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Chapter 1

Introduction and Conclusions

It is strongly believed that the Standard Model of particle physics is just an excellent
low energy limit of a more fundamental theory that should account for physics at very
high energies. For more than twenty years the SM has successfully described data from
experiments probing energies up to the order of 1 TeV. It has also predicted new particles
and phenomena subsequently verified, and it continues to provide new insights into our
physical world. In spite of this, at higher energies new physics could appear and new
theoretical frameworks should explain it. A viable framework to deal with is String Theory,
a theory that assumes that the fundamental building blocks of nature are one-dimensional
objects, i.e., strings.

String Theory is a quantized theory of gravity that is expected to be also a unified model
of all the fundamental interactions. More recently there has been a renewal of interest in
understanding the link between string theory and particle physics, this in order to find an
exact description of confining gauge theories in terms of strings. The idea is not new and
goes back to the early ’70 when ’t Hooft proposed a dual model of strings for describing
gauge theories with a large number of colors.

In order to clarify this duality it is convenient to introduce the concept of Black Hole,
a very massive object originated in a gravitational collapse, inside of which all the forces
of nature are in action. For our purposes, a Black Hole (BH) simply can be regarded as
a region of spacetime from where no information can escape beyond its boundary, i.e.,
the information inside the BH is inaccessible to distant observers. Moreover, Black Holes
are very simple objects since their properties do not depend on the kinds of constituents
they are made of, but instead in some basic properties as the mass, charge and angular
momentum.

The simplest black hole, the Schwarzschild BH, has a Event Horizon which is a sphere
of area A = 4πG2M2/c4. It can be proved that this area cannot decrease in any classical
process. On the other hand, gravitational collapsing objects which give rise to black holes
seem to violate the second law of thermodynamics. This is easy to see since the initial
collapsing object has a non-vanishing entropy whereas the final BH cannot radiate, then
the entropy of the system has decreased. The problem is solved by providing an entropy to
the Black Hole. For a Schwarzschild BH it was proposed by Bekenstein that the entropy is
proportional to the Event Horizon area, a quantity that can only increase as the entropy
does in classical thermodynamics,

SBH =
1

4

A

l2p
. (1.1)
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8 Introduction and Conclusions

The Generalized Second Law (GSL) of thermodynamics extends the usual Second Law
to include the entropy of black holes in a composite system, counting the entropy of the
standard matter system and also that of the black hole STOT = SMATT + SRAD + SBH .
This is the entropy that is always increasing. Starting with a collapsing object of entropy
S, the GSL of thermodynamics imposes that S ≤ SBH . This is the Holographic Bound,
and it states that the entropy of a matter system entirely contained inside a surface of
area A, cannot exceed that of a black hole of the same size. Alternatively, the Holographic
Bound can be rephrase saying that the information of a system is completely stocked in its
boundary surface.

This statement is generalized by the Holographic Principle. It claims that any physical
process occurring in D + 1 spacetime dimensions, as described by a quantum theory of
gravity, can be equivalently described by another theory, without gravity, defined on its
D-dimensional boundary. Some authors believe that this statement is universal and a
fundamental principle of nature. Nevertheless, the principle has been tested only in a
few concrete cases. An exception is the AdS/CFT correspondence, since it exactly relates
superstrings in a D-dimensional space with a superconformal field theory on the boundary.

Finally, we would like to comment on the Black Hole Information Paradox and see how
the Holographic Principle resolves it. The paradox can be posed in the following terms.
Since a collapsing object is in a definite quantum state before it starts to contract, we expect
the final object to be in exactly the same configuration. However, the thermal radiation
of the BH comes as mixed states and so the information we get from the inside of the BH
does not reproduce the information booked in the original object. We can say that the
initial information is lost inside the Black Hole. This paradox is solved by the Holographic
Principle, since the full dynamics of the gravitational theory is now described by a standard,
though complex, quantum system with unitary evolution.

So far the most accurate holographic proposal relating gauge theories to strings is the
novel AdS/CFT correspondence. In two words, it says that ST defined in a negatively
curved anti-de Sitter space (AdS) is equivalent to a certain Conformal Field Theory (CFT)
living on its boundary. One concrete example is AdS5/CFT4: it states that type IIB
superstring theory in AdS5 is equivalently described by an extended N = 4 super-CFT
in four dimensions. The other five dimensions of the bulk are compactified on S5. The
five-sphere with isometry group SO(6) is chosen in order to match with the SU(4) R-
symmetry of the super Yang-Mills theory. The AdS/CFT correspondence is a weak/strong
coupling duality, allowing us to probe the strong coupling regime in the gauge theory from
perturbative means in the string side, and viceversa. This can be seen from the fundamental
relation between the superstring side of the correspondence and the super-Yang-Mills theory

(
R

ls

)4

= 4πgs ↔ g2
YMN ≡ λ , (1.2)

where R is the curvature radius of the anti-de Sitter space, N is the number of colors
(considered very large) in the gauge group and λ is the ’tHooft coupling.

In the Supergravity limit the string length is much smaller than the radius of the AdS
space, given

1�
(
R

ls

)4

↔ λ . (1.3)

In this limit the bulk theory is manageable, being N = 8 Gauged Supergravity, but in the
boundary side it turns out that the gauge theory is in a strongly couple regime, where a
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perturbative analysis is senseless. This establishes the weak/strong coupling nature of the
duality. This is an advantage is we want to study the strongly coupled regime of one of
the theories, since we can always use perturbative results in the dual theory. However, the
difficulties in finding a common perturbative sector where to test the correspondence makes
it hard to prove its full validity. The strong formulation of the AdS/CFT correspondence
claims its validity at the string quantum level, nevertheless, so far no one has been able to
quantitatively prove it beyond the Supergravity approximation.

The main challenges of AdS/CFT are two-fold: i) to shed light in the strongly regime
of non-abelian theories, as a step further in the understanding of more realistic QCD-like
theories; ii) to provide a full proof of the correspondence. The latter is a non-trivial task
since we do not have an independent non-perturbative definition of string theory that could
be compared with the boundary theory in the strong coupling regime. Pointing in this
direction, a couple of years ago a new proposal was suggested, that goes under the name of
BMN conjecture, and opened the possibility to test the correspondence beyond the SUGRA
limit.

Since the two-dimensional sigma model for superstrings on AdS5×S5 supported by R-R
flux is far from been manageable, even at the non-interacting level gs = 0, the proof of the
stringy regime of the AdS/CFT correspondence is hard to carry off. Nevertheless, under
some conditions, it was found by Berenstein, Maldacena and Nastase (BMN) that the two
sides of the correspondence have an overlapping perturbative regime that allows the duality
to be tested at the stringy regime.

Long before the AdS/CFT duality was proposed, it was known that type IIB super-
string theory had two maximally supersymmetric spaces: flat ten-dimensional spacetime
and AdS5×S5. More recently it was discovered that in Penrose limit AdS5×S5 reduces to
a gravitational plane-wave, PP-Wave for short, that gives the third and last maximally
supersymmetric space of type IIB superstring. In this background the theory was shown to
be described by a free, massive, two-dimensional worldsheet sigma model easily quantizable
in the light-cone gauge. With these exact string results at hand, the only point unknown
was the boundary equivalent to the limit performed in the bulk. This last step was fulfilled
by the BMN conjecture.

In the bulk, the energy of a state is given by the generator of translations in time
E = i ∂t, and the angular momentum around a great circle of S5 is associated to J = −i ∂φ.
The light-cone hamiltonian and momentum can be taken to be

Hlc ≡ ∂x+ ∝ E − J , Plc ≡ ∂x− ∝
E + J

R2
, (1.4)

where x± are the spacetime light-cone coordinates, and an explicit formula for Hlc is known.
From the second equation, we note that the condition of non-vanishing light-cone momenta
selects those angular momenta depending on the radius R as J ∝ R2. Moreover, the limit
N →∞ imposes J2 ∼ N . It turns out that this limit is different from the large N limit we
comment above since in that case the expansion in λ ≡ gsN implied gs small, something
not required by the present approach.

On the other side of the correspondence, the energy E is identified with the scaling
dimension ∆ of the operator on the boundary. The angular momentum J is associated
to an U(1) subgroup of the SU(4) R-symmetry of N = 4 super Yang-Mills. With these
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identifications, the fundamental relation of the BMN correspondence is settled to be

Hlc ∝ ∆− J . (1.5)

As we said before, according to the AdS/CFT duality the limit we carry out in the bulk
should have certain consequences in the boundary. BMN conjecture states that the limit
has its counterpart in a truncation of the class of operators defined in the superconformal
theory. Only operators with large R-charge and ∆ ∼ J survive the limit, including string
excitations.

The BMN conjecture opens the possibility to test the AdS/CFT correspondence be-
yond the supergravity regime, nevertheless, not all the ideas involved are conceptually well
established. One of these is the fate of holography in the BMN limit. It seems that the
beautiful holographic picture of the AdS/CFT duality is completely lost in the plane-wave
background. But maybe a remnant of it can survive.

This Thesis

The main obstacle towards extending the holographic duality beyond the supergravity
approximation that captures the strong coupling regime of the boundary conformal field
theory is represented by our limited understanding of how to quantize the superstring in
the presence of R-R backgrounds. One possible exception is the background AdS3×S3×M
supported by a NS-NS three-form flux1 which is the near horizon geometry of a bound-
state of fundamental strings (F1) and five-branes (NS5). Powerful CFT techniques can be
exploited in this case to compute the spectrum and string amplitudes since the dynamics on
the world-sheet is governed by an ŜL(2,R)× ŜU(2) Wess-Zumino-Witten model. The dual
two-dimensional superconformal field theory is expected to be the non-linear sigma model
with target space the symmetric orbifoldMN/SN , whereM can be either T4 or K3.

In this thesis we give explicit results for bosonic and fermionic string amplitudes on
AdS3×S3 and the corresponding plane-wave limit. We also analyze the consequences of our
approach for understanding holography in this set up, as well as its possible generalization
to other models. The original materials appeared (or are to appear) in a series of publica-
tions by the author and collaborators [1, 2, 3, 4]

• Chapter 2: after reviewing the physics involved in the two sides of the AdS3/CFT2

correspondence, we perform the plane-wave limit in an heuristic way in order to set
the basis of the more technical material that follows in this thesis. In general, a precise
correspondence between bulk and boundary dynamics has been a longstanding chal-
lenge in AdS/CFT. A discussion on the AdS3/CFT2 discrepancy at the supergravity
level can be found in the last part of this chapter.

• Chapter 3: we recall the necessary tools for dealing with Wess-Zumino-Witten (WZW)
models and display the full spectrum of strings on AdS3×S3. We then compute bosonic
string amplitudes on this background and determine their Penrose limit. A crucial
role is played by the charge variables that, from a group theoretical point of view,

1S-duality relates NS-NS three-form flux to R-R flux and one may in principle resort to the hybrid
formalism of Berkovits, Vafa and Witten to make part of the space-time supersymmetries manifest and
compute some three-point amplitudes.
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are introduced in order to compactly encode the content of (in) finite dimensional
irreducible representations. More physically, they are seen as coordinates in the holo-
graphic boundary. In this approach, plane-wave chiral primaries are obtained by
rescaling the charge variables with the level of the algebras k1, k2 →∞.

• Chapter 4: we compute tree-level bosonic string amplitudes in the Hpp-wave limit of
AdS3×S3 supported by NS-NS three-form flux. The corresponding WZW model is
obtained contracting the algebras ŜL(2,R)k1 and ŜU(2)k2 according to k1, k2 → ∞
with µ2

1k1 = µ2
2k2. We examine the irreps representations of the model and define

vertex operators. We then compute two, three and four-point functions. As a starting
point for more realistic models, we consider only scalar tachyon vertex operators
with no excitation in the internal worldsheet CFT. The computation of such string
scattering amplitudes heavily relies on current algebra techniques on the worldsheet,
generalizing in some sense the results for the Nappi-Witten model developed in [5]. We
show that these amplitudes exactly match the ones computed in the third chapter.
It is worth stressing that these amplitudes are well defined even for p = 0 states,
which are difficult (if not impossible) to analyze in the light-cone gauge. We have
thus provided further evidence for the consistency of the BMN limit in this setting.

• Chapter 5: we propose an extension of the previous procedure and the holographic in-
terpretation of the charge variables to more interesting and realistic models. While for
the ŜL(2,R)L× ŜL(2,R)R algebra, underlying AdS3, the charge variables x and x̄ can
be viewed as coordinates on the two-dimensional boundary, in the case of the Ĥ2+2n

algebra, underlying a pp-wave geometry, the corresponding charge variables xα and
xα become coordinates on a 2n-dimensional holographic screen [6]. This picture re-
places the one-dimensional null boundary representing the geometric boundary in the
Penrose limit. The approach with charge variables suggests that correlation functions
in the BMN limit of N = 4 super-CFT are indeed well defined and computable.

• Chapter 6: we tackle the full superstring model, emphasizing on the holographic
charge variables. We construct vertex operators and give instructions on how to
compute scattering amplitudes in the Hpp-wave limit and interpret their structure.
In principle, one would like to address important issues as the spectrum, trilinear
couplings and operator mixing in a more quantitative way. In the last part we propose
a precise correspondence between states in the symmetric product and superstring
vertex operators.

• Appendix A: the alternative Wakimoto free field representation is given and string
amplitudes computed. These results are shown to coincide with the amplitudes of
chapter 3 and 4.

Alternatively, one may consider turning on R-R fluxes. The hybrid formalism of Berko-
vits, Vafa and Witten [7] seems particularly suited to this purpose as it allows the computa-
tion of string amplitudes, at least for the massless modes [8], and the study of the Penrose
limit in a covariant way [9]. The mismatch for 3-point functions of chiral primaries (or
rather their superpartners) and the consequent lack of a non-renormalization theorem for
these couplings calls for additional investigation in this direction and a careful comparison
with the boundary CFT results. Once again, the BMN limit may shed some light on this
issue as well as on the short-distance logarithmic behavior, found in [10] for AdS3 and in



12 Introduction and Conclusions

[5] for NW, that could require a resolution of the operator mixing or a scattering matrix
interpretation.

In this thesis we have argued that the BMN limit of physically sensible correlation
functions are well defined and perfectly consistent, at least for the CFT dual to AdS3×S3.
In particular it should not lead to any of the difficulties encountered in the case of N = 4
SYM as a result of the use of perturbative schemes or of the light-cone gauge. In conclusion,
we hope we have presented enough arguments in order to consider (super) strings on the
plane-wave limit of AdS3×S3 supported by NS-NS fluxes as a source of extremely useful
insights in holography and the duality between string theories and field theories.



Chapter 2

Overview of AdS3/CFT2

In this chapter we present the state of the holographic correspondence between strings
theory in AdS3 and CFT living on its boundary [11], emphasizing on the main ideas in-
volved1. Technicalities will be tackled in the following chapters. This chapter is organized as
follows. In section 2.1 we first introduce the anti-de Sitter geometries where the strings are
defined to live, the space relevant for the correspondence, and then review the microscopic
physics of some generalized black holes. In the last part of this section we comment on the
core idea of the correspondence, its holographic property. In section 2.2 we see how strings
enter the scene and how to describe their dynamics on a general group manifold, such as
AdS3. From this classical analysis we get a valuable geometrical picture of the quantum
spectrum. In section 2.3 we introduce the AdS3/CFT2 correspondence and give information
for its validity. Finally, in section 2.4 we discuss the possibility of testing the AdS/CFT
correspondence beyond the supergravity approximation, in particular, in the plane-wave
limit.

2.1 Anti-de Sitter Spaces and Black Holes

Anti-de Sitter geometries are solutions of Einstein equations of motion with negative
cosmological constant Λ =−(D − 1)(D − 2)/2R2, where D is the number of spacetime di-
mensions of the AdS and R its curvature radius. These spaces have the important property
of being maximally symmetric, or in other words, to have a maximal number of Killing vec-
tors, in all D(D+1)/2. The AdSp+2/CFTp+1 correspondence proposes the identification of
the isometry group of AdSp+2 with the conformal symmetry of the flat Minkowski space R1,p.

An AdSp+2 space of curvature radius R can be defined by the connected hyperboloid [12]

X2
−1 +X2

0 −
p+1∑

i=1

X2
i = R2 , (2.1)

where XM (M = −1, 0, . . . p+ 1) are the coordinates on the embedding space. The latter

1Due to the introductory nature of this chapter, we mostly refer to some review articles the author found
useful in preparing this thesis. For a more complete list of references see next chapters.
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14 Overview of AdS3/CFT2

is a (p+3)-dimensional flat space R2,p+1 with metric

ds2 = −dX2
−1 − dX2

0 +

p+1∑

i=1

dX2
i . (2.2)

From here we see that the AdSp+2 space has isometry group SO(2, p+ 1) and by construc-
tion is homogeneous and isotropic. Even if by definition the ambient space has two time
directions, notice that one of them is orthogonal to the hypersurface defining the AdS space,
leaving us with only one time direction as desired. As we will see below, the closed timelike
curves arising in this picture can be avoided by choosing an appropriate set of coordinates
(global coordinates, see below) and then unwrapping the time direction.

We can now define global coordinates on the hyperboloid (2.1)

X−1 =R cosh ρ sin τ , X0 = R cosh ρ cos τ ,

Xi =R sinhρΩi , (2.3)

with i = 1, . . . , p + 1 and
∑

i Ω
2
i = 1 . Inserting (2.3) in the metric (2.2), this takes the

form

ds2 = R2 (− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2) . (2.4)

It is worth remarking that the global coordinates cover the whole AdS space. We can get
rid of closed timelike curves by considering a non-compact coordinate system where time
is non-compact, −∞ < τ <∞. When talking about the AdS/CFT correspondence we will
always refer to this covering space.

Another useful parametrization is given by the Poincaré coordinates,

X−1 =Ru t, X0 =
1

2u
[1 + u2(R2 + ~x 2 − t2)],

Xi =Ruxi,

Xp+1 =
1

2u
[1− u2(R2 − ~x 2 + t2)], (2.5)

where (this time) i = 1, . . . , p . With this change of variables, the induced metric on AdSp+2

becomes

ds2 = R2

[
u2(−dt2 + d~x 2) +

du2

u2

]
. (2.6)

Since in this thesis we will be particularly interested in AdS3 spaces, i .e. p = 1 in our
notation, it will be helpful to have the metric in global coordinates for this special case

ds2 = R2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dφ2), (2.7)

where the unit vector Ωi in (2.4) reduces to a single parameter φ. In terms of this coordi-
nates and choosing the universal covering range already mention, 0 ≤ ρ <∞ , −∞ < τ <∞
and 0 ≤ φ < 2π, the AdS3 space can be seen as the solid cylinder (see Figure 2.1).

For later use, let us also write down the full AdS3×S3 metric in global coordinates

ds2 = R2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dφ2) +R2(cos2 θ dψ2 + dθ2 + sin2 θ dϕ2). (2.8)
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Figure 2.1: Representation of an AdS3 space in global coordinates.

Both spaces have been chosen with same radius R. The variables 0 ≤ θ, ψ, ϕ < 2π are
angles in the three-sphere.

The boundary of AdSp+2 is the p + 1-dimensional surface at ρ → ∞, a region that
cannot be reached by a massive particle while a light ray can go and get back in a finite
time. The AdS/CFT correspondence states that the dual description of the gravity theory
lives precisely in this boundary space. We will come back to this later. After this overview
of Anti-de Sitter spaces now we would like to understand how these backgrounds can be
generated from string theory principles and what is their exact role in the correspondence.

In the middle nineties it was shown that there are only five consistent superstring the-
ories (types IIA, IIB, HE and HO with closed strings and type I that unavoidably contains
both open strings and closed strings), all of them living in ten spacetime dimensions. This
was supported by the idea that some of the theories were related between them by funda-
mental symmetries, and by the fact, unexpectedly, that non-perturbative dualities of type-II
theories allowed for R-R p-brane solutions in supergravity – the low energy effective theory
of the corresponding superstring2. Moreover, p-branes were shown to have an equivalent
description in terms of hyperplanes in spacetime, a sort of R-R charged membranes – in fact
BPS solitons, which in turn can be a source of closed strings. These last objects are called
Dp-branes. They are non-rigid hyperplanes with p space dimensions and p+ 1 dimensional
world-volume. Due to the open-closed duality of the string models, the Dp-branes are also
supposed to be the slices of space where the ends of an open string can sit (see [14] for an
introduction to string theory). This dual vision of the Dp-branes is at the heart of the most
exciting developments in string theory, including the celebrated AdS/CFT correspondence.

Dp-branes are solutions of supergravity equations, and it can be proved that for type IIB
theory the only admissible BPS Dp-branes are for p = −1, 1, 3, 5, 7, 9, each of them been
a particular solution. But not all imaginable configurations of branes produce new super-
gravity solutions, actually a Dp-Dp′ configuration needs to satisfy some conditions in order
to generate a stable solution, compensating the R-R charge repulsion with some attractive
potential. For the D1-D5 system we will be concerned with, the condition p−p ′ = 4 insures
that we have a stable configuration, or in other terms a bound state at threshold. By this
procedure the supergravity solution we will get at first hand is not the AdS3×S3 space we

2An Introduction to these subjects can be found in [13].
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are looking for, but instead a more complex space that in a certain limiting region reduces
to it. To present our analysis in the more convenient way, we choose to begin generating
this more general space and then going to the suitable limiting case.

The relevant set-up for AdS3×S3 consists in a D1-brane living inside a D5-brane. To
visualize it let’s draw a table showing where the branes are located.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D1 – – ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
D5 – – ⊥ ⊥ ⊥ ⊥ – – – –

Table 1. The D1-D5 brane configuration.

A dash under the coordinate xM (M = 0, . . . , 9) means that the brane is extended in
that direction. On the other hand, a ⊥ symbol means that the brane is perpendicular to
xM , or in other words that the brane looks like a point particle along that direction. It can
be seen that due to the presence of the D-branes the ten dimensional Lorentz symmetry is
broken from the original SO(1, 9) to SO(1, 1)01 ×SO(4)2345 ×SO(4)6789, where the indices
stand for the spacetime directions shown in Table 1. Truly speaking, in string theory the
SO(4)6789 symmetry is broken by wrapping the directions on the four dimensional mani-
folds T4 (or K3), but at low energies the compactified dimensions are too small, restoring
it as a symmetry of the supergravity solution, U(1)4 → SO(4)6789.

The D1-D5 brane configuration described above is a IIB supergravity solution with black
hole type metric

ds2 = f
−1/2
1 f

−1/2
5 (−dx2

0 + dx2
1) + f

1/2
1 f

1/2
5 (dr2 + r2dΩ2

3) + f
1/2
1 f

−1/2
5 dxAdxA, (2.9)

where dΩ3 stands for the metric on the three-sphere, A = 6, 7, 8, 9 are the directions along
the four torus and r2 = x2

2 + x2
3 + x2

4 + x2
5 measures the transverse direction to the D1 and

D5-branes. The harmonic functions of the transverse directions are

f1 = 1 +
gsα

′Q1

vr2
, f5 = 1 +

gsα
′Q5

r2
. (2.10)

The volume of the four-torus is given by VT 4 = (4π2α′)2v and Q1 (Q5) is the number of
D1(D5)-branes. In addition to the metric there are other fields in the supergravity solution
(see for example [15]). For the time been, it is enough for us to remark on the presence of
a non-zero R-R three-form flux F3.

Since it is not well known how to quantize the superstring in the presence of generic
R-R backgrounds 3, it is convenient to consider the S-dual configuration of Q1 fundamental
strings living on Q5 NS5-branes, a system that is supported by a NS-NS 3-form flux H3.
S-duality is a weak→strong transformation that applied to the D1-D5 system essentially
transforms the fields according to ds2 → e−φ ds2, φ→ −φ and F3 → H3, obtaining

ds2 = f−1
1 (−dx2

0 + dx2
1) + f5(dr

2 + r2dΩ2
3) + dxAdxA. (2.11)

3At present, the Pure Spinors Formalism is the most promising approach to tackle this outstanding
problem [16].
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For the F1-NS5 bound state the relevant harmonic functions are

f1 = 1 +
g′2s α

′Q1

v′r2
, f5 = 1 +

α′Q5

r2
, (2.12)

where v′ is defined as for D1-D5, but now measured in the rescaled coordinates, and the
string coupling becomes g′s = 1/gs. Clearly, this does not look like the solution we are
looking for, indeed it is more like a black hole geometry of the Reissner-Nordstrom type.
As we will see next, it is only near the horizon of such a black object/brane that we will
get the desired AdS3×S3 space.

The near horizon limit of the F1-NS5 system is simply obtained by going close enough
to the branes, that is, taking r → 0 in (2.11), while keeping fixed v ′ and g′6 = g′s/

√
v′. With

these prescriptions the metric takes the new form

ds2 =
r2

α′Q5
(−dx2

0 + dx2
1) +

α′Q5

r2
dr2 + α′Q5dΩ

2
3 + dxAdxA. (2.13)

Above we have also used the fact that in the near horizon geometry the string coupling
constant is g2

s = vQ5

Q1
. It is not hard to see that (2.13) is just another way to write the

AdS3×S3×T4 metric. By simply changing variables r = R2

u and writing the the common
curvature radius in terms of the NS5-branes as R2 = Q5α

′, we get

ds2 = R2

[
1

u2
(−dx2

0 + dx2
1) +

du2

u2

]
+R2 dΩ2

3 + dxAdxA , (2.14)

that is AdS3×S3×T4 in Poincaré coordinates, see (2.6).

These geometries are closely related to the BTZ black hole, a background suitable to
study the microscopic physics of black holes (see [17] for an introduction). We can think of
BTZ black holes as five-dimensional near-horizon geometries coming from the Kaluza-Klein
reduction of the six-dimensional D1-D5 black string (2.9). In this limit, and after changing
variables, the BTZ metric can be written as

ds2BTZ = −(r2 − r2+)(r2 − r2−)

R2 r2
dt2 +

R2 r2

(r2 − r2+)(r2 − r2−)
dr2 + r2

(
dφ+

r+r−
Rr2

dt
)2

, (2.15)

where r+(r−) is the outer(inner) horizon and φ is periodic, φ = φ+ 2π. Notice that in the
simplest case r+ = r− = 0, the BTZ geometry reduces locally to AdS3. In spite of this, the
global identification for φ suggests a crucial difference: the fermions of the two spaces have
opposite boundary conditions. This has significant consequences for the quantum analysis
of black holes. However we will not dwell on such topics (the reader interested in an accu-
rate presentation can look at reference [15]).

