other images. Red: bare soil, blue: asphalted surface, white: buildings,

green: vegetation.

Figure 5.3 - Automatic classification map from the image QB4 with a net trained with

examples taken from other images. Red: bare soil, blue: asphalted surface, white: buildings,

green: vegetation.
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5.2 Global characterization of large cities of parts of

cities

Many techniques proposed in the literature are not general but are applica-

tion dependent and specifically developed for addressing particular approaches

(e.g. analysis of urban areas). Thus, the proposed approach is general and can

be applied to any kind of high-resolution image and application domain. In

fact, experimental results obtained on the data set of Rome that consists of

different parts of the city and surroundings, which included the country side

areas as vineyards and croplands, point out the effectiveness of the proposed

methodology.

5.3 High Resolution Change Detection

Considering these encouraging results, and given the availability of two

images (QB1 and QB2) over the same site, we tried to extend the described

method to a typical change detection exercise. The two images have been co-

registered using a set of 30 ground control points and using the earlier image

as a master. We remind the reader that the time interval between the two

images is one year. The two corresponding classification maps, obtained by

means of the same network, have been used for the production of change de-

tection maps. In particular, the change detection was evaluated in terms of the

pixels that migrated from vegetation, bare soil or asphalt surface class to the

building class in the time window considered. In this case we are more inter-

ested in an object based result, the final change detection mask was obtained

after a post-processing which removed all clusters of pixels detecting changes

but containing of less than 20 elements. The ground-truth confirmed that the

changes corresponding to the primary detected structures were buildings con-

structed over the study time interval. An example of such a detection result
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is shown in Fig. 5.4 where the previous corresponding classification maps are

also presented. The corresponding confusion matrix, reported in Table 5.1 and

computed on the basis of the ground-truth, gives an high percentage of pixels

along the diagonal. On the other hand, most the pixels off the diagonal belong

to the object circled in red which, rather than a real failure of the classification

algorithm, is a consequence of an imperfect coregistration of the two images.

Classified as True

Changed Unchanged

Changed 14864 33

Unchanged 132 44785

Table 5.1 - Confusion matrix obtained for the change detection. Overall number of considered

pixels: 148538. Overall accuracy 93.2%.



5. Applications 56

(a) 2002 Classification map results. Red:

bare soil, blue: asphalted surface, white:

buildings, green: vegetaded areas.

(b) 2003 Classification map results. Red:

bare soil, blue: asphalted surface, white:

buildings, green: vegetaded areas.

(c) Change detection mask. White: changed

features, black: unchanged features.

Figure 5.4 - Change detection results.
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5.3.1 Transform algorithms to characterize urban areas

We use wavenumber spectra of QB images to characterize different areas

from the cities: New York, Boston, San Francisco and Rome. We used the green

wavelength of 0.56 µm (MS channel=2) which responds best to the spectral

profiles of the primary “mineral” urban surfaces that have a high reflectance

value around 0.5 µm (JPL Spectral Library Minerals (1991)). The images

characteristics are given in Table 5.2:

City Acquisition Date Spatial Resolution Off Nadir Angle

New York 08/20/2002 2.4 meters 20.3 Degrees

Boston 09/20/2005 2.4 meters 18.4 Degrees

San Francisco 02/12/2006 2.4 meters 19.8 Degrees

Rome 07/19/2004 2.4 meters 23 Degrees

Table 5.2 - Characteristics of the selected images.

It’s worthwhile to note that the spectra are also influenced by different

illumination angle, season and acquisition date as well as moisture conditions.

For each city we selected the urban areas:

• Downtown;

• Airport;

• High Density Urban;

• Industrial/Commercial.

These areas, selected by careful visual inspections, are statistically meaningful

and representative of the above different urban environments.

We start from Manhattan (NY), presented in Fig. 5.5.

In general, most of the spectral energy distribution is symmetrical and the

upper part of the diagram contains the information. As expected from looking
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Figure 5.5 - A selected typical downtown area of Manhattan, NY. The image shows a uniform

distribution of the buildings.

Figure 5.6 - 3D image representation of Fig. 5.5: bottom layer: original image; middle layer:

pixel‘s reflectance value, top layer: objects image contours.



5. Applications 59

Figure 5.7 - FFT Power Spectrum of a selected typical downtown area of Manhattan (NY):

Logaritmic Scale (surface). The energy is concentrated in a narrow central peak, decreasing

smoothly in both directions East-South-East and West-North-West.

Figure 5.8 - FFT Power Spectrum of a selected typical downtown area of Manhattan (NY):

Logarithmic Scale (image); the energy is uniformly distributed in two perpendicular direc-

tions.(The x and y scales are the same as in Fig. 5.7).
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at Fig. 5.5 which does’nt show large differences between darker and brighter

areas, hence the spectral energy is not high in amplitude and is concentrated

in a narrow central peak. This peak decreases smoothly without any preferred

bias direction, along East-South-East and West-North-West directions. The

two perpendicular spectral ridges also map the building and road orientations

and their almost regular pattern repetition: narrow perpendicular roads (some

of them affected by the “city canyon” problem) and similarly oriented buildings,

that are not very different in shape, size and brightness. In particular, the low

spectral amplitude and its rather narrow central spread characterize, relatively

dim and narrow features. The results indicate that the city has been built up

in a relatively short time and in a planned fashion, using perpendicular streets.

In the lower part of Fig. 5.7, the noise is not very high indicated by the low

speckle effect in Fig. 5.8.

Figure 5.9 - A selected typical area of Boston downtown, Massachusetts. The way this city

built up is related to its geography.

The Boston downtown area, where the skyscrapers are concentrated, is close
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to the ocean: the way that the city built up is related to its geography.

Figure 5.10 - 3D image representation of Fig. 5.9: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours. The second layer indicate

the presence of both very bright and very darker features.

Figure 5.11 - FFT Power Spectrum of a typical selected area of downtown Boston: Logarit-

mic Scale (surface). The spectrum amplitude is higher, compared to the Manhattan spectrum,

and the energy is spread wider, that means larger and brighter features dominate the image.

In Fig. 5.11 there is a correspondence between the maximum peak and

maximum noise. The lower part of the diagram shows a high noise value spike

below the main peak consistent with the high speckle level present in 5.12.In
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Figure 5.12 - FFT Power Spectrum of a typical selected area of downtown Boston: Loga-

rithmic Scale (image). The dominant feature is the North-South oriented spectral peak and

there are also two weaker peaks in other angle directions.(The x and y scales are the same as

in Fig. 5.11).
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Fig. 5.12 the dominant feature is the North-South oriented spectral ridge and

there are also two weaker ridges in other directions. The spectral amplitude

is higher, compared to the Manhattan spectrum, and the central energy peak

is spread wider, that means larger and brighter features dominate the image

consistent with Fig. 5.9.

Figure 5.13 - A selected typical area of downtown San Francisco, California. The area built

up somewhat randomly over the time, growing without any intended pattern.

The city of San Francisco has been built up over time without a specific plan

as shown in Fig. 5.13. The buildings and the roads do’nt follow any obvious

pattern: the roads are different in width and direction e.g. there are no-long

straight streets, the buildings are different in brightness, shape and size and

there are not many linear features.

The spectral energy amplitude (5.15) is similar to that for Boston but the

central peak is lower than that for Manhattan. These differences may be related

to the different illumination, season and acquisition date as well as moisture

conditions. The energy ridge bias, in the Wester direction, decreases with in-



5. Applications 64

Figure 5.14 - 3D image representation of Fig. 5.13: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

Figure 5.15 - FFT Power Spectrum of a typical selected area of downtown San Francisco:

Logaritmic Scale (surface).
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Figure 5.16 - FFT Power Spectrum of a typical selected area of downtown San Francisco:

Logarithmic Scale (image). The wavenumber spectrum is more isotropic. (The x and y scales

are the same as in Fig. 5.15).
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creasing wavenumber with small peaks and valleys. The wavenumber spectrum

in Fig. 5.16 is more isotropic (i.e. spectral ridges in all directions); although,

there is a spectral energy bias towards the West. There are not many linear

and aligned features and there are many shadow effects.
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Figure 5.17 - A typical selected area of downtown Rome, Via del Corso and surroundings,

Rome, Italy. The area includes perpendicular streets.

The Fig. 5.17 represents a downtown area of Rome, including one of the

principal central roads, Via Del Corso, and surroundings.

Figure 5.18 - 3D image representation of Fig. 5.17: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

By comparing the wavenumber spectrum in Fig. 5.20 with Fig. 5.8 and
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Figure 5.19 - FFT Power Spectrum of a typical selected area of downtown Rome: Loga-

rithmic Scale (surface). The spectrum has a similar general structure to the Manhattan one,

with different specifics.

Figure 5.20 - FFT Power Spectrum of a typical selected area of downtown Rome: Logarith-

mic Scale (image). (The x and y scales are the same as in Fig. 5.19).
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the respective input images (Figs. 5.17 and 5.5), we can see the same kind of

perpendicular orientation of the spectral ridges but with different angle orien-

tations. In particular (Fig. 5.20) the North-East oriented axis has more energy

than the South-West one. Moreover, the spectral energy is higher and wider

spread than in the Manhattan spectrum. Looking at the Rome streets we can

see that they are fewer but larger than the Manhattan ones. These character-

istics are clearly indicated in the spectra of the two cities, that have a similar

general structure with different specifics. It is important to note that Rome

was designed to have perpendicular streets much as Manhattan.

We performed our airport characterizations for La Guardia (NYC), Logan

(Boston International Airport), San Francisco International Airport and the

smaller Ciampino Airport of Rome.

Figure 5.21 - A typical selected are of La Guardia airport, NY. The airport is close to the

city with one direction runways.

In the lower part of the wavenumber spectrum in Fig. 5.23, the noise level

is high, probably due to the overall reduced brightness values; the central peak

is broad, and the energy ridge decreases with several minor peaks and valleys.

These characteristics seem related to the runways, to the airplanes, to the

tarmac and to the roads along the runways. We again note that the noise level

is very high at the central peak indicated by the negative spectral spike at



5. Applications 70

Figure 5.22 - 3D image representation of Fig. 5.21: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

Figure 5.23 - FFT Power Spectrum of a typical selected area of La Guardia airport: Loga-

ritmic Scale (surface).
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this location. The spectrum (Fig. 5.24) has two main ridges: the stronger is

oriented along the West-South-West axis.

Figure 5.24 - FFT Power Spectrum of a typical selected area of La Guardia airport: Loga-

rithmic Scale (image). (The x and y scales are the same as in Fig. 5.23).
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Figure 5.25 - A typical selected area of Logan International airport, Boston, Massachusetts

(MA). The runways are along more directions.

The Logan International Airport is characterized by runways along more

directions as showed in Fig. 5.25.

Figure 5.26 - 3D image representation of Fig. 5.25: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours. The middle layer diagram

is influenced by the bright buildings with darker features around.
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Figure 5.27 - FFT Power Spectrum of a typical selected area of Logan airport: Logaritmic

Scale (surface). The spectrum falls off rapidly starting from a narrow central peak.

Figure 5.28 - FFT Power Spectrum of a typical selected area of Logan airport: Logarithmic

Scale (image). (The x and y scales are the same as in Fig. 5.27).
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As seen in Fig. 5.25, there is a high contrast between brightest and darkest

areas. The bright buildings and the darker features surrounding them influence

this spectrum that falls off rapidly starting from a narrow central peak (Fig.

5.27). The energy in the plan-view spectrum (5.28) is the same in both axes

oriented North-West and South-East. There are also spectral features along

both the North-South and East-West directions.

Figure 5.29 - A typical selected area of San Francisco International airport, San Francisco,

California.

In the lower part of the San Francisco airport spectrum in Fig. 5.31, the

noise level is higher than in the Logan spectrum and is similar to La Guardia

spectrum. The plan-view spectrum (Fig. 5.32) show several perpendicular

main features. The spectral energy is higher along the West-North and East-

South directions than the North-South East-West ones. Compared to the Logan

spectrum, the energy is higher, and the angles between the energy axes are

completely different.



