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A Superclass of Edge-Path-Tree Graphs with Few Cliques

Nicola Apollonio∗ Massimiliano Caramia†

Abstract

Edge-Path-Tree graphs are intersection graphs of Edge-Path-Tree matrices that is matri-

ces whose columns are incidence vectors of edge-sets of paths in a given tree. Edge-Path-Tree

graphs have polynomially many cliques as proved in [4] and [7]. Therefore, the problem of

finding a clique of maximum weight in these graphs is solvable in strongly polynomial time.

In this paper we extend this result to a proper superclass of Edge-Path-Tree graphs. Each

graph in the class is defined as the intersection graph of a matrix with no submatrix in a set

W of seven small forbidden submatrices. By forbidding an eighth small matrix, our result

specializes to Edge-Path-Tree graphs.

Keywords: Edge-Path-Tree Graphs, Intersection graphs, Maximal Cliques, Graphic Ma-

troids.

1 Introduction

In this paper we do not distinguish between a matrix A ∈ {0, 1}M×N , M and N being finite, and

the finite family A = (Aj)j∈N of subsets of the finite ground set M . This is accomplished by

identifying column Aj of A with its support in M (and conversely). Recall that the support of a

vector u ∈ {0, 1}M is the set {i ∈ M | ui = 1}. Accordingly we use the terms column and member

as synonyms and we apply set theoretic operations to the columns of A. The intersection graph of

A is the graph L(A) with vertex set N in which two vertices h, j ∈ N are adjacent if Ah ∩Aj 6= ∅.

In their paper [4], Golumbic and Jamison introduced and studied Edge-Path-Tree (EPT) graphs

defined as intersection graphs of Edge-Path-Tree (EPT) matrices, namely, matrices whose columns

are the incidence vectors of edge-sets of paths in a given tree. One of the nicest features of EPT

graphs is that they generalize line graphs while retaining the property of possessing polynomially

many maximal cliques, i.e., O(n2), n being the order of the EPT graph, as showed by Monma and

Wey in [7]. This fact implies that in an EPT graph a maximum weight clique can be found in

strongly polynomial time by running a polynomial time delay algorithm that generates all maximal

cliques [10, 6].

In this paper we extend the above mentioned results in [4, 7] to a proper superclass of EPT

graphs: the class of intersection graphs of {0, 1} matrices whose submatrices are not isomorphic

to anyone in

W = {F7, F ∗
7 , 3PC, 3PC1, H3,3, Y3,3, 3PC2}
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Figure 1: The eight matrices used in the paper.

the matrices in W being defined in Figure 1 (see also the end of Section 2 for a discussion). The

extension is proper in the sense that by forbidding one more matrix, namely, the matrix Q6 in

Figure 1, the result specializes to EPT graphs and leads to a bound of 5q/3 for the number of the

maximal cliques in a graph with q edges. Our result relies on two powerful tools introduced in [4],

namely, the notions of strong Helly number (a strengthening of the Helly Property) and of 3-pie

(an extension of the notion of triangle in a graph), which we now discuss briefly.

Let A ∈ {0, 1}M×N be an EPT matrix with n := |N | columns underlain by a tree T with

m := |M | edges. The strong Helly number of A is the least h ∈ N such that for any k ≥ h pairwise

intersecting columns of A there are h among them whose intersection equals the intersection of

the k chosen columns. Golumbic and Jamison proved that A has strong Helly number three, that

is, said explicitly, for each K ⊆ N , |K| ≥ 3, such that the members of (Ak)k∈K are pairwise

intersecting, there are three indices k1, k2, k3 ∈ K such that

∩k∈KAk = Ak1 ∩ Ak2 ∩ Ak3 . (1)

For a maximal clique K in the EPT graph G = L(A), the members of (Ak)k∈K are pairwise

intersecting by definition of clique. Thus, either ∩k∈KAk 6= ∅ and the paths spanned by the

Ak’s go through the same edge of T , or ∩k∈KAk = Ak1 ∩ Ak2 ∩ Ak3 = ∅ for some three indices

k1, k2, k3 ∈ K and (as proved by Golumbic and Jamison) the corresponding paths all go through

the center of some claw (a K1,3) of T and each one contains exactly two of the three edges of the

claw (any such pair of edges is referred to as a slice in [4]). In the former case K is an edge-clique

while in the latter one K is a claw-clique. Monma and Wey proved in [7] that the number of edge-

cliques is O(n). Thus, the number of maximal cliques has the order of the number of claw-cliques

of G.

In view of (1) a natural upper bound for the latter number is the number of 3-elements subsets

of N times the maximum number t of claw-cliques containing a given 3-element set. It is clear

that each claw-clique is uniquely determined by any three paths containing, respectively, one of

the slices of the corresponding claw in T . Therefore, t = 1 and the number of claw-cliques is at

most
(

n
3

)

= O(n3). Monma and Wey improved this bound to O(n2).