The no-hair theorem establishes that any stationary black hole can be completely char-
acterized with only three quantities – nothing more than the three physical quantities that
describe the object before it collapses: its mass, angular momentum and charge. There are
also the Black Hole Laws. The zero law says that the surface gravity κ - this quantity plays
the role of the temperature - is uniform over the whole horizon. The first law relates the
change of the horizon area with the three fundamental properties associated with a black
hole

dA =
8π

κ
[ dM − ω dJ − Φ dQ ] , (2.16)
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where ω is the angular momentum and Φ the electrostatic potential. The second law states
that the horizon area, a measure of the entropy, can never decrease. Any physical process
will give rise to an increase of the total energy (ordinary matter plus black holes). That the
black hole can not completely cool down is the statement of the fourth law.

One of the most important results in black hole physics, found by Hawking, states
that these objects really radiate with the spectrum of a black body (thermal radiation) at
certain temperature TH . Moreover, an entropy S is also associated to the black hole. For
a D-dimensional black hole the entropy and temperature are given by

S =
Ad

4}GD
, TH =

}κ

2π
. (2.17)

This entropy is a generalization to higher dimensions of the Bekenstein-Hawking entropy
formula.

For the BTZ black hole introduced above, the role of the electrical charge of the standard
Reissner-Nordstrom black hole is played by the RR-charges. The formulas for the entropy
and the temperature are

S =
2π

4G3
, TH =

(r2+ − r2−)

2πr+R2
. (2.18)

BTZ Black Holes has played an important role in recent developments in string theory.
In part because the computation of Hawking radiation in the full supergravity theory was
shown to coincide with the semiclassical analysis. Moreover, the agreement found between
Hawking radiation, and also the temperature, calculated in the D1-D5 black hole and in
a superconformal field theory on two-dimensions, led to propose the AdS/CFT correspon-
dence. There was also found a three-dimensional analogue of the Hawking-Page transition,
where the process was naturally interpreted as the fluctuation of the partition function from
AdS3 geometry, dominating at low energies, and the Euclidean BTZ black hole that prevail
at high energies.

In an attempt to solve the puzzle arising from the information loss paradox, i.e., the fact
that a black hole absorbs everything without any emission, it was proposed that the entropy
of a matter system confined in a volume with boundary area A should be upper bounded
by the entropy of a black hole with same horizon area. Pointing in the same direction, the
Holographic Principle [18] claims that any physically sensible formulation of a fundamental
quantum theory of gravity, such as string theory, defined in a region with boundary of area
A is fully described by A/4 number of degrees of freedom per Planck area. This principle
has been formulated at a great level of generality and for any theory that quantizes gravity.
Nevertheless, only string theory, thanks to the AdS/CFT correspondence, really fulfills the
requirements of the principle in an accurate manner. Let us close this section showing this
last statement for the more standard AdS5/CFT4.

We begin by introducing an infrared cutoff δ in order to regularize the bulk spacetime,
thus the area of the S3×S5 boundary is roughly given by A = R8/δ3. In the boundary side
we introduce the ultraviolet cutoff δ (there is an UV/IR relation), and after using the bulk-
boundary formula R4 = 4πg2

Y MNα
2, we find that the total number of degrees of freedom

of the U(N) boundary gauge theory is roughly given by n ∼ N 2δ3 ∼ A. In this way the
correspondence saturates the holographic bound, or, equivalently, the number of degrees
of freedom of the boundary CFT agrees with the number of degrees of freedom contained
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in the bulk S3×S5. Therefore, we have heuristically prove that the AdS/CFT duality is
a holographic proposal. There is a slice by slice holographic correspondence between bulk
physics and boundary theory, and the latter in the form of a conformal field theory gener-
ates the unitary evolution of the boundary data.

2.2 Strings on AdS3×N

In this section we introduce some basic facts about affine conformal field theories and
present a helpful picture of strings moving on AdS3. This section is based on [19].

AdS3 has isometry group SO(2, 2), that is isomorphic to the product SL(2,R)×SL(2,R),
one for each left and right movers on the worldsheet Σ. On general ground, strings on group
manifolds, such as AdS3, can be described by Wess-Zumino-Witten (WZW) models 4. These
are conformal invariant theories whose basic object is a group element g, that takes values
in the Lie group G, g : (τws, σ)→ G .

These theories are nicely formulated in terms of a non-linear sigma model action plus a
Wess-Zumino term,

SWZW =
k

16πα′

∫

Σ
d2σTr(g−1∂g g−1∂g) +

ik

8π

∫

M
Tr(εαβγg

−1∂αg g−1∂βg g−1∂γg), (2.19)

where the second term, a total derivative, is an integral over a three dimensional manifold
M with boundary Σ. We will see that for AdS3 the constant k, the level of the affine
algebra, is equal to Q5 the number of D5-branes generating the background.

The equations of motion ∂−(∂+gg
−1) = 0 derived from (2.19), admit a general solution

constructed with purely right and left moving contributions, g = g+(x+)g−(x−). Here we
have defined the light-cone coordinates on the worldsheet x± = τws±σ. In fact, what makes
these models so particular is the presence of left and right independent conserved currents

JR(x+) = kTr(g∂+g
−1), JL(x−) = kTr(∂−gg

−1), (2.20)

where T a are the generators of the Lie algebra of G.

This property allows the much larger affine symmetry for the model

g(x+, x−)→ Ω(x+)g(x+, x−)Ω̄−1(x−), (2.21)

where Ω and Ω̄ are two arbitrary matrices valued in G.

For these models the metric can be written in terms of the field g according to the
Maurer-Cartan formula

gµν =
1

2
Tr(g−1∂µg g

−1∂νg). (2.22)

We will leave for the next chapter the quantum formulation of the conformal field the-
ory supported with affine algebras, for the moment we will just concentrate in classically
realizing the WZW model for the matrix representation of the group SL(2,R).

4Sometimes also called WZNW models to emphasize the contribution due to Novikov.
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An element of SL(2,R) can be parameterized as

g =

(
X−1 +X1 X0 −X2

−X0 −X2 X−1 −X1

)
. (2.23)

It is straightforward to prove that the metric we get using the formula (2.22) gives the
AdS3 element in the form (2.2). Of course, we can also parameterize the SL(2,R) element
g in terms of the global variables ρ, τ and φ. We can take

g = e
i
2
(τ+φ)σ2eρσ3e

i
2
(τ−φ)σ2 , (2.24)

with σi (i = 1, 2, 3) the Pauli matrices. With g given in this form, we obtain correctly the
metric (2.7). From now on we will mostly use the standard normalization R = 1.

The authors of [19] proved that the most general solution that this model admits consists
on two independent contributions of the form

g+ = U ev+(x+)σ2 , g− = eu−(x−)σ2 V, (2.25)

where U and V are constant elements of SL(2,R). Appropriately choosing values of the
parameters in (2.25) they also showed that two different physical solutions arise. We will
not give the algebraic expressions here, for our purposes a picture of the solution will be
more than enough. The two kinds of solutions, timelike (A) and spacelike (B), are shown
in Figure 2.2.

(A) (B)

Figure 2.2: Timelike and spacelike geodesics. Time goes upward.

Moreover, we can generate new solutions by shifting two of the parameters according to

τ → τ + ωτws, φ→ φ+ ωσ, (2.26)

where ω is an integer that to some extent can be interpreted as a winding number . The last
interpretation comes from the fact that the spectral flow transformation (2.26) gives the
two different solutions drawn in Figure 2.3, interpreted as short and long strings wrapping
on AdS3.

From Figure 3.A we see that spacelike spectral flowed geodesics behave as strings that
contract and expand continuously around the axis of the AdS3 cylinder without ever ap-
proaching the boundary. This behavior is due to the opposite forces coming from the tension
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(A) (B)

Figure 2.3: Short and long strings propagating in AdS3.

and the NS-NS B field. These objects are called short strings. We also have the strings
shown in 3.B. They come in from the boundary, shrink around the axis and expand away
reaching again the boundary, this are the long strings. The name winding number for the
parameter ω can be misleading, since during the process of collapsing and expanding its
value can change.

This concludes our classical analysis of bosonic strings moving on AdS3. A full quantum
approach will be carried off in the next chapters and we will read the previous interpretation
in the spectrum of the theory. In chapter 6 we shall see that the fermionic string is still
described by a model of this kind.

2.3 AdS3/CFT2 Holographic Duality

AdS3/CFT2 conjecture proposes that superstring theory on AdS3×S3×T4 is dual to
a conformal theory leaving on the boundary of AdS3. This particular realization of the
correspondence is especially interesting since, unlike AdS5/CFT4, it can be checked beyond
the supergravity approximation. This is due to two major facts: a) as we saw, strings on
AdS3 can be described by an exactly solvable conformal theory, i .e. a WZW model, b) the
boundary of the three-dimensional anti-de Sitter space is two-dimensional, giving rise to an
infinite number of generators of the conformal group.

In order to make the presentation as clear as possible, we will first restrict to the
supergravity regime. Then, for the moment we consider the volume of the compactification
manifold of the order of the string length, so we can ignore the Kaluza-Klein modes around
these directions and superstring theory reduces to supergravity on AdS3×S3×M: (2,0) and
(1,1) supergravity forM = K3 and T4 respectively.

It is known that the low energy dynamics of the D1-D5 system is described by an
U(Q1)×U(Q5) gauge theory in two dimensions with N = (4, 4) supersymmetry. Moreover,
the Higgs branch of this gauge theory description5 flows in the infrared, i .e. near the horizon,
to an N = (4, 4) super-conformal field theory with central charge c = 6Q1Q5 on certain

5The sector where the scalars have trivial expectation value.
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manifold M̃. On the other side, we can think the D1-branes as solitonic strings of the
D5-brane theory. These arguments (see [15] for details) led to propose that the conformal
theory is a non-linear sigma model on the symmetric orbifold

SQ1Q5(T̃4) =
(T̃4)Q1Q5

SQ1Q5

, (2.27)

where we choose M̃ = T̃4 and the tilde on the torus indicates that the four dimensional
torus of this theory is not necessarily the same as the one in the bulk theory. SQ1Q5

is the
permutation group of Q1Q5 variables.

The first evidence for this correspondence comes as usual from the analysis of the sym-
metries of the bulk theory and the superconformal boundary theory. In the next table we
show how the symmetries match.

Bulk IIB SUGRA Boundary N=(4,4) SCFT

AdS3 isometry SO(2, 2) global Virasoro SL(2, R) × SL(2, R)

S3 isometry SO(4) R-symmetry SU(2) × SU(2)

T4 isometry SO(4) eT4 isometry SO(4)

16 supersymmetries global supercharges

Table 2. Correspondence between the symmetries of the bulk and boundary theory.

Even if a first evidence comes from the matching of the global symmetries on the two
sides of the correspondence, the duality should also say something about the more interesting
interacting regime. The following formula does the job for AdS5/CFT4

Zstring [φ|boundary = φ0(x) ] =
〈
e

R
d4xφ0(x)O(x)

〉
CFT

. (2.28)

Two remarks are in order. The first one is that there is a one to one correspondence between
operators O(x) in the boundary gauge theory and fields φ(x0, x) propagating in the bulk of
the AdS5 space. Secondly, note that in the left hand side of (2.28) the bulk field φ(x0, x) is
evaluated in the boundary, φ(x0, x)→ φ(x). We need to keep in mind this properties while
constructing the AdS3/CFT2 duality.

Instead of working directly with AdS3 we will deal with its Euclidean version, the non-
compact manifoldH+

3 = SL(2, C)/SU(2), see Section 3.2. We parameterizeH+
3 with the set

of coordinates (φ, γ, γ̄). It is true that this two spaces are related by analytic continuation,
nevertheless, some attention should be paid since the WZW model construct on SL(2,R)
and on the coset SL(2, C)/SU(2) are not the same. We will point on these differences
whenever necessary.

Because SL(2, C) has infinite dimensional representations, it is convenient to introduce
a complex variable x (and its conjugate x̄), in such a way that we will be able to encode
the components of a given representation in a compact form, specifically in a function
Φh,h̄(φ, γ, γ̄;x, x̄). Using this auxiliary variables, it was shown that the SL(2, C)/SU(2)
classical theory has the most general solution given by

Φh,h̄(φ, γ, γ̄;x, x̄) =
1− 2h

π

(
e−φ + (γ − x)(γ̄ − x̄)eφ

)−2h
. (2.29)
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It can be shown that near the boundary of AdS3, i .e. at φ→∞, this function has the same
form as the bulk to boundary propagator used in supergravity computations. This identifi-
cation gives a strong motivation for interpreting (x, x̄) as coordinates on the boundary. The
charge variables (x, x̄) we introduced are fundamental in the approach we use throughout
this thesis, so this will be extensively discussed in the next chapters.

In Table 2 we matched the symmetries on both sides of the AdS3/CFT2 correspondence,
now we are ready to see the analogue of (2.28). In this case, N-point functions in the
Euclidean worldsheet and in the Euclidean boundary conformal theory are believed to be
related by 〈

N∏

i=1

∫
d2zi Φhi

(zi, z̄i;xi, x̄i)

〉

Σ

=

〈
N∏

i=1

Ohi
(xi, x̄i)

〉

CFT

, (2.30)

where N is the number of insertions and (xi, x̄i) is identified as the location of the operator
Φh in the dual boundary theory6. In (2.30) there is a one to one correspondence between
vertex operators in the worldsheet theory and vertex operators in the boundary theory,∫
d2zΦhi

(zi, z̄i;xi, x̄i) ←→ Ohi
(xi, x̄i). For example, the vertex operator for the graviton

corresponds to the energy-momentum tensor of the CFT.

Finally we would like to comment on the fact that in the real AdS3 with Lorenzian
metric, as in other non-compact sigma models, the vertex operators belong to non-unitary
representations. This non-unitarity of the model and the analysis of the singularities in the
correlation functions show that there is no state/operator correspondence, neither IR/UV
relation, unless we extend somehow the concept of state.

2.4 Plane Wave Limit and BMN Conjecture

Originally proposed for the AdS5/CFT4 correspondence, the BMN conjecture has at-
tracted a lot of attention, including remarkable developments in the analysis of the
AdS3/CFT2 case. In few words, the idea of BMN is to take the pp-wave limit on both
sides of the duality and see how this affects and possibly reformulate the correspondence.
The BMN proposal is a limiting case of the AdS/CFT correspondence, but this should not
make us think that the new correspondence is then trivial. As we will see, things are a
bit more complicated. This will involve establishing a new operator map and matching the
Hilbert spaces on both sides. In the first part of this section we focus on the bulk side and
only in the end we sketch the PP-Wave3/CFT2 correspondence itself.

Plane-fronted gravitational waves with parallel rays, pp-waves, are defined as spacetime
solutions of Einstein equations of motion having a globally constant null Killing vector field
vµ, i .e. it satisfies ∇µvν = 0 and vµv

µ = 0. We will not deal with the most general form of
pp-waves backgrounds but instead in a very special type, the ones which have D-dimensional
metric given by

ds2 = −2 du dv − 1

4
du2

D−N−2∑

I=1

µ2
Ix

IxI +

D−N−2∑

I=1

dxI dxI +

N∑

i,j=1

gij dx
i dxj , (2.31)

6To concrete computations of correlation functions in the string side of the correspondence we will dedicate
an important part of this thesis.
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where u and v are the light-cone directions in spacetime, µ is certain constant and gIJ is
the metric on the transverse directions. The main subject of the presentation will not be
affected if we suppose that the internal manifold is the N -dimensional torus TN , so from
now on in most of the equations we consider gij = δij , or we simply drop this term. Also
notice that in the limit µ→ 0 the pp-wave reduces to the flat space metric.

Another form for the metric can be obtained by changing variables to the form

ds2 = −2du dv − 1

4
du2

D∑

I=2

µ2
I yI ȳI +

D∑

I=2

dyIdȳI . (2.32)

The most interesting property of plane wave geometries is that any spacetime reduces to
it in a certain limit. The process in question is called Penrose limit . The idea is to choose a
null geodesic on the given spacetime and zoom into a region very close to it, the spacetime
around the chosen point is a plane-wave. Using this procedure we can generate new su-
pergravity backgrounds starting from already known solutions. In particular, we can apply
the Penrose modus operandi to the ten-dimensional AdS5×S5 in order to get plane-wave
solutions, affecting the AdS/CFT correspondence in a certain way to be clarified. This is
exactly what BMN conjecture focus on. Nevertheless, the fate of holography in this limit is
not yet well understood. We hope that with the work done in this thesis we will contribute
to understand a little bit better this point (see chapter 5).

Before entering deeper in the BMN proposal, two words on the motivations that brought
to it. For a long time it was known that some pp-waves, of the kind used here, were α ′ exact
solutions of supergravity theories, i .e. the pp-wave geometries are supergravity solutions
that do not get α′ corrections. This result led to study strings on pp-waves, supported
either by NS-NS or R-R charges, and finally revealing the spectrum in the light-cone gauge.
On the other hand, it was shown that in addition to the flat space and AdS5×S5, the
Penrose limit of the latter was the only additional maximally supersymmetric solution of
type IIB supergravity. Hence, BMN got the main ideas to formulate the PP-Waves/CFT
correspondence. Unfortunately, in the light-cone gauge the pp-wave string interactions and
the spectrum at p+ = 0 are much harder to determine than it was at first expected (for a
review see [20]).

But unlike AdS5×S5, the sigma model for strings moving on AdS3×S3 with a back-
ground NS-NS B field is a well known conformal theory, so it is by itself a natural ground
where to test the correspondence beyond the supergravity regime. Furthermore, we do not
need to go to the light-cone gauge because the model can be solved in a fully covariant
way (see chapter 3). Even more important is that these two properties are preserved in the
pp-wave limit. These are the main reasons why in this thesis we will concentrate on this
model and thus try to get new insights for the holographic duality, results that then we
would like to extend to the more realistic AdS5/CFT4.

The Penrose limit of AdS3×S3 can be carried off choosing a lightlike trajectory moving
along the axis of the AdS3 cylinder and turning around a great circle of S3. This can be
performed changing variables in the following way

t =
µu

2
+

v

µR2
, ψ =

µu

2
− v

µR2
, ρ =

r

R
, θ =

r2
R
, (2.33)

and taking the limit R → ∞. In the plane wave background the transverse directions are
compact with size

√
µp+.
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We expect that the Penrose limit of a WZW model should give rise to another conformal
model. This topic is very important for us and will be discussed widely in the next chapters.
What we would like to stress here is that such theories are all generalizations of the more
basic Nappi-Witten (NW) model , associated with the central extension of the group T2 ∧
SO(2), consisting of translations and rotations in the two-dimensional Euclidean plane.

Appropriately parameterizing the group element and utilizing the Maurer-Cartan for-
mula (2.22) we recover the pp-wave metric in the form (2.32). Moreover, it can be shown
that the Nappi-Witten Lie algebra, i .e. the local behavior of the NW group, is determined
by an H4 Heisenberg algebra given by [5]

[P+, P−] = −2iµK, [J, P+] = −iµP+, [J, P−] = iµP− . (2.34)

The generators P± stand for the translations in R2, J for the rotation symmetry and K
is the central extension element. If we take into account the holomorphic and the anti-
holomorphic contributions, it can be shown that the central generator K = K̄ is common
to both algebras.

This is the simplest of the Heisenberg algebras we can associate to pp-waves back-
grounds, in fact, for the most general case (2.31) the H2+2n Heisenberg algebra reads

[P+
i , P

−
j ] = −2iµiδijK, [J, P+

i ] = −iµiP+
i , [J, P−

i ] = iµiP
−
i . (2.35)

where i, j = 1, . . . 2n. Considering the holomorphic and anti-holomorphic part the total
number of generators is 2 (2 + 2n)− 1, since as we said above they share the same central
element.

Since in the AdS/CFT duality time translation is associated to the dilatation operator,
it follows that null geodesics along the axis of the AdS3 cylinder are related to operators on
the boundary with large conformal dimension ∆. On the other hand, fast rotations around
the three-sphere imposes large R-charge J . Formally, the BMN proposal states that

Hlc ≡ ∂u =
1

µ
p− ≡ ∆− J = fixed , (2.36)

Plc ≡ ∂v = p+ ≡ (∆ + J)

µR2
= fixed . (2.37)

Operators on the boundary that survive the limit R→∞ are called BMN operators. Strings
propagating in the plane-wave limit of AdS3×S3 are described by a two-dimensional effective
field theory with coupling g2

2 = g2
6 (µpα′)2. The coupling of such theory can be written as

J2/N , that in the double scaling limit N → ∞ and J → ∞ (J 2/N kept fixed) differs
from the J4/N2 dependence of the standard BMN proposal (Penrose limit of AdS5×S5),
see [21, 22].

As mentioned earlier, the boundary CFT dual to superstrings on AdS3×S3×M is a
non-linear σ-model on the symmetric orbifold SymN (M) = (M)N/SN , where SN is the
symmetric group of N = Q1Q5 elements. Following the BMN conjecture that relates light-
cone momenta in the pp-wave background to conformal dimensions and R-charges of the
operators in the dual theory, the spectrum of the SCFT was shown to be given by [23]

R−R : ∆− J =
∑

n

Nn

√√√√1 +

(
n gsQ

R

5

J

)2

+ gsQ
R

5

L
M
0 + L̄

M
0

J
, (2.38)

NS−NS : ∆− J =
∑

n

Nn

(
1 +

nQ
NS

5

J

)
+Q

NS

5
L

M
0 + L̄

M
0

J
. (2.39)
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where R-R and NS-NS stand for the nature of the 3-form flux.

At a first scrutiny, it seemed that the BMN correspondence failed to correctly match the
spectra on the two sides even for states corresponding to operators with large R-charge7.
Nevertheless, it has been suggested that this might be due to the fact that the boundary
CFT2 is sitting at the orbifold point, which is not the case for the bulk description. In
principle one can dispose of this mismatch by a marginal deformation along the moduli
space of the CFT2. Alternatively one may in principle be able to extrapolate the string
spectrum to the symmetric orbifold point and find precise agreement [25, 26, 27].

2.5 The State of the AdS3/CFT2 Discrepancy

Using standard techniques of super–CFTs on symmetric products SN (M) = (M)N/SN ,
the authors of [28] have computed three-point functions of chiral primary operators on the
symmetric orbifold (T4)N/SN . On the other hand, in [29] the dual cubic couplings for
scalar primaries of type IIB supergravity compactified on T4 were found. In this last case,
three-point interactions were derived solving the linear equations of motion after a non-
trivial redefinition of the fields. In open contradiction with the AdS/CFT proposal, the
results found in the two sides disagree. In [30] alternative results from those of [29] are
given, but leaving the discrepancy still unsolved. In [30] it is pointed out that maybe there
is a problem with the procedure used in [29], specifically, the field redefinition in order to
cancel the derivative terms.

In an attempt to clarify this disagreement Lunin and Mathur [31] have developed a novel
formulation for computing correlators on the boundary conformal theory. They work di-
rectly with the non-abelian permutation group SN , instead of the more studied ZN . In this
new approach, supersymmetric three-point functions reduce to a bosonic contribution times
a factor that can be calculated using bosonization representation. It should be stressed that
this formalism makes no reference to the specific form of the compact manifold, it only uses
the fact that the theory has N = (4, 4) supersymmetry. For the three-point functions they
find, remarkably, a result that behaves as the one of [29]. It is also underlined that there is
no agreement with [30].

2.5.1 Supergravity in D=6

Supersymmtry in six-dimensions has pseudo Majorana-Weyl spinor supercharges. They
can have either positive chirality Qi

+ (i = 1, . . . N+) or negative chirality Qi
− (i = 1, . . . N−),

where N± are even numbers. The automorphism group is the symplectic USp(N+) ×
USp(N−).

7[24] is a good introduction to the subject.
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The supercharges satisfy the anticommutators

{Qi+, QjT+ }=
1

2
(1 + γ̄) γMC−PMΩij

+ ,

{Qi−, QjT− }=
1

2
(1− γ̄) γMC−PMΩij

− , (2.40)

{Qi+, QjT− }=
1

2
(1 + γ̄)C−Z

ij ,

where PM are the six-dimensional Poincaré generators, C− is the charge conjugation matrix
and Z ij are the central charges.

For the theory with N+ = 2 and N− = 0, the chiral supercharges Q1,2
+ transform

under USp(2). We can double the number of them simply adding another doublet of chiral
supercharges, with the composite spinor now transforming under USp(4). If supersymmetry
is related to the number of chiral spinors by N = (N+/2, N−/2), what we just did can be
reread as the extension of chiral N = (1, 0) to N = (2, 0). N = (2, 0) is sometimes called
N = 4b to emphasize that there are four chiral symplectic Majorana-Weyl supercharges.

We are interested in this particular theory since ten-dimensional type IIB supergravity
compactified on a four-dimensional manifold K3, gives rise to N = (2, 0) supergravity in
six dimensions coupled to 21 matter tensor multiplets, by definition the latter contain only
particles of spin ≤ 1. Looking at the irreducible representations of the super-Poincaré
algebra of N = (2, 0), we find that there is a graviton gMN , four chiral gravitini ψM and
five self-dual two-form fields B i

MN . On the other hand, each matter multiplet contains an
anti-self dual tensor field, four fermions and five scalars. The field content is shown in the
next table.

SUGRA MATTER

gMN ψM Bi
MN Br

MN χr φr

1 4 5 1 4 5

Table 1. Field content of pure N = (2, 0) 6D supergravity and matter multi-
plets. Indices i = 1, . . . 5 transform under the group SO(5)R of the R-symmetry
and r = 1, . . . n is the SO(n) vector index of the rotating tensor multiplet 8.