5. Applications 75

Figure 5.30 - 3D image representation of Fig. 5.29: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

Figure 5.31 - FFT Power Spectrum of a typical selected area of San Francisco airport:

Logarithmic Scale (surface).
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Figure 5.32 - FFT Power Spectrum of a typical selected area of San Francisco airport:

Logarithmic Scale (image). (The x and y scales are the same as in Fig. 5.31).

Figure 5.33 - A typical selected area of Ciampino airport, Rome, Italy. The airport is small

and has only one runway.
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Figure 5.34 - 3D image representation of Fig. 5.33: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

Figure 5.35 - FFT Power Spectrum of a typical selected area of Ciampino airport: Loga-

rithmic Scale (surface).
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By comparing the Ciampino spectra in both Fig. 5.36 and Fig. 5.35 we

can say that there are many smaller peaks along the main spectral ridges. The

central peak is significantly different from its neighbors, but the smaller peaks

are not. This is due to the fact that Ciampino Airport has only one runway.

Basically, you have just one feature to distinguish. This is a an example of a

limitation of the use of the wave number analysis. When the image features

are large and relatively uniform in structure, the noise is often amplified, which

makes this type of analysis less useful.

We will now use the wavenumber spectral technique to characterize High

Density Urban Areas starting from Brooklyn (NY).

The diagram in Fig. 5.39 show a higher spectral amplitude compared with

5.7. There are several central peaks, instead of only one as in 5.7, which are

similar in energy and can be treated as one peak. By comparing Figures 5.37

and 5.40: the input image is similar to Manhattan but with smaller build-

ings and weaker “canyon city” effects; moreover the wavenumber spectrum is

brighter, with more spectral energy. The energy is along two axes which are

wider and larger in the North-East direction.

Figure 5.36 - FFT Power Spectrum of a typical selected area of Ciampino airport: Loga-

rithmic Scale (image). (The x and y scales are the same as in Fig. 5.35).
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Figure 5.37 - A typical selected high density urban area of Brooklyn, New York.
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Figure 5.38 - 3D image representation of Fig 5.37: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

Figure 5.39 - FFT Power Spectrum of a typical selected high density urban area of Brooklyn

(NY): Logaritmic Scale (surface). The several central peaks are not significantly different and

can be treated as one principal peak.
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Figure 5.40 - FFT Power Spectrum of a typical selected high density urban area of Brooklyn

(NY): Logaritmic Scale (image). (The x and y scales are the same as in Fig. 5.39).
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Figure 5.41 - A typical selected high density urban area of Boston, Massachusetts.

Figure 5.42 - 3D image representation of Fig. 5.41: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

In Fig. 5.43 the Boston urban area spectral central ridge is narrow, the

energy rapidly decreases initially, and subsequently, gradually. Both the spectra

in Fig. 5.40 and Fig. 5.44 have two preferred directions. They have similar

energy distributions, but with different angles. Moreover, in Fig. 5.44 the

East-East-South axis has more energy.
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Figure 5.43 - FFT Power Spectrum of a typical selected high density urban area of Boston:

Logaritmic Scale (surface).

Figure 5.44 - FFT Power Spectrum of a typical selected high density urban area of Boston:

Logarithmic Scale (image). There are two preferred directions in the energy distribution.

(The x and y scales are the same as in Fig. 5.43).
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Figure 5.45 - A typical selected high density urban area of San Francisco, California.

Figure 5.46 - 3D image representation of Fig. 5.45: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

In Fig. 5.47 the central peak is not large in amplitude, and the spectrum

decreases rapidly in the Westword direction, initially steeply and then has an-

other significant peak. The speckle is related to the vertical amplitude of the
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diagram, that is pretty high as seen in Fig. 5.48.

Comparing the spectra related to San Francisco downtown area and high

Figure 5.47 - FFT Power Spectrum of a typical selected high density urban area of San

Francisco: Logarithmic Scale (surface).

Figure 5.48 - FFT Power Spectrum of a typical selected high density urban area of San Fran-

cisco: Logarithmic Scale (image). The road orientation establish a certain energy direction.

(The x and y scales are the same as in Fig. 5.47).



5. Applications 86

density urban area, Figs. 5.48 and 5.16, we can see that in the housing area

the energy is distributed along two axis while in the downtown area the energy

distribution is only along one major axes. In particular Fig. 5.48 shows that

the two axes are almost perpendicular and the energy is very similar. These

characteristics are related to the road orientations that establish certain direc-

tions (Fig. 5.45). Looking again at the two spectra, the high density urban

area has a higher speckle effect than the downtown one.



5. Applications 87

Figure 5.49 - A typical selected high density urban area of Rome, Italy.

Figure 5.50 - 3D image representation of Fig. 5.49: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

The previously discussed for the high density urban area spectrum (Fig.

5.52) the energy is along two perpendicular axes one of which is the almost

East-West axis. This characteristic is related to the distance between city
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Figure 5.51 - FFT Power Spectrum of a typical selected high density urban area of Rome:

Logarithmic Scale (surface).

Figure 5.52 - FFT Power Spectrum of a typical selected high density urban area of Rome:

Logarithmic Scale (image). (The x and y scales are the same as in Fig. 5.51).
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blocks (Fig. 5.49). The speckle effect is high as showed in Fig. 5.52 and by the

vertical extent of the spectrum in Fig. 5.51.

We continue our study by characterizing Industrial/Commercial areas be-

longing to our selected cities.

Figure 5.53 - A typical selected industrial/commercial area of New York City.

Figure 5.54 - 3D image representation of Fig. 5.53: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

The spectrum in Fig. 5.56 shows two non-perpendicular major axes. The

noise is concentrated along the North-South direction, in Fig. 5.55, the max-

imum peak corresponds to the maximum noise (seen in a large negative peak

beneath the spectral maximum).
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Figure 5.55 - FFT Power Spectrum of a typical industrial/commercial area of New York

city: Logaritmic Scale (surface). The maximum peak corresponds to the maximum noise (seen

in a large negative peak beneath the spectral maximum).

Figure 5.56 - FFT Power Spectrum of a typical industrial/commercial area of New York

city: Logarithmic Scale (image). The spectrum shows two non-perpendicular major axes.

(The x and y scales are the same as in Fig. 5.55).
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Figure 5.57 - A typical selected industrial/commercial area of Boston, Massachusetts.

Figure 5.58 - 3D image representation of Fig. 5.57: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.
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Figure 5.59 - FFT Power Spectrum of a typical selected industrial/commercial area of

Boston: Logaritmic Scale (surface). The vertical size of the diagram shows a high noise level.

Figure 5.60 - FFT Power Spectrum of a typical selected industrial/commercial area of

Boston: Logarithmic Scale (image). The spectrum is isotropic with a central spherical energy

distribution. (The x and y scales are the same as in Fig. 5.59).
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The plan-view spectrum in Fig. 5.60 is nearly isotropic with an elliptical

central energy distribution. The spectrum is very noisy with a lot of speckle

effect as showed in Figs. 5.60 and 5.59.
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Figure 5.61 - A typical selected industrial/commercial area of San Francisco, California.

Figure 5.62 - 3D image representation of Fig. 5.61: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.

The San Francisco spectrum in Fig. 5.63 does not show a correspondence

between the maximum noise and the maximum spectral peak. In addition, the

overall noise in this spectrum is low. The spectrum in Fig. 5.64 has two primary

axes that are not quiet perpendicular. Moreover, this spectrum is similar to

the spectrum from the downtown area (Fig. 5.48) but higher in energy.
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Figure 5.63 - FFT Power Spectrum of a typical selected industrial/commercial area of San

Francisco: Logaritmic Scale (surface). The overall noise in this spectrum is low.

Figure 5.64 - FFT Power Spectrum of a typical selected industrial/commercial area of San

Francisco: Logarithmic Scale (image). The spectrum is similar to the spectrum from the

downtown area. (The x and y scales are the same as in Fig. 5.63).
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Figure 5.65 - A typical selected industrial/commercial area of Rome, Italy.

Figure 5.66 - 3D image representation of Fig. 5.65: bottom layer: original image; middle

layer: pixel‘s reflectance value, top layer: objects image contours.
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Figure 5.67 - FFT Power Spectrum of a typical selected industrial/commercial area of Rome:

Logarithmic Scale (surface). The diagram has more peaks in the west direction.

Figure 5.68 - FFT Power Spectrum of a typical selected industrial/commercial area of

Rome: Logarithmic Scale (image). The spectrum shows maximum energy in North-South

and East-West directions with a bias to the west. (The x and y scales are the same as in Fig.

5.67).
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The Rome spectrum in Fig. 5.68 shows maximum energy in North-South

and East-West directions with a bias to the west. The amplitude of the speckle

indicates a high noise level. As expected, the diagram in Fig. 5.67 has a higher

spectral level in the west direction.



Chapter 6

Conclusions

This study focuses on high resolution urban monitoring using NN analyses

for land cover classification and change detection, and FFT computations of

wavenumber spectra to characterize the spatial scales of land cover features.

The methods include:

• Classification of a data set of high resolution images with NN algorithms

with respect to the most relevant urban features. The purpose of this

procedure was to yield accurate classification maps and to train the net-

works in order to be used as general classifiers for other similar image

data sets not considered in the NN training phase. This allows us to clas-

sify new images in near-real time. To achieve this goal, careful spectral

analyses over statistically significant different data sets have been carried

out and the NN topologies have been designed to avoid possible effects

of overfitting.

• We have then used different wavenumber spectra to understand the nature

of the significant features in the images in different urban environments.

In particular, the transform algorithms have been used to characterize

different urban areas of different cities (New York, Boston, San Francisco

and Rome), selected, by visual inspection of the different, Regions of

99
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Interest.

Neural Networks algorithms

It is well recognized that one of the major advantages of NN with respect

to Bayesian and other statistically based classifiers is that NN methods draw

their own input-output discriminant relations directly from the data and do not

require that a particular form of a PDF (Probability Density Function) be as-

sumed (Dawson (1994)). In this study we exploit these characteristics of MLP

(Multi Layer Perceptrons) networks for automatic processing of a data set of

high-resolution satellite images with a particular interest in feature extraction

from urban areas. The network performance appears to be satisfactory, espe-

cially considering the fact that the procedures used are completely automatic.

In fact, the maps automatically applied to new images (i.e., those that were

not considered in the training phase), show good classification agreement with

the results of careful visual inspection or available independent ground-truth

information. Experimental results show a classification accuracy of 87%, which

represents a benchmark for successive studies. Finally, if images of the same

area are available at different times, the described classification method can

also be used to automatically track of changes (such as new buildings), that

occurred in the area under observation.

FFT Transforms

The Fourier transform results are promising for an efficient urban spatial

structure characterization. The wavenumber spectra show similarities between

features from typical areas from different cities (e.g. the Manhattan and the

Rome high density urban areas spectra), and between different areas of the same

cities (e.g. San Francisco downtown and San Francisco high density urban areas

spectra). By comparing the wavenumber spectrum of the downtown areas of
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Rome and New York (Manhattan), we can see the same kind of perpendicular

orientation of the spectral ridges but with different angle orientations and the

Rome spectrum has a higher and wider spectral ridges than those for Manhat-

tan. These spectral characteristics reflect the urban features represented in the

two images. In fact, the streets in the two images have the same kind of per-

pendicular orientation, but the Roman streets are larger. Also the buildings, in

both images, have the same kind of orientation, but those in Rome are lower,

brighter and wider. We can conclude that Rome and Manhattan downtown,

have a similar general structure with different specifics. It’s worthwhile to con-

sider how these two cities are different e.g. in their history, how they were

built up, age, climate and location: with the wavenumber spectra method we

are able to automatically and rapidly find, analogies and differences between

very disparate places around the world. We also investigated three airports

La Guardia (NYC), Logan (Boston International Airport) and San Francisco

International Airport (we said previously in Section 5.3.1 that the spectrum of

the smaller Ciampino airport is not useful for our characterization purpose).