By a result of [2] stating that a {0, 1}-matrix A has strong Helly number h ≥ 2 if and only if
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A does not contain the matrix Oh+1 = Jh+1 − Ih+1 as submatrix, (Jh and Ih, being the all ones

and the identity matrix of order h, respectively) it follows straightforwardly that {0, 1}-matrices

with no F ∗
7 submatrix have strong Helly number three (because for h ≥ 4, F ∗

7 is a submatrix of

Oh). Therefore, we can still speak of edge-clique and claw-cliques as in [4].

However, we need to understand what is meant by a claw-clique in the more general case of

W -free matrices, i.e., matrices with no submatrix in W . This is accomplished in Lemma 1 and

Lemma 2. In Theorem 1 and in Theorem 2 we prove that intersection graphs of W - and W ∪{Q6}-

free matrices have O(n3) and O(q) maximal cliques, respectively, where q is the number of edges

of the intersection graph. Corollary 1 specializes the result to EPT graphs. We stress here the

fact that the extension is possible because it is possible to give vertex-free proofs of the results

in [4, 7], namely, proofs that do not exploit arguments involving vertices of the underlying tree

realization of an EPT graph.

Notation and preliminaries All the matrices dealt with in this paper are binary matrices,

i.e., {0, 1}-matrices and throughout the rest of the paper rows and columns are indexed by the

finite sets M and N , respectively, with m = |M | and n = |N |. The transpose of a binary matrix

A is denoted by A∗. Accordingly, A∗ is identified with the family of the supports of the rows of A

(such a family is the so called dual family). Two matrices A and A′ are isomorphic if A′ = QAP

for some two permutation matrices Q and P . For I ⊆ M and J ⊆ N , AJ
I is the matrix obtained

from A by deleting the columns whose indices are not in J and the rows whose indices are not in

I. If I = M we set AJ
I = AJ . Analogously, if J = N we set AJ

I = AI . In particular A{j} and A{i}

are abridged into Aj and Ai, respectively. A submatrix (subfamily) of A is any matrix of the form

AJ
I for some I ⊆ M and J ⊆ N . We also put A(J) = ∩j∈JAj . Thus, for I ⊆ M , A∗(I) = ∩i∈IAi.

A binary matrix not containing any submatrix isomorphic to one of non-isomorphic matrices in

the set D = {H1, . . . ,Hr}, will be referred to both as an H1, . . . ,Hr-free and D-free matrix. We

also say that A has no H submatrix to mean that A has no submatrix isomorphic to H. A 3-

pie in A is a subset J = {j1, j2, j3} ⊆ N such that the three columns of AJ pairwise intersect

and A(J) = ∅. Each of Aj1 ∩ Aj2 , Aj2 ∩ Aj3 and Aj1 ∩ Aj3 is called a branch of the 3-pie. We

observe explicitly that the branches of a 3-pie are pairwise disjoint. For a 3-pie J ⊆ N in A let

S(J) = {t ∈ N | Aj ∩ At 6= ∅, j ∈ J}. Moreover, let

S0(J) = {t ∈ S(J) | At ∩
(

(Aj1 ∩ Aj2) ∪ (Aj2 ∩ Aj3) ∪ (Aj1 ∩ Aj3)
)

= ∅}

and

S2(J) = S(J) \ S0(J).

By Golumbic and Jamison’s argument if K is a claw-clique of the intersection graph of an EPT

matrix A, then the set {k1, k2, k3} in (1) is a 3-pie. Furthermore, for each j ∈ K \ {k1, k2, k3}, Aj

intersects exactly two branches of the pie. This fact is in general no longer true for intersection

graphs of W -free matrices: take for instance the matrix Q6 with columns left to right indexed by

0,1,2,3,4; Q6 is a W -free matrix (see the discussion preceding Corollary 1); moreover, J = {1, 2, 3}

is a 3-pie in Q6 and 0 ∈ S(J); however A0 ⊆ A1∆A2∆A3, where ∆ denotes symmetric difference.

This consideration justifies the introduction of the sets S0(J) and S2(J). Lemma 1 and Lemma

2, up to technicalities, show that the case of the Q6 is general for W -free matrices, that is, either

Aj intersects Ak1∆Ak2∆Ak3 or Aj behaves as it were a path going to the center of some claw in

a tree.
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2 Results

Lemma 1 and Lemma 2 below taken together describe the structure of the set S(J) for a 3-pie J in

a W -free matrix A. Such a structure is exploited to count the number of claw-cliques in Theorem

1 and in Theorem 2. Lemma 3 provides a bound on the number of edges cliques of intersection

graphs of the more general F ∗
7 -free matrices. Throughout the rest of the paper U(J) will denote

∪j∈JAj .

Lemma 1 Let J be a 3-pie in a W -free matrix A. Then t ∈ S2(J) if and only if At intersects

exactly two branches of J . Moreover, the members of AS2(J) are pairwise intersecting and S2(J) =

S2(L) for each 3-pie L in AS2(J).