In general, chiral superalgebras defined inD = 4k+2 (k = 0, 1, 2) dimensions possess an-
tisymmetric tensor fields with either self-dual or anti-self-dual field strengths, Fµ1 ... µ2k+1

=

±F̃µ1 ... µ2k+1
. The main difficulty raised when constructing a consistent interacting formula-

tion of such theories, in addition to the absence of an explicit action principle, is the mixing
of self-dual and anti-self-dual tensor fields by the global SO(5, n). This was solved in [32]
noting that in our case the field strengths don’t need to have definite duality properties
under the SO(5, n) group but only under the local composite SO(5)× SO(n). This is seen
studying the scalar sector of the theory .

It is known that scalar fields in supergravity theories can be described by non-linear
sigma models on cosets G/H, where G is the non-compact group of the isometry trans-
formations and H is the maximal compact subgroup of G, called the isotropy group. In
the present case, the 5n scalars of the theory, five for each matter multiplet, can compactly

8The presentation below is independent of the number n of matter multiplets, but for type IIB superstring
compactified on K3 we must consider n = 21.
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be encoded in a field φir, with i = 1, . . . 5 and r = 1, . . . n. These scalars parameter-
ize the SO(5, n)/

(
SO(5)R × SO(n)

)
non-linear sigma model. We can regroup them in a

(5 + n)× (5 + n) vielbein matrix

V =

(
uiI viA
wrI xrA

)
, (2.41)

where we have split the SO(5, n) index in I = 1, . . . 5 and A = 1, . . . n for later con-
vinience. The invariant metric of the SO(5, n) manifold is ηIJ = diag (I5×5,−In×n). As
usual the sechbein V converts curved indices transforming under SO(5, n) into flat indices
i, r transforming under the composite local symmetry SO(5)R × SO(n).

The vacuum has uiI = δiI , x
r
A = δrA, v

i
A = wrI = 0 and the fluctuations of it away from

the identity is given by

V i
I = δiI + φirδrI +

1

2
φirφjrδjI ,

V r
I = δrI + φirδiI +

1

2
φirφisδsI . (2.42)

Here we have included second order corrections in order to consider later on cubic couplings
of chiral primaries.

We can also define

dV V −1 =

(
Qij

√
2P is√

2P jr Qrs

)
, (2.43)

and it can be seen that Qij and Qrs are the connections of the SO(5)R and SO(n) respec-
tively.

Supersymmetry transformations and field equations for pure N = (2, 0) supergravity
in six dimensions coupled to matter multiplets were derived in [32]. For completeness, we
recall a couple of these results. The bosonic field equations are the six-dimensional Einstein
equations for the metric

RMN = Hi
MPQH

i
N
PQ

+Hr
MPQH

r
N
PQ + 2PM

ir PN
ir , (2.44)

and the equations for the scalars

DMP irM −
√

2

3
HiMNP Hr

MNP = 0 , (2.45)

this in addition to the self and anti-self duality conditions for the field strengths B i
MN and

Br
MN , respectively. In the fermionic sector we have field equations mixing ψM and χr, see

for example [33].

Imposing 〈ψM 〉 = 〈χr〉 = 0 and asking the supersymmetry transformations to vanish in
the vacuum, we obtain the Killing spinor equations

Dµε+
1

2
γµΓ

5ε = 0 , Daε−
i

2
γaΓ

5ε = 0 .

In order to determine the spectrum of the theory, fluctuation are linearized according to

gMN = ḡMN + hMN , P irM =
1√
2
∂Mφ

ir , GI = dBI = ḠI + gI , (2.46)
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and first order corrections to the vielbein are considered.

States are classified according to the symmetries of the theory and they are generically
written as D[l1,l2][∆0, s0][R,S]. In this notation, [l1, l2] labels the highest weigh representa-
tion of the S3 isometry group SO(4)gauge, (∆0, s0), with ∆0 the energy and s0 the spin of
the lowest energy state, labels the representations of the isometry group SO(2, 2) of AdS3,
and finally, R indicates a representation of the R-symmetry group SO(4)R

9 while S is a
generic representation of SO(n).

Since SO(4) is isomorphic to SU(2) × SU(2) we can rewrite the quantum numbers l1
and l2 in terms of the spin SU(2)s representations

[l1, l2] −→ [ j1 =
1

2
(l1 + l2) , j2 =

1

2
(l1 − l2) ] . (2.47)

In the tables 2 and 3 we use the quantum numbers j1 and j2.

Once we identify the highest spin representation of a multiplet, as usual all the other
states follow repeatedly applying the supercharge generators. In [33] it was found that
the spin-2 supermultiplet has D[l+1,0][l + 3, 2][0, 1] as its highest spin state and the spin-1
supermultiplet is generated from D[l+1,−1][l + 3, 1][0, n]. In order to construct them, the
relevant commutators are

[E, Q±] = ∓1

2
Q± , [J, Q±] = −1

2
Q± , Γ5Q± = ±Q± , (2.48)

where E and J are respectively the energy and spin operators of SO(2, 2). The former
commutation relations tell us that Q− raises the energy and decreases the spin by 1

2 , while
Q+ decreases both the energy and the spin.

The explicit form of the supercharges is obtained from the Killing spinor equations

Q
[±1/2,−1/2]
± [∓1/2,−1/2] [2±, 0] , Q̄

[1/2,±1/2]
± [±1/2, 1/2] [2±, 0] . (2.49)

Analogous formulas can be found for the right part. It can be proved that these super-
charges in fact generate the SU(1, 1|2)L ⊕ SU(1, 1|2)R superalgebra.

In the next diagrams and tables we show explicitly how the supercharges, acting on the
highest spin representations, generate the full supermultiplets. In table 4 we extract from
tables 2 and 3 the lowest energy states.

9 Global SO(5)R symmetry group is broken to SO(4)R due to the non-vanishing expectation value of the
Freund-Rubin parameter of the field strengths.
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Diagram 1. Generation of the spin-2 supermultiplet for l ≥ 0. The supercharge
Q+ acts down-left in the diagram and Q− do it in the down-right direction.

∆ s0 SO(4)gauge SO(4)R × SO(n)
[
h, h̄

]

l + 3 ±2
[

l+1
2 , l+1

2

]
[0, 1] [l+3±2,l+3∓2]

2

l + 5
2 ±3/2

[
2l+3±1

4 , 2l+3∓1
4

]
[2±, 1] [2l+5±3,2l+5∓3]

4

l + 7
2 ±3/2

[
2l+1±1

4 , 2l+1∓1
4

]
[2∓, 1] [2l+7±3,2l+7∓3]

4

l + 2 ±1
[
2l+2±1

2 , l+2∓1
2

]
[0, 1] [l+2±1,l+2∓1]

2

l + 3 ±1
[

l+1±1
2 , l+1∓1

2

]
[4, 1] [l+3±1,l+3∓1]

2

l + 4 ±1
[

l±1
2 , l∓1

2

]
[0, 1] [l+4±1,l+4∓1]

2

l + 5
2 ±1/2

[
2l+3±3

4 , 2l+3∓3
4

]
[2∓, 1] [2l+5±1,2l+5∓1]

4

l + 7
2 ±1/2

[
2l+1±3

4 , 2l+1∓3
4

]
[2±, 1] [2l+7±1,2l+7∓1]

4

l + 3 0
[

l+1±2
2 , l+1∓2

2

]
[0, 1] [l+3,l+3]

2

Table 2. Spin-2 supermultiplet tower. The multiplet is organized from the
highest spin state to the lowest one. The SO(4)gauge quantum numbers are
[j1, j2] as defined in (2.47). For each non-scalar field, there is a state with
negative spin s = −s0, it has same energy ∆ and transforms in the inverse
representation of both SO(4)gauge symmetry and SO(n) global group.
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Diagram 2. Generation of the spin-1 supermultiplet. For the SO(n) singlet
l ≥ 0, whereas the supermultiplet in the vector representation of SO(n) has
l ≥ −1.

∆ s0 SO(4)gauge SO(4)R × SO(n)
[
h, h̄

]

l + 3 ±1
[

l+1∓1
2 , l+1±1

2

]
[0, n] [l+3±2,l+3∓2]

2

l + 5
2 ±1/2

[
2l+3∓1

4 , 2l+3±1
4

]
[2±, n] [2l+5±3,2l+5∓3]

4

l + 7
2 ±1/2

[
2l+1∓1

4 , 2l+1±1
4

]
[2∓, n] [2l+7±3,2l+7∓3]

4

l + 2 0
[

l+2
2 , l+2

2

]
[0, n] [l+2±1,l+2∓1]

2

l + 3 0
[

l+1
2 , l+1

2

]
[4, n] [l+3±1,l+3∓1]

2

l + 4 0
[

l
2 ,

l
2

]
[0, n] [l+4±1,l+4∓1]

2

Table 3. Spin-1 supermultiplet tower. In the fourth column, the value of n in
[R,n] can be n = 1 or n = 21 depending if the multiplet is a singlet or a vector
of the global SO(n).
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∆ s0 SO(4)gauge SO(4)R SO(n) # dof 6D origin

Non-propagating gravity multiplet (3,1)S + (1, 3)S

2 2 [0, 0] [0, 0] 1 0 gµν
3
2

3
2

[
0, 1

2

] [
0, 1

2

]
1 0 ψµ

1 1 [0, 1] [0, 0] 1 0 gµm, B
5
µm

Spin- 1

2
hypermultiplet (2,2)S

1 0
[
1
2 ,

1
2

]
[0, 0] n 4n φ5r , Br

mn
3
2

1
2

[
1
2 , 0
] [

0, 1
2

]
n 4n χr

2 0 [0, 0]
[

1
2 ,

1
2

]
n 4n φir

Spin-1 multiplet (3,3)S

2 0 [1, 1] [0, 0] 1 9 B5
mn, gm

m, gµ
µ

5
2

1
2

[
1, 1

2

] [
0, 1

2

]
1 12 ψm

3 0
[
1
2 ,

1
2

] [
1
2 ,

1
2

]
1 16 Br

mn

3 1 [1, 0] [0, 0] 1 3 gµm, B
5
µm

7
2

1
2

[
1
2 , 0
] [

1
2 , 0
]

1 4 ψm

4 0 [0, 0] [0, 0] 1 1 gm
m, gµ

µ

Table 4. Lowest mass spectrum of six-dimensional N = (2, 0) supergravity on
AdS3×S3 [34]. From the formula ∆(∆ − 2) = M 2 for scalar fields we note the
presence of 9 + 4n massless scalars.

2.5.2 The boundary CFT2

Type IIB superstring on AdS3 has been proposed to be dual to a CFT theory living
on the two-dimensional boundary with N = (4, 4) supersymmetry. For AdS3×S3×M the
boundary theory is a sigma model whose target space is the symmetric orbifold (M)N/SN .
We denote by SN the permutation group of N variables and N = Q1Q5, with Q1 and Q5

respectively the number of fundamental strings and NS5-branes generating the background.
The action of the permutation group SN should be understood as the identification of the
set of points (X1, . . . , XN ) of the N copies of M with the other sets of points obtained by
permuting in all different ways the X ′

i s. Similarly for the fermionic coordinates ψi.

The Hilbert space of the orbifold theory (M)N/SN is obtained as follows [35]. Starting
from the Hilbert space H of the CFT onMN , the action of the discrete group G ≡ SN leave
us with the reduced twisted sector Hg. In addition to this, among all these states we need to
keep only those states invariant under the centralizer group Cg. After these identifications

the final Hilbert space of each conjugacy class of G is denoted H
Cg
g . Thus, the full Hilbert

space of the orbifold theory is

H

(MN

G

)
=
⊕

[g]

H
Cg
g , (2.50)

where the sum is over all the different conjugacy classes [g] of G.

For the theory here under consideration the discrete symmetry is the permutation group
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SN , whose conjugacy classes are characterized by decompositions of the form

[g] = (1)N1 . . . (s)Ns , (2.51)

where (n) is the number of elements that are permuted and Nn is the number of times this
operation is carried off. For a system with N elements it is clear that

∑
n nNn = N . This

decomposition of the conjugacy classes is useful since we can identify the centralizer group
as

Cg = SN1
× (SN2

× Z
N2

2 )× · · · × (SNs × ZNs
s ) . (2.52)

In this notation, a generic SNn permutes the sets of (n) elements, while Zn acts on the
internal elements of (n). Now we can decompose the twist sector in smaller Hilbert spaces
H

Zn

(n) invariant under the action of Zn, such that

H (SNM) =
⊕

P
nNn

⊗

n>0

SNn H
Zn

(n) . (2.53)

Hence, the spectrum of CFTs on symmetric productsMN/SN is build by the action of
Zn–twist fields (n = 1, . . . N) on the vacuum of the theory [36].

From the point of view of the CFT2 the action of the permutation group is realized by
twist fields σn, for permutations of length n, acting on the N copies of c = 6 theories. If
we suppose the theory defined on a cylinder, we can see the twist operator σn as linking
n conformal field theories defined on each M in such a way that the final CFT lives in a
circle that is n times larger than the initial one. The vacuum energy difference tells us that
the twist field σn has conformal dimension ∆n = 1

4 (n − 1
n). Note that even if the sample

twist operator σn is the building block of the symmetric orbifold theory, and we will deal
mostly with it, it should be kept in mind that in fact there is one twist operator for each
conjugacy class, and not for a simple element of the group, see (2.53). CFT operators have
the form [31]

On =
cn
N !

∑

h∈SN

σhnh−1 , (2.54)

where cn is a normalization constant. Moreover, we should consider twist operators with
all possible length σn with n = 1, . . . N , and symmetrize in all different ways. In the corre-
lation functions a simple global combinatorial factor will take into account this fact.

The match of the symmetries on both sides of the AdS3×S3/CFT2 correspondence tells
us that the isometry group SO(4) of the three-sphere should be identified with a pair
of SU(2) algebras, left and right, corresponding to the R-symmetry of the N = (4, 4)
boundary theory. Thus, a string moving around S3 has an angular momentum that is
naturally associated to the R-charge of certain operator on the boundary. Hence it follows
that high angular momenta are dual to operators with large R-charge. In the boundary
theory we will only consider chiral primary operators.

Chiral primary operators (CPO) are operators on the super–CFT that are annihilated
by half of the supersymmetries and have same conformal dimension and R-charge10, h = j.
Since the twist fields we defined above only permute copies of M and do not carry any
charge, we see that in general the twist σn is not a CPO, except for the trivial n = 1. In

10Same for the right contribution, h̄ = ̄.
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order to provide the twist operator with R-charge, we define the following currents of the
SU(2)L N = (4, 4) automorphism

J+
−m/n ≡

∮
dz

2πi

n∑

k=1

Jk,+z (z) e−2πim(k−1)/nz−m/n , (2.55)

where k labels the copy ofM and the integral goes around the origin of the z-plane. Acting
with these currents on a twist operator the conformal dimension get increased by m/n
while the charge is raised by one unit. Choosing m/n < 1 we can repeatedly apply the
currents until we reach the point where the equality h = j holds, corresponding to the
chiral primaries.

It’s useful to define the local map z → atn, which states that the n copies ofM involved
in the twist operation are translated into a single copy on the covering space Σ. In this
space, that we call t-space in order to distinguish it from the original z-plane, n different
currents give rise to a single current on the covering space. After mapping we define the
currents in the t-space as

J+
−m ≡

∫
dt

2πi
J+
t (t) t−m . (2.56)

Denoting the R-charged twist fields as σ±
n and using the t-space notation above introduced,

it’s easy to see that we can construct the following chiral operators

|σ−n 〉 ≡ J+
−(n−2) · · · J

+
−3J

+
−1| 0−〉NS , with h = j =

n− 1

2
, (2.57)

and

|σ+
n 〉 ≡ J+

−nJ
+
−(n−2) · · · J

+
−3J

+
−1| 0−〉NS , with h = j =

n+ 1

2
. (2.58)

These relations are valid only for n odd. In fact, in the covering space Σ the spinor co-
ordinates are identified according to ψt(t) → (−1)n−1ψt(t), so for n even the spinor is
antiperiodic around t = 0. The corresponding Ramond vacua are of two types, depending
on their J3 charge. We can have | 0+〉R or | 0−〉R, both of them with h = 1

4 , but j = ± 1
2

respectively. The Ramond vacua are related between them by | 0+〉R = J+
0 | 0−〉R, and to

the Neveu-Schwarz vacuum by spectral flow transformation. From the worldsheet point of
view, the field we should insert in t = 0 in order to pass from one type of vacuum to the
other is the spin field, | 0±〉R = S±| 0〉NS . The chiral primaries are in this case defined as

|σ−n 〉 ≡ J+
−(n−2) · · · J

+
−2J

+
0 | 0−〉R , |σ+

n 〉 ≡ J+
−nJ

+
−(n−2) · · · J

+
−2J

+
0 | 0−〉R , (2.59)

with the same conformal dimension, and charge, as n odd. We can now put together left
and right movers in order to write the complete chiral primaries of the orbifold theory

σ±±
n , with h = h̄ , (2.60)

and
σ±∓
n , with h = h̄± 1 . (2.61)



Chapter 3

Bosonic String Amplitudes on
AdS3×S3 and the PP-Wave Limit

In this chapter we continue the discussion of sections 2.2 and 2.3 and examine the
quantum properties of bosonic strings living on AdS3×S3 with NS-NS three-form flux back-
ground. First we review the main properties of the affine algebras1 associated to the back-
ground and then we generate the spectrum, identifying at a quantum level the short and
long strings introduced in the previous chapter. In the last part we turn to the charge vari-
ables formulation of the theory and comment further on the holographic screen of section
2.3, an approach that will reveal all its power only in the last chapter of this thesis. After
this we pass to the main objective of this chapter: to prove that we can explicitly compute
correlation functions in the plane wave limit starting from the correlators of primary fields
of ŜL(2,R) and ŜU(2). This chapter is in part based on results published in [2].

3.1 Affine algebras and Spectra

Affine conformal models are two dimensional field theories that in addition to the con-
formal invariance we are use to they also present a chiral symmetry in some primary fields
with unit weight. This fields are the so called affine currents. In other words, the standard
Virasoro generators are supplemented by a set of chirally conserved currents, i .e. satisfying
∂̄J = 0. In section 2.2 we showed that this is the chief property of WZW models describing
strings on group manifolds, see (2.20) and (2.21). In particular this is true for strings living
on AdS3 and S3, so it is fundamental for us to understand in detail how these models work.
The next lines are devoted to attain this goal.

Affine Kac-Moody algebras by definition meet conformal and chiral invariance so the
currents are constraint to have operator product expansion (OPE)

J i(z)J j(w) ∼ k gij

(z −w)2
+ i f ijk

J k(w)

z − w , (3.1)

where k is a positive integer known as the level of the algebra. Notice that the general
metric g has upper indices and it is symmetric on their interchange.

1In this thesis we assume that the reader is equipped with basic knowledge of conformal field theories,
such as presented for example in [37].

35
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Expanding in Laurent modes J i(z) =
∑

n∈Z
J in z−n−1 and integrating in the complex

plane it is straightforward to get the commutation relation of the currents

[J in, J jm] = k n gij δn+m,0 + i f ijkJ kn+m . (3.2)

This is the Affine Kac-Moody algebra. This algebra is an infinite-dimensional extension
of ordinary Lie algebras, notice that it has infinite generators since −∞ < n < ∞. The
subalgebra of zero modes J i

0 is known as the horizontal Lie algebra in which the central
extension k is absent. Moreover, from this general form we can see that f ijk are no more
than the structure constant of the finite-dimensional Lie algebra, or equivalently as we said
the zero mode algebra of the currents. As we are dealing with two algebras, the algebra
on the target space and the current algebra on the worldsheet, we will distinguish them
by putting a hat on the latter. We will also restrict our presentation only to ŜL(2,R) and

ŜU(2)) since these are the current algebras associated with strings moving on AdS3×S3

with NS-NS two form field B.

Due to the fact that ŜL(2,R) and ŜU(2) are analytical continuation of each other, it is
not surprising that the algebras and other relations in the two cases have similar expressions.
Thus in order to avoid repetitions we will use the letter J for the generators of both algebras
and agree that the upper signs in the following equations correspond to ŜL(2,R) and the

lower ones to ŜU(2). For the moment we also suppose that they have same level k.

The current algebras have the same form as given in (3.1) with i, j, k = 1, 2, 3, in

accordance with the number of generators. Moreover gij = ηij = diag (+ +−) for ŜL(2,R)

and gij = δij = diag (+ + +) for ŜU(2). If we now define the conventional operators
J ± = J 1 ± iJ 2, we get the OPEs

J+(z)J −(w)∼ k

(z − w)2
∓ 2J 3(w)

z − w ,

J 3(z)J ±(w)∼±J
±(w)

z − w ,

J 3(z)J 3(w)∼∓ k

2(z − w)2
. (3.3)

This set of OPEs are essential for our approach and will be used intensely throughout this
thesis. From here we can read the required OPE or commutator, but if needed a more
explicit formula is given in (4.8) and (4.9).

Expanding in modes the analogue of (3.2) for i, j, k = ±, 3 is
[
J+
n , J−

m

]
= kn δn+m,0 ∓ 2J 3

n+m ,[
J 3
n , J±

m

]
=±J±

n+m ,

[
J 3
n , J 3

m

]
=∓k

2
nδn+m,0 . (3.4)

Non-singularity of the fields J i(z) at z = 0 imposes that there are some states |Ri〉 that are
annihilated by the positive modes of the currents, i .e. J i

n|Ri〉 = 0 for n ≥ 0 . This defines
the primary states or highest weight states. Here we have assumed that all these states |Ri〉
transform in some representation R of the horizontal algebra, that is J i

0 |Ri〉 = (T iR)ij |Rj〉,
where T i are the generators. The OPE counterpart of this relation is

J i(z)Ri(w) ∼
T iRij
z − w Rj(w) . (3.5)
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where the fields above defined act on the vacuum of the theory as Ri(0)| 0〉 ≡ |Ri〉. The
fields Ri(z) are in consequence called affine primaries.

To construct the spectrum of the theory we start from the vacuum states and apply
repeatedly the raising operators with negative modes J ±,3

n<0 . At this point a comment is
in order: the spectrum of strings on AdS3 or equivalently the representations of SL(2,R)
contain ghosts, since the generators J 3 create states with negative norm, making the theory
ill-defined. This longstanding problem was solved in [19], where the authors proved a
no-ghost theorem for the model making use of extra unexpected states arisen from the
consideration of representations of the spectral flowed algebra. We will come back to this
further down.

The Sugawara construction establishes that the energy-momentum tensor can be written
as a bilinear in the currents

T (z) =
1

k ∓ 2

[
1

2
(J +J− + J −J+)∓ J 3J 3

]
. (3.6)

Expanding in modes we get the Virasoro generators

Ln 6= o =
1

k ∓ 2

∞∑

m=1

(J +
n−mJ −

m + J−
n−mJ+

m ∓ 2J 3
n−mJ 3

m) . (3.7)

As usual L0 is ambiguous under normal ordering so we define

L0 =
1

k ∓ 2

[
1

2
(J+

0 J −
0 + J−

0 J +
0 )∓ (J 3

0 )2 +

∞∑

m=1

(J +
−mJ −

m + J−
−mJ+

m ∓ 2J 3
−mJ 3

m)

]
.

(3.8)
For convenience we remember the Virasoro algebra

[Ln, Lm] = (n−m)Ln−m +
c

12
(n3 − n) δn+m,0 . (3.9)

Note that the affine current algebra is larger than the conformal Virasoro algebra since
it comprises conformal and chiral invariance. That’s why the Virasoro generators can be
expressed in terms of the modes of the currents and finally the central extension parameter
of Kac-Moody algebras, the level k, and Virasoro algebra, the central charge c, are related
by

c =
3k

k ∓ 2
. (3.10)

The generators of both algebras have commutator given by [Ln,J im] = −mJ im+n.

The Casimir operator of the group is defined by

~J 2 = (k ∓ 2)L0 =
1

2
(J+

0 J −
0 + J−

0 J +
0 )∓ (J 3

0 )2 . (3.11)

Other representations come from the spectral flow action [19, 38]

J 3
n −→ J̃ 3

n = J 3
n −

1

2
w δm,0 ,

J +
n −→ J̃+

n = J +
n+w , (3.12)

J −
n −→ J̃−

n = J −
n−w .
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For the Virasoro generators the automorphism acts as

Ln −→ L̃n = Ln + wJ3
n −

1

4
w2k . (3.13)

The full spectrum should include the representations of these spectral flowed algebras, i .e.
representations that starting from a general highest weight state |h;ω〉.

For SL(2,R) we have three types of unitary normalizable representations [39]:

1) Lowest-weight discrete representations D+
l , constructed starting from a state |l〉 which

satisfies K−|l〉 = 0, with l > 1/2. The spectrum of K3 is given by {l + n}, n ∈ N and the
Casimir is CSL = −l(l − 1).

2) Highest-weight discrete representations D−
l , constructed starting from a state |l〉

which satisfies K+|l〉 = 0, with l > 1/2. The spectrum of K3 is given by {−l − n}, n ∈ N

and the Casimir is CSL = −l(l − 1).

3) Continuous representations Cl,α, constructed starting from a state |l, α〉 which satis-
fies K±|l, α〉 6= 0, with l = 1/2 + iσ, σ ≥ 0. The spectrum of K 3 is given by {α+n}, n ∈ Z

and 0 ≤ α < 1. The Casimir is CSL = 1/4 + σ2.

The representation of the spectral flow algebras Dωl and Cωl,α are generated applying on
the spectral flowed highest weight states the currents of SL(2,R). For discrete representa-
tions these they are defined as

K+
n+ω|h;ω〉 = 0, K−

n−ω−1|h;ω〉 = 0, K3
n|h;ω〉 = 0, n = 1, 2, . . . (3.14)

and for continuous representations

K±
n±ω|h, α;ω〉 = 0, K3

n|h, α;ω〉 = 0, n = 1, 2, . . . (3.15)

Since irreps with different w are not equivalent, the full Hilbert space including spectral
flowed representations is

HSL(2,R) = ⊕∞
w=−∞

[(∫ k−1

2

1

2

dl Dωl ⊗ D̄ωl

)
⊕
(∫

1

2
+iR

dl

∫ 1

0
dα Cωl,α ⊗ C̄ωl,α

)]
. (3.16)

The analysis of the spectrum led to identify the continuous representations, which only gave
discrete energies, with the short strings moving deeply inside AdS3 as we saw in section 2.2.
In [19] it was shown that the spectral flow of these representations lead to physical states
with energy

E =
kw

2
+

1

w

[
2
s2 + 1

4

k − 2
+ N̄ +N + ∆int + ∆̄int − 2

]
, (3.17)

where N is the number of current excitations, left and right contributions are considered,
before the spectral flow is taken. This states with continuous energies represent the long
strings also discussed in section 2.2, where it was sketch how they move from far away at
the boundary of AdS3 and then collapse to a point and then go away again.