Comparing the Logan spectrum with the San Francisco airport spectrum, the

latter spectrum has a higher central peak energy, and the angles between the

energy axes are completely different.

Moreover, the speckle effect (representing noise in the image) present in the

San Francisco airport spectrum is higher than for Logan and almost similar

to that for La Guardia. We can conclude that the spatial structures of these

three selected airport are quite different. In fact, each airport is different in its

location relative to the city (e.g. La Guardia is close to the city with runways

in one direction), number and direction of the runways, tarmacs, airplanes, and

roads along the runways.

Considering now, the high density urban areas compared to the downtown

area of New York city: the Brooklyn spectrum has two preferred directions

similar to Manhattan, but the spectrum is brighter, with higher and more
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widey spread spectral energies, especially along one axis direction. In fact, the

streets perpendicular orientation in Brooklyn is similar to Manhattan but the

buildings are brighter and lower making the “canyon city” effect weaker. These

analogies and differences clearly come out in the spectral characteristic of each

area.

Analyzing the high density urban spectra of Boston and New York, they

both have two preferred directions and similar energy distributions, but with

different angles. In fact, both areas have perpendicular streets but with differ-

ent orientations. Moreover, the Boston buildings are similar to the Brooklyn

ones but smaller, and the overall image is more homogeneous in brightness.

Comparing the spectra related to the San Francisco downtown area and its

high density urban area, we find that in the housing area the energy is dis-

tributed along two axes while in the downtown area the energy distribution

is only along one major axis. This difference is related to the different road

orientations. The downtown area has been built up somewhat randomly over

time, consequently the roads appear randomly oriented and in different direc-

tions while the high density urban area seems more ordered and well planned.

Here the roads are more perpendicular, following a predefined orientation. The

high density urban area spectrum of Rome is very similar to the downtown

area spectrum of the same city; the energy is along two perpendicular axes.

In general, we can conclude that the spectral energy of the high density urban

areas from the four selected cities, is mostly distributed along two preferred

axes, although these are different for each city in orientation and intensity.

We conclude our study, with the industrial/commercial areas spectral analy-

ses. The insustrial/commercial spectrum of NYC, shows two non-perpendicular

major axes, probably, mostly related to the different roof buildings types of ma-

terials. The San Francisco commercial area is similar to the downtown area but

higher in energy. The commercial areas of Boston and Rome have spectra with

high noise levels, indicated by a high speckle effect. This can be related to



6. Conclusions 103

large features which are relatively uniform in structure typical of the commer-

cial/industrial buildings in these areas.

We have demonstrated that the wavenumber spectral analysis allows us to

find differences and analogies between different cities in different location, with

different climates, and different histories, as well as between different urban

environments of the same cities. Moreover, the spectral characteristics help us

to understand the way that the cities have been built up.

In general, with the wavenumber spectral technique we are able to charac-

terize urban features exploiting both the spatial spectral and contextual infor-

mation contained in the high resolution data. The technique can be applied

to enable us to better manage the problems related to large data sets resulting

from high-resolution satellite images (i.e. image storage, data exchange and

processing time). In fact, spectral analysis is also an efficient data compression

technique preserving the original images spectral values. This work can be

considered as a first step in demonstrating how NN and FFT algorithms can

contribute to the development of Image Information Mining in Earth Observa-

tion.
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Abstract— The effectiveness of Multi-Layer Perceptron (MLP) 

networks as a tool for the classification of remotely sensed images 
has been already proven in past years. However, most of the 
studies consider images characterized by high spatial resolution 
(around 15-30 m) while a detailed analysis of the performance of 
this type of classifier on very high resolution (around 1-2 m) 
images such as those provided by the Quickbird satellite is still 
lacking. Moreover, the classification problem is normally 
understood as the classification of a single image while the 
capabilities of a single network of performing automatic 
classification and feature extraction over a collection of  archived 
images has not been explored so far. In this paper, besides 
assessing the performance of MLP for the classification of very 
high resolution images, we investigate on the generalization 
capabilities of this type of algorithms with the purpose of using 
them as a tool for fully automatic classification of collections of 
satellite images, either at very high or at high resolution. In 
particular, applications to urban area monitoring have been 
addressed. 
 

Index Terms— Features extraction, high-resolution imagery, 
infornation mining, neural networks. 
 

I. INTRODUCTION 
EURAL networks (NN) as a tool in the field of remote 
sensing have received considerable attention since a new 

learning scheme was developed. The principle of a back-
propagation algorithm was initially proposed by Werbos [1] 
and rediscovered by Rumelhart [2]. Since the early nineties, 
several researchers have compared the performance of NN 
with conventional statistical approaches to remote sensing 
applications, and in particular to image classification. 
Benediktsson et al. [3] evaluated the two methods for multi-
source remote sensing data classification. They noted that a 
neural network has great potential as a pattern recognition 
method for multi-source remotely sensed data because of the 
distribution-free nature of a neural network. Bishof et al. [4] 
as well as Paola and Schowengerdt [5] compared methods for 
multispectral classification of Landsat TM data and both 
found that with proper training, a neural network was able to 
perform better than the maximum-likelihood classification. 
However, even if these studies seem to show that NN 
performance is comparable or better than that provided by 
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other techniques, they are mainly focused on high resolution 
Landsat images and on the use of a single neural network for 
classifying and/or extracting specific features from a single 
image, namely the image from which the examples training 
the network are taken. Conversely, a detailed analysis of the 
pixel-based classification yielded by this type of algorithms on 
very high resolution images such as those provided by the 
Quickbird or Ikonos platforms is still lacking. Moreover, the 
potentialities of a single neural network as a tool for automatic 
and sequential processing of images contained in archives 
have been scarcely investigated until now. With processing 
here we mean that the network might be used to retrieve from 
the archive all the images that contain or do not contain a 
specific class of land cover, or where the ratio between areas 
corresponding to different classes is within/out predefined 
ranges. In other words the network allows the identification of 
high-level (object or region of interest) spatial features from 
the low-level (pixel) representation contained in a raw image 
or image sequence, hence addressing scientific issues 
characteristic of the image information mining field [6],[7]. 

In this work, as a first step, we want to assess and optimise 
the neural network approach for the pixel-based classification 
of a single very high resolution image, such as one of those 
provided by the Quickbird satellite. Later we move to the 
conceptually most innovative part of the study which is to 
investigate on the capabilities of supervised NN in providing 
automatic classification on a collection of images, therefore 
their potentialities from an image information mining point of 
view. This means to stress their generalization capabilities, 
that is the capabilities to obtain good generalization to new 
input patterns from the patterns on which the nets have been 
trained. Several issues interfere with the objective of 
designing NN able to generalize on images not used in the 
training phase. For example the effects on the measurements 
due to the different incidence angles and/or atmospheric 
conditions or the fact that different types of material may 
characterize the same class. Therefore, the robustness of the 
spectral information despite such problems has to be 
investigated and such an analysis needs to concur with the 
design of the NN. Addressing this point, in the paper we 
consider both very high (Quickbird) and high (Landsat) 
resolution images and a specific application domain which is 
the feature extraction and information discovery on urban 
areas. In fact, monitoring changes and urban growth over time 
is one of the major areas of scientific research in remote 
sensing that have a strong interaction with the policy cycles 

Use of Neural Networks for Automatic 
Classification from High-Resolution Images 

F. Del Frate, Member, IEEE, F. Pacifici, Student Member, IEEE, G. Schiavon and C. Solimini 

N 



Manuscript No.  TGRS-2006-00099 
 

2

and that would improve environment and security monitoring 
[8]-[10]. A large volume of satellite data for such purposes is 
available, but despite many competing automatic approaches 
exist, it is difficult to fully and automatically address the 
problems raised by the different application scenarios. In this 
study the aim of the classification is to distinguish among 
areas made of artificial coverage (sealed surfaces) including 
asphalt or buildings, and open spaces such as bare soil or 
vegetation.  

 

II. THE NUEURAL NETWORK ALGORITHM 
NN models are mainly specified by the net topology and 

training rules [11]. The term topology refers to the structure of 
the network as a whole: the number of its input, output, and 
hidden units and how they are interconnected. Among various 
topologies, multilayer perceptrons (MLP) have been found to 
have the best suited topology for classification and inversion 
problems [12]. These are feedforward networks where the 
input flows only in one direction to the output, and each 
neuron of a layer is connected to all neurons of the successive 
layer but has no feedback to neurons in the previous layers. 
As far as the numbers of hidden layers and of their units are 
concerned, the topology providing the optimal performance 
should be selected. In fact, if the number of neurons is too 
small, the input-output associative capabilities of the net are 
too weak. On the other hand, this number should not be too 
large; otherwise, these capabilities might show a lack of 
generality being too much tailored on the training set and the 

computational complexity of the algorithm would be increased 
in vain. It turns out that a fair compromise has to be found. 
The number of hidden layers is another issue to be considered. 
It has been shown that networks having two layers of weights, 
i.e. one hidden layer of neurons, and sigmoidal hidden units 
can approximate arbitrarily well any functional continuous 
mapping, provided the number of hidden units is sufficiently 
large [13][14]. However how much the inclusion of an 
additional hidden layer might improve the classification 
performance is still an open issue. In this paper we followed a 
rather heuristic approach. We sistematically analysed the 
performance of the network varying either the number of 
hidden layers (one or two) or the number of hidden units and 
selecting the best topology on the base of the accuracy results 
obtained on a set of examples not considered for the training. 
The weight or strength of each connection has to be 
determined via learning rules to approximate an unknown 
input-output relation. These rules indicate how to pursue 
minimization of the error function measuring the quality of the 
network's approximation on the restricted domain covered by 
a training set (i.e., a set of input-output examples). A typical 
error function which can be considered in this context is the 
sum-of-squares error function (SSE) [13], given by a sum 
over all patterns, and over all outputs, of the form: 
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Fig. 1.  Quickbird image of the Tor Vergata University Campus, Rome, and its surrounding. 
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where yk (xn;w) represents the output of unit k as a function of 
the input vector xn and the weight vector w, N is the number 
of testing patterns, and c is the number of outputs. The 
quantity tk

n represents the target value for output unit k when 
the input vector is xn. In our case the minimization of the error 
function has been pursued by a scaled conjugate gradient 
(SCG) algorithm [15]. This is a member of the class of 
conjugate gradient methods, general purpose second order 
techniques that help to minimize goal functions of several 
variables. Second order indicates that such methods use the 
second derivatives of the error function, while a first-order 
technique, like standard backpropagation, only uses the first 
derivatives. It should be mentioned that most of the neural 
simulations were provided by the SNNS (Stuttgart Neural 
Network Simulator) package [16]. For the specific purpose of 
the image classification a training-set with a statistically 
significant number of pixels for each class has been generated. 
The learning of the neural network has then been carried out 
by feeding it with pairs of vectors (patterns): the input vector 
contains the reflectances of the different channels of the multi-
spectral image, the output vector contains the corresponding 
known class of surface. To avoid saturation within the 
network it has been necessary to scale all the values of the 
input vector in the range between -1 and 1. The scaling has 
always been carried out consistently on the entire data set 
available. At the same time, the component of the output 
vector corresponding to the true class has been set to 1 while 
the others to 0. Once the NN have been trained, they have 
been used for the classification of new data not considered in 
the training set. In the test phase, a competitive approach 
(winner-and-take) has been considered to decide on the final 
classification response. 

 

III. SINGLE IMAGE CLASSIFICATION 
The QuickBird commercial remote sensing satellite 

provides images consisting of four multispectral (MS) 
channels with 2.4 m resolution and a single panchromatic 
(PAN) band with 0.62 m resolution. The four MS bands 
collect data at the red, green, blue, and near-infrared 
wavelengths, and the data in each band is stored with 11-bit 
quantization. A QuickBird image taken over the Tor Vergata 
University campus, located in Italy, South-East of Rome, on 
March 13, 2003, has been initially considered, in the 
following of the paper we will refer to this image with the 
name QB1. A view of the area is shown in Fig.1. Besides the 
buildings in the campus, different residential areas belonging 
to the outskirts of the south-east side of the city can be 
distinguished in the image. 