For SU(2) the things are much simpler since we have only one type of unitary represen-
tations Vl̃ with 2l̃ ∈ N, m̃ = −l̃,−l̃ + 1, ..., l̃ and the spectral flow operation does not give
extra states but only maps between conventional representations. Thus, the full Hilbert
space in this case is

HSU(2) = ⊕ l̃=0, 1
2
... k

2

Vl̃ × V̄l̃ . (3.18)
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3.2 Penrose limit of amplitudes on AdS3×S3

Starting from the three-point correlators for vertex operators of strings on AdS3×S3 we
proceed to determine the corresponding outcome for the plane wave background. The nov-
elty in our approach is that the Penrose limit is taken scaling the charge variables already
introduced for SL(2,R) [40] and similar for SU(2). The limit of the SU(2) three-point cou-
plings [41] has been considered in [5] and we refer to that paper for a detailed discussion.
Here we provide a similar analysis for the SL(2,R) structure constants and show that when
combined with the SU(2) part they reproduce in the limit the Ĥ6 structure constants we
will see latter in chapter 4. As a first step we begging introducing the irreducible represen-
tations (irreps) of the Heisenberg algebra H6 and then show how the quantum numbers of
the two models before and after the Penrose limit are related to each other. But, first of all
let’s clarify the role of the Euclidean AdS3 as was pointed out in section 2.3.

In general, the AdS3/CFT2 correspondence entails the exact equivalence between su-
perstring theory on AdS3×M, where M is some compact space represented by a unitary
CFT on the worldsheet, and a CFT defined on the boundary of AdS3. Equivalence at the
quantum level implies a isomorphism of the Hilbert spaces and of the operator algebras
of the two theories. For various reasons it is often convenient to consider the Euclidean
version of AdS3 described by an SL(2,C)/SU(2) WZW model on the hyperbolic space H+

3

with S2 boundary, see section 2.3. Although the Lorentzian SL(2,R) WZW model and the
Euclidean SL(2,C)/SU(2) WZW model are formally related by analytic continuation of
the string coordinates, their spectra are not the same. As observed in [19, 10], except for
unflowed (w = 0) continuous representations, physical string states on Lorentzian AdS3 cor-
responds to non-normalizable states in the Euclidean SL(2,C)/SU(2) model. Yet unitarity
of the dual boundary CFT2 that follows from positivity of the Hamiltonian and slow growth
of the density of states should make the analytic continuation legitimate. Indeed correla-
tion functions for the Lorentzian SL(2,R) WZW model have been obtained by analytic
continuation of those for the Euclidean SL(2,C)/SU(2) WZW model [10]. Singularities
displayed by correlators involving non-normalizable states have been given a physical inter-
pretation both at the level of the worldsheet, as due to worldsheet instantons, and of the
target space. Some singularities have been associated to operator mixing and other to the
non-compactness of the target space of the boundary CFT2. The failure of the factorization
of some four-point string amplitudes has been given an explanation in [10] and argued not
to prevent the validity of the analytic continuation from Euclidean to Lorentzian signature.
Since we are going to take a Penrose limit of SL(2,R) correlation functions computed by
analytic continuation from SL(2,C)/SU(2), we need to assume the validity of this proce-
dure. Reversing the argument, the agreement we found between correlation functions in the
Hpp-wave computed by current algebra techniques with those resulting from the Penrose
limit (current contraction) of the SL(2,C)/SU(2) WZW model should be taken as further
evidence for the validity of the analytic continuation.

To discuss how the three-point couplings in the Hpp-wave with HL
6 ×HR6 symmetry are

related to the three-point couplings in AdS3×S3, the first thing we have to understand is
how the H6 representations arise in the limit from representations of SL(2,R)× SU(2). In
the next chapter we will examine in more details H6, here we just want to underline that as
much as for SL(2,R) , H6 has three types of representations: discrete irreps V ±

p,̂ and contin-
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uous ones V 0
s1,s2,̂

, where p, s and ̂ are the quantum numbers labelling the representations.

Let us start with the V +
p,̂ representations. Following [5] we consider states that sit near

the top of an SU(2) representation

l̃ =
k2

2
µ2p− b , m̃ =

k2

2
µ2p− b− n2 . (3.19)

In order to get in the limit states with a finite conformal dimension and well defined quan-
tum numbers with respect to the currents in (4.10), we have to choose for SL(2,R) a D−

l

representation with

l =
k1

2
µ1p− a , m = −k1

2
µ1p+ a− n1 . (3.20)

In the limit ̂ = −µ1a+ µ2b.

Reasoning in a similar way one can see that the V −
p,̂ representations result from D+

l ×Vl̃
representations with

l=
k1

2
µ1p− a , m =

k1

2
µ1p− a+ n1 ,

l̃=
k2

2
µ2p− b , m̃ = −k2

2
µ2p+ b+ n2 , (3.21)

and ̂ = µ1a− µ2b in the limit.

Finally the V 0
s1,s2,̂

representations result from D0
l,α × Vl̃ representations with

l =
1

2
+ i

√
k1

2
s1 , m = α+ n1 , l̃ =

√
k2

2
s2 , m̃ = n2 , (3.22)

and ̂ = −µ1α. As we shall see the tensor product of these representations reproduces in
the limit for H6, see Eq. (4.45).

We introduce a vertex operator for each unitary representations of SL(2,R)

Ψ+
l (z, x) =

∞∑

n=0

cl,n(−x)nR+
l,n(z) ,

Ψ−
l (z, x) =

∞∑

n=0

cl,nx
−2l−nR−

l,n(z) ,

Ψ0
l,α(z, x) =

∑

n∈Z

x−l+α+nR0
l,α,n(z) , (3.23)

where we denote by R the modes of the primary in the n basis and c2l,n = Γ(2l+n)
Γ(n+1)Γ(2l) .

As we anticipated in section 2.3, we can define a two-dimensional holographic screen
where the CFT lives. This space is parameterize by the charge variables (x, x̄) that are
identified as the points where the boundary operators are inserted. Using this variables
we can identify the action of the currents of SL(2,R) on the affine primaries with some
differential operators defined on the x space. Specifically we can establish the relation

KA(z)Ψl(w, w̄;x, x̄) ∼ DA
z − w Ψl(w, w̄;x, x̄), A = ±, 3 (3.24)
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considering the following differential operators

D−
1 = −x2∂x − 2lx , D+

1 = −∂x , D3
1 = l + x∂x . (3.25)

Similarly for S3 we introduce

Ωl̃(z, y) =

l̃∑

m=−l̃

c̃l̃,my
l̃+mRl̃,m(z) , (3.26)

where c̃2
l̃,m

= Γ(2l̃+1)

Γ(l̃+m+1)Γ(l̃−m+1)
and the differential operators that represent the SU(2)

action are
D+

2 = ∂y , D−
2 = −y2∂y + 2l̃y , D3

2 = y∂y − l̃ . (3.27)

Generalizing the case studied in [5], we can now implement the Penrose limit on the oper-
ators Ψa

l (z, x)Ωl̃(z, y) and determine their precise relation with the primaries Φa(z, x, y) of

the Heisenberg algebra Ĥ6 coming from the Penrose limit. In this section we introduce two
charge variables for Ĥ6, denoted by x and y in order to emphasize that they are related to
the charge variables of SL(2,R) and SU(2) respectively.

For the discrete representations we have

Φ+
p,̂(z, x, y) = lim

k1,k2→∞

(
x√
k1

)−2l ( y√
k2

)2l̃

Ψ−
l

(
z,

√
k1

x

)
Ωl̃

(
z,

√
k2

y

)
, (3.28)

Φ−
p,̂(z, x, y) = lim

k1,k2→∞
Ψ+
l

(
z,− x√

k1

)
Ωl̃

(
z,

y√
k2

)
, (3.29)

with

l =
k1

2
µ1p− a , l̃ =

k2

2
µ2p− b . (3.30)

where p is the light-cone momentum and k1 is the level of the SL(2,R) algebra and k2 that
of SU(2).

For the continuous representations we have

Φ0
s1,s2,̂(z, x, y) = lim

k1,k2→∞
(−ix)−l+α yl̃ n(k1, l) Ψ0

l,α

(
z,
i

x

)
n(k2, l̃) Ωl̃

(
z,

1

y

)
, (3.31)

with

l=
1

2
+ i

√
k1

2
s1 , n(k1, l) =

√
2π (2k1)

1

4 22l−1 ,

l̃=

√
k2

2
s2 , n(k2, l̃) =

√
2π (2k2)

1

4 2−2l̃−1 . (3.32)

With the help of the previous formulae it is not difficult to find the Clebsch-Gordan
coefficients of the plane-wave three-point correlators. In fact, a similar analysis has been
performed in [5] for the three-point correlators of the Nappi-Witten gravitational wave
considered as a limit of SU(2)k × U(1). For AdS3 the general form of the three point

function is fixed, up to normalization, by ŜL(2,R)L× ŜL(2,R)R invariance (x dependence)
and by SL(2,C) global conformal invariance on the world-sheet (z dependence), to be

〈
3∏

i=1

Ψli(zi, z̄i, xi, x̄i)

〉
= C(l1, l2, l3)

1,3∏

i<j

1

|xij |2lij |zij |2hij
, (3.33)
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where l12 = l1 + l2 − l3, h12 = h1 + h2 − h3 and cyclic permutation of the indexes. Due
to the ŜU(2)L × ŜU(2)R and world-sheet conformal invariance the correlation function of
three primaries on S3 is given by

〈
3∏

i=1

Ωl̃i
(zi, z̄i, yi, ȳi)

〉
= C̃(l̃1, l̃2, l̃3)

1,3∏

i<j

|yij|2l̃ij
|zij |2hij

, (3.34)

where l̃ij and hij are defined as for (3.33).

Let us consider for instance the limit leading to a 〈++−〉 correlator. Taking into account
that

∑
i ̂i = −L = −µ1(a1 + a2 − a3) + µ2(b1 + b2 − b3), the kinematic coefficient, coming

from the Ward identities, receives the following contribution from the AdS3 part

K++−(x, x̄) = k−q11

∣∣∣e−µ1x3(p1x1+p2x2)
∣∣∣
2
|x2 − x1|2q1 , (3.35)

where q1 = a1 + a2 − a3 and a similar contribution from the S3 part

K++−(y, ȳ) = k−q22

∣∣∣e−µ2y3(p1y1+p2y2)
∣∣∣
2
|y2 − y1|2q2 , (3.36)

where q2 = −b1 − b2 + b3. Putting the two contributions together

K++−(x, x̄, y, ȳ) = k−q11 k−q22

∣∣∣e−µ1x3(p1x1+p2x2)e−µ2y3(p1y1+p2y2)
∣∣∣
2
|x2 − x1|2q1 |y2 − y1|2q2 ,

(3.37)
This result will be reproduce in an alternative way in (4.47). In the SU(2) invariant case
µ1 = µ2, one finds a looser constraint on the ai and bi that leads to q1 + q2 = Q = −L/µ.
Summing over the allowed values of q1 and q2 one eventually gets an SU(2)I invariant result,
see next chapter (4.53). Using the above expression for the CG coefficients for a coupling
of the form 〈+− 0〉 one obtains

K+−0(x, x̄, y, ȳ) =
∣∣∣e−µ1p1x1x2− s1√

2
(x2x3+x1x3)

∣∣∣
2 ∣∣∣e−µ2p1y1y2− s2√

2
(y2y3+y1y3)

∣∣∣
2
|x3|2q1 |y3|2q2 ,

(3.38)
where q1 = a1 − a2 + α and q2 = b2 − b1.

For the euclidean AdS3, that is the H+
3 WZW model, the two and three-point functions

involving vertex operators in unitary representations were computed by Teschner [40]. The
two-point functions are given by

〈Ψl1(x1, z1)Ψl2(x2, z2)〉 =
1

|z12|4hl1

[
δ2(x1 − x2)δ(l1 + l2 − 1)

B(l1)
+
δ(l1 − l2)
|x12|4l1

]
, (3.39)

where

B(l) =
ν1−2l

πb2γ(b2(2l − 1))
, ν = π

Γ(1− b2)
Γ(1 + b2)

, b2 =
1

k1 − 2
, (3.40)

and l = 1
2 + iσ. The three-point functions have the same dependence on the zi and the xi

as displayed in (3.33). The structure constants are given by

C(l1, l2, l3) = −b
2Yb(b)Gb(1− l1 − l2 − l3)

2
√
πνγ(1 + b2)

3∏

i=1

√
γ(b2(2li − 1))

Gb(1− 2li)

3∏

1=i<j

Gb(−lij) . (3.41)
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In the previous expression we used the entire function Yb(z) introduced in [42]

log Yb(z) =

∫ ∞

0

dt

t



(
Q

2
− z
)2

e−t −
sinh2

[(
Q
2 − z

)
t
2

]

sinh
[
bt
2

]
sinh

[
t
2b

]


 , (3.42)

with

Q = b+
1

b
. (3.43)

We define also the closely related function Gb(z) given by

Gb(z) ≡
b
−b2z

“
z+1+ 1

b2

”

Yb(−bz)
. (3.44)

The function Yb satisfies

Yb(z + b) = γ(bz)Yb(z)b
1−2bz , Yb(z) = Yb(b+ 1/b− z) . (3.45)

In order to study the Penrose limit of the SL(2,R) structure constants we express the
function Gb(z) in term of the function Pb(z) that appears in the SU(2) three-point functions
[41] and whose asymptotic behavior was studied in [5]. For this purpose we write

lnPb(z) = f(b2, b2|z)− f(1− zb2, b2|z) , (3.46)

where f(a, b |z) is the Dorn-Otto function [43]

f(a, b|s) ≡
∫ ∞

0

dt

t

[
s(a− 1)e−t +

bs(s− 1)

2
e−t − se−t

1− e−t +
(1− e−tbs)e−at

(1− e−bt)(1− e−t)

]
= (3.47)

=
s−1∑

j=0

log Γ(a+ bj) ,

where the last relation is valid for integer s. From

f(bu, b2|z)−f(bv, b2|z) = lnYb(v)−lnYb(u)+zb(u−v) ln b , u+v = b+
1

b
−zb , (3.48)

we obtain

Gb(z) =
bγ(−b2z)

Yb(b)Pb(−z)
, (3.49)

and we can rewrite the coupling (3.41) using the function Pb

C(l1, l2, l3) = − b3

2
√
πνγ(1 + b2)

γ(b2(l1 + l2 + l3 − 1))

Pb(l1 + l2 + l3 − 1)

3∏

i=1

Pb(2li − 1)√
γ(b2(2li − 1))

3∏

1=i<j

γ(b2lij)

Pb(lij)
.

(3.50)
Let us consider first the 〈+ + −〉 coupling. As we explained before, the AdS3 quantum
numbers have to be scaled as follows

li =
k1

2
µ1pi − ai . (3.51)
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The leading behavior is

C(l1, l2, l3) ∼
1

2πbq1

1

Pb(−q1)

[
γ(µ1p3)

γ(µ1p1)γ(µ1p2)

] 1

2
+q1

, (3.52)

where q1 = a1 + a2 − a3. Due to the presence of Pb(−q1) in the denominator, the coupling
vanishes unless q1 ∈ N. This result will be reproduced as a classical tensor product, see
(4.45). We can then write

lim
b→0

C(l1, l2, l3) = (−1)q1
k
q1+

1

2

1

q1!

[
γ(µ1p3)

γ(µ1p1)γ(µ1p2)

] 1

2
+q1 ∑

n∈N

δ(q1 − n) . (3.53)

The sign (−1)q1 does not appear in the H6 couplings, a discrepancy which might be due to
some difference between the charge variables used in [40] and the charge variables used in
the present paper. The same limit for the SU(2) three-point couplings leads to

lim
b̃→0

C̃(l̃1, l̃2, l̃3) =
k
q2+

1

2

2

q2!

[
γ(µ2p3)

γ(µ2p1)γ(µ2p2)

] 1

2
+q2 ∑

n∈N

δ(q2 − n) , (3.54)

where b̃−2 = k2 + 2 and q2 = −b1 − b2 + b3. Proceeding in a similar way for a 〈+ − 0〉
correlator we obtain from AdS3

lim
b→0

C(l1, l2, l3) =
2−is1

√
2k1

√
2π

e
s2
1
2

(ψ(µ1p)+ψ(1−µ1p)−2ψ(1)) , (3.55)

and similarly from S3

lim
b̃→0

C̃(l̃1, l̃2, l̃3) =
21+s2

√
2k2

√
2π

e
s2
2
2

(ψ(µ2p)+ψ(1−µ2p)−2ψ(1)) . (3.56)

Let us briefly discuss how the Penrose limit acts on the wave-functions corresponding
to the representations considered above. We will consider only the limit of the ground
states but the analysis can be easily extended to the limit of the whole SL(2,R) × SU(2)
representation if we introduce a generating function for the matrix elements, which can be
expressed in terms of the Jacobi functions.

Using global coordinates for AdS3×S3, the ground state of a D−
l ×Vl̃ representation can

be written as
e2ilt−2il̃ψ(coshρ)−2l(cosθ)2l̃ . (3.57)

After scaling the coordinates and the quantum numbers as required by the Penrose limit
this function becomes

e2ipv+i̂u−
p
2
(µ1r21+µ2r22) , ̂ = −µ1a+ µ2b . (3.58)

In the same way starting from a D+
l × Vl̃ representation

e−2ilt+2il̃ψ(coshρ)−2l(cosθ)2l̃ , (3.59)

we obtain
e−2ipv+i̂u− p

2
(µ1r21+µ2r22) , ̂ = µ1a− µ2b . (3.60)

As anticipated the limit of the generating functions lead to semiclassical wave-functions for
the six-dimensional wave which are a simple generalizations of those displayed in [5].
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3.3 Conclusions

In this chapter we have seen that it is possible to compute exactly three-point functions
for strings on the Hpp-wave limit of AdS3×S3. The idea is to use charge variables defined
on the holographic screen of AdS3, denoted by (x, x̄), and also for S3, that we called (y, ȳ),

and then reformulate the whole problem in term of them. With the ŜL(2,R)k1 × ŜU(2)k2
correlators in hand we can take the Penrose limit by simply rescaling the charge variables
and then taking the level of the algebras k1, k2 going to infinite. The expressions for the
primaries of Ĥ6 in terms of the affine primaries Ψl(z, x) and Ωl̃(z, y) are given in (3.28-
3.31). This was done for both the kinematical contribution as well as for the Clesch-Gordan
coefficients. In the following chapter we will prove that this correlators are in agreement
with the results found performing the computation directly in the Ĥ6 affine conformal
theory. In chapter 6 we will apply a similar analysis to the fermionic string and we will
examine the correspondence with the boundary theory. The main result presented in this
section, i .e. the plane wave limit from charge variables, will finally be applied in chapter 5
to probe the validity of the AdS5/CFT4 correspondence at the BMN limit.
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Chapter 4

Bosonic String Amplitudes in
Plane Waves

In the present chapter we extend to Ĥ6 the work done by D’Appollonio and Kiritsis
in [5]. Exploiting current algebra techniques they were able to compute string amplitudes
living on a background with NW model worldsheet description. In that case the model under
consideration was the Penrose limit of the near-horizon geometry of a stack of NS5-branes,
realized on the worldsheet by an Ĥ4 current algebra.

Here we apply the same techniques to the pp-wave geometry representing the Penrose
limit of AdS3×S3×M. Although we will almost exclusively concentrate our attention on
the bosonic string, we will briefly comment on how to extend our results to the superstring
(see chapter 6 for more details). We will compute two, three and four-point amplitudes
with insertions of tachyon vertex operators of any of the three types of representations of
the Ĥ6 current algebra: actually depending on the value of the light-cone momentum p+,
the states belong to discrete representations when p+ 6= 0 or to continuous representations
when p+ = 0.

As expected, the amplitudes computed here by exploiting the Ĥ6 current algebra, co-
incide with the ones resulting from the Penrose limit as done in the previous chapter, i .e.
the contraction of the amplitudes on AdS3×S3× M. This allows us to clarify the crucial
role played by the charge variables in the fate of holography. They become coordinates on
a four-dimensional holographic screen for the pp-wave [6].

This chapter is organized as follows:

In section 4.1 we briefly describe the general Hpp-waves whose sigma-models are WZW
models based on the H2+2n Heisenberg groups and then we concentrate on the six-dimensional
wave that emerges from the Penrose limit of AdS3×S3, discussing the corresponding con-
traction of the [ŜL(2,R)k1 × ŜU(2)k2 ]

2 currents that leads to the ĤL6 × ĤR6 algebra. In

section 4.2 we identify the relevant representations of ĤL6 ×ĤR6 and write down the explicit
expressions for the tachyon vertex operators. In section 4.3 we compute two and three-point
correlation functions on the world-sheet and compare the results with those obtained from
the limit of AdS3×S3. In section 4.4 we compute four-point correlation functions on the
world-sheet by means of current algebra techniques. In section 4.5 we study string ampli-
tudes in the Hpp-wave and analyze the structure of their singularities. Finally we draw our
conclusions and indicate lines for future material presented in this thesis.

47
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4.1 The Plane Wave Geometry

In section 2.4 we introduced plane wave backgrounds

ds2 = −2dudv − 1

4
du2

n∑

α=1

µ2
αyαȳα +

n∑

α=1

dyαdȳα +

24−2n∑

i=1

gijdx
idxj , (4.1)

where u and v are light-cone coordinates, yα = rαe
iϕα are complex coordinates parameter-

izing the n transverse planes and xi are the remaining 24 − 2n dimensions of the critical
bosonic string that we assume compactified on some internal manifold M with metric gij .
In the following we will concentrate on the 2 + 2n dimensional part of the metric in Eq.
(4.1). The wave is supported by a non-trivial NS-NS antisymmetric tensor field strength

H =

n∑

α=1

µαdu ∧ dyα ∧ dȳα , (4.2)

while the dilaton is constant and all the other fields are set to zero.

The background defined in (4.1) and (4.2) with generic µα has a (5n + 2)-dimensional
isometry group generated by translations in u and v, independent rotations in each of the n
transverse planes and 4n “magnetic translations”. When 2 ≤ k ≤ n of the µα coincide the
isometry group is enhanced: the generic U(1)n rotational symmetry of the metric is enlarged
to SO(2k)×U(1)n−k, broken to U(k)×U(1)n−k by the field strength of the antisymmetric
tensor. The dimension of the resulting isometry group is therefore 5n+ 2 + k(k − 1).

As first realized in [44] for the case n = 1 and then in [45] for generic n, the σ-models
corresponding to Hpp-waves are WZW models based on the H2+2n Heisenberg group. The
Ĥ2+2n current algebra is defined by the following OPEs

P+
α (z)P−β(w)∼ 2δβα

(z − w)2
− 2iµαδ

β
α

(z − w)
K(w) ,

J(z)P+
α (w)∼− iµα

(z − w)
P+
α (w) ,

J(z)P−α(w)∼+
iµα

(z − w)
P−α(w) ,

J(z)K(w)∼ 1

(z − w)2
, (4.3)

where α, β = 1, ..., n. From here we can easily deduce the corresponding algebra already
displayed in (2.35). The anti-holomorphic currents satisfy a similar set of OPEs 1 and the
total affine symmetry of the model is ĤL2+2n × ĤR2+2n.

A few clarifications are in order. First of all the zero modes of the left and right currents
only realize a (4n + 3)-dimensional subgroup of the whole isometry group. The left and
right central elements 2 K and K̄ are identified and generate translations in v; P +

α and
P−α together with their right counterparts generate the 4n magnetic translations; J + J̄
generates translations in u and J − J̄ a simultaneous rotation in all the n transverse planes.

1As usual we will distinguish the right objets by putting a bar on them.
2Notice that we use the same letter for both a (spin s) current W (z) and the corresponding charge

W ≡ W0 =
H

dz
2πi

zs−1W (z). In order to avoid any confusion we try always to emphasize the two-dimensional
nature of the world-sheet fields by showing their explicit z dependence.
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In the following we will refer to the subgroup of the isometry group that is not generated
by the zero modes of the currents as GI . For the supersymmetric H2+2n WZW models the
existence of enhanced symmetry points for particular choices of the parameters µi should
be related to the existence of supernumerary Killing spinors, as discussed in [46].

The position of the index α = 1, ..., n carried by the P ± generators is meant to empha-
size that at the point where the generic U(1)n part of the isometry group is enhanced to
U(n) = SU(n)I ×U(1)J−J̄ they transform respectively in the fundamental and in the anti-
fundamental representation of SU(n)I . The left and right current modes satisfy the same
commutation relations with the generators of the SU(n)I symmetry of the background.

Let us discuss some particular cases. When n = 1 we have the original NW model
and all the background isometries are realized by the zero-modes of the currents. When
n = 2 there is an additional U(1)I symmetry which extends to SU(2)I for µ1 = µ2. In this
paper we will describe in detail only the six-dimensional Hpp-wave, because of its relation
to the BMN limit of the AdS3/CFT2 correspondence. Higher-dimensional Hpp-waves also
arise as Penrose limits of interesting backgrounds: the H8 WZW model is for instance
the Penrose limit of a non-standard brane intersection whose near horizon geometry is
AdS3×S3×S3×S1. However these models do not display any new features as far as the
spectrum and the computation of the correlation functions are concerned and they can be
analyzed in precisely the same way as the H6 WZW model. When we discuss the Wakimoto
representation for the H6 WZW model, the following change of variables

yα = eiµαu/2wα , ȳα = e−iµαu/2w̄α , (4.4)

which yields a metric with a U(2) invariant form

ds2 = −2dudv +
i

4
du

2∑

α=1

µα(w
αdw̄α − w̄αdwα) +

2∑

i=1

dwαdw̄α , (4.5)

will prove useful.

As it is well known, the background (4.1), (4.2) with n = 2 and µ1 = µ2 arises from
the Penrose limit of AdS3×S3, the near horizon geometry of an F1-NS5 bound state. The
general metric with µ1 6= µ2 can also be obtained as a Penrose limit but starting with
different curvatures for AdS3 and S3. In global coordinates the metric can be written as in
(2.8)

ds26 = R2
1 [−(cosh ρ)2dt2 +dρ2 +(sinhρ)2dϕ2

1]+R2
2 [(cos θ)2dψ2 +dθ2 +(sin θ)2dϕ2

2] , (4.6)

where (t, ρ, ϕ1) parameterize the three dimensional anti-de Sitter space with curvature ra-
dius R1 and (θ, ψ, ϕ2) parameterize S3 with curvature radius R2. In the Penrose limit we
focus on a null geodesic of a particle moving along the axis of AdS3 (ρ → 0) and spinning
around the equator of the three sphere (θ→ 0). We then change variables according to

t =
µ1u

2
+

v

µ1R2
1

, ψ =
µ2u

2
− v

µ2R2
2

, ρ =
r1
R1

, θ =
r2
R2

, (4.7)

and take the limit sending R1, R2 →∞ while keeping µ2
1R

2
1 = µ2

2R
2
2.

From the world-sheet point of view, the Penrose limit of AdS3 ×S3 amounts to a contrac-
tion of the current algebra of the underlying ŜL(2,R)× ŜU (2) WZW model. The ŜL(2,R)
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current algebra at level k1 is given by

K+(z)K−(w)∼ k1

(z − w)2
− 2K3(w)

z − w ,

K3(z)K±(w)∼±K
±(w)

z − w ,

K3(z)K3(w)∼− k1

2(z − w)2
. (4.8)

Similarly the ŜU(2) current algebra at level k2 is

J+(z)J−(w)∼ k2

(z − w)2
+

2J3(w)

z − w ,

J3(z)J±(w)∼±J
±(w)

z −w ,

J3(z)J3(w)∼ k2

2(z − w)2
. (4.9)

The contraction [47] to the Ĥ6 algebra defined in (4.3) is performed by first introducing
the new currents

P±
1 =

√
2

k1
K± , P±

2 =

√
2

k2
J± ,

J =−i(µ1K
3 + µ2J

3) , K = −i
(
K3

µ1k1
− J3

µ2k2

)
, (4.10)

and then by taking the limit k1, k2 →∞ with µ2
1k1 = µ2

2k2.

In view of possible applications of our analysis to the superstring, and in order to be
able to consider flat space or a torus with cint = 20 as a consistent choice for the internal
manifold M of the bosonic string before the Penrose limit is taken, one should choose
k1 − 2 = k2 + 2 = k so that the central charge is c = 6.

4.2 Spectrum of the model

Our aim in this section is to determine the spectrum of the string in the Hpp-wave
with H6 Heisenberg symmetry. As in the H4 case, in addition to ‘standard’ highest-weight
representations, new modified highest-weight (MHW) representations should be included.
In the H4 case as well as in H6 with SU(2)I symmetry, such MHW representations are
actually spectral flowed representations. However, in the general H6 µ1 6= µ2 case, we have
the novel phenomenon that spectral flow cannot generate the MHW representations.

The MHW representations are difficult to handle in the current algebra formalism.
Fortunately they are easy to analyze in the quasi-free field representation [48, 5] where
their unitarity and their interactions are straightforward.

The representation theory of the extended Heisenberg algebras, such as H6, is very
similar to the H4 case [48, 5]. The H6 commutation relations are

[P+
α , P

−β ] = −2iµαδ
β
αK , [J, P+

α ] = −iµαP+
α , [J, P−α] = iµaP

−α . (4.11)
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As explained in the previous paragraph this algebra generically admits an additional
U(1)I generator I3 that satisfies

[I3, P+
α ] = −i(σ3)α

βP+
β , [I3, P−α] = i(σ3,t)αβP

−β . (4.12)

When µ1 = µ2 ≡ µ the U(1)I symmetry is enhanced to SU(2)I

[Ia, P+
α ] = −i(σa) β

α P+
β , [Ia, P−α] = i(σa,t)αβP

−β , a = 1, 2, 3 . (4.13)

For H6 there are two Casimir operators: the central element K and the combination

C = 2JK +
1

2

2∑

α=1

(P+
α P

−α + P−αP+
α ) . (4.14)

There are three types of unitary representations:

1) Lowest-weight representations LWR V +
p,̂, where p > 0. They are constructed starting

from a state |p, ̂〉 which satisfies P+
α |p, ̂〉 = 0, K|p, ̂〉 = ip|p, ̂〉 and J |p, ̂〉 = i̂|p, ̂〉. The

spectrum of J is given by {̂ + µ1n1 + µ2n2}, n1, n2 ∈ N and the value of the Casimir is
C = −2p̂+ (µ1 + µ2)p .

2) Highest-weight representations HWR V −
p,̂, where p > 0. They are constructed starting

from a state |p, ̂〉 which satisfies P−α|p, ̂〉 = 0, K|p, ̂〉 = −ip|p, ̂〉 and J |p, ̂〉 = i̂|p, ̂〉.
The spectrum of J is given by {̂− µ1n1 − µ2n2}, n1, n2 ∈ N and the value of the Casimir
is C = 2p̂+ (µ1 + µ2)p. The representation V −

p,−̂ is conjugate to V +
p,̂.

3) Continuous representations V 0
s1,s2,̂

with p = 0. These representations are character-

ized by K|s1, s2, ̂〉 = 0, J |s1, s2, ̂〉 = i̂|s1, s2, ̂〉 and P±
α |s1, s2, ̂〉 6= 0. The spectrum of J

is then given by {̂ + µ1n1 + µ2n2}, with n1, n2 ∈ Z and |̂| ≤ µ
2 where µ = min(µ1, µ2).

In this case we have two other Casimirs besides K: C1 = P+
1 P

−1 and C2 = P+
2 P

−2. Their
values are Cα = s2α, with sα ≥ 0 and α = 1, 2. The one dimensional representation can be
considered as a particular continuous representation, where the charges sα and ̂ are zero.

The ground states of all these representations are assumed to be invariant under the
U(1)I (SU(2)I ) symmetry. This follows from comparison with the spectrum of the scalar
Laplacian in the gravitational wave background, described below.

Since we are dealing with infinite dimensional representations, it is very convenient to
introduce charge variables in order to keep track of the various components of a given
representation in a compact form. We introduce two doublets of charge variables xα and
xα, α = 1, 2. The action of the H6 generators and of the additional generator I3 on the V +

p,̂

representations is given by

P+
α =
√

2µαpxα , P−α =
√

2∂α , K = ip ,

J = i (̂+ µαxα∂
α) , I3 = ixα(σ3,t)αβ∂

β . (4.15)

Similarly for the V −
p,̂ representations we have

P+
α =
√

2∂α , P−α =
√

2µαpx
α , K = −ip ,

J = i (̂− µαxα∂α) , I3 = −ixα(σ3)α
β∂β . (4.16)
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Finally for the V 0
s1,s2,̂

representations we have

P+
α = sαxα , P−α = sαx

α , J = i (̂+ µαxα∂
α) , I3 = ixα(σ3,t)αβ∂

β , (4.17)

with the constraints x1x1 = x2x2 = 1, i.e. xα = eiφα . Alternative representations of the
generators are possible. In particular, acting on V 0

s,̂, it may prove convenient to introduce
charge variables ξα such that

∑
α ξαξ

α = 1. The ξα are related to the xα in (4.17) by
ξα = sα

s xα where s2 = s21 + s22.

We can easily organize the spectrum of the D’Alembertian in the plane wave background
in representations of HL6 ×HR6 . Using radial coordinates in the two transverse planes the
covariant scalar D’Alembertian reads

∇2 = −2∂u∂v +

2∑

α=1

(
∂2
rα +

1

r2α
∂2
ϕα

+
1

rα
∂rα +

µ2
α

4
r2α∂

2
v

)
, (4.18)

and its scalar eigenfunctions may be taken to be of the form

fp+,p−(u, v, rα, ϕα) = eip
+v+ip−ug(rα, ϕα) . (4.19)

For p+ 6= 0, g(rα, ϕα) is given by the product of wave-functions for two harmonic oscillators
in two dimensions with frequencies ωα = |p+|µα/2

glα,mα(rα, ϕα) =

(
lα!

2π(lα + |mα|)!

) 1

2

eimαϕαe−
ξα
2 ξ

|mα|
2

α L
|mα|
lα

(ξα) , (4.20)

with ξα = µαp+r2α
2 and lα ∈ N, mα ∈ Z. The resulting eigenvalue is

Λp+ 6=0 = 2p+p− −
2∑

α=1

µα
∣∣p+
∣∣ (2lα + |mα|+ 1) . (4.21)

and by comparison with the value of the Casimir on the HL
6 ×HR6 representations we can

identify

p =
∣∣p+
∣∣ , ̂ = p− −

2∑

α=1

µα(2lα + |mα|) , mα = nα − n̄α , lα = Max(nα, n̄α) .

(4.22)
For p+ = 0 the g(rα, ϕα) can be taken to be Bessel functions and they give the decomposition
of a plane wave whose radial momentum in the two transverse planes is s2

α, α = 1, 2.

The representations of the affine Heisenberg algebra Ĥ6 that will be relevant for the study
of string theory in the six-dimensional Hpp-wave are the highest-weight representations with
a unitary base and some new representations with a modified highest-weight condition that
we will introduce below and that in the case µ1 = µ2 coincide with the spectral flowed
representations.

The OPEs in (4.3) correspond to the following commutation relations for the ĤL6 left-
moving current modes

[P+
αn, P

−β
m ] = 2nδβα δn+m − 2iµαδ

β
αKn+m , [Jn,Km] = nδn+m,0 ,

[Jn, P
+
αm] = −iµαP+

αn+m , [Jn, P
−α
m ] = iµαP

−α
n+m . (4.23)
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There are three types of highest-weight representations. Affine representations based on
V ±
p,̂ representations of the horizontal algebra, with conformal dimension

h = ∓p̂+
µ1p

2
(1− µ1p) +

µ2p

2
(1− µ2p) , (4.24)

and affine representations based on V 0
s1,s2,̂

representations, with conformal dimension

h =
s21
2

+
s22
2

=
s2

2
. (4.25)

In the current algebra formalism we can introduce a doublet of charge variables and
regroup the infinite number of fields that appear in a given representation of ĤL6 in a single
field

Φ+
p,̂(z;xα) =

∞∑

n1,n2=0

2∏

α=1

(xα
√
µαp)

nα

√
nα!

R+
p,̂;n1,n2

(z) , p > 0 , (4.26)

Φ−
p,̂(z;x

α) =

∞∑

n1,n2=0

2∏

α=1

(xα
√
µαp)

nα

√
nα!

R−
p,̂;n1,n2

(z) , p > 0 , (4.27)

Φ0
s1,s2,̂(z;xα) =

∞∑

n1,n2=−∞

2∏

α=1

(xα)nαR0
s1,s2,̂;n1,n2

(z) , s1, s2 ≥ 0 . (4.28)

Highest-weight representations of the current algebra lead to a string spectrum free from
negative norm states only if they satisfy the constraint

Max(µ1p, µ2p) < 1 . (4.29)

When µ1 = µ2 = µ new representations should be considered that result from spectral
flow of the original representations [19]. Spectral flowed representations are highest-weight
representations of an isomorphic algebra whose modes are related to the original ones by

P̃+
α,n =P+

α,n−w , P̃−α
n = P−α

n+w , J̃n = Jn ,

K̃n =Kn − iwδn,0 , L̃n = Ln − iwJn . (4.30)

The long strings in this case can move freely in the two transverse planes and correspond
to the spectral flowed type 0 representations, exactly as for the H4 NW model [5].

In the general case µ1 6= µ2 a similar interpretation is not possible. However instead
of introducing new representations as spectral flowed representations we can still define
them through a modified highest-weight condition. Such Modified Highest-Weight (MHW)
representations are a more general concept compared to spectral flowed representations, as
the analysis for µ1 6= µ2 indicates.

In order to understand which kind of representations are needed for the description of
states with p outside the range (4.29), it is useful to resort to a free field realization of
the Ĥ2+2n algebras, first introduced for the original NW model in [48]. This representa-
tion provides an interesting relation between primary vertex operators and twist fields in
orbifold models. For Ĥ6 we introduce a pair of free bosons u(z), v(z) with 〈v(z)u(w)〉 =
log (z − w) and two complex bosons yα(z) = ξα(z)+ iηα(z) and ỹα(z) = ξα(z)− iηα(z) with

〈yα(z)ỹβ(w)〉 = −2δβα log (z − w). The currents

J(z) = ∂v(z) , K(z) = ∂u(z) ,

P+
α (z) = ie−iµαu(z)∂yα(z) , P−α(z) = ieiµαu(z)∂ỹα(z) , (4.31)
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satisfy the Ĥ6 OPEs (4.3). The ground state of a V ±
p,̂ representation is given by the primary

field
R±
p,̂;0(z) = ei[̂u(z)±pv(z)]σ∓µ1p(z)σ

∓
µ2p(z) . (4.32)

The σ∓µp(z) are twist fields, characterized by the following OPEs

∂y(z)σ−µp(w)∼ (z − w)−µp τ−µp(w) , ∂ỹ(z)σ−µp(w) ∼ (z − w)−1+µp σ−(1)
µp (w) ,

∂y(z)σ+
µp(w)∼ (z − w)−1+µp σ+(1)

µp (w) , ∂ỹ(z)σ+
µp(w) ∼ (z − w)−µp τ+

µp(w) , (4.33)

where τ±µp(z) and σ
±(1)
µp (z) are excited twist fields. The ground state of a V 0

s1,s2,̂
represen-

tation is determined by the primary field

R0
s1,s2,̂;0(z) = ei̂u(z)R0

s1(z)R
0
s2(z) , (4.34)

where

R0
sα

(z) =
1

2π

∫ 2π

0
dθαe

isα
2 (yα(z)e−iθα+ỹα(z)eiθα) . (4.35)

are essentially free vertex operators.

In analogy with Ĥ4 we define for arbitrary µp > 0

R±
p,̂;0(z) = ei[̂u(z)±pv(z)]σ∓{µ1p}(z)σ

∓
{µ2p}(z) , {µ1p} 6= 0 , {µ2p} 6= 0 ,

R±
p,̂,s1;0

(z) = ei[̂u(z)±pv(z)]R0
s1(z)σ

∓
{µ2p}(z) , {µ1p} = 0 , {µ2p} 6= 0 , (4.36)

R±
p,̂,s2;0

(z) = ei[̂u(z)±pv(z)]σ∓{µ1p}(z)R
0
s2(z) , {µ1p} 6= 0 , {µ2p} = 0 ,

where [µp] and {µp} are the integer and fractional part of µp respectively. Quantization of
the model in the light-cone gauge shows that the resulting string spectrum is unitary. From
the current algebra point of view the states that do not satisfy the bound (4.29) belong to
new representations which satisfy a modified highest-weight condition and are defined as
follows. When K0|p, ̂〉 = iµp|p, ̂〉 with {µαp} 6= 0, α = 1, 2, the affine representations we
are interested in are defined by

P+
α, n|p, ̂〉= 0 , n ≥ −[µαp] , P−α

n |p, ̂〉 = 0 , n ≥ 1 + [µαp] ,

Jn|p, ̂〉= 0 , n ≥ 1 , Kn|p, ̂〉 = 0 , n ≥ 1 . (4.37)

Similarly when K0|p, ̂〉 = −iµp|p, ̂〉 with {µαp} 6= 0, α = 1, 2, the affine representations
we are interested in are defined by

P+
α, n|p, ̂〉= 0 , n ≥ 1 + [µαp] , P−α

n |p, ̂〉 = 0 , n ≥ −[µαp] ,

Jn|p, ̂〉= 0 , n ≥ 1 , Kn|p, ̂〉 = 0 , n ≥ 1 . (4.38)

Finally whenever either {µ1p} = 0 or {µ2p} = 0 we introduce new ground states |p, s1, ̂〉
and |p, s2, ̂〉 which satisfy the same conditions as in (4.37), (4.38) except that

P+
α, n|p, ̂, sα〉 = 0 , n ≥ −[µαp] , P−α

n |p, ̂, sα〉 = 0 , n ≥ [µαp] , (4.39)

for either α = 1 or α = 2.

These states correspond to strings that do not feel any more the confining potential
in one of the two transverse planes. The presence of these states in the spectrum can be
justified along similar lines as for AdS3 [19] or the H4 [6, 5] WZW models.
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4.3 Three-point functions

We now turn to compute the simplest interactions in the Hpp-wave, encoded in the
three-point functions of the scalar (tachyon) vertex operators identified in the previous sec-
tion. We will initially discuss the non symmetric µ1 6= µ2 case, where global Ward identities
can be used to completely fix the form of the correlators. We will then address the SU(2)I
symmetric case and argue that the requirement of non-chiral SU(2)I invariance is crucial
in getting a unique result. We will finally describe the derivation of the two and three-point
functions starting from the corresponding quantities in AdS3×S3.

In the last section we have seen that the primary fields of the ĤL6 × ĤR6 affine algebra
are of the form

Φa
ν(z, z̄;x, x̄) , (4.40)

where a = ±, 0 labels the type of representation and ν stands for the charges that are
necessary in order to completely specify the representation, i.e. ν = (p, ̂) for V ± and
ν = (s1, s2, ̂) for V 0. Finally x stands for the charge variables we introduced to keep track
of the states that form a given representation: x = xα for V +, x = xα for V − and x = xα
with xα = 1/xα (i.e. xα = eiφα) for V 0 . In the following we will leave the dependence
of the vertex operators on the anti-holomorphic variables z̄ and x̄ understood. The OPE
between the currents and the primary vertex operators can be written in a compact form

J A(z)Φa
ν(w;x) = DAa

Φa
ν(w;x)

z − w , (4.41)

where A labels the six Ĥ6 currents and the DAa are the differential operators that realize
the action of J A0 on a given representation (a, ν), according to (4.15), (4.16) and (4.17).

We fix the normalization of the operators in the V ±
p1,̂1

representations by choosing the
overall constants in their two-point functions, which are not determined by the world-sheet
or target space symmetries, to be such that

〈Φ+
p1,̂1

(z1, x1α)Φ−
p2,̂2

(z2, x
α
2 )〉 =

|∏2
α=1 e

−p1µαx1αxα
2 |2

|z12|4h
δ(p1 − p2)δ(̂1 + ̂2) , (4.42)

where we introduced the shorthand notation f(z, x)f(z̄, x̄) = |f(z, x)|2. Similarly, the other
non-trivial two-point functions are chosen to be

〈Φ0
s1α,̂1(z1, x1α)Φ0

s2α,̂2(z2, x2α)〉 = (2π)4
∏

α=1,2

δ(s1α − s2α)

s1α
δ(φ1α−φ2α−π)δ(φ̄1α−φ̄2α−π)δ(̂1+̂2) ,

(4.43)

where we set xiα = eiφiα .

Three-point functions, denoted by Gabc(zi, xi) or more simply by 〈abc〉 in the following,
are determined by conformal invariance on the world-sheet to be of the form

〈Φa
ν1(z1, x1)Φ

b
ν2(z2, x2)Φ

c
ν3(z3, x3)〉 =

Cabc(ν1, ν2, ν3)Kabc(x1, x2, x3)

|z12|2(h1+h2−h3)|z13|2(h2+h3−h2)|z23|2(h2+h3−h1)
,

(4.44)
where Cabc are the quantum structure constants of the CFT and the ‘kinematical’ coefficients
Kabc contain all the dependence on theHL

6 ×HR6 charge variables x and x̄. For generic values
of µ1 and µ2 (µ1

µ2
/∈ Q), the functionsKabc are completely fixed by the global Ward identities,
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as it was the case for the H4 WZW model [5]. When µ1 = µ2 we will have to impose
the additional requirement of SU(2)I invariance. An important piece of information for
understanding the structure of the three-point couplings is provided by the decomposition
of the tensor products between representations of the H6 horizontal algebra

V +
p1,̂1
⊗ V +

p2,̂2
=

∞∑

n1,n2=0

V +
p1+p2,̂1+̂2+µ1n1+µ2n2

,

V +
p1,̂1
⊗ V −

p2,̂2
=

∞∑

n1,n2=0

V +
p1+p2,̂1+̂2−µ1n1−µ2n2

, p1 > p2 ,

V +
p1,̂1
⊗ V −

p2,̂2
=

∞∑

n1,n2=0

V −
p1+p2,̂1+̂2+µ1n1+µ2n2

, p1 < p2 . (4.45)

Note that when µ1 = µ2 there are n + 1 terms with the same ̂ = ̂1 + ̂2 ± µn in (4.45).
The existence of this multiplicity is precisely what is necessary in order to obtain SU(2)I
invariant couplings, as we will explain in the following. We will also need

V +
p ,̂1
⊗ V −

p ,̂2
=

∫ ∞

0
s1ds1

∫ ∞

0
s2ds2V

0
s1,s2,̂1+̂2 ,

V +
p1,̂1
⊗ V 0

s1,s2,̂2 =

∞∑

n1,n2=−∞
V +
p1+p2,̂1+̂2+µ1n1+µ2n2

. (4.46)

Let us first discuss the generic case µ1 6= µ2, starting from 〈++−〉. According to (4.45)
this coupling is non-vanishing only when p1 +p2 = p3 and L = −(̂1 + ̂2 + ̂3) = µ1q1 +µ2q2,
with q1, q2 ∈ N. The global Ward identities can be unambiguously solved and the result is3

K++−(q1, q2) =

∣∣∣∣∣
2∏

α=1

e−µαxα
3
(p1x1α+p2x2α)(x2α − x1α)qα

∣∣∣∣∣

2

. (4.47)

The corresponding three-point couplings are

C++−(q1, q2) =

2∏

α=1

1

qα!

[
γ(µαp3)

γ(µαp1)γ(µαp2)

] 1

2
+qα

, (4.48)

where γ(x) = Γ(x)/Γ(1−x). All other couplings that only involve Φ± vertex operators follow
from (4.47), (4.48) by permutation of the indices and by using the fact that K++−C++− →
K−−+C−−+ up to the exchange xαi ↔ xiα and the inversion of the signs of all the ̂i.

Similarly the 〈+− 0〉 coupling can be non-zero only when p1 = p2 and L = −(̂1 + ̂2 +
̂3) =

∑
α µαqα, with qα ∈ Z. Global Ward identities yield

K+−0 =

∣∣∣∣∣
2∏

α=1

e
−µαp1x1αxα

2 −
sα√

2
(xα

2 x3α+x1αxα
3 )xqα3α

∣∣∣∣∣

2

. (4.49)

Moreover

C+−0(p, ̂1; p, ̂2; s1, s2, ̂3) =

2∏

α=1

e
s2α
2

[ψ(µαp)+ψ(1−µαp)−2ψ(1)] , (4.50)

3The standard δ-function for the Cartan conservation rules are always implied. We do not write them
explicitly.
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where ψ(x) = d lnΓ(x)
dx is the digamma function.

Finally the coupling between three Φ0 vertex operators simply reflects momentum con-
servation in the two transverse planes. Therefore it is non-zero only when

s23α = s21α + s22α + 2s1αs2α cos ξα , s3αe
iηα = −s1α − s2αeiξα , α = 1, 2 , (4.51)

where ξα = φ2α − φ1α and ηα = φ3α − φ1α. It can be written as

K000(φ1α, φ2α, φ3α) =

2∏

α=1

8πδ(ξα + ξ̄α)δ(ηα + η̄α)√
4s21αs

2
2α − (s23α − s21α − s22α)2

e−iqα(φ1α+φ̄1α) , (4.52)

where the angles ξα and ηα are fixed by the Eqs. (4.51) and again L =
∑

α µαqα with
qα ∈ Z.

As discussed in section 4.1, when µ1 = µ2 = µ the plane wave background displays an
additional SU(2)I symmetry. At the same time we see from (4.45) that there are also new
possible couplings and they precisely combine to give an SU(2)I invariant result. Let us
start again from three-point couplings containing only Φ± vertex operators. In this case
the SU(2)I invariant result is obtained after summing over all the couplings C++−(q1, q2)
with (q1 + q2) = L/µ = Q

K++−(Q)C++−(Q) =

Q∑

q1=0

K++−(q1, Q− q1)C++−(q1, Q− q1) (4.53)

=
1

Q!

[
γ(µp3)

γ(µp1)γ(µp2)

] 1

2
+Q ∣∣∣e−µ

P2
α=1 x

α
3 (p1x1α+p2x2α)

∣∣∣
2
||x2 − x1||2Q ,

where ||x||2 ≡∑α |xα|2 is indeed SU(2)I invariant.

Similarly the 〈+− 0〉 correlator becomes, after summing over q1 ∈ Z ,

K+−0(Q)C+−0(p, ̂1; p, ̂2; s1, s2, ̂3) =

2∏

α=1

∣∣∣e−µp1x1αxα
2 −

sα√
2
(xα

2 x3α+x1αxα
3 )
∣∣∣
2
( ||x3||2

2

)Q

e
s2
1
+s2

2
2

[ψ(µp)+ψ(1−µp)−2ψ(1)] , (4.54)

with the constraint x31x̄
1
3 = x32x̄

2
3. The 〈000〉 coupling gets similarly modified.

4.4 Four-point functions

Four-point correlation functions of worldsheet primary operators are computed in this
section by solving the relevant Knizhnik - Zamolodchikov (KZ) equations [49]. As we will
explain the resulting amplitudes are a simple generalization of the amplitudes of the H4

WZW model. In appendix A the same results will be reproduced by resorting to the
Wakimoto free-field representation. As in the previous section we find it convenient to first
discuss the non-symmetric (µ1 6= µ2) case and then pass to the symmetric (µ1 = µ2) case
where SU(2)I invariance is needed in order to completely fix the correlators.

In general, world-sheet conformal invariance and global Ward identities allow us to write

G(zi, z̄i, xi, x̄i) =

4∏

i<j

|zij |2(
h
3
−hi−hj)K(xi, x̄i)G(z, z̄, x, x̄) , (4.55)
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where h =
∑4

i=1 hi and the SL(2,C) invariant cross-ratios z, z̄ are defined according to

z =
z12z34
z13z24

, z̄ =
z̄12z̄34
z̄13z̄24

. (4.56)

The form of the function K and the expression of the Ĥ6 invariants x in terms of the xi
are fixed by the global symmetries but are different for different types of correlators and
therefore their explicit form will be given in the next sub-sections.