Our first purpose was to design an optimum neural network 
able to classify the multi-spectral image. The considered land 
cover classes were buildings, roads, vegetated areas, and bare 
soil where the latter class includes not asphalted road and 
artificial excavations. The inclusion of additional classes was 
discarded for several reasons: the considered classes are those 

that better describe the area under observation and are in 
themselves sufficient to detect significant features, the choice 
of a small number of classes enables an easier quantitative 
comparison of the performance obtained using a single net for 
a single image classification, with the one obtained using a 
single net for multiple images classification. In this latter case 
we think that the choice of a number of 4 classes represents a 
rather ambitious target. It also has to be noted that a recent 
study analysing satellite image classification experiments of 
fifteen years pointed out that the idea postulating that the 

Fig. 2.  Spectral analysis from image QB1 for the classes buildings (dashed 
line), asphalted surface (solid line), bare soil (dash-dotted line), vegetation 
(dotted line). 
  

 
Fig. 3.  SSE values calculated over the test set changing the number of 
hidden neurons in a two hidden layers topology. The number of units is the 
same in both layers. 
  

 
Fig. 4.  SSE values calculated over the test set changing the number of 
hidden neurons in a one hidden layer topology. 
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higher the number of classes used in a classification 
experiment, the more difficult the classification becomes, is 
not supported by the experimental results shown in the study 
[17]. Once the classification problem has been configured, a 
first investigation consisted in analysing the spectral 
behaviour of the different considered surfaces. The selected 
pixels characterizing one class belong to polygons manually 
drawn in the image. It should be noted that, at the very high 
resolution of the images, the edges or boundaries between 
individual land cover objects were fairly sharp and it was 
usually easy to locate and assign a specific pixel to a land 
cover class. The mean values of the spectral signatures of the 
4 categories are shown in Fig. 2. The figure clearly shows 
potentiality in discriminating between the classes. This stems 
from the spectral properties related to the different molecular 
resonance mechanisms which characterize the materials.  With 
the same data considered for the sensitivity analysis we were 
able to generate a training-set with a statistically significant 
number of pixels for each of the four categories. The training 
datasets were generated considering about 24400 pixels. The 
design of the network was made putting particular care in the 
selection of the number of hidden units to be considered in the 
net. To this purpose the plot illustrated in Fig. 3 was 
produced, where the SSE value over a test set of more than 
3000 patterns and corresponding to different numbers of 
hidden units is reported. It can be seen that, if we consider 
both the SSE error and the network complexity, the best 
results were obtained with a  4-20-20-4 topology. Indeed, the 
increase of the number of hidden units did not change 
significantly the SSE error. A similar plot is reported in Fig. 4 
where now a single hidden layer is considered. Again the best 
result are obtained putting around 20 neurons in the hidden 
layer, however this topology is slightly worse if compared 
with the two-hidden layers topology. This indicates that the 
second layer can be able to extract additional information 
from what already elaborated by the first one. The topology 4-
20-20-4 was then finally selected and used to classify the 
entire image (3506832 pixels). Fig. 5 shows the classification 
map derived with the described procedure.  The classification  

TABLE I 
CONFUSION MATRIX OBTAINED FOR IMAGE QB1 WITH THE 4-20-20-4 

TOPOLOGY. OVERALL NUMBER OF PIXELS: 81510. OVERALL ERROR  5998  
(7.36%) 

True Classified 
as Vegetation Asphalt Building Bare soil 

Vegetation 14864 33 750 2207 

Asphalt 132 44785 68 27 

Building 1225 29 12634 783 

Bare soil 230 2 512 3229 
 

TABLE II 
CHARACTERISTICS OF THE QUICKBIRD IMAGES USED IN THE WORK. ALL THE 

ACQUISITION TIMES ARE AROUND 10:00-10:30 A.M. 
Code Aquisition 

Date 
Dimension 

(pixels) 
Off Nadir 

Angle Location 

QB1 03/13/2003 2415x1650 8 Degrees Rome, SE 
outskirts 

QB2 05/29/2002 2352x1491 11 Degrees Rome, SE 
outskirts 

QB3 07/19/2004 2415x1650 23 Degrees Rome, NE 
outskirts 

QB4 07/19/2004 2415x1450 23 Degrees Rome city 

QB5 07/22/2005 2223x1450 12 Degrees Nettuno town 

 

Fig. 6.  Spectral analysis from image QB2 for the classes buildings (dashed 
line), asphalted surface (solid line), bare soil (dash-dotted line), vegetation 
(dotted line). 
  

Fig. 7.  SSE values calculated over the test set changing the number of 
hidden neurons in a two hidden layers topology designed for the 
classification of a collection of Quickbird images. The number of units is the 
same in both layers 

 

Fig. 5.  Classification map of the image QB1 using the optimized topology. 
Black: asphalted surfaces; white: buildings; dark gray: bare soil; light gray: 
vegetation. 
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accuracy has been assessed by visual comparison with the 
original high resolution image and by direct inspections on 
site. We stress the fact that our working area is located in the 
Tor Vergata University campus, that is almost in the centre of 
image QB1, so direct inspection on site could be rather 
accurate. More in detail, a ground truth map, corresponding to 
a subset of the image, has been manually elaborated. We 
observed that the classification provided by the network is 
rather accurate and with a high level of resolution. In 
particular we reached a 93% of accuracy in the considered 
subimage. The whole confusion matrix is reported in Table 1. 
Once the network topology for this kind of problem has been 
optimized and the performance assessed, we move to 
investigate on the capability of a unique network to provide 
classification on different images rather than on a single one. 
To underline the complexity of this new problem we tested the 
already designed network, positively processing the QB1 
image, on another QB image. The choice of this new image 
should follow some similarity criteria with respect to the 
already classified one. For example it would not be very 
meaningful to consider a new image characterized by land 
cover classes, such as water, not appearing in the QB1 image, 
hence not memorized at all by the network during its training 
process. The failure of the neural network in this case can be 
given for granted and this test would not provide much 
information in the evaluation of the network generalization 
capability. Therefore, we decided the other direction of 
selection and chose as test image a QB image quite similar to 
QB1. Indeed, the new QB image (QB2) is  taken on the same 
area of the first one, but in a different season and at a slightly 
different incident angle. In Table 2 the basic information of 
the two images analysed so far and of those that will be 
considered in the following of the paper are summarized. If 

the already trained network fails in generalizing over this 
image it will be very probably unsuccessful with many other 
QB images, even if taken on similar urban scenarios. In Fig. 
8(a) we show the result of the classification of the QB2 image 
by using the net trained on patterns retrieved from image 
QB1. For the sake of completeness and for a better 
interpretation of the results we also produced the 
classification, reported in Fig. 8(b), that would be obtained 
replying on the image QB2 the single image classification 
methodology considered for the image QB1, therefore relying 
on a network (4-20-20-4), trained with examples belonging to 
the same image that one wants to classify. The classification 
map shown in Fig. 8(b) seems, as expected, rather accurate. 
Indeed the misclassification percentage computed over the 
same image subset considered for QB1 is 95% thus 
resembling the one obtained in the former case. The 
classification result shown in Fig. 8(a) is completely different. 
Although the network recognizes many patterns and assigns 
the correct class to the corresponding pixels, entire objects are 
misclassified, the bare soil class and the built areas class are 
definitely overestimated and the general noise level produced 
by the classification is significantly increased. From a 
quantitative point of view the misclassification rate computed 
over the subset test image is 56%. Fig. 6 may contribute to 
understand the classification performance. We can observe 
that even if the shapes of the signatures resemble those plotted 
in Fig. 2, which still enables some possibility of distinction 
among classes, the ranges of the digital number values are 
significantly different, generating confusion when the network 
gives out its classification response. Thus the classification of 
the QB2 image obtained using a network trained on another 
image, even if taken on the same scenario, is not satisfactory. 
This means that to design a network able to provide good 
accuracy over images not considered in the training phase is 
an ambitious goal, even if the classification is performed on a 
limited number of classes. 
 

IV. CLASSIFICATION ON A COLLECTION OF IMAGES 

A. Quickbird images 
Three more Quickbird images have been considered in this 

case for an overall number of 5 images. As shown in Tab. 2 

 
TABLE III 

CONFUSION MATRIX OBTAINED FOR THE CHANGE DETECTION EXERCISE. 
OVERALL NUMBER OF CONSIDERED PIXELS: 148538. OVERALL ACCURACY 

93.2% 
True 

Classified as 
Changed Unchanged 

Changed 14864 33 

Unchanged 132 44785 

 
 

 
Fig. 9.  Change detection results. Left: 2002 classification map results, center: 2003 classification map results, right: change detection. 
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the 5 images are of similar size but include different years, 
different sites and different seasons. Besides the QB1 and 
QB2 images centred on the Tor Vergata University campus, 
we have one image (QB3) looking at north-east suburbs, a 
fourth image quite close to the old town (QB4), and a fifth 
image (QB5) which has been taken on a small urban area a 
few kilometres away from Rome. A pixel-based classification 
algorithm has again been implemented to distinguish among 
the four main classes: buildings, asphalted surfaces, vegetated 
areas and bare soils. In previous section we showed that a 
successful classification performance relies on a proper 
training and design of the network. In particular, it is 
important that the patterns included in the training set could 
significantly represent all potential scenarios that might be 
encountered during the application phase, in other words 
resemble the statistics of the classification problem. To this 
purpose a larger archive of spectral signatures has been 
generated. Images QB1, QB3 and QB5 have been considered 
for the training and about 26000 examples have been collected 
for the generation of the network learning set. 

The optimal performance both in terms of classification 
accuracy and of training time has been again determined by an 
extensive search whose results are illustrated in Fig. 7. With 
regards to the number of hidden layers we relied on the 
previous result indicating a topology with two hidden layers 
more effective so the final selected topology was again 4-20-
20-4. Indeed, with respect to the single image processing case, 
most of the physics characterizing the classification problem 
has not changed which involved minor implications in terms 
of the topology to be selected. In Figs. 8(c) and 8(d)  we 
report the classification maps obtained by applying the trained 
neural network to the images QB2 and QB4 which did not 
contain any of the pixels included in the training set. From 
both visual inspection on the original images and direct 
inspection on site we observed a general good agreement with 
the map generated automatically. All main features such as big 
roads and buildings are individuated with good precision even 
though some inaccuracies can be noted in the objects edge 
detection, possible causes of disturb being represented by 
shadow effects. A more quantitative analysis, computed on the 
same sub-area of image QB2 considered in section 2 gave an 
overall accuracy rate is of about 87%. Considering the 
encouraging results, and given the availability of two images 
(QB1 and QB2) over the same site, we tried to extend the 
described methodology to a typical change detection exercise. 
The two images have been co-registered using a set of about 
30 ground control points and considering the older image as a 
master. We remind that the time interval between the two 
images is of one year. The two corresponding classification 
maps, obtained by means of the same network, have been used 
for the production of change detection maps. In particular, the 
change detection was evaluated in terms of the pixels that 
migrated from vegetation, bare soil or asphalted surface class 
to the building class in the considered time window. As in this 
case we are more interested in an object based result, the final 
change detection mask was obtained after a post-processing 

which removed all clusters of pixels detecting changes but 
containing less than 20 elements. The ground-truth confirmed 
that the changes corresponding to the main detected structures 
were buildings constructed in the considered time interval. An 
example of detection result is shown in Fig. 9 where the 
previous corresponding classification maps are also reported. 
The corresponding confusion matrix, reported in Table 3 and 
computed on the base of the ground-truth, gives an high 
percentage of pixels in the diagonal. On the other hand, most 
the pixels out of the diagonal belong to the object circled in 
red which, more than a real failure of the classification 
algorithm, is a consequence of an imperfect coregistration of 
two images. 

 
 
 

Fig. 10.  Data set geographic distribution of Landsat data. 
  