The four-point amplitudes are non trivial only when

L = −
4∑

i=1

̂i = µ1q1 + µ2q2 , (4.57)

for some integers qα. In the generic case for a given L these integers are uniquely fixed and
the Ward identities fix the form of the functions K up to a function of two H6 invariants4

x1 and x2. The KZ equations can be schematically written in the following form

∂zG(z, x1, x2) =

2∑

α=1

DH4,qα(z, xα)G(z, x1, x2) , (4.58)

where the DH4,qα are differential operators closely related to those that appear in the KZ

equations for the NW model based on the Ĥ4 affine algebra [5]. The equations are therefore
easily solved by setting

Gq1,q2(z, x1, x2) = GH4,q1(z, x1)GH4,q2(z, x2) . (4.59)

When µ1 = µ2, there are several integers that satisfy (4.57) and the SU(2)I invariant
correlators can be obtained by summing over all possible pairs (q1, q2) such that (q1 + q2) =
L/µ = Q

GQ(z, x1, x2) =

Q∑

q1=0

GH4,q1(z, x1)GH4,Q−q1(z, x2) . (4.60)

This is the same procedure we used for the three-point functions and reflects the existence
of new couplings between states in Ĥ6 representations at the enhanced symmetry point. In
the following we will describe the various types of four-point correlation functions.

4.4.1 〈+ + +−〉 correlators

Consider a correlator of the form

G+++− = 〈Φ+
p1,̂1

Φ+
p2,̂2

Φ+
p3,̂3

Φ−
p4,̂4
〉 , p1 + p2 + p3 = p4 . (4.61)

This is the simplest ‘extremal’ case. From the decomposition of the tensor products of H6

representations displayed in Eq. (4.45) it follows that the correlator vanishes for L < 0
while for L ≥ 0, L = µ1q1 + µ2q2 it decomposes into the sum of a finite number N =
(q1 + 1)(q2 + 1) of conformal blocks which correspond to the propagation in the s-channel

4Sometimes we will collectively denote the H6 invariants x1 and x2 by xα with α = 1, 2. They should
not be confused with the components of the charge variables xiα that carry an additional label associated
to the insertion point i = 1, ..., 4.
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of the representations Φ+
p1+p2,̂1+̂2+µ1n1+µ2n2

with n1 = 0, ..., q1 and n2 = 0, ..., q2. Global
H6 symmetry yields

K(q1, q2) =

2∏

α=1

∣∣∣e−µαxα
4 (p1x1α+p2x2α+p3x3α)

∣∣∣
2
|x3α − x1α|2qα , (4.62)

up to a function of the two invariants (α = 1, 2)

xα =
x2α − x1α

x3α − x1α
. (4.63)

We decompose the amplitude in a sum over the conformal blocks and write

Gq1,q2(z, z̄, xα, x̄α) ∼
q1∑

n1=0

q2∑

n2=0

Fn1,n2
(z, xα)F̄n1,n2

(z̄, x̄α) . (4.64)

We set Fn1,n2
= zκ12(1− z)κ14Fn1,n2

where

κ12 = h1 + h2 −
h

3
− ̂2p1 − ̂1p2 − (µ2

1 + µ2
2)p1p2 , (4.65)

κ14 = h1 + h4 −
h

3
− ̂4p1 + ̂1p4 + (µ2

1 + µ2
2)p1p4 − (µ1 + µ2)p1 + L(p2 + p3) ,

and where the Fn1,n2
satisfy the following KZ equation

∂zFn1,n2
(z, x1, x2) =

1

z

2∑

α=1

µα [−(p1xα + p2xα(1− xα))∂xα − qαp2xα]Fn1,n2
(z, x1, x2)

− 1

1− z
2∑

α=1

µα [(1− xα)(p2xα + p3)∂xα − qαp2(1− xα)]Fn1,n2
(z, x1, x2) . (4.66)

The explicit form of the conformal blocks is

Fn1,n2
(z, x1, x2) =

2∏

α=1

f(µα, z, xα)nαg(µα, z, xα)qα−nα , nα = 0, ..., qα . (4.67)

Here

f(µα, z, xα) =
µαp3

1− µα(p1 + p2)
z1−µα(p1+p2)ϕ0(µα)− xαz−µα(p1+p2)ϕ1(µα) ,

g(µα, z, xα) = γ0(µα)− xαp2

p1 + p2
γ1(µα) , (4.68)

and

ϕ0(µ) =F (1−µp1, 1 + µp3, 2−µ(p1 + p2), z) , γ0(µ) = F (µp2, µp4, µ(p1 + p2), z) (4.69)

ϕ1(µ) =F (1−µp1, µp3, 1−µ(p1 + p2), z) , γ1(µ) = F (1 + µp2, µp4, 1 + µ(p1 + p2), z) ,

where F (a, b, c, z) is the standard 1F2 hypergeometric function.

We can now reconstruct the four-point function as a monodromy invariant combination
of the conformal blocks and the result is

Gq1,q2(z, z̄, xα, x̄α) = |z|2κ12 |1−z|2κ14

2∏

α=1

√
τ(µα)

qα!

[
C12(µα)|f(µα, z, xα)|2 + C34(µα)|g(µα, z, xα)|2

]qα
,

(4.70)
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where τ(µ) = C12(µ)C34(µ) and

C12(µ) =
γ(µ(p1 + p2))

γ(µp1)γ(µp2)
, C34(µ) =

γ(µp4)

γ(µp3)γ(µ(p4 − p3))
. (4.71)

When µ1 = µ2 = µ we set Q = L/µ =
∑

α qα and find the SU(2)I invariant combination

KQ(xα, x̄
α)GQ(z, z̄, xα, x̄

α) =

Q∑

q1=0

K (q1, Q− q1)Gq1,Q−q1(z, z̄, xα, x̄
α)

= |z|2κ12 |1− z|2κ14
τ(µ)

Q!

2∏

α=1

∣∣∣e−µxα
4
(p1x1α+p2x2α+p3x3α)

∣∣∣
2
× (4.72)

×
[

2∑

α=1

(
C12(µ)|x13αf(µ, z, xα)|2 + C34(µ)|x13αg(µ, z, xα)|2

)
]Q

.

4.4.2 〈+−+−〉 correlators

The next class of correlators we want to discuss is of the following form

G+−+− = 〈Φ+
p1,̂1

Φ−
p2,̂2

Φ+
p3,̂3

Φ−
p4,̂4
〉 , p1 + p3 = p2 + p4 . (4.73)

Also in this case we write L = −∑i ̂i =
∑

α µαqα. The Ward identities give

K(q1, q2) =
2∏

α=1

∣∣∣e−µαp2x1αxα
2 −µαp3x3αxα

4 −µα(p1−p2)x1αxα
4 (x1α − x3α)qα

∣∣∣
2
, (4.74)

and the two invariants (no sum over α = 1, 2)

xα = (x1α − x3α)(xα2 − xα4 ) . (4.75)

We pass to the conformal blocks and set Fn1,n2
= zκ12(1− z)κ14Fn1,n2

where

κ12 = h1 + h2 −
h

3
+ (µ2

1 + µ2
2)p1p2 − ̂2p1 + ̂1p2 − (µ1 + µ2)p2 ,

κ14 = h1 + h4 −
h

3
+ (µ2

1 + µ2
2)p1p4 − ̂4p1 + ̂1p4 − (µ1 + µ2)p4 . (4.76)

The functions Fn1,n2
solve the following KZ equation

z(1− z)∂zFn1,n2
(z, x1, x2) =

2∑

α=1

[
xα∂

2
xα

+ (µα(p1 − p2)xα + 1 + qα) ∂xα

]
Fn1,n2

(z, x1, x2)

+ z
2∑

α=1

[
−µα(p1 + p3)xα∂xα + xαµ

2
αp2p3 − (1 + qα)µαp3

]
Fn1,n2

(z, x1, x2) . (4.77)

The conformal blocks are very similar to the conformal blocks for the H4 WZW model [5]

Fn1,n2
(z, x1, x2) =

2∏

α=1

νnα

eµαxαzp3−z(1−z)µα∂ ln f1(µα,z)

(f1(µα, z))1+qα
Lqαnα

[xαg(µα, z)]

(
f2(µα, z)

f1(µα, z)

)nα

,

(4.78)
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where nα ∈ N and Lqn is the n-th generalized Laguerre polynomial. We also introduced the
functions

f1(µ, z) =F (µp3, 1− µp1, 1− µp1 + µp2, z) ,

f2(µ, z) = zµ(p1−p2)F (µp4, 1− µp2, 1− µp2 + µp1, z) , (4.79)

and

g = −z(1− z)∂ ln (f2/f1) , νnα =
nα!

[µα(p1 − p2)]nα
. (4.80)

The four-point correlator can be written in a compact form using the combination

S(µα, z, z̄) = |f1(µα, z)|2 − ρ(µα)|f2(µα, z)|2 , ρ(µ) =
C̃12(µ)C̃34(µ)

µ2(p1 − p2)2
, (4.81)

where we defined

C̃12(µ) =
γ(µp1)

γ(µp2)γ(µ(p1 − p2))
, C̃34(µ) =

γ(µp4)

γ(µp3)γ(µ(p4 − p3))
. (4.82)

The four-point function reads

Gq1,q2(z, z̄, xα, x̄α) = |z|2κ12 |1− z|2κ14

2∏

α=1

τ(µα, qα)

S(µα, z)

∣∣∣eµαp3xαz−xαz(1−z)∂z lnS(µα,z)
∣∣∣
2
×

× |xαzbα(1− z)cα |−qαIqα(ζα) , (4.83)

where Iq(ζ) is a modified Bessel function and

ζα =
2
√
ρ(µa)|µα(p1 − p2)xαz

bα(1− z)cα |
S(µα, z)

, τ(µ, q) = C̃12(µ)
1−q
2 C̃34(µ)

1+q
2 . (4.84)

When µ1 = µ2 = µ the SU(2)I invariant correlator is given by the sum over q1 ∈ Z with
q2 = Q− q1 and Q = L/µ. The addition formula for Bessel functions leads to

KQ(xα, x̄
α)GQ(z, z̄, xα, x̄

α) =
τ(µ,Q)|z|2κ12−bQ|1− z|2κ14−cQ

S(µ, z)2
× (4.85)

×
2∏

α=1

∣∣∣e−µαp2x1αxα
2 −µαp3x3αxα

4 −µα(p1−p2)x1αxα
4

∣∣∣
2 ||x13||Q
||x24||Q

∣∣∣exz[µp3−(1−z)∂z lnS(µ,z)]
∣∣∣
2
IQ(ζ) ,

where

ζ =
2
√
C12C34|zb(1− z)c|

S(µ, z)
||x13||||x24|| , (4.86)

and x = x13 ·x24 =
∑

α(x1α−x3α)(xα2 −xα4 ) as well as ||xij ||2 =
∑

α |xiα−xjα|2 are SU(2)I
invariant.

The factorization properties of these correlators can be analyzed following [5]. In this
way one can check that the modified highest-weight representations introduced in section
?? actually appear in the intermediate channels.
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4.4.3 〈+ +− 0〉 correlators

Let us describe now a correlator of the form

G++−0 = 〈Φ+
p1,̂1

Φ+
p2,̂2

Φ−
p3,̂3

Φ0
s1,s2,̂4〉 , p1 + p2 = p3 . (4.87)

From the global symmetry constraints we derive

K(q1, q2) =

2∏

α=1

∣∣∣e−µαxα
3 (p1x1α+p2x2α)− sα√

2
xα
3 x4α− sα

2
√

2
(x1α+x2α)xα

4 xqα4α

∣∣∣
2
, (4.88)

up to a function of the two invariants (no sum over α = 1, 2)

xα = (x1α − x2α)x
α
4 . (4.89)

We rewrite the conformal blocks as

Fn1,n2
= zκ12(1− z)κ14Fn1,n2

, (4.90)

where

κ12 = h1 + h2 −
h

3
− p1̂2 − p2̂1 − (µ2

1 + µ2
2)p1p2 ,

κ14 = h1 + h4 −
h

3
− p1̂4 − Lp1 −

s21 + s22
4

. (4.91)

The KZ equation then reads

z(1− z)∂zFn1,n2
(z, x1, x2) = −

2∑

α=1

[
µαp3xα∂xα +

sα

2
√

2
µα(p1 − p2)xα

]
Fn1,n2

(z, x1, x2)

+ z

2∑

α=1

[(
µαp2xα −

sα√
2

)
∂xα −

sαµαp2

2
√

2
xα

]
Fn1,n2

(z, x1, x2) , (4.92)

and the solutions are

Fn1,n2
(z, xα) =

2∏

α=1

[sαϕ(µα, z) + xαω(µα, z)]
nαes

2
αη(µα ,z)+sαxαχ(µα,z) , (4.93)

with n1, n2 ≥ 0. We have introduced the following functions

ϕ(µ, z) =
z1−µp3

√
2(1− µp3)

F (1− µp1, 1− µp3, 2− µp3, z) ,

ω(µ, z) =−z−µp3(1− z)µp1 ,
χ(µ, z) =− 1

2
√

2
+

p2√
2p3

(1− z)F (1 + µp2, 1, 1 + µp3, z) ,

η(µ, z) =−zp2

2p3
3F2(1 + µp2, 1, 1; 1 + µp3, 2; z) −

1

4
ln (1− z) . (4.94)

The four-point function is then given by

Gq1,q2(z, z̄, xα, x̄α) = |z|2κ12 |1− z|2κ14

2∏

α=1

C
1/2
12 (µα)C+−0(µα, p3, sα)×

eC12(µα)|sαϕ(µα,z)+xαω(µα,z)|2
∣∣∣es2αη(µα ,z)+sαxαχ(µα,z)

∣∣∣
2
, (4.95)
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where

C12(µ) =
γ(µ(p1 + p2))

γ(µp1)γ(µp2)
, C+−0(µ, p3, s) = e

s2

2
[ψ(µp3)+ψ(1−µp3)−2ψ(1)] . (4.96)

The SU(2)I invariant correlator at the point µ1 = µ2 = µ is obtained after summing over
q1 ∈ Z with q1 + q2 = Q = L/µ.

4.4.4 〈+− 0 0〉 correlators

The last correlator we have to consider is of the form

〈Φ+
p,̂1

Φ−
p,̂2

Φ0
s3α,̂3Φ

0
s4α,̂4〉 , p1 = p2. (4.97)

The Ward identities give

K(q1, q2) =

2∏

α=1

∣∣∣∣e
−µαpx1αxα

2
−x1α√

2
(s3αxα

3
+s4αxα

4 )− xα
2√
2
(s3αx3α+s4αx4α)

xqα3α

∣∣∣∣
2

, (4.98)

up to a function of the two invariants (no sum over α = 1, 2) xα = xα3x4α.

We decompose this correlator around z = 1 setting u = 1−z, since the conformal blocks
turn out to be simpler and rewrite them as

Fn1,n2
= zκ12(1− z)κ14Fn1,n2

, (4.99)

where

κ14 = h1 + h4 −
h

3
− p̂4 −

2∑

α=1

s24α
2

, κ12 =
2∑

α=1

s23α + s24α
2

− h

3
. (4.100)

The KZ equation

∂uFn1,n2
(u, x1, x2) =−1

u

2∏

α=1

[
µαpxα∂xα +

s3αs4αxα
2

]
Fn1,n2

(u, x1, x2)

− 1

1− u
2∏

α=1

s3αs4α
2

(
xα +

1

xα

)
Fn1,n2

(u, x1, x2) , (4.101)

has the solutions

Fn1,n2
(u, xα) =

2∏

α=1

(xαu
−µαp)nαexαω(µα,u)+xαχ(µα,u) , (4.102)

with n1, n2 ∈ Z, xα = x3αx
α
4 = 1/xα and

ω(µ, u) = −s3s4
2µp

F (µp, 1, 1 + µp, u) , χ(µ, u) = − s3s4
2(1− µp) u F (1− µp, 1, 2 − µp, u) .

(4.103)

The four-point function is then given by

G(u, ū, xα, x̄α) = |u|2κ14 |1− u|2κ12

2∏

α=1

τ(µα)
∣∣∣exαω(µα ,u)+xαχ(µα,u)

∣∣∣
2 ∑

nα∈Z

∣∣xαu−µαp
∣∣2nα ,

(4.104)
where τ(µ) = C+−0(µ, p, s3)C+−0(µ, p, s4)

The SU(2)I invariant correlator at the point µ1 = µ2 = µ is obtained after summing
over q1 ∈ Z with q1 + q2 = Q = L/µ.
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4.5 String amplitudes

In this section we study the string amplitudes in the Hpp-wave. After combining the
results of the previous sections with the ones for the internal CFT and for the world-
sheet ghosts, one can easily extract irreducible vertices and decay rates in closed form.
The world-sheet integrals needed for the computation of four-point scattering amplitudes
of scalar (tachyon) vertex operators are not elementary and we only study the appropriate
singularities and interpret them in terms of OPE. As mentioned in section 4.1 the Hpp-wave
with Ĥ6 affine Heisenberg symmetry that emerges in the Penrose limit of AdS3×S3 should
be combined with extra degrees of freedom in order to represent a consistent background
for the bosonic string. Quite independently of the initial values of kSL(2,R) = k1 and
kSU(2) = k2, one needs to combine the resulting CFT that has c = 6 with some internal
CFT with c = 20. For definiteness let us suppose this internal CFT to correspond to flat
space R20 or to a torus T 20, but this choice is by no means crucial in the following.

In a covariant approach, such as the one followed throughout the paper, string states
correspond to BRS invariant vertex operators. As usual, negative norm states correspond
to unphysical ‘polarizations’. These are absent for the scalar (tachyon) vertex operators we
have constructed in section 4.2. Let us focus on the left-movers. Starting from a ‘standard’
HW (µαp < 1 for α = 1, 2) primary state |Ψ〉 of Ĥ6, the Virasoro constraints

Ln|Ψ〉 = 0 , for n > 0 , (4.105)

together with

L0|Ψ〉 = |Ψ〉 , (4.106)

project the Hilbert space on positive norm states. The mass-shell condition becomes

hap,̂ + hint +N = 1 , (4.107)

where N is the total level, hint is the contribution of the internal CFT, i.e. hint = |~p|2/2
and for p 6= 0

h±p,̂ = ∓p̂+
1

2

2∑

α=1

µαp(1− µαp) , (4.108)

while for p = 0,

h0
s,̂ =

1

2
s2 =

1

2

2∑

α=1

s2α . (4.109)

Outside the range µαp < 1 one has to consider spectral flowed representations when
µ1 = µ2 = µ or MHW representations when µ1 6= µ2, as discussed in section 4.2. Let us
concentrate for simplicity on µ1 = µ2 = µ with enhanced (non-chiral) SU(2)I invariance.
In this particular case, spectral flow yields states with

h±,wp,̂ = ∓
(
p+

w

µ

)
̂+ µp(1− µp)∓ wλ , (4.110)

where λ = n− − n+ is the total ‘helicity’ and, for p = 0,

h0,w
s,̂ =

w

µ
̂− 1

2
s2 − wλ . (4.111)
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The physics is similar to the case of the NW background [5]: whenever µp reaches an integer
value in string units, stringy effects become important and one has to resort to spectral flow
in order to make sense of the resulting state [24]. The string feels no confining potential and
is free to move along the ‘magnetized planes’. The analysis of AdS3 leads qualitatively to the
same conclusions [19]. Spectral flowed states can appear both in intermediate channels and
as external legs. Even though in this paper we have only considered correlation functions
with states in highest-weight representations with µ|p| < 1 as external legs, it is not difficult
to generalize our results to include spectral flowed external states along the lines of [5].

In order to compute covariant string amplitudes in the Hpp-wave one has to combine
the correlators computed in sections 4.3, 4.4 with the contributions of the internal CFT
and of the bosonic b, c ghosts. Contrary to the AdS case discussed in [19, 10], we do not
expect any non-trivial reflection coefficient in the Hpp-wave limit, so, given the well known
normalization problems in the definition of two-point amplitudes, let us start considering
three-point amplitudes. The irreducible three-point couplings can be directly extracted
from the tree-point correlation functions computed in section 4.3, where we also showed
that they agree with those resulting from the Penrose limit of AdS3× S3. Trading the
integrations over the insertion points for the volume of the SL(2,C) global isometry group
of the sphere and combining with the trilinear coupling TIJK(hi) in the internal CFT one
simply gets

AIJKabc (νi, xi;hi) = Kabc(νi, xi)Cabc(νi)TIJK(hi) , (4.112)

where ai = ±, 0, νi denote the relevant quantum numbers and the δ-functions associated
to the conservation laws are understood. Except for TIJK(hi) all the relevant pieces of
information can be found in section 4. For M = R20 or T 20, TIJK(hi) is essentially purely
kinematical, i.e. δ(

∑
i ~pi). Other consistent choices require a case by case analysis. Depend-

ing on the kinematics, amputated three-point amplitudes can be interpreted as decay or
absorption rates. In particular kinematical regimes (for the charge variables) they allow one
to compute mixings, to determine the 1/k ≈ gs corrections to the string spectrum in the
Hpp-wave and to address the problem of identifying ‘renormalized’ BMN operators [21, 22].

Additional insights can be gained from the study of four-point amplitudes. In particular
the structure of their singularities provides interesting information on the spectrum and
couplings of states that are kinematically allowed to flow in the intermediate channels.
Needless to say, one would have been forced to discover spectral flowed states or non highest-
weight states even if one had not introduced them in the external legs.

As usual, SL(2,C) invariance allows one to fix three of the insertion points and integrate
over the remaining one or rather their SL(2,C) invariant cross ratio denoted by z in previous
sections. Schematically

A4 =

∫
d2z|z|σ12−4/3|1− z|σ14−4/3K(xi, νi)GHpp(νi, xi, z)GM(hi, z) , (4.113)

where, for a flat M, σij = κij + ~pi · ~pj with κij defined in section 5.

At present, closed form expressions for A4 are not available. Still the OPE allows one to
extract interesting physical information. Let us consider, for a flatM, the two cases A+++−
and A+−+−. The relevant Ĥ6 four-point functions have been computed both solving the
KZ equation (in section 4.4) and by means of the Wakimoto representation (in section A).
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Expanding A+++− in the s-channel yields

A+++− =

∫
d2z|z|2(h12−2)

Q∑

q=0

C++
+(ν1, ν2; q)C+−

−(ν3, ν4;Q− q)

× |z|−2q(p1+p2)||x12||2q||x13||2(Q−q) + . . . (4.114)

where h12 = h+(p1 + p2, ̂1 + ̂2) + 1
2(~p1 + ~p2)

2. Studying the z integration near the origin
determines the presence of singularities whenever h12 − q(p1 + p2) = 1 − N that coincides
with the mass-shell condition for the intermediate state in the V + representation. The
amplitudes A+−+− are more interesting in that they feature the presence of logarithmic
singularities in the s-channel when p1 = p2 and p3 = p4, that is when the amplitudes
factorize in the continuum of type 0 representations parameterized by s. Using the explicit
form of the OPE coefficients already determined and integrating z in a small disk around
the origin yields

A+−+− ≈
∫
d2z|z|2h12−4−2QΨ(p1, p3)

Q+1
∣∣∣ep3xz+xΨ(p1,p3)

∣∣∣
2

||x13||2Q
∞∑

q=0

(||x13||||x24||)2q |Ψ(p1, p3)|2q

q!(Q+ q)!
,

(4.115)

where as usual Q = L/µ = −∑i ̂i/µ and Ψ(p1, p3) = [− log |z|2 − 4ψ(1) − ψ(p1) − ψ(1 −
p1)− ψ(p3)− ψ(1− p3)]

−1. For q = Q = 0 one has

A+−+− ≈
∫

|z|<ε

d|z|
|z|δ log |z| , (4.116)

where δ = 3 − 2h12 that converges for δ < 1 but diverges logarithmically as A+−+− ≈
log(h12 − 1) for δ ≈ 1. The logarithmic branch cut departing from h12 = 1 signals the
presence of a continuum mass spectrum of intermediate states with s = 0. Expanding in
the u-channel for p1 + p3 = w one can proceed roughly in the same way and identify the
continuum of intermediate states in spectral flowed type 0 representations. They signal the
presence of branch cuts for each string level.

4.6 Conclusions

In this chapter we have computed explicit two, three and four-point amplitudes for
tachyon vertex operators of bosonic strings in AdS3×S3. We used conformal techniques
early developed in [5]. The expressions for such correlators were found to agree with previous
results gotten in chapter 3, where instead of calculating the correlators using conformal skills
for the Ĥ6 model as done here we carried off the Penrose limit directly in the SU(2,R)k1 ×
SU(2)k2 solutions by rescaling the charge variables. In this sense we saw that (3.37), (3.52)
and (3.54) correspond respectively to (4.47), (4.45) and (4.48). In appendix A we give a
further prove of the correctness of these results by computing the same quantities from the
free-field realization.

The main novelties we have found here with respect to the Ĥ4 case are the existence
of non-chiral symmetries that correspond to background isometries not realized by the
zero-modes of the currents and the presence in the spectrum of new representations of the
current algebra that satisfy a modified highest-weight condition. The results are compactly
encoded in terms of auxiliary charge variables, which form doublets of the external SU(2)
symmetry. On the other hand, global Ward identities represent powerful constraints on the
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form of the correlation functions and in the next chapter we argue that higher dimensional
generalizations, even in the presence of R-R fluxes where no chiral splitting is expected to
take place, should follow the same pattern. We thus believe that some of the pathologies
of the BMN limit pointed out in the literature should rather be ascribed to an incomplete
knowledge of the scaling limit in the computation of the relevant amplitudes. Taking fully
into account the rearrangement, technically speaking a Saletan contraction, of the super-
conformal generators in a Ĥ2+2n Heisenberg algebra is imperative in this sense, see next
chapters.
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Chapter 5

Holography and the BMN Limit

Having explicit control on the detailed action of the Penrose limit on string theory in
AdS3×S3, we can employ the original AdS3/CFT2 recipe to provide a concrete formula
for the holographic correspondence in the Hpp-wave background. On the string side we
end up with S-matrix elements as anticipated earlier [6] and defined unambiguously in [5],
alternative approaches can be found in [50, 51, 52]. On the CFT2 side we can produce an
explicit formula for the Penrose limit of CFT correlators, to be compared with the string
theory S-matrix elements.

The key ingredients of such a holographic formula are:

• The original AdS3/CFT2 equality between “S-matrix” elements1 for vertex operators
in Minkowskian signature AdS3 and CFT correlation functions. Introducing two charge
variables ~x for SL(2,R) and as many ~y for SU(2), the “S-matrix elements” depend on both
~x and ~y. On the CFT side, ~x represent the positions of CFT operators Ol,l̃(~x, ~y), while ~y
are charge variables for the SU(2)L × SU(2)R R-symmetry. The conformal weight of the
operators Ol,l̃ is given by ∆ = l.

• The limiting formulae (3.28), (3.29) and (3.31) that describe the precise way opera-
tors of the original theory map to the operators of the pp-wave theory under the Penrose
contraction.

In the expressions below, ~zi are the coordinates of the vertex operators on the string
world-sheet, ~xi are the SL(2,R) charge variables, that represent the insertion points on
the boundary, and ~yi are the SU(2) R-charge variables. Ψ±

l (~z, ~x) are SL(2,R) primary
fields of string theory on AdS3 corresponding to the D±

l representations, Ωl̃ (~z, ~x) are SU(2)

primary fields of string theory on S3 corresponding to the SU(2) representation of spin l̃, and
Ψ0
l,α (~z, ~x) are the SL(2,R) primary fields of string theory corresponding to the continuous

representations of spin l. We neglect the internal CFT part of the operators as it is not
relevant for the structure of our formulae.

The left and right charge variables x, x̄ are related to the Cartesian ones used here by
x = x1+ix2, x̄ = x1−ix2. Thus, the transformation that inverts the chiral charge variables,
x→ 1/x, x̄ → 1/x̄ corresponds in the cartesian basis to ~x→ ~xc/|~x|2 where the superscript
stands for a parity transformation, (x1, x2)c = (x1,−x2). Since we consider lorentzian AdS3

also a Minkowski continuation of the charge variables is necessary, and this can readily be

1These are not the standard S-matrix elements, but their closest analogue in AdS. They can be defined
as the on-shell action evaluated on a solution of the (quantum) equations of motion with specified sources
on the boundary. For AdS3 such elements were conjectured by Maldacena and Ooguri [10].

69



70 Holography and the BMN Limit

implemented in the CFT correlators by x→ x+, x̄→ x−.

We will denote by Ol,l̃(~x, ~y) operators in the CFT that correspond to the appropriate
ones in AdS3

Ψl (~z, ~x) Ωl̃ (~z, ~y)⇔ Ol,l̃ (~x, ~y) . (5.1)

The AdS3 “S-matrix elements” are functions of the spins (l, l̃) as well as of the charge
variables ~xi, ~yi. They can be obtained by standard techniques by integrating the CFT
correlators appropriately over the positions of the vertex operators [10]. We will split the
AdS3 states into three families, distinguished by the type of H6 representation they will
asymptote to in the Penrose limit, namely Φ+, Φ− and Φ0. Thus the starting string “S-
matrix elements” are of the form

SAdS3

N±,0
(li, l̃i, ~xi, ~yi|lj , l̃j , ~xj, ~yj |lk, αk, l̃k, ~xk, ~yk) , (5.2)

where the index i = 1, ..., N+ labels the operators that asymptote to the Φ+
pi,̂i

operators,

the index j = 1, ..., N− labels the operators that asymptote to the Φ−
pj ,̂j

operators and the

index k = 1, ..., N0 labels the operators that asymptote to the Φ0
s1
k
,s2

k
,̂k

operators. As shown

in section 4.3, by taking the Penrose limit the AdS3×S3 S-matrix elements asymptote to
the pp-wave S-matrix elements we computed, we have

lim
k1→∞
k2→∞

N+∏

i=1

(
k1

|~xi|2
)2li ( k2

|~yi|2
)−2l̃i N0∏

k=1

|~xk|−2lk+2αk |~yk|2l̃k n(k1, lk) n(k2, l̃k) ×

× SAdS3

N±,0

(
li, l̃i,

√
k1~x

c
i

|~xi|2
,

√
k2~y

c
i

|~yi|2
∣∣∣∣lj, l̃j ,

~xj√
k1
,
~yj√
k2

∣∣∣∣ lk, αk, l̃k, ~xk, ~yk
)

= (5.3)

= CN+,N−,N0
(k1, k2) S

Hpp
N±,0

(pi, ̂i, ~xi, ~yi|pj, ̂j , ~xj , ~yj |s1,2k , ̂k, ~xk, ~yk) .

In the previous formula the limit on the spins is taken as explained in section 4.3. For the
first two classes of operators (labeled by i and j) we have

l =
k1

2
µ1p− a , l̃ =

k2

2
µ2p− b , (5.4)

with the subleading terms a and b related to ̂ in the limit as follows

̂i = −µ1ai + µ2bi , ̂j = µ1aj − µ2bj . (5.5)

For the third class of operators we set

l =
1

2
+ i

√
k1

2
s1 , l̃ =

√
k2

2
s2 , (5.6)

and in the limit ̂k is given by the fractional part of the SL(2,R) spin ̂k = −µ1αk. The
coefficients CN+,N−,N0

(k1, k2) are divergent in the limit k1,2 →∞ and can be computed in
principle directly. Using the results obtained in section 4.3 we have for instance

C2,1,0(k1, k2) =
√
k1k2 . (5.7)
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By employing the holographic recipe of AdS/CFT we can now write the relation between
pp-wave S-matrix elements and limits of CFT correlators2

SHppN±
(pi, ̂i, ~xi, ~yi|pj, ̂j , ~xj , ~yj) = lim

k1→∞
k2→∞

∏N+

i=1

(
k1

|~xi|2
)2li ( k2

|~yi|2
)−2l̃i

CN+,N−(k1, k2)
× (5.8)

×
〈
N+∏

i=1

Oli,l̃i
(√

k1
~xci
|~xi|2

,
√
k2

~yci
|~yi|2

) N−∏

j=1

Olj ,l̃j
(
~xj√
k1
,
~yj√
k2

)〉
.

The SL(2,R) spin is the conformal dimension of the CFT operator while the SU(2) spin
determines its transformation properties under the SU(2) R-symmetry. The level k in the
space-time CFT is interpreted as the number of NS5 branes used to build the background
[53].

The interpretation of the limit in the CFT is as follows. CFT operators that asymptote
to V − representations (with negative values of p+) have their position and charge variables
scaled to zero. Operators that asymptote to V + representations (with positive values of
p+) are instead placed at antipodal points and then their positions are scaled to infinity.
Finally all the spins are scaled as indicated and there is an overall renormalization. The
limit of the two-point functions of the CFT is particularly simple. In this case C1,1,0 = 1
and we obtain in the Penrose limit

S(p1, ̂1, ~x1, ~y1|p2, ̂2, ~x2, ~y2) = exp
[
−µ2p(y1y2 + ȳ1ȳ2)− µ1p(x

+
1 x

+
2 + x−1 x

−
2 )
]
, (5.9)

where ~yi are in Euclidean space and ~xi are in Minkowski space.

The same procedure can be applied to correlation functions of nearly BPS operators with
large R-charge inN = 4 SYM theory. While for AdS3×S3 one has two charge variables x and
x̄ and two, y and ȳ, for S3, in the case of AdS5×S5 one introduces four charge variables xµ

(coordinates on the boundary) for SO(4, 2) ≈ SU(2, 2) and as many ya for SO(6) ≈ SU(4).
The latter may be regarded as harmonic variables in the so-called harmonic superspace
approach and in our approach it plays a crucial role.

These charge variables helps to make sense of correlation functions in the BMN limit.
Indeed, if one sends N and J to infinity with J ≈

√
N , keeping the insertion points fixed,

even protected two-point functions of CPO’s OJ (x) = Tr(ZJ)(x), become meaningless

lim
J→∞

〈λJOJ(x1)λ̄JO†
J(x2)〉 ≡ lim

J→∞
λJ λ̄J

(x1 − x2)2J
,

this no matter how one rescales the local operators.

For a properly nearly BPS operator O∆,J(x1, y1), with ∆ − J 6= 0 and K =
√
N , one

can rescale x→ x̃/
√
K and y → ỹ/

√
K, invert and rescale the coordinate of the conjugate

2We ignore type V 0 operators since, although their definition and dynamics are clear on the string theory
side, they are less clear in the CFT side. They are related to the continuous spectrum and the associated
instabilities of the NS5/F1 system in analogy with the discussion in [54].
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operator O†
∆,J(x, y) in the opposite way and get

lim
J→∞

〈O∆,J(x1, y1)O†
∆,J(x2, y2)〉 =

= lim
K→∞

(
K

x̃2
2

)∆( ỹ2
2

K

)J
〈O∆,J

(
x̃1√
K
,
ỹ1√
K

)
O†

∆,J

(√
Kx̃2

x̃2
2

,

√
Kỹ2

ỹ2
2

)
〉 =

= exp{µp+(x̃1 · x̃2 ± ỹ1 · ỹ2}+ · · ·

where ∆ = 1
2µKp

+ + h and J = 1
2µKp

+ + j.

The essence of our proposal is that one has to ‘smear’ the original local operators in
order to get a sensible result. Moreover, the extra charge variables y, ȳ should rescale in
roughly the same way as the spacetime coordinates x, x̄. We expect a correct kinematical
structure, the one dictated by the Ward identity of the super-Heisenberg group, to result
from the Saletan contraction of the superconformal group PSU(2, 2|4). We would like also
to show that the procedure applies equally well to all correlation functions that are expected
to survive the BMN limit, including those whose structure is not fixed by symmetry such
as 4-point functions [4].

Despite the presence of tachyons and other limitations of the bosonic string, tree-level
amplitudes of states with large R-charge were shown to display the following pattern: con-
formal invariance → Saletan contraction → Heisenberg symmetry. We expect this pattern
to be reproduced by the superstring amplitudes.



Chapter 6

Outlook

Exploring superstring theory on AdS3×S3 gives an ideal platform to test the AdS/CFT
correspondence beyond the supergravity approximation and provides useful ideas and in-
sights into the very issue of holography [53, 55, 56, 57, 58]. Here we propose a method to
compute superstring amplitudes on AdS3×S3 supported by NS-NS three-form flux. We take
advantage of the formulation of the theory in terms of current algebras and their represen-
tations in terms of charge variables. The latter play the role of coordinates on a holographic
screen. We conclude that correlation functions are simply written in terms of differential
operators on the already known bosonic amplitudes. This chapter is based on [3].

The purpose is four-fold. First, we want to examine the pathologies displayed in the
bosonic case and see if they are cured or ameliorated by considering the superstring. Second,
we would like to set the discrepancy between bulk supergravity and boundary CFT results
within the full string framework. Third, it would be interesting to see how this procedure
can help to compute similar amplitudes in the case where a RR three-form flux is also
present. Fourth we would like to eventually take the Penrose limit of our amplitudes in
order to clarify the role of holography in the resulting plane-wave background.

6.1 Superstring Amplitudes AdS3×S3

6.1.1 Superstrings on AdS3

The bosonic string on AdS3 has been extensively studied in the not so recent past, see
chapter 3 and references therein.

Unitary irreducible representations of the horizontal algebra SL(2,R) are typically infi-
nite dimensional and come in three different kinds:

– Discrete representations with spin j > 0 and third component m = j + n and their
conjugate with m = −j − n.

– Continuous representations with spin j = − 1
2 +is and m = α±n with 0 ≤ α < 1(1/2).

– Complementary representations with spin 1/2 < j < 1/2 + |α − 1/2| and m = α ± n
with 0 ≤ α < 1(1/2).
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The trivial one-dimensional representation with j = 0 is the only unitary finite dimen-
sional representation. All other finite dimensional representations are non-unitary.

Denoting ŜL(2,R) primaries by Φh,n,n̄(z), the action of the currents is defined according
to

K±(z)Φh,n,n̄(w)∼ n∓ (h− 1)

z − w Φh,n±1,n̄(w) , (6.1)

K3(z)Φh,n,n̄(w)∼ n

z − w Φh,n,n̄(w) . (6.2)

The action of the Casimir operator K2 = 1
2(K+K− +K−K+)− (K3)2 fixes

K2(z)Φh,n,n̄(w) ∼ −h(h− 1)

z − w Φh,n,n̄(w) . (6.3)

Following [19, 56] we consider only scalar primary operators with h = h̄. The very consis-
tency of the classical theory imposes this condition on the dimension of the primaries.

In order to compactly encode the infinite components of an irreducible representation
it is convenient to introduce a complex variable x and its conjugate x̄, that may viewed as
complex coordinates on the two-dimensional boundary of AdS3. In the x-basis, the bosonic
primaries of ŜL(2,R) read

Φh(x, x̄) =

∞∑

n,n̄=0

Φh,n,n̄x
n−hx̄n̄−h . (6.4)

Hence, in terms of the complex variables x and x̄ the primary operators written in the n
basis are no more than standard Laurent expansions coefficients of the field Φh(x, x̄).

Inverting (6.4) one gets the following integral transform

Φh,n,n̄ =

∮
d2xxh−n−1x̄h−n̄−1Φh(x, x̄) , (6.5)

where for simplicity we have dropped all the 2πi factors.

We now identify the action of the currents on the primaries with some operators defined
on the x space. Specifically, we can establish the relation

KA(z)Φh(w, w̄;x, x̄) ∼ DA
z −w Φh(w, w̄;x, x̄) , (6.6)

satisfied by the differential operators

D+(x) = ∂x , D3(x) = x∂x + h , D−(x) = x2∂x + 2hx . (6.7)

Similar formulas would appear for the right-moving part.

From the correspondence we expect the SL(2,R) current algebra of the worldsheet to
have its counterpart in the boundary CFT, this means, in the (x, x̄) space. The authors of
[56] proposed that any observable, and in particular the currents, can be expressed in terms
of the charge variables x according to

KA(z, x) = exK
+

0 KA(z)e−xK
+

0 . (6.8)
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With this definition, the current K(z;x) involving both the worldsheet and boundary vari-
ables is

K(z;x) = 2xK3(z)−K−(z)− x2K+(z) . (6.9)

Their is also a right part contribution we are leaving aside for simplicity.

In terms of this bi-field, the ŜL(2,R) algebra can compactly be written as

K(z;x1)K(w;x2) ∼ k
(x1 − x2)

2

(z − w)2
− 1

z − w [(x1 − x2)
2∂x2

+ 2(x1 − x2)]K(w;x2) , (6.10)

while primary operators ca be shown to satisfy

K(z;x1)Φh(w;x2) ∼ −
1

z − w [(x1 − x2)
2∂x2

− 2h(x1 − x2)]Φh(w;x2) . (6.11)

The Sugawara stress tensor can also be expressed in the x-basis

T (z) =
1

(k − 2)
ηAB : KAKB :=

1

(k − 2)
[K+K− −K3K3]

=
1

4(k − 2)

[
2K(x)∂2

xK(x)− (∂xK(x))2
]
. (6.12)

using η+− = 1/2 and η33 = −1. Notice that in this formula any x dependence drops since
T (z) is a singlet.

Superstring theory on AdS3 introduces three fermionic fields ψA which transform in the
adjoint presentation of SL(2,R) and have OPEs given by

ψA(z)ψB(w) ∼ k ηAB

2 (z − w)
, A,B = ±, 3 (6.13)

where the metric elements are η+− = 2, η33 = −1 .

The fermions also modify the currents of the model, adding to the the bosonic currents
already introduced a fermionic contribution KA

F = − i
k ε

A
BCψ

BψC . This generates an affine
algebra for the total current

KA
T (z)KB

T (w) ∼ (k + 2) ηAB

2 (z − w2)
+ i εABC

KC
T (w)

z − w , (6.14)

where we can see that the introduction of the fermions have shifted the level of the algebra
from k to k + 2. The unitary bound on h is also modified to 1/2 < h < (k + 1)/2.

In complete analogy with the bosonic currents, we introduce a fermionic field that
depends also on the charge variables

ψ(z;x) = 2xψ3(z)− ψ−(z)− x2ψ+(z) , (6.15)

with OPE

ψ(z;x1)ψ(w;x2) ∼
k(x1 − x2)

2

z − w . (6.16)
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In addition to the fact that using the x dependent field we can keep track of information
of the boundary theory, this also simplifies the computations notably since we are working
with scalars fields.

The total stress tensor in terms of the charge variables is given by

T (z) =
1

k
ηAB : KAKB : − 1

2k
ηAB : ψA∂zψ

B :

=
1

4k

[
2K∂2

xK − (∂xK)2 − ∂xψ∂z∂xψ + ∂2
xψ∂zψ + ψ∂z∂

2
xψ
]
, (6.17)

while for the worldsheet supercurrent we get

G(z) =
2

k

[
ηABψ

AKB − i

3k
fABCψ

AψBψC
]

=
1

2k

[
−∂xψ∂xK + ∂2

xψK + ψ∂2
xK + 2ψ∂xψ∂

2
xψ
]
. (6.18)

6.1.2 The S3 Contribution

As we have done for SL(2,R), in this subsection we would like to give for the ŜU(2)
WZW model an interpretation in terms of charge variables that in some sense could allow us
to keep the information of the two-dimensional holographic theory. But, since S3 does not
have a boundary, the picture does not look so appealing as for the AdS3 case. Nevertheless,
in the next sections we will be able to compute some correlation functions and extract some
valuable information from that.

The action of the currents of ŜU(2) on the chiral primary operators is

J±(z)Ωj,m,m̄(w)∼ (j + 1)±m
z − w Ωj,m±1,m̄(w), (6.19)

J3(z)Ωj,m,m̄(w)∼ m

z − w Ωj,m,m̄(w) . (6.20)

With this definition, the action of the Casimir J 2 = 1
2 (J+J− + J−J+) + (J3)

2
gives

J2(z)Ωj,m,m̄(w) ∼ j(j + 1)

z − w Ωj,m,m̄(w) , (6.21)

where j is the SU(2) spin and m the component along an arbitrary direction.

Once again, it is convenient to introduce a complex variable y and its conjugate ȳ
( different from the previous x and x̄ ). In this space the bosonic primaries can be expressed
as

Ωj(y, ȳ) =

j∑

m,m̄=−j
Ωj,m,m̄y

j−mȳj−m̄ . (6.22)

Inverting this relation, one gets back

Ωj,m,m̄ =

∮
d2y ym−j−1ȳm̄−j−1Ωj(y, ȳ) . (6.23)
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In contrast to SL(2,R), the variables y and ȳ cannot be viewed as boundary coordinates.
They are rather ‘charge’ variables, only a very convenient book-keeping device for the
components of Ωj(z), which thanks to the compactness of SU(2) are finite in number1.

The action of the generators of the algebra on the primary fields can be realized in terms
of the following differential operators

T −(y) = ∂y , T 3(y) = −(y∂y − j) , T +(y) = −(y2∂y − 2jy) . (6.24)

It can be easily checked that these operators satisfy the analogous of (6.6) for SU(2).

As for AdS3, it is rewarding to define a single operator for the current that involves both
the worldsheet and boundary variables. The differential operators defined in (6.24) suggest
that the currents are given by

Ja(z, y) = eyJ
−
0 Ja(z)e−yJ

−
0 (6.25)

J(z; y) = 2yJ3(z)− J+(z) + y2J−(z). (6.26)

Notice that in spite of the similarity of the equations (6.8) and (6.25), the two are different.

In terms of these ‘bi-current’, the ŜU(2) affine algebra can be written in a more sugges-
tive manner

J(z; y1)J(w; y2) ∼ −k
(y1 + y2)

2

(z − w)2
+

1

z − w [(y1 − y2)
2∂y2 + 2(y1 − y2)]J(w; y2) . (6.27)

The primary operators can also be shown to satisfy

J(z; y1)Ωj′(w; y2) ∼
1

(z − w)
[(y1 − y2)

2∂y2 + 2(j′ − 1)(y1 − y2)]Ωj′(w; y2) . (6.28)

For the superstring on S3, one introduces three fermions χ’s ‘tangent‘ to S3. They
satisfythe OPE’s

χa(z)χb(w) ∼ k δab

2 (z − w)
, a, b = ±, 3 . (6.29)

The total current has a bosonic and a fermionic contribution J aT = Ja+JaF = Ja− i
k ε

a
bcχ

bχc,
with affine algebra

JaT (z)J bT (w) ∼ (k − 2) δab

2 (z − w2)
+ i εabc

JcT (w)

z −w . (6.30)

The total current JaT has two contributions: a level k bosonic current and a level −2
fermionic current.

It is straightforward to define fermionic fields that also depend on the ‘charge’ variable y

χ(z; y) = 2yχ3(z)− χ+(z) + y2χ−(z) , (6.31)

with OPE

χ(z; y1)χ(w; y2) ∼
k(y1 − y2)

2

z − w . (6.32)

1Alternatively, y and ȳ can be regarded as harmonic coordinates on the coset SU(2)/U(1). This is
geometrically an S2 and represents the basis of a Hopf fibration of S3 = SU(2). From this point of view,
the components are nothing but spherical harmonics.
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In the y-basis, the stress tensor is given by (see [56])

T (z) =
1

k
: JaJ b : −1

2
χa∂zχ

b

=− 1

4k

[
2 J∂2

yJ − (∂yJ)2 + ∂yχ∂z∂yχ− ∂2
yχ∂zχ− χ∂z∂2

yχ
]
, (6.33)

as expected it is y independent, being a group singlet.

Similarly, the worldsheet supercurrent is given by

G(z) =
2

k

[
χaJ b − i

3k
fabcχ

aχbχc
]

=− 1

2k

[
−∂yχ∂yJ + ∂2

yχJ + χ∂2
yJ −

1

k
χ∂yχ∂

2
yχ

]
. (6.34)

6.1.3 Vertex Operators

In the canonical (-1) picture for the superghost ϕ, NS physical vertex operators have
the following general form

Vphys(h, n, n̄; j,m, m̄; q;N) = e−ϕe−ϕ̄ Vh,n,n̄ V
′
j,m,m̄Wq . (6.35)

Here Vh,n,n̄ is a superconformal primary of AdS3, i.e., a primary of the total algebra (4.8),
and V ′

j,m,m̄ is a superconformal primary of S3 (4.9). On the other hand, Wq is a primary of

the internal N = 1 worldsheet superconformal algebra (with internal manifold T 4 or K3),
labelled by some set of quantum numbers collectively denoted by q.

The worldsheet scaling dimension is given by

∆(h, j, q,N) =
1

2
+N − h(h− 1)

k
+
j(j + 1)

k
+ ∆int(q) , (6.36)

with similar relations for the right moving part.

BRST invariance requires ∆ = ∆̄ = 1. Additional conditions arise from the OPE
of the vertex operator Vphys(h, n, n̄; j,m, m̄; q;N) with the total worldsheet supercurrent
G = GSL(2) +GSU(2) +Gint. In particular, the ‘dressing’ of the bosonic primary operators

Φ and Ω with the fermions ψ and χ, ŜL(2,R) and ŜU(2) respectively, is rather constrained
by the requirement of primarity w.r.t. the full combined affine current algebras (see below).

It can be shown that BRST physical (h = j+1) chiral primary operators have N = 1/2
and hint(q) = 0. With these conditions, the NS physical operators we can construct are of
two types. The first involves a dressing including AdS3 fermions2

Wh,n,n̄,m,m̄(z, z̄) =
[
ψ(z) ψ̄(z̄)Φh,n,n̄(z, z̄)

]
h−1,h−1

Ωj,m,m̄(z, z̄)

=Ph−1P̄h−1

[
ψ(z) ψ̄(z̄)Φh,n,n̄(z, z̄)

]
Ωj,m,m̄(z, z̄) , (6.37)

with

(ψΦh)h−1,n = ψ3Φh,n −
1

2
ψ+Φh,n−1 −

1

2
ψ−Φh,n+1 . (6.38)

2From now on we drop the ghost contribution.



6.1. Superstring Amplitudes AdS3×S3 79

Notice that we have included the right fermion in order to have a non-chiral vertex opera-
tor. A formula similar to (6.38) is valid for the right part.

The other primary giving rise to BRST physical states is

Xh,n,n̄,m,m̄(z, z̄) = Φh,n,n̄(z, z̄) [χ(z) χ̄(z̄)Ωj,m,m̄(z, z̄) ]j+1,j+1

= Φh,n,n̄(z, z̄)Pj+1P̄j+1 [χ(z)χ̄(z̄)Ωj,m,m̄(z, z̄) ] , (6.39)

that admits the following decomposition

(χΩj)j+1,m = (j + 1−m)(j + 1 +m)χ3 Ωj,m −
1

2
(j +m)(j + 1 +m)χ+ Ωj,m−1

+
1

2
(j −m)(j + 1−m)χ− Ωj,m+1 . (6.40)

Other possible vertex operators come combining left and right movers spinors with the
primaries as follows

Vh,n,n̄,m,m̄(z, z̄) = [ψ(z) χ̄(z̄)Φh,n,n̄(z, z̄) ]h−1,h [ψ(z)χ̄(z̄)Ωj,m,m̄(z, z̄) ]j,j+1 , (6.41)

Ṽh,n,n̄,m,m̄(z, z̄) =
[
ψ̄(z̄)χ(z)Φh,n,n̄(z, z̄)

]
h,h−1

[
ψ̄(z̄)χ(z)Ωj,m,m̄(z, z̄)

]
j+1,j

, (6.42)

where the first index indicates the left spin component, for SL(2,R) or SU(2), and the sec-
ond one the right part. It can be seen that these satisfy the physical conditions given above.