TABLE V 
CONFUSION MATRIX OBTAINED FOR LANDSAT NEURAL ALGORITHM: THE 

OVERALL ACCURACY IS OF ABOUT 82 % 
True Classified 

as Sealed Unsealed Water 
Sealed 332 54 1 

Unsealed 52 172 2 
Water 2 1 15 

 
 

TABLE IV 
LOCATION AND DATES OF THE LANDSAT IMAGES USED FOR THE GENERATION 

OF THE TRAINING SET. 

CITY Sensor Acquisition 
date Classes 

AMSTERDAM TM 22/05/1992 all 
BARCELONA ETM+ 10/08/2000 Unsealed 

BERLIN ETM+ 14/08/2000 unsealed 
BUDAPEST ETM+ 09/08/1999 All 
LONDON TM 20/05/1992 All 

MELBOURNE ETM+ 05/10/2000 All 
NEW YORK TM 28/09/1989 All 

PARIS TM 09/05/1987 All 
RIO DE JANEIRO TM 18/01/1988 all 

ROME ETM+ 03/08/2001 all 
TOKIO TM 21/05/1987 all 
WIEN TM 10/09/1991 all 

ROME_2 ETM+ 16/01/2001 all 
UDINE ETM+ 16/08/2000 Sealed, water 

The rightmost column indicates which classes have been considered for 
the specific image. 
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B. Landsat Images 
The objective of designing a single net enabling automatic 

classification of large archives of data sets has been extended 
to the case of Landsat imagery. The Landsat data-set consisted 
of a collection of images containing urban areas and located 
throughout the all 5 continents (Fig. 10). In this case the 
inputs to the algorithm are taken from 6 bands, measurements 
corresponding to band 6 being discarded for its worse spatial 
resolution. Again, we firstly analysed the spectral signatures 
of the main classes of urban land cover. 

Despite the considerable distances among the geographic 
locations a good stability of the spectral information has been 
noted. For example in Fig. 11, 12 and 13 we report the 
analysis for the classes high density residential, forest and 
water, respectively. For the three classes the spectral 
behaviour is calculated starting from an overall number of 
about 25000 pixels, distributed over 9 considered different 
geographic areas. We see that within the same class the shapes 
of the signature are in general rather  similar and only a bias 
value seems to characterize the different plots. On the other 
hand, different classes have quite dissimilar spectral shapes. 
The analysis carried out on other classes typical of urban and 
sub-urban land cover confirmed the discrimination 
possibilities, especially if similar classes, such as forest and 
short vegetation areas, or high density and low density 
residential areas, were grouped together. In this case the final 
classification problem was to discriminate among three 
classes: sealed, not sealed and water. The sealed fraction of an 
urban areas is indeed one of the primary index for monitoring 
the urbanization process. However, many big cities are 
characterized by large amount of water surfaces, belonging to 
rivers, lakes or sea. Therefore, the addition of the class water 
could be significant to obtain a better monitoring. More than 
56000 patterns have been selected to train the final neural 
network dedicated to the Landsat imagery with examples 
extracted from an overall set of 14 images including urban 
areas of 12 world big cities, 12 countries, 4 continents. A 
description of the training set in terms of the images and 
classes considered for each image is summarized in Table 4. 
Given the variety of geographical sites taken into account, this 
classification problem is inherently more complex with 
respect to the classification of Quickbird data. In order to 
avoid overfitting, this shrinks the size of the optimum network 
topology which, for this case, has been found to be 6-9-9-3 
(see Fig. 14). With this selected topology and considering 
medium speed CPU computing platforms we obtained an 
average rate of processing of 800 pixel per second. This 
means less than 20 minutes for an image of 1000 x 1000 
pixels, so basically we can speak of near real time processing. 
In Fig. 15 we show some example of results. The yielded 
accuracy seems to be rather satisfactory at careful visual 
inspection. Water bodies are detected rather precisely as the 
major parts of the urban lattice. On the other hand we noted 
some inaccuracies on areas which appear as low residential 
areas at image visual inspection but are labelled as unsealed 
areas in the classification map. Similar results have been 

obtained selecting other images from the available data-set. In 
any case, a more quantitative validation exercise could be 

 
Fig. 11.  Spectral analysis from Landsat measurements of the class high-
density residential for different cities in the world. 
  

 
Fig. 12.  Spectral analysis from Landsat measurements of the class forest for 
different cities in the world. 
  

TABLE VI 
LEGEND OF FIGURES 11-13 

 
 

 
Fig. 13.  Spectral analysis from Landsat measurements of the class water for 
different cities in the world. 
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performed on a limited area of the city of Rome, where we 
could use the Quickbird very high resolution image as ground-
truth. The area chosen for the validation exercise does not 
contain pixels used for the training of the final Landsat 
network. In Table 5 we report the obtained corresponding 
confusion matrix where we did not include pixels, such as 
pixels on edges,  whose real class could be not stated with 

certainty.  Given the totally automatic procedure, the overall 
accuracy of about 82% might be recognized as encouraging 
and establishes a benchmark for this kind of application. 

V. CONCLUSIONS  
It is well recognized that one of the major advantages of 

NN with respect to Bayesian and other statistically based 
classifiers is that NN draw their own input-output discriminant 
relations directly from the data and do not require that a 
particular form of a PDF (Probability Density Function) be 
assumed [18]. In this work we exploited these characteristics 
of MLP networks for automatic processing of large data sets 
of satellite imagery and with particular interest for features 
extraction from urban areas. In fact, the paper can be 
considered as a first step in demonstrating how NN can 
contribute at the development of IIM in Earth Observation. 
We considered two types of satellite data: Quickbird data 
characterized by very high spatial resolution and the Landsat 
data characterized by high spatial resolution. In both cases the 
purpose was both to yield accurate classification maps and to 
train the networks in order to generalize out of the image data 
set considered in the training phase so that the new images 

 

 
Fig. 14.  SSE values calculated over the test set changing the number of 
hidden neurons in a two hidden layers topology for the classification of a 
collection of Landsat images. The number of units is the same in both layers.

 

   
(a)                       (b) 

   
(c)                      (d) 

Fig. 15.  Automatic classification map of the city of (a) Washington (USA), (b) Berlin (Germany), (c) Tokyo (Japan) and (d) Rio de Janeiro (Brasil). Black: 
water surface, grey: sealed surface, white: unsealed surface (open space). 
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could be processed in near-real time. To that purpose careful 
spectral analysis over statistically significant data sets have 
been carried out and the NN topologies have been designed 
avoiding possible effects of overfitting. The networks 
performance seems to be satisfactory, especially if we take 
into account that the procedures are completely automatic. In 
fact, the maps automatically provided on new images, that is 
not considered in the training phase, show good agreement 
with those that would be obtained with careful visual 
inspection or with the available ground-truth. Even though, 
both for high and very-high spatial resolutions, the 
experiments have been carried out on similar scenarios, the 
overall accuracies of 87% and 82% obtained for selected 
Quickbird and Landsat sub-areas, respectively, represent a 
benchmark for successive studies. Finally, if images of the 
same area are available at different times, the described 
technology seems also to be useful for an automatic 
discoverage of changes, such as new buildings, occurred in 
the area under observation. 
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ABSTRACT 

 

 The advent of new high spatial resolution optical satellite imagery has greatly 
increased our ability to monitor land cover changes from space. Satellite observations are 
carried out regularly and continuously and provide a great deal of insight into the temporal 
changes of land cover use. High spatial resolution imagery better resolves the details of 
these changes and makes it possible to overcome the “mixed-pixel” problem inherent with 
more moderate resolution satellite sensors. At the same time, high-resolution imagery 
presents a new challenge over other satellite systems, in that a relatively large amount of 
data must be analyzed and corrected for registration and classification errors to identify the 
land cover changes related to land cover changes. To obtain the accuracies required by 
many applications to large areas, very extensive manual work is commonly required to 
remove the classification errors introduced by most methods. To improve on this situation 
we have developed a new method for land surface change detection that greatly reduces the 
human effort needed to remove the errors that occur with many classification methods 
applied to high-resolution imagery. This change detection algorithm is based on Neural 
Networks and it is able to exploit in parallel both the multi-band and the multi-temporal 
data to discriminate between real changes and false alarms. In general the classification 
errors are reduced by a factor of 2-3 using our new method over a simple Post Classification 
Comparison based on a neural network classification of the same images. 
 
 

I. Introduction 

 Changes in land cover and land use in urban areas are dynamic processes. The transitions 

associated with these changes, occur at varying rates and in different locations within the 

constraints of, or in response to, various social, economic and environmental factors. The rapid 

expansion of urban centers and their peripheries has led, in many cases, to a series of complex 

problems related to uncontrolled urban sprawl, increased traffic congestion, degradation of air 

and water quality, loss of agricultural land and natural vegetation. Urban growth has also had 

significant impacts on the social structure of cities and their surroundings, in terms of population 
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distribution and land use characteristics. For many public and private institutions, knowledge of 

these changes in either natural resources or man-made structures is a valuable source of 

information for decision-making processes [1]. However, updating maps on the status and trends 

of urban ecosystems is an intensive task requiring timely and accurate information from multiple 

sources of data, especially for detailed mapping of complex urban scenes [2][3]. One of the 

primary methods for updating land cover and land use maps has been, and in some case still is, 

through human observation and interpretation. In this process, the full range of human 

interpretation capabilities can be employed, including the interpreter’s own knowledge of the 

area. However, this technique is time consuming, subject to errors of omission and is subject to 

the interpreter’s abilities. In particular, this approach cannot be standardized, and, therefore lacks 

uniform outputs.  

            In this context, satellite and airborne remote sensors have proved particularly useful in 

addressing computer-assisted change detection and related environmental monitoring, agricultural 

surveys and urban studies [4][5]. Recently, the commercial availability of very high-resolution 

satellites with onboard sensors characterized by resolutions from 0.60 to 2.8 m, has opened a 

wide range of new opportunities to use Earth observing satellite data to monitor and map urban 

change. The enhanced spatial resolution of these systems, which reduces the occurrence of mixed 

pixels, provides more precise information on land use and land cover changes and are being 

increasingly used to carry out detailed characterization of the trends in urban areas.  In fact, the 

detection of fine-scale physical changes in individual objects, such as single buildings, houses or 

roads, is greatly enabled by these systems.  

          The category of new high-resolution satellite sensors includes QuickBird (QB), operated by 

DigitalGlobe that satisfies well the requirements related to studies of urban environment change, 

where resolution plays a key role and spectral information may be crucial. Launched on October 

18, 2001, QB collects both multi-spectral and panchromatic imagery concurrently. The 

panchromatic resolution is 0.61 m at nadir to 0.72 m at 25° off-nadir and the multi-spectral is 

from 2.44 m at nadir to 2.88 m at 25° off-nadir.  The panchromatic bandwidth spans from 0.45 

μm to 0.90 μm, while the multi-spectral images are acquired in four channels: blue (0.45-0.52 

μm), green (0.52-0.60 μm), red (0.63-0.69 μm), NIR (0.76-0.90 μm) [6].  

Although very high-resolution data have a great potential for monitoring and mapping 

surface changes, several issues need to be considered if observing surface changes using multi-

temporal satellite image data. The crucial steps include the registration of two or more high-

resolution scenes, the presence of temporary objects (such as cars or trucks), the effects of 

changing solar elevation, atmospheric conditions and satellite sensor incidence angles. Sensor 
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noise, misregistration errors, seasonal and meteorological effects also reduce the achievable 

accuracy in change detection output, unless time-consuming and tiresome manual procedures are 

applied to identify and remove the errors which appear as false surface change signals. The need 

for an extensive manual correction, and the often non-uniform outcomes, depending on the image 

analyst, can easily erase the advantage of an automated classification and change detection 

technique. The need for a uniform image analysis outcome and the reduction of data processing 

time requires computer routines that automatically perform the image classification and map the 

temporal changes with high accuracy. 

            In the remote sensing literature, many papers have addressed the development of change 

detection techniques for moderate-resolution images such as those provided by the Landsat 

satellite series. Two main approaches have been proposed: the unsupervised and the supervised. 