The spectrum of the Ramond sector can be analyze in a similar way. The chiral primaries
were given in [57]

Yh,n,n̄,m,m̄(z, z̄) =
[
S(z) S̄(z)Φh,n,n̄(z, z̄)Ωj,m,m̄(z, z̄)

]
h− 1

2
,j+ 1

2

, (6.43)

where now the first and second indices indicate the spins of SL(2,R) and SU(2) respec-
tively, both of them for the left part. We have omitted an easy deal contribution containing
H4 and H5, the two (free) scalar fields that bosonize the four (free) internal fermions λI . It
is of the form Σȧ = exp[ ȧ 1

2(H4 −H5) ](z), with ȧ = ±. Same for the right part.

The spin field S form an SO(5, 1) spinor that can be decomposed as

S → Sα · Sα′ , (6.44)

where Sα, α = ±1
2 , transforms in the spin ( 1

2 , 0) of SL(2,R) × SU(2) and Sα′ , α′ = ±1
2 ,

transforms in the spin (0, 1
2).

Using the projector notation, (6.1.3) can be written

Yj,n,n̄,m,m̄(z, z̄) =Ph− 1

2

P̄h− 1

2

[
Sα(z)S̄α(z̄)Φh,n,n̄(z, z̄)

]
×

×Pj+ 1

2

P̄j+ 1

2

[
Sα′(z)S̄α′(z̄)Ωj,m,m̄(z, z̄)

]
, (6.45)

plus an internal contribution Σȧ(z)Σḃ(z̄).
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The low energy limit of the spectrum of spacetime chiral primaries here displayed was
shown to be in agreement with the supergravity spectrum [33, 57].

In order to compute correlation functions in the bulk that could be related to the dual
correlators on the boundary CFT, we now write the vertex operators in terms of the charge
variables.

Neveu-Schwarz operators given in (6.37) and (6.39) look like

Wh(x, x̄, y, ȳ) = lim
x′ → x
x̄′ → x̄

Ph−1(x, x
′)P̄h−1(x̄, x̄

′)
[
ψ(x′) ψ̄(x̄′)Φh(x, x̄)

]
Ωj(y, ȳ) ,

Xh(x, x̄, y, ȳ) = lim
y′ → y
ȳ′ → ȳ

Φh(x, x̄)Pj+1(y, y
′)P̄j+1(ȳ, ȳ

′)
[
χ(y′) χ̄(ȳ′)Ωj(y, ȳ)

]
. (6.46)

The NS mixed operator we proposed in (6.41) in terms of the charge variables looks like

Vh(x, x̄, y, ȳ) = lim
x′→x

Ph−1(x, x
′)
[
ψ(x′) χ̄(ȳ)Φh(x, x̄)

]
×

× lim
ȳ′→ȳ

P̄j+1(ȳ, ȳ
′)
[
ψ(x) χ̄(ȳ′)Ωj(y, ȳ)

]
, (6.47)

Ṽh(x, x̄, y, ȳ) = lim
x̄′→x̄

P̄h−1(x̄, x̄
′)
[
ψ̄(x̄′)χ(y)Φh(x, x̄)

]
×

× lim
y′→y

Pj+1(y, y
′)
[
ψ̄(x̄)χ(y′)Ωj(y, ȳ)

]
. (6.48)

On the other hand, for the Ramond sector we have

Yh(x, x̄, y, x̄) = lim
x′ → x
x̄′ → x̄

Ph− 1

2

(x, x′) P̄h− 1

2

(x̄, x̄′)
[
Sα(x

′) S̄α(x̄
′)Φh(x, x̄)

]
×

× lim
y′ → y
ȳ′ → ȳ

Pj+ 1

2

(y, y′) P̄j+ 1

2

(ȳ, ȳ′) [Sα′(y′) S̄α′(ȳ′)Ωj(y, ȳ) ] . (6.49)

Before passing to the correlation functions we need first to establish the fundamental
relations of the spin fields in the dual basis.

6.1.4 Some Useful OPEs

Spin Field OPEs for AdS3

Spinors of AdS3 has the following OPEs with the fermionic field:

ψA(z)Sα(w) =

√
k

2
(τA)

α

β

Sβ(w)

(z − w)1/2
(6.50)

On the other hand, two spin fields have the OPE, which looks like:

Sα(z)Sβ(w) =
εαβ

(z − w)3/8
+ C

(ψ)
SS (z − w)1/8ηABψ

A(τB)
αβ
. (6.51)
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where,

τ1 = −iσ2, τ2 = iσ1, τ3 = σ3. (6.52)

In our notation, A = +,−, 3, and α = +( 1
2 ),−(1

2 ).

The spin fields in terms of charge variable can be written as:

S(x, z) = exK
+

0 S(z)−e−xK
+

0 = S−(z)− xS+(z). (6.53)

As we have already pointed put that the ψ(z;x) can be written as

ψ(z;x) = 2xψ3(z)− ψ−(z)− x2ψ+(z). (6.54)

So the OPEs takes the following form:

ψ(z;x1)S(w, x2) =

√
k
2

(z − w)1/2
[
((x1 + x2)

2 + 2x1x2)∂2 + (x2 − 2x1)
]
S(w;x2)

S(z;x1)S(w;x2) =
(x1 − x2)

(z − w)3/8
+

1

2

(
(1 + x1x2)∂2 + 2x1)ψ(w;x2)

)
(z − w)1/8.

Spin Field OPEs for S3

Spin fields on S3 has the following OPE with the fermionic fields:

χA(z)S̃α(w) =

√
k

2
(σA)

α
β S̃

β (6.55)

On the other hand, the two spin fields will have the following OPE among themselves:

S̃α(z)S̃β(w) =
εαβ

(z − w)3/8
+ C

(χ)

S̃S̃
(z − w)1/8δABχ

A(σB)
αβ
. (6.56)

where σi’s are the usual Pauli matrices. One can write the spin fields in terms of charge
variables, as we did in AdS3 case, and we get:

S̃(y; z) = eyJ
−
0 S̃+e−yJ

−
0 = S+(z) + yS−(z) (6.57)

The fermionic fields, in terms of charge variables, have already been defined, and they have
the following form:

χ(z; y) = 2yχ3(z)− χ+(z) + y2χ−(z). (6.58)

Now, the spin fields have the following OPE with the fermionic fields:

χ(y1; z)S̃(y2;w) =

√
k
2

(z −w)1/2

(
((y1 − y2)

2 − 2y1y2)∂2 + (2y1 − y2)
)
S̃(w; y2)

S̃α(y1; z)S̃
β(y2;w) =

(y1 − y2)

(z − w)3/8
+

1

2
(((1− y1y2)∂2 + 2y1)χ(x2;w)) (z − w)1/8
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6.2 Amplitudes

Maybe the most important feature of superstrings on AdS3 spaces is that the theory
can be described exactly, without relying on the low-energy supergravity approximation.
This motivates us to give in this section explicit expressions for two, three and four point
superstring amplitudes.

6.2.1 2-pt correlators

By ghost charge violation, the only non trivial correlators in the NS sector are

〈Wh1
(x1, y1)Wh2

(x2, y2) 〉 = 〈Ωj1(y1)Ωj2(y2) 〉 ×
× lim
x′
12
→x12

Ph1−1(x1, x
′
1)Ph2−1(x2, x

′
2) 〈ψ(x′1)ψ(x′2) 〉 〈Φh1

(x1)Φh2
(x2) 〉 , (6.59)

and

〈 Xh1
(x1, y1)Xh2

(x2, y2) 〉 = 〈Φh1
(x1)Φh2

(x2) 〉 ×
× lim
y′
12
→y12

Pj1+1(y1, y
′
1)Pj2+1(y2, y

′
2) 〈χ(y′1)χ(y′2) 〉 〈Ωj1(y1)Ωj2(y2) 〉 . (6.60)

Two point functions involving the mixed operator Vh and Ṽh are vanishing.

The above expressions already expose the power and elegance of the method: we are
reducing the computation of superstring amplitudes to the action of some differential op-
erators on the already known bosonic amplitudes3 combined with simple if not trivial free
fermionic amplitudes.

6.2.2 3-pt correlators

Examples of non-vanishing three-point functions are

〈W−
h1
W0
h2
W−
h3
〉 , 〈Y−1/2

h1
W−
h2
Y−1/2
h3
〉 . (6.61)

where we introduced an upper index in the vertex operators to keep track of the ghost num-
ber. We have analogous correlators for W− → X−. Other correlators involve the mixed
operators Vh and Ṽh.

We start with the 〈W−
h1
W0
h2
W−
h3
〉 correlator:

The picture 0 primary is obtained as usual by application of the picture changing oper-
ator on W−, i.e. W0 = Γ+1W− ≡ [QBRS , ξW−]. The only non-vanishing contribution
comes from the supercurrent term eϕG in Γ+1. This yields

W0(z;x, y) = lim
x′→x; x′′→x′,x

∮
dw

2πi
G(w, x′′)Pj−1(x, x

′)ψ(z, x′)Ψj(z, x)Ωj(z, y)

= lim
x′→x

Pj−1(x, x
′)

1

2k

[
2h ∂xψ(z, x)ψ(z, x′) + 4K(z, x) +

+2ψ(z, x)ψ(z, x′) ∂x −
4

k
ψ(z, x) ∂xψ(z, x)

]
Φh(z, x)Ωj(z, y) (6.62)

3See previous chapters for explicit expressions.
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Inserting this expression in the correlator one has

lim
x′
123

→x123

Pj1−1(x1, x
′
1)Pj2−1(x2, x

′
2)Pj3−1(x3, x

′
3)×

× 1

2k z12z23

{
− 16h

[
(x′1 − x′2)2(x2 − x′3) + (x′1 − x2)(x

′
2 − x′3)2

]
+

+4 (x′1 − x′3)2
[
(x2 − x3)

2 ∂x3
− 2h (x2 − x3)

]
+

+8
[
− (x′1 − x′2)2(x2 − x′3)2 + (x′1 − x2)

2(x′2 − x′3)2
]}
×

×〈Φj1(x1)Φj2(x2)Φj3(x3)〉 〈Ωj1(y1)Ωj2(y2)Ωj3(y3)〉 (6.63)

For simplicity we dropped the superghost contribution z−1
13 , that anyway cancels with the

ghost contribution z12z23z13. We can see that after contracting the free fermions, we just
need to let the projection differential operators act on the bosonic amplitudes.

The second correlator in (6.61) reads

〈 Yh1
(x1, y1)Wh2

(x2, y2)Yh3
(x3, y3) 〉 =

= lim
x′
123

→x123

Ph1− 1

2

Ph2−1 Ph3− 1

2

〈Sα(x′1)ψ(x′2)Sβ(x
′
3) 〉 〈Φh1

(x1)Φh2
(x2)Φh3

(x3) 〉

× lim
y′
13
→y13

Pj1+ 1

2

Pj3+ 1

2

〈Sα′(y′1)Sβ′(y′3) 〉 〈Ωj1(y1)Ωj2(y2)Ωj3(y3) 〉 (6.64)

where we have dropped the charge variables dependence of the projectors in order to
simplify the notation.

We get easily the amplitudes integrating over the z’s. As usual, the three points can be
fixed at 0,1, and ∞.

6.3 Discussion

We expect the twist operators σ±±
n to be in correspondence with the worldsheet vertex

operators Xh and Wh

σ++
n ←→ Xh(x, x̄, y, ȳ) , (6.65)

σ−−
n ←→ Wh(x, x̄, y, ȳ) , (6.66)

while the twists σ∓±
n should correspond to the mixed vertex operators

σ−+
n ←→ Vh(x, x̄, y, ȳ) , (6.67)

σ+−
n ←→ Ṽh(x, x̄, y, ȳ) . (6.68)

From these identifications, it would be interesting to check if the three point function of
the form 〈σ+

n σ
+
m (σ+

m+n−1)
† 〉 agree with the worldsheet result of 〈 X−X 0X− 〉. In the same

way the correlator 〈σ−
n σ

−
m (σ−m+n−1)

† 〉 should correspond to 〈W−W0W− 〉.
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Appendix A

Amplitudes à la Wakimoto

In this section we construct a free field representation for the Ĥ6 algebra starting from the
standard Wakimoto realization for ŜL(2,R) and ŜU(2) [59, 60] and contracting the currents
of both CFTs as indicated in section 2. Then we use this approach to compute two, three
and four-point correlators that only involve Φ± vertex operators and reproduce the results
obtained in the previous sections. This free field representation was introduced by Cheung,
Freidel and Savvidy [61] and used to evaluate correlation functions for Ĥ4.

A.1 Ĥ6 free field representation

The Wakimoto representation of the ŜL(2,R) current algebra requires a pair of commut-
ing ghost fields β1(z) and γ1(z) (the index 1 here is a label) with propagator 〈β1(z)γ

1(w)〉 =

1/(z − w), and a free boson φ(z) with 〈φ(z)φ(w)〉 = − log(z − w). The ŜL(2,R) currents
can then be written as

K+(z) = −β1 ,

K−(z) = −β1γ
1γ1 + α+γ

1∂φ− k1∂γ
1 , (A.1)

K3(z) = −β1γ
1 +

α+

2
∂φ ,

where α2
+ ≡ 2(k1− 2). Similarly for ŜU(2) we introduce a second pair of ghost fields β2(z)

and γ2(z) (here the index 2 is a label) with world-sheet propagator 〈β2(z)γ
2(w)〉 = 1/(z−w),

and a free boson ϕ(z) with 〈ϕ(z)ϕ(w)〉 = − log(z − w). The currents are then given by

J+(z) = −β2 ,

J−(z) = β2γ
2γ2 − iα−γ

2∂ϕ− k2∂γ
2 , (A.2)

J3(z) = −β2γ
2 +

iα−
2
∂ϕ ,

where α2
− ≡ 2(k2 + 2). In order to obtain a Wakimoto realization for the Ĥ6 algebra, we

rescale the two ghost systems

βα →
√
kα
2
βα , γα →

√
2

kα
γα , (A.3)

85
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and introduce the light-cone fields u and v

φ = −i
√
k1

2
µ1u−

i√
2k1

v

µ1
, ϕ =

√
k2

2
µ2u−

1√
2k2

v

µ2
, (A.4)

with u(z)v(w) ∼ ln(z − w). We then perform the current contraction as prescribed in
(4.10), with the result

P+
α (z) =−βα ,

P−α(z) =−2∂γα − 2iµα∂u γ
α , (A.5)

J(z) = i µαβαγ
α − ∂v +

µ2
1 + µ2

2

2
∂u ,

K(z) =−∂u.

The Ĥ6 stress-energy tensor follows from the limit of TSL(2,R)(z) + TSU(2)(z) and is given
by

T (z) =

2∑

α=1

: βα(z)∂γα(z) : + : ∂u(z) ∂v(z) : − i
2
(µ1 + µ2)∂

2u , (A.6)

where the last term appears when expressing the normal ordered product of the currents in
terms of the Wakimoto fields.

The Φ+
p,̂ primary vertex operators similarly follow from the SL(2,R) × SU(2) primary

vertex operators in the D−
l × Vl̃ representation

Vl,m;l̃,m̃ = (−γ1)−l−m(−γ2)l̃−m̃e
2l

α+
φ+ 2il̃

α−
ϕ
, (A.7)

where m is the eigenvalue of K3. Introducing the charge variables we can collect all the
components in a single field

Ψ−
l (z, x1)Ωl̃(z, x2) =

(
x1 + γ1

)−2l (
x2 − γ2

)2l̃
e

2l
α+

φ+ 2l̃
α−

iϕ
, (A.8)

that in the large k1, k2 limit becomes, using (3.28) and introducing a normalization factor
N(p, ̂)

Φ+
p,̂(z, xα) = N(p, ̂)e

−
√

2µαpxαγα−ipv−i
„
̂+

µ2
1
+µ2

2
2

p

«
u
. (A.9)

It is easy to verify that this field satisfies the correct OPEs with the Ĥ6 currents and
that its conformal dimension is h(p, ̂) = −p̂ + µ1p

2 (1 − µ1p) + µ2p
2 (1 − µ2p). If we choose

the normalization factor N(p, ̂) = (γ(µ1p)γ(µ2p))
−1/2 the vertex operators (A.9) precisely

reproduce the results obtained in the previous sections.

The Φ−
p,̂ vertex operators can be represented using an integral transform [61]

Φ−
p,̂(z, x

α) =

2∏

α=1

∫
d2xα γ(µap)

µ2
αp

2

2π2
e−µαpxαxα

Φ+
−p,̂+µ1+µ2

(z, xα) . (A.10)

The Wakimoto representation can also be derived from the σ-model action written in
the following form

S =

∫
d2z

2π

{
−∂u∂̄v +

2∑

α=1

[
βα∂̄γ

α + β̄α∂γ̄α − βαβ̄αe−iµαu
]
}

. (A.11)
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The non-chiral SU(2)I currents are

J a(z, z̄) = i γα(σa) β
α ββ , J̄ a(z, z̄) = −i β̄α(σa) β

α γ̄β . (A.12)

Using the equations of motion

βα = eiµαu∂γ̄α , ∂̄βα = 0 , (A.13)

one can verify that they satisfy ∂̄J a + ∂J̄ a = 0. Moreover their OPEs with the Wakimoto
free fields are

J a(z, z̄)γα(z, z̄)∼ i
γβ(σa) α

β

z − w , J̄ a(z, z̄)γ̄α(z, z̄) ∼ −i (σa) β
α γ̄β

z̄ − w̄ ,

J a(z, z̄)βα(z)∼−i (σa) β
α ββ

z − w , J̄ a(z, z̄)β̄α(z̄) ∼ i
β̄β(σa) α

β

z̄ − w̄ . (A.14)

A.2 The σ-model view point

Elements of the H6 Heisenberg group can be parametrized as [61]

g(u, v, γα, γ̄α) = e
γα
√

2
P+

α euJ−vKe
γ̄α√

2
P−α

. (A.15)

As usual the σ-model action can be written in terms of the Maurer-Cartan forms and reads

S =
1

2π

∫
d2σ

(
−∂u∂̄v +

2∑

α=1

eiµαu∂γ̄α∂̄γ
α

)
, (A.16)

where we have used 〈J,K〉 = 1 and 〈P+
α , P

−α〉 = 2. The metric and B field are then given
by

ds2 = −2dudv + 2
∑

α

eiµαudγαdγ̄α , (A.17)

B = −du ∧ dv +
∑

α

eiµαudγα ∧ dγ̄α . (A.18)

Two auxiliary fields βα and β̄α, defined by the OPE’s

βα(z)γβ(w) ∼ δβα
z − w . (A.19)

complete the ghost-like systems that appear in the Wakimoto representation.

With the help of βα and β̄α, the action can be written as

S =
1

2π

∫
d2z

(
−∂u∂̄v +

2∑

α=1

[β̄α∂γ̄α + βα∂̄γ
α − e−iµαuβαβ̄

α]

)
, (A.20)

that gives us back (A.16) upon using the equations of motion for βα and β̄α.
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In the Wakimoto representation, the currents can be written as [61]

P+
α (z) = −βα(z),

P−α(z) = −2(∂γα + i∂uγα)(z),
J(z) = −(∂v − i∑α µaβαγ

α)(z),
K(z) = −∂u(z) .

(A.21)

A simple identification of the H6 group parameters and the string coordinates, recast
the metric in the more standard form of (4.5). Generalizing the results of [61], it is easy to
show that string coordinates and Wakimoto fields are related as follows

u(z, z̄) = u(z) + ū(z̄),
v(z, z̄) = v(z) + v̄(z̄) + 2iγ̄Lα(z)γαR(z̄),

wα(z, z̄) = e−iµαu(z)[eiµαu(z)γαL(z) + γαR(z̄)],

w̄α(z, z̄) = e+iµαu(z)[γ̄Lα(z) + eiµαū(z̄)γ̄Rα(z̄)] .

(A.22)

A.3 Correlators

In order to evaluate the correlation functions in this free-field approach, we first integrate
over the zero modes of the Wakimoto fields using the invariant measure

∫
du0dv0

2∏

α=1

dγα0 dγ̄
α
0 e

iµαu0 . (A.23)

The presence of the interaction term

SI =

2∑

α=1

SIα = −
2∑

α=1

∫
d2w

2π
βα(w)β̄α(w̄)e−iµαu(w,w̄) , (A.24)

in the action (A.11) leads to the insertion in the free field correlators of the screening
operators

∞∑

q1,q2=0

2∏

α=1

1

qα!

(∫
d2wα
2π

βαβ̄
αe−iµαu

)qα
. (A.25)

Negative powers of the screening operator are needed in order to get sensible results for
n-point correlation functions other than the ‘extremal’ ones, that only involve one Φ−

pn,̂n

vertex operator and n− 1 Φ+
pi,̂i

vertex operators. This means that the sum over qα should
effectively runs over all integers, qα ∈ Z, not only the positive ones. An ‘extremal’ n-point
function can be written as

∞∑

q1,q2=0

2∏

α=1

1

qα!

〈
n−1∏

i=1

Φ+
pi,̂i

(zi, z̄i, xiα, x̄
α
i )Φ

+
−p4,̂4+µ1+µ2

(zn, z̄n, xnα, x̄
α
n)SqαIα

〉
(A.26)

= δ

(
n−1∑

i

pi − pn
) ∏

i<j 6=4

|zi − zj|−2pi(̂j+η pj)−2pj(̂i+η pi)
∏

i6=n
|zi − zn|2pn(̂i+η pi)−2pi(̂n−η pn+µ1+µ2)

∞∑

q1,q2=0

δ (L− µ1q1 − µ2q2 )

2∏

α=1

R(µα)
∣∣∣ e−µαxα

n

Pn−1

i=1
pixiα

∣∣∣
2 1

qα!

(
−2µ2

αIα,n
)qα

,
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where L = −∑n
i=1 ̂i, η =

µ2
1
+µ2

2

2 and

Iα,n =

∫
d2w

2π

n−1∏

i=1

|zi − w|−2µαpi |zn − w|2µαpn

∣∣∣∣∣
n−1∑

i=1

pixiα
w − zi

− pnxnα
w − zn

∣∣∣∣∣

2

, (A.27)

with the constraint pnxnα =
∑n−1

i=1 pixiα. Finally the constant R(µ), related to the normal-
ization of the operators in (A.9), is given by

R2(µ) =
γ(µpn)∏n−1
i=1 γ(µpi)

. (A.28)

In (A.26) the two δ-functions arise from the integration over u0 and v0. Similarly the
integration over the γ0α leads to four other δ-functions that constrain the integration over
the xnα variables and give the exponential term. The other terms in (A.26) follow from the
contraction of the free Wakimoto fields. Note that due to the second δ-function in (A.26)
the correlator is non vanishing only when L = µ1q1 + µ2q2 where qα ∈ N. Therefore the
same structure we found before using current algebra techniques appears: for the generic
background µ1 6= µ2 only one term from the double sum in (A.26) contributes while for the
SU(2)I invariant wave we have to add several terms. Let us consider some examples. We
will need the following integral [62]

∫
d2t|t− z|2(c−b−1)|t|2(b−1)|t− 1|−2a =

πγ(b)γ(c − b)
γ(c)

|z|2(c−1)|F (a, b, c; z)|2

− πγ(c)γ(1 + a− c)
(1− c)2γ(a) |F (1 + a− c, 1 + b− c, 2 − c; z)|2 . (A.29)

It follows from the general expression (A.26) that the two-point function 〈+−〉 coincides
with (4.42), since only the qα = 0 terms are non-vanishing. For the 〈+ + −〉 three-point
coupling the integral (A.27) gives

−2µ2
α Iα,3 = |z12|−2µαp3 |z23|2µαp1 |z13|2µαp2 γ(µαp3)

γ(µαp1)γ(µαp2)
|x1α − x2α|2 , (A.30)

and the result precisely agrees with (4.47), (4.48). When µ1 = µ2 the sum over qα recon-
structs the SU(2)I invariant coupling (4.53).

The four-point function 〈+ + +−〉 can be evaluated in a similar way. In this case

−2µ2
α Iα,4 = |z12|−2µαp4 |z14|−2µα(p1−p4)|z34|−2µα(p3−p4)|z24|2µα(p2−p4)

[
C12(µα) |x31αf(µα, xα, z)|2 + C34(µα) |x31αg(µα, xα, z)|2

]
, (A.31)

where the functions f and g are as defined in (4.68) and

C12(µ) =
γ(µ(p1 + p2))

γ(µp1)γ(µp2)
, C34(µ) =

γ(µp4)

γ(µp3)γ(µ(p4 − p3))
. (A.32)

We find again complete agreement with (4.70).

Finally the correlator 〈+−+−〉 can be obtained from the 〈+++−〉 correlator performing
the integral transform (A.10) of the vertex operator inserted in z2 [61], that is we send
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(p2, ̂2)→ (−p2, ̂2 + µ1 + µ2) and evaluate the x2α integral. We first rewrite

T ≡
∫
d2x2α

∣∣e−µαp2xα
24

∣∣2

Γ(qα + 1)

[
C12(µα) |x31αf(µα, xα, z)|2 + C34(µα) |x31αg(µα, xα, z)|2

]qα

=

∫
d2x2α

∣∣e−µαp2xα
24

∣∣2

Γ(qα + 1)

[
Ax2αx̄2α +Bx̄2α + B̄x2α +E

]qα , (A.33)

and then evaluate the integral using

∫
d2u

∣∣e−uut
∣∣2 = π(−1)−1−tγ(1 + t) , (A.34)

which is a limit of (A.29). The result is

T =
∣∣∣eµαp2xα

24
Bα
A

∣∣∣
2 |xα24|−qα

2A

(
BB̄ −EA
µ2
αp

2
2

) qα
2

Iqα

(
2µαp2 |xα24|

√
BB̄ −EA

A2

)
, (A.35)

where Iqα is a modified Bessel function of integer order and

µαp2x
α
24B

A
= −µαp2x1αx

α
24 + µαp3x13αx

α
24z − µαp2x13αx

α
24z(1− z)∂z lnS(µα, z, z̄) ,

A = −µ
2
αp

2
2

C̃12

|z|−2µα(p1−p2)S(µα, z, z̄) , 2µαp2 |xα24|
√
BB̄ −EA

A2
= ζα . (A.36)

The functions and constants that appear on the left-hand side of the previous equations
were defined in (4.79 − 4.82) and (4.84). Combining (A.35) with the rest of the 〈+ + +−〉
correlator we obtain the 〈+−+−〉 correlator and also in this case the result coincides with
(4.83) when µ1 6= µ2 and with (4.86) when µ1 = µ2.
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