The former performs change detection by transforming two separate multi-spectral images into a 

single band or multi-band image in which the areas of land cover or land-use change can be 

detected. The latter, exploits supervised classification methods, which require the selection of a 

suitable training set (known as a Region Of Interest or ROI) to determine the classes. This 

approach is in general more flexible and effective than that one based on the unsupervised 

comparison of multi-temporal raw image data [7]. 

             Many unsupervised techniques perform change detection algorithms by using simple 

procedures to extract the final change map, e.g., by subtracting, on a pixel basis, the images 

acquired at two different times. More sophisticated techniques analyzing the difference image 

using a Markov Random Field (MRF) approach exploit the interpixel class dependency in the 

spatial domain by considering the spatial contextual information included in the neighborhood of 

each pixel [8]. In [9] the proposed method combines the use of a MRF and a Maximum a 

Posteriori Probability (MAP) decision criterion in order to search for an optimal image of 

changes.  Among the supervised techniques, the most common category is the Post Classification 

Comparison (PCC) [10][11]. This technique performs change detection by comparing the 

classification maps obtained by classifying independently two remote sensing images of the same 

area acquired at different times.  In this way, it is possible to detect changes and to understand the 

kinds of transitions that have occurred. Furthermore, the classification of multi-temporal images 

avoids the need to normalize the image for atmospheric conditions sensor differences between the 

two acquisition dates. However, the performance of the PCC technique critically depends on the 

accuracies of the two classification maps. In particular, the final change detection map exhibits an 

accuracy close to the product of the classification accuracies given at the two times [12]. The 

main problem with this technique is that it does not exploit the dependence between two multi-
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temporal images acquired from the same area. The Direct Multidata Classification (DMC) 

technique is able to overcome this problem [13]. Indeed, in this method the pixels are 

characterized by a vector obtained by stacking the feature vectors related to the images acquired 

at two times. Then, change detection is performed by considering each transition as a class and by 

training a classifier to recognize the transition typologies. 

Neural Networks (NNs) have emerged as an important tool for the classification of 

remote sensing images. NNs are data driven and self-adaptive since they can adjust themselves to 

the data without any explicit functional specification of the underlying physical model. Moreover, 

they are universal functional approximations since they can approximate any function with a 

specified accuracy [14]. For these reasons, NNs offer a key for effectively managing the 

complexity of data, the potentialities of knowledge-based systems and the parametric 

manipulation of imagery. 

In this paper we proposed a novel approach based on a NN architecture called NAHIRI 

(Neural Architecture for High-Resolution Imagery) to produce change detection maps from high-

resolution satellite imagery. Although, NAHIRI represents one of the first methods for 

automating change detection in very-high-resolution satellite imagery, its extension to moderate 

resolution images, as shown in the paper, is straightforward and accurate. The distinctive feature 

and the major innovation of NAHIRI, is that the neural networks simultaneously exploit both the 

multi-spectral and the multi-temporal information associated with the changed values of the pixel 

spectral reflectances. This means that a single neural architecture is used with two different stages 

to perform the Change Detection analysis. The final stage includes the merging of the three 

different NNs results, and the production of the output map. Moreover, the proposed technique 

not only detects the different kinds of change that has occurred, but also explicitly recognizes the 

typologies of class transitions.  

In section II of the paper we describe the data set used for this study, in section III we 

introduce the NN approach for classification problems and we present in detail the NAHIRI 

architecture. In section IV we discuss the results obtained over different types of images and 

locations. The accuracy of the final classification and change detection maps has been evaluated 

using by “ground truth” comparisons. The algorithm performance has also been evaluated against 

a PCC technique based on a NN architecture for the one-step multi-spectral image classification. 

We train both NAHIRI and this one-step NN to independently classify a number multi-temporal 

image pairs, and the classification output maps were subsequently compared.  Some final 

conclusions and discussions regarding the accuracy improvements in the NAHIRI method are 

reported in Section V. 
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II. Data Set 

Two test areas have been considered for this study. One is located in Rock Creek-

Superior, Colorado, U.S.A., the other one, next to the campus of the Tor Vergata University, in 

Rome, Italy.  Temporal changes in these areas have been mapped using the NAHIRI architecture 

applied to both QB and Landsat images. The Landsat image data set was provided by the 

Thematic Mapper, on board Landsat 5 with a spatial resolution of 30 m. A more detailed 

description of the test sites is given in the following two sections while Table 1 contains the main 

characteristics of the imagery used for each test area. 

 
 Site Information Images Information 

Code Location Dimension 
(km2) 

Acquisition 
Date Satellite Spatial Res. 

(m) 
Dimension 

(pixels) 
August 14, 2002 QuickBird 0.6 TEST AREA 1 Rock Creek-Superior, 

Colorado, U.S.A. 2 July 6, 2004 QuickBird 0.6 1300 x 800 

July 5, 1992 Landsat 30 
August 17, 1996 Landsat 30 TEST AREA 2 Rock Creek-Superior, 

Colorado, U.S.A. 280 
August 14, 2002 QuickBird 30 

664 x 432 

May 29, 2002 QuickBird 2.8 
TEST AREA 3 Tor Vergata Campus, 

Rome, Italy 3.7  
March 13, 2003 QuickBird 2.8 

700 x 600 

Table 1: Detailed description of the test sites and the corresponding images. 

 
Rock Creek-Superior Test Site 

The area is immediately to the south of the city of Boulder, Colorado, along the Boulder-

Denver corridor. The entire geographic region is shown in the Landsat image in Figure 1 where 

the Boulder and the Denver urban areas are located near to the upper-left and lower-right corners, 

respectively. To analyze the performance of NAHIRI on the full resolution QB images, given the 

large amount of time that would have been required to process the whole scene, we selected Test 

Area 1, shown as the green box (about 2 km2) in Figure 1. The area includes houses, farms, and 

low-density commercial buildings. NAHIRI classification performance has been also tested in 

medium-resolution images. For this exercise we extracted a larger image area, which is the Test 

Area 2, highlighted in red in Figure 1. It has an area of 280 km2 and is representative of the 

diverse land cover and land use types encountered in the region. This region includes zones that 

have transitioned mainly from open space to housing, retail shopping centers, hotels and new 

reservoirs. In fact, the area saw explosive growth especially between 1990 and 2000, but the 

growth has continued between 2002 and 2004 and continues today. As reported in Table 1, the 

entire set of images used for the site includes two Landsat images taken on July 5, 1992 and on 

August 17, 1996 and two pan sharpened QB images from August 14, 2002 and July 6, 2004. 
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                 UL: 39° 59’ 30’’ N - 105° 11’ 46’’ W 

 
    DR: 39° 51’ 2’’ N - 104° 49’ 51’’ W 

Figure 1: The Rock Creek study area is located northwest of Denver, CO, U.S.A.. The green box 
contains the Test Area 1 used on the high-resolution images, while the red box contains the Test Area 
2 used with the medium-resolution classification. 

 
 

Rome test site 

The Rome test site is next to the campus of the Tor Vergata University, located in Italy, 

South-East of Rome. A view of the area generated using the Red, Green and Blue QB bands is 

shown in Figure 2. For validation purposes, we extracted a smaller study area (red box in Figure 

2) from the image. With respect to the Boulder site, this area is more typical of a suburban area 

with residential, commercial and industrial buildings. This variety in land cover made it possible 

to evaluate the flexibility of our classification procedure when applied to different landscapes and 

spatial resolutions. Two multi-spectral QB images (2.4 m resolution) taken on March 13, 2003, 

and on May 29, 2002 have been analyzed for this site. The time interval between the acquisitions 

is less than one year in this case. Even in such a short period of time, the area underwent 

significant land surface changes such as the construction of a large shopping mall and several 

other buildings. The selection of a test area located next the Tor Vergata University campus made 

it easier to carry out in situ ground truth validation. 
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UL: 41° 51’ 35’’ N - 12° 35’ 35’’ E 

 
     DR: 41° 50’ 0’’ N - 12° 38’ 24’’ E 

Figure 2: High-density residential area. The campus of the Tor Vergata University is located in the 
upper part of the image. The red box indicates the Test Area 3 in 2002. 
 

 

III. NAHIRI Methodology 

Image classification with Neural Networks 

 Different studies have shown the effectiveness of NNs algorithms for the classification of 

satellite imagery [15][16]. Among them Multi Layer Perceptron (MLP) has been found to have 

the best suited topology for classification and inversion problems [17]. MLP has also been 

considered in this study. These are feed-forward networks where the input flows only in one 

direction to the output and each neuron of a layer is connected to all neurons of the successive 

layer, but has no feedback to neurons in the previous layers. The "learning" of the NN can be 

carried out by feeding it with pairs of vectors (patterns). The input vector contains the reflectance 

information provided by the different channels of the multi-spectral image; the output vector 

contains the corresponding known classes of the surface. To avoid saturation within the network, 

the values of the input vector are normalized to the range between -1 and 1. This step also helps 
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to mitigate single-image effects if pixels belonging to different images are included in the training 

set. At the same time, the component of the output vector corresponding to the true class can be 

set to 1 while the others are set to 0.  In the test phase, a competitive approach (winner take all) 

can be used to decide on the final classification. 

 For our classification phase, which is preliminary and instrumental to the change 

detection, we chose to work with reflectance ratios to reduce the effects of the different scene 

illuminations. Therefore, for each pixel of the QB multi-spectral images the vector 

/ , / , / , / , / , / T
i iB iG iB iR iB iNIR iG iR iG iNIR iR iNIRR B B B B B B B B B B B B= , whose components are 

the ratios of the pixels spectral reflectances, has been computed. The number of elements of the 

vector iR  is ( 1) 2N N − , where N is the number of bands in the imagery used (e.g., N = 4  for 

QB), i represents the acquisition date and R, G, B, NIR denote the QB bands. Note that the same 

spectral information is carried out in the ratio vector iR  regardless of the choice of the order of 

the bands. The described vector data set forms new ratio images characterized by six spectral 

bands and the same spatial resolution of the multi-spectral QB images. We used the ratio images 

to train the three different neural networks making up the NAHIRI tool as demonstrated in Figure 

3.  

 The various types of surfaces have been grouped into four classes: 

• man-made surfaces, including buildings, concrete, asphalt, gravel and sites under 

construction; 

• green vegetation; 

• bare soil, including low density and dry vegetation,  and unproductive surfaces; 

• water (lakes, reservoirs, ponds, streams). 

 

The number of classes was kept small to simplify the image classification and enable an easy 

interpretation of the quantitative change detection. Once the input and the output of the network 

are established, the number of neurons to be considered in the hidden layers is another critical 

choice. In fact, if the number of neurons is too small, the input-output associative capabilities of 

the net are too weak. On the other hand, this number should not be too large, otherwise, these 

capabilities might show a lack of generality being too narrowly tailored to the training set and the 

computational complexity of the algorithm would be increased in vain. It turns out that a 

compromise has to be found. We present the results of an extensive research on this topic in [18], 

with specific reference to the use of neural networks for the classification of QB and Landsat 
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images. Starting from these results, we selected a suitable number of hidden neurons for the 

optimal NNs topology. 

NAHIRI Architecture for change detection 

NAHIRI CD uses a parallel approach that includes three different Neural Networks. As 

shown in the flow chart in Figure 3, NN1 and NN2 generate the “Change Map” using the multi-

spectral information, while NN3 produces a “Change Mask” exploiting multi-temporality. 

 

 
Figure 3: NAHIRI flow chart. 

 

To produce the “Change Map” and the “Change Mask”, the ratio images 1R  and 2R  are used as 

input to different Neural Networks. The “Change Map” stage consists of two steps: 

1. nets NN1 and NN2, having the same topology, produce as outputs the classification maps 

1MAP  and 2MAP ; 

2. the difference 1 2Change Map MAP MAP= −  is computed. 

 For QB, the NN1 and NN2 topologies are characterized by six input neurons, 

corresponding to the six bands of the ratio images, and four output neurons, corresponding to the 

four chosen output classes. Two layers containing twelve neurons each compose the hidden-

layers. The information given by the “Change Map” is the ( 12 +− clcl NN ) possible transitions 

from one class to another between the two images where clN  is the number of chosen classes (in 

our study clN = 4). We may associate a color to any possible transition. It is worthwhile to note 

that the Change Map is a PCC output performed by comparing 1MAP  with 2MAP . 
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As discussed before, the innovative aspect of NAHIRI is the introduction of another 

Neural Network, indicated in Figure 3 as NN3, which works in parallel with the previously 

described networks.  This “Change Mask” stage includes: 

1. a multi-temporal operator combining 1R  and 2R  outputs; 

2. the net NN3 producing the “Change Mask”. 

The NN3 topology is composed of six inputs and two outputs. The kth component of the input 

vector is given by 
)(
)(

2

1

kR
kR

Log . The choice of the Log operator allows an extended dynamic 

range of the network input values, while the absolute value assures invariance with respect to the 

direction of the transition. The output values vary according to whether the individual pixel has 

changed or not. The NN3 output is then the map representing the changed pixels. 

 To discriminate between real changes and false alarms, we associate the logic value 

1 with the changes and the logic value 0 with the no-changes for each pixel in both the “Change 

Mask” and the “Change Map”. These values are the input of the AND gate shown in Figure 3. 

Only if both inputs of the AND gate have the value 1, the variation in the “Change Map” is 

considered to be a valid change in the pixel class. The final output is an image having different 

colors associated with different class transitions and gray scale satellite image background 

denotes areas where no changes have taken place. This kind of presentation may help the end-

user to understand where changes have occurred on the study area. 

 

 

Training and test strategies 

 Training the nets by a statistically meaningful set of input-output training data is 

mandatory for the success of pixel-based classification. For each of the NNs of the NAHIRI 

architecture, suitable training sets that represent all of the different types of surfaces have been 

generated. In Table 2 we report details on the number of training patterns for these different 

cases. The cost function of the learning phase is minimized using a scaled conjugate gradient 

(SCG) algorithm [19]. 
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Test Area 1 Test Area 2 Test Area 3  2002 2004 1992 1996 2002 2002 2003 
Classification  

Vegetation 1097 562 4661 2638 3455 2673 2125 
Man Made 309 82 6782 6447 12250 22318 23283 

Water 192 44 3921 2218 1690 - - 
Soil 308 398 23615 15231 25751 6945 15537 

Change Mask  
Change 134 8162 6970 6967 

No Change 170 17520 21334 4711 

Table 2: Number of pixels that compose the training patterns for the different selected classes and 
Test Areas. 

 

         The change detection accuracy has been evaluated using both confusion matrices and the k-

coefficient, which is recognized an effective parameter to test classification performance. The k-

coefficient is defined as [20]: 
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where: 

    r  = number of rows in the confusion matrix; 

  iiX  = number of observations in row i and in column i; 

 +iX  = marginal total of row i; 

  iX +  = marginal total of column i; 

   N  = total number of samples included in the matrix. 

 

It is worth noting that NAHIRI aims to explicitly identify, on a pixel-basis, the kinds of land-

cover transitions that have occurred in an area. This means that each possible pixel transition 

(e.g., from the class bare soil to the class water) represents a class in the confusion matrix. 

For the application to full resolution QB imagery over the Test Area 1, the accuracies 

result from a comparison with ground-truth maps produced using photo-interpretation techniques. 

Since these methods are performed manually, their extension to the other test cases would have 

involved too much manual image analysis time. Therefore, for Test Areas 2 and 3, we decided to 

use a different validation technique. A set of control points, representative of each different 

transition class, has been randomly selected from the “Change Maps” for the two different test 

areas. Thus, all the transitions were sampled with a representative number of points. This 

validation method ensures a sufficiently accurate characterization of each transition class since 
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the land cover changes are sampled proportionally to their occurrence in an area. During the 

validation phase, the corresponding ground-truth has been computed for each selected ground 

control point. The ground truth has been obtained by careful visual inspection of the multi-

temporal images and by using ancillary data (e.g., aerial pictures, government maps, etc.) when 

available. 

 

 

IV. Results 

The classification of high-resolution images of urban environments represents one of the 

most challenging tasks in remote sensing data analysis and processing. In general, classification 

errors due to the high spectral diversity of single surface materials, which may include a wide 

range of roof types, roads and other artificial surfaces, occur frequently. As previously discussed, 

we consider four different classes, essentially to distinguish between man-made and natural 

surfaces. In the case of multi-spectral QB data we used a 6-12-12-4 NN topology, while for 

Landsat imagery we considered a 15-12-12-4 NN topology. 

 
NAHIRI CD in very high-resolution images 

To assess the performance of the NAHIRI algorithm in detecting surface changes in a 

low-density residential area, we started by processing the full-resolution QB images of Test Area 

1 represented in Figures 4 and 5, where considerable changes occurred between 2002 and 2004.  
 

 
Figure 4: Test Area 1 imaged in 2002 (see Figure 5). 
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Figure 5: Test Area 1 as in Figure 4, imaged in 2004. 

 
To evaluate the NAHIRI accuracy, the results have been validated using the “ground truth” 

shown in Figure 6, which was obtained by careful visual comparison of the 2002 and 2004 

images of the study area. Cars, trucks and buses were removed from the images, since they have 

been treated as “temporary” (changes with time scales much shorter than the time difference 

between images) objects. 

 

 
Figure 6:  Manually obtained “true” change of the Test Area 1 in Figure 4 and 5.  The red pixels 
represent change from soil to vegetation, indicating more abundant seasonal vegetation in 2004.  The 
brown and dark green colors correspond to water not present in 2002 due to drought.  The color 
code is Table 3. 

 
 2004 

2002 Vegetation Man-made Water Soil 
Vegetation Gray Cyan Dark Green Orange 
Man-made Green Gray Dark Blue White 

Water Blue Magenta Gray Black 
Soil Red Yellow Brown Gray 

Table 3: Changes Color Table 
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One of the most important environmental conditions that must be considered in the 2002 

Colorado imagery is the unusually long dry period preceding the image acquisition. This drought 

resulted in an abundance of pixels indicating a change from bare soil in 2002 to seasonal 

vegetation in 2004, as represented in Figure 6 in red.  For the same reason, water surfaces that 

were not present in 2002 show up in 2004. Figure 7 (a) computed using the PCC method displays 

a lot of the yellow soil to man-made transition class that is not present in Figure 6. These 

represent classification errors, which are not present in the NAHIRI classification map in Figure 7 

(c). In Figure 7 (b) we present the “Change Mask” for this image. 

A quantitative assessment of the resulting accuracy of the standard PCC method (Figure 

7 (a)) is provided in Table 4, which is the confusion matrix of the change-map stand-alone 

product. The overall error exceeds 23% (k=0.568); hence, although processing is very fast (about 

20 s to obtain this output, with a 3 GHz CPU and 1 GB RAM), the information obtained seems to 

have rather large errors. During the validation phase, considerable time is needed, (i.e. a few days 

for Test Area 1), for a manual correction of pixel errors in the final PCC map. Nevertheless, the 

validation processing time strictly depends on the desired classification accuracy. The automatic 

generation of the NAHIRI output image took extra processing time due to the training phase of 

NN3. In fact, both methodologies require the training of the two nets NN1 and NN2. Each neural 

net exploits the classification of one multi-spectral image, but only the NAHIRI procedure 

involves the training of NN3 to simultaneously exploit the multi-temporal character of the image 

pair. It is important to note that, the overall error is dramatically decreased from 23% (k=0.568), 

for the PCC method, to about 12% (k=0.722), for NAHIRI. The quantitative results are shown in 

the confusion matrix in Table 5. 

By comparing the image in Figure 7 (a) with that in (c), we note that the false-alarm 

pixels (mainly in yellow) in the middle of the PCC image have been filtered out by the NAHIRI 

algorithm. We point out that the NAHIRI method is not used to improve or correct the 

classification process, rather to create a mask that can filter the classification errors present in the 

PCC images. For a better explanation, we can look, for example, at the no-change row (gray) of 

Table 4 and compare it with the same color in Table 5. The values in the exclusion error column 

generally increase, but those relative to this row show a significant reduction. The migration of 

pixels towards the no-change row is due to the filtering algorithm that cuts off the areas where 

changes have not occurred. 
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(a) 

 
(b) 

 
(c) 

Figure 7: The map (a) represents the output of a PCC Change Detection between 2002 and 2004.  
Several misclassification errors displayed in yellow (soil to man-made surface) are present. The map 
(b) is the output of the intermediate stage “Change Mask”. The white and black indicate the changes 
and no-changes, respectively. The NAHIRI output of the Test Area 1 is shown in (c): in the 
background, the gray level image indicates unchanged features; colors (Table 3) denote transitions 
between classes. 
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Post Classification Comparison 

Ground Truth Green Red Blue Yellow Magenta Cyan Dark 
Green Brown Dark 

Blue Orange White Black Gray Total 
pixel 

Excl. Error 
(%) 

Green 17269 621 0 1490 0 566 0 0 0 0 68 0 17217 19962 53.6 

Red 5700 262148 0 43 0 0 0 0 0 0 77 0 1085 6905 2.6 

Blue 0 11 0 0 0 0 0 0 0 0 0 0 8 19 100 

Yellow 0 16 0 322 0 0 0 0 0 0 0 0 198 214 39.9 

Magenta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Cyan 136 12 0 15 0 55 0 0 0 0 1 0 11 175 76.1 

Dark Green 92 0 0 0 0 0 1320 943 0 0 0 2 238 1275 49.1 

Brown 5 16 0 68 1 0 7 4214 0 0 2 8 1472 1579 27.2 

Dark Blue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Orange 1865 42 0 556 0 359 0 0 0 0 11 0 32864 35697 100 

White 50 7 0 39 0 1 0 0 0 0 82 0 211 308 79 

Black 0 0 0 0 0 0 0 0 0 0 140 0 20 160 100 

Gray 3721 47495 0 108332 59 478 16 218 473 0 23295 108 539798 184195 25.4 

Total pixel 11569 48220 0 110543 60 1404 23 1161 473 0 23558 118 593122 250489  

Incl. Error (%) 40.1 15.5 - 99.7 100 96.2 1.7 21.6 100 - 99.7 100 9   

Overall error: 23.3% Kappa Coefficient: 0.568 

Table 4: Confusion Matrix of the standard PCC for Test Area 1. 

 

 

 

NAHIRI CD 

Ground Truth Green Red Blue Yellow Magenta Cyan Dark 
Green Brown Dark 

Blue Orange White Black Gray Total 
pixel 

Excl. Error 
(%) 

Green 913 386 0 0 0 0 0 0 0 0 33 0 202 621 40.5 

Red 4713 235620 0 1 0 0 0 0 0 0 63 0 28656 33433 12.4 

Blue 0 6 0 0 0 0 0 0 0 0 0 0 13 19 100 

Yellow 0 14 0 233 0 0 0 0 0 0 0 0 289 303 56.6 

Magenta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Cyan 133 6 0 3 0 55 0 0 0 0 0 0 33 175 76.1 

Dark Green 8 0 0 0 0 0 862 708 0 0 0 2 1015 1733 66.8 

Brown 2 6 0 62 1 0 4 1540 0 0 2 2 4174 4253 73.4 

Dark Blue 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Orange 1865 42 0 556 0 359 0 0 0 0 11 0 32864 35697 100 

White 12 3 0 0 0 0 0 0 0 0 45 0 330 345 88.5 

Black 0 0 0 0 0 0 0 0 0 0 121 0 39 160 100 

Gray 943 35605 0 1157 56 160 16 218 394 0 8344 29 677071 46922 6.5 

Total pixel 7676 36068 0 1779 57 519 20 926 394 0 8586 33 677071 123661  

Incl. Error (%) 89.4 13.3 - 88.4 100 90.4 2.3 37.6 100 - 99.5 100 9.1   

Overall error: 11.9% Kappa Coefficient: 0.722 

Table 5: Confusion Matrix for NAHIRI CD for Test Area 1. 
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For this first demonstration area, the overall error is less than 12% (k=0.722), which is a 

substantial decrease over the PCC method. NAHIRI shows a dramatic decrease in analysis time: 

one hour for NAHIRI against a few days (required to manually correct “false-alarms”) to achieve 

the same change detection accuracy. Thus, on one hand, the NAHIRI training phase is slower 

than the PCC method, on the other hand, the NAHIRI output shows higher classification accuracy 

than the PCC final map. In particular, if we use the PCC output, to obtain a change detection 

accuracy equal to the NAHIRI output, intensive manual correction is required. 

 

 

NAHIRI CD: extension to lower resolution images 

 In images with lower resolutions like Landsat misclassification errors are frequently 

related to the mixed pixel problem, especially in high-density residential areas, where the mixed 

pixels can contain portions of buildings, vegetated areas and roads.  These errors give rise to a 

variety of problems when attempting to map change detection. First, they occur in widely spread 

single pixels instead of groups of adjacent pixels, which are easier to detect and correct. 

Moreover, a pixel including different kinds of surfaces may be randomly attributed to any one of 

the above-mentioned surface types leading to a noisy change detection pattern difficult to 

interpret and correct.   

 To assess the performance of NAHIRI when processing lower resolution data two 

different exercises have been carried out. In one case we applied NAHIRI to a pair of Landsat 

images taken over the Colorado area of interest in the years 1992 and 1996.  In the other case, we 

assume that the user has one Landsat and one QB image available over the area of interest. In this 

case, NAHIRI was applied after degrading the spatial resolution of the QB image to 

approximately 30 m corresponding to the earlier Landsat TM resolution. This has been 

accomplished by computing a 51x51 pixel mean of each QB spectral band, thus reducing the 

resolution to about 30 m. 

In Figure 8 we show Test Area 2 in (a) 1992, (b) 1996 and (c) 2002. The Change 

Detection products are in (d), (e) and (f) for changes from 1992-1996, and in (g), (h) and (i) for 

change from 1996-2002. The maps (d) and (g) represent the output of a standard PCC Change 

Detection, for 1992-1996 and 1996-2002. The maps (e) and (h) represent the “Change Mask” 

stage of the NAHIRI algorithm. The NAHIRI output of Test Area 2 is shown in (f) and (i), for 

1992-1996 and 1996-2002 respectively. The background of these latter figures has a satellite 

image gray scale indicating areas where features are unchanged. As previously shown in Table 3, 
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the different colors denote different class transitions, which we repeat here in Table 6 for 

convenience in interpreting Figure 8. 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 8: Test Area 2 in (a) 1992, (b) 1996 and (c) 2002.  In (d), (e) and (f) is shown the Change 
Detection elaboration between 1992 and 1996, while (g), (h) and (i) the one between 1996 and 2002. 
The maps (d) and (g) represent the output of a PCC Change Detection, respectively of 1992-1996 and 
1996-2002.  Several misclassification errors displayed in yellow (soil to man-made surface) are 
present. The maps (e) and (h) are the outputs of the intermediate stage of the algorithm “Change 
Mask”. The white and black indicate the changes and no-changes, respectively. The NAHIRI output 
of the Test Area 2 is shown in (f) and (i), respectively of 1992-1996 and 1996-2002: in the 
background, the gray level image indicates unchanged features; colors (Table 6) denote transitions 
between classes. 
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 AFTER 
BEFORE Vegetation Man-made Water Soil 
Vegetation Gray Cyan Dark Green Orange 
Man-made Green Gray Dark Blue White 

Water Blue Magenta Gray Black 
Soil Red Yellow Brown Gray 

Table 6: Changes Color Table for Figure 8 
 

 

The maps (d) and (g) in Figure 8 represent the output of a traditional PCC Change 

Detection, for 1992-1996 and 1996-2002 respectively. We note several false alarms due to 

misclassification errors, mostly displayed in yellow, which correspond to the transition from soil 

to man-made surface as shown in Table 6. Thus, comparing the NAHIRI change detection 

outputs displayed in Figure 8 (f) and (i) with the PCC results shown in Figure 8 (d) and (g), we 

can easily identify several erroneous pixels resulting from the PCC method. 

Again, the characteristic filtering effect of NAHIRI emerges and allows to reduce the 

classification error as shown clearly in Figures 9 and 10, which are small portions of the previous 

images in Figure 8, corresponding to 1992-1996 and 1996-2002 changes respectively. In 

particular, in Figures 9,10(a) we show the earlier scene while in Figures 9,10(b) we present the 

later images represented in False Color (Bands 4,3,1) in order to better distinguish between 

vegetation, soil and man-made surfaces. Moreover, in Figure 9,10(b), the contours of the changed 

areas, determined by visual inspection, are highlighted in yellow. In Figures 9,10(c) and 9,10(d) 

we display the standard PPC and NAHIRI outputs. For this study, we replaced the satellite 

background representing the areas with “no change” with the color gray, to enable an easy 

comparison with the PPC output. The filtering improvement of NAHIRI can be clearly seen for 

the two different change detection periods in Figures 9 and 10 by comparing the respective output 

images (c, d) with the ground-truth (b) in both figures. In particular, in the upper left corner of 

Figure 9 (c) and the lower part of Figure 10 (c) many false alarms were detected by the PCC 

method.  

The accuracy assessment of the PCC and NAHIRI methods have been evaluated 

relatively for the 1992-1996 Change Detection. The confusion matrix, not reported here, indicates 

that the overall error ranges from 18% (k=0.619), for PCC output, to 5% (k=0.881), in the case of 

NAHIRI. Similarly, the results for the 1996-2002 Change Detection demonstrate how this error 

decreases from 27% (k=0.486) to 10% (k=0.759). 
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(a) (b) 

  
(c) (d) 

Figure 9: Detail of the Test Area 2 - False Color of (a) 1992 and (b) 1996. In (b), the regions 
highlighted in yellow are changes, according with ground-truth validation. The Post Classification 
Comparison is shown in (c), while the NAHIRI CD is in (d). 

 

  
(a) (b) 

  
(c) (d) 

Figure 10: Detail of the Test Area 2 - False Color of (a) 1996 and (b) 2002. In (b), the regions 
highlighted in yellow are changes according with ground-truth validation. The Post Classification 
Comparison is shown in (c), while the NAHIRI CD is in (d). 
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NAHIRI CD: application to different landscapes 

To assess the performance of the NAHIRI algorithm in detecting surface changes in a 

high-density residential area, i.e., the one next to the Campus of the Tor Vergata University, we 

processed Test Area 3 represented in Figures 11 and 12, where considerable changes occurred 

between 2002 and 2003. It is worthwhile to note that, in this case, we used the 2.8 m resolution 

QuickBird imagery to test the ability of the NAHIRI technique to process images with different 

spatial resolutions. 

 

 
Figure 11: Test Area 3 imaged in 2002 

 

 
Figure 12: Test Area 3 imaged in 2003 

 

Figure 13(a) displays the change map obtained by the standard PCC method, while in Figures 

13(b) and 13(c) we present the “Change Mask” and the NAHIRI CD output with the 2002 gray 

level satellite image as the background. For this test site, we have chosen only three classes: 

manmade, soil and vegetated area (the class water is not present in the selected study area). The 

class transitions color table is given in Table 7.  
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(a) 

 
(b) 

 
(c) 

Figure 13: The map (a) represents the output of a PCC Change Detection between 2002 and 2003. 
Several misclassification errors displayed in cyan (vegetation to man-made surface) are present. The 
map (b) is the output of the intermediate stage “Change Mask”. The white and black indicate, 
respectively, changes and no-changes. The NAHIRI output of the Test Area 3 is shown in (c): in the 
background, the gray level image indicates unchanged features; colors (Table 11) denote transitions 
between classes. 
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 2003 
2002 Vegetation Man-made Soil 

Vegetation Gray Cyan Orange 
Man-made Green Gray White 

Soil Red Yellow Gray 

Table 7: Change Color Table for Figures 13 

 
We observe in Figure 13(a) several false alarms within the high-density residential area. 

These pixels are mainly cyan and green, which indicates the transition from vegetation to man-

made surface and from man-made surface to vegetation, respectively. By comparing this image 

with Figure 13(c), it is easy to see the filtering effect of the NAHIRI procedure in the reduction of 

these erroneous pixels, particularly in the center of the image. 

  A quantitative accuracy assessment of the PCC method indicates that the overall error 

exceeds 22% (k=0.444). As before, the automatic generation of the NAHIRI output requires a bit 

more execution time due to the training of NN3, but the overall error is dramatically decreased to 

5.5% (k=0.783). To achieve this level of accuracy with the traditional PCC method would require 

a lot of intensive manual error removal. 

 

 
V. Discussions and Conclusions 

We have proposed an image analysis technique based on NN architecture, called NAHIRI 

(Neural Architecture for High-Resolution Imagery), to detect land cover changes. The distinctive 

feature and the major innovation of the approach is that the 3 NNs simultaneously exploit both 

the multi-spectral and the multi-temporal information associated with changed values of high-

resolution satellite image pixel spectral reflectances. For this purpose, a NN architecture with 

different stages is designed. The first stage includes the generation of ratio images to reduce the 

effects of different scene illuminations and atmospheric and ground moisture conditions. From 

these ratio images, the inputs of the three neural nets, NN1, NN2 and NN3, are derived. Each 

input is characterized by a feature-vector whose components are the non-redundant ratios of the 

spectral bands. To train NN1 and NN2, we used as input the ratio vector data set exploiting the 

multi-spectral information; to train NN3, we used the logarithm of the ratios exploiting the multi-

temporal information. 

Thus, NN1 and NN2 are designed to produce the classification maps 1MAP  and 2MAP , 

while NN3 is intended to classify the changed and unchanged features. The second stage includes 

the extraction of two change detection maps: “Change Map”, which is the difference between the 

two classification maps 1MAP  and 2MAP , and “Change Mask”, which is the output of NN3. 
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The third and final stage involves the merging of “Change Map” and “Change Mask” 

results, as an input for the pixel-based “AND” gate. Only if both “Change Map” and “Change 

Mask” have the same logical value 1 is the changed pixel identified as valid and shown in the 

change detection image. It is worthwhile to note that the proposed technique not only detects the 

different kinds of change occurred, but also explicitly recognizes the typologies of class 

transitions.  

Experimental results, obtained from both high-resolution and medium-resolution images, 

confirm that NAHIRI, unlike other methods presented in the literature, is a general approach that 

can be applied to a wide range of spatial resolutions and land cover types as the method has been 

applied to different Test Areas including different landscapes such us urban, open space and rural. 

With respect to a Post Classification Comparison approach NAHIRI is able to dramatically 

improve the change detection accuracy. Table 8 shows the change detection accuracy in terms of 

the k-coefficient and the overall error of both techniques for our different Test Areas. The mean of 

the k-coefficient for NAHIRI method is 0.786 while it is 0.529 for PCC. These values are also 

presented as 3-D histograms in Figure 14, which displays graphically the higher accuracy of the 

NAHIRI method as compared to the PCC technique. 

 
NAHIRI PCC NAHIRI PCC  K-Coefficient Overall Error (%) 

Test Area 1 (2002-2004) 0.722 0.568 11.9 23.3 
Test Area 2 (1992-1996) 0.881 0.619 5.0 18.3 
Test Area 2 (1996-2002) 0.759 0.486 10.2 27.1 
Test Area 3 (2002-2003) 0.783 0.444 5.5 22.2 

 
Mean 0.786 0.529 8.2 22.7 

Table 8: Comparison of the Change Detection accuracy between PCC and NAHIRI 
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Figure 14: Histogram of the accuracies in terms of k-coefficient (a) and the overall error (b) of both 
Post Classification Comparison and NAHIRI CD.  The main of the k-coefficient ranges from 0.529, in 
the case of PCC, to 0.786 in the case of NAHIRI CD. 
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