Proof. Possibly after renumbering we may suppose that J = {1, 2, 3}. Let B1 = A1 ∩ A2,

B2 = A2 ∩ A3 and B3 = A1 ∩ A3 be the branches of J . For t ∈ S(J) let b(t) be the number of

branches intersected by At. By the definition of S0(J) and S2(J) if b(t) ≥ 1 then t ∈ S2(J). Thus,

to prove the first part of the lemma it suffices to show that b(t) = 2 for each t ∈ S2(J). For no

t ∈ S2(J), b(t) = 3 otherwise by picking i(j) ∈ At ∩Bj , j ∈ J and letting I = {i(1), i(2), i(3)} one

has that A
J∪{t}
I is isomorphic to F7 contradicting that A is W -free. For no t ∈ S2(J), b(t) = 1. For,

if At intersects B1, say, then At must intersect A3 because t ∈ S(J). Since At ∩B2 = At ∩B3 = ∅

(because b(t) = 1 for the sake of contradiction) it follows that At ∩ A3 ⊆ A3 \ (A1 ∪ A2). Pick

i(1) ∈ At∩B1 and let i(2) and i(3) be arbitrarily chosen in B2 and B3, respectively. Let i ∈ At∩A3

and let I = {i, i(1), i(2), i(3)}. Thus A
J∪{t}
I is isomorphic to 3PC contradicting that A is W -free.

We conclude that b(t) = 2 for each t ∈ S2(J) and the first part of lemma is thus established. The

second part is a straightforward consequence of the following claim.

Claim 1 For j = 1, 2, 3 there is β(j) ∈ Bj such that for each t ∈ S2(J) if At intersects Bj

then it contains β(j). Therefore, for each t ∈ S2(J) At contains exactly one of the three slices

{β(1), β(2)}, {β(1), β(3)} and {β(2), β(3)}.

Proof of (1). We prove the claim only for j = 1 as the other cases follow by symmetry. Suppose that

the claim is false. Hence there are s, t ∈ S2(J) and α(s), α(t) ∈ B1 such that As ∩ {α(s), α(t)} =

α(s) and At∩{α(s), α(t)} = α(t). By the first part of the lemma As and At both intersect exactly

one among B2 and B3. Let us distinguish two cases:

(a) As and At intersect the same branch and, without loss of generality, let such a branch be B2;

(b) As and At intersect different branches and, without loss of generality, let As intersect B2 and

At intersect B3.

In case (a), let γ(s) ∈ As ∩ B2 and γ(t) ∈ At ∩ B2 and notice that {α(s), α(t), γ(s), γ(t)} ⊆

A2. Necessarily γ(s) 6= γ(t), otherwise by letting I = {α(s), α(t), γ(s)} and L = {1, 2, s, t} one

has that AL
I is isomorphic to F7 contradicting that A is W -free. Thus, γ(s) 6= γ(t). If we let

I = {α(s), α(t), γ(s), γ(t)} and L = J ∪ {s, t} then AL
I is isomorphic to H3,3 again contradicting

that A is W -free. Hence, case (a) leads to a contradiction. In case (b) let γ(s) ∈ As ∩ B2,

γ(t) ∈ At ∩B3 and I = {α(s), α(t), γ(s), γ(t)}. Thus, AL
I where L = J ∪ {s, t}, is thus isomorphic

to Y3,3 contradicting once more that A is W -free. Hence, case (b) leads to a contradiction as well.

Consequently we must conclude that the claim is true and the lemma is thus completely proved.

2

Lemma 2 Let J be a 3-pie in a W -free matrix A. Then C := A
S0(J)
U(J) is a (possibly empty) chain,

that is the members of C are nested. If in addition A is Q6-free then S0(J) is empty.
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Proof. Possibly after renumbering we may suppose that J = {1, 2, 3}. Let β(1), β(2) and β(3)

be as in the Claim 1 of Lemma 1. We first show that C is laminar, namely each two columns of

C are either disjoint or nested. Suppose not. Hence, there are s, t ∈ S0(J) such that Cs ∩ Ct,

Cs \ Ct and Ct \ Cs are all nonempty. Since As and At intersect all members of the 3-pie and

both are subsets of A1∆A2∆A3 it follows that one of the following cases applies:

(a) there are i ∈ (Cs ∩ Ct) ∩ Aj , α(s) ∈ (Cs \ Ct) ∩ Ak and α(t) ∈ (Ct \ Cs) ∩ Ak, for j 6= k and

j, k ∈ J (without loss of generality j = 1 and k = 2). In this case let I = {i, α(s), α(t), β(1)}

and L = {1, 2, s, t};

(b) there are i ∈ (Cs∩Ct)∩Aj , α(s) ∈ (Cs\Ct)∩Ak and α(t) ∈ (Ct\Cs)∩Al, {j, k, l} = J (without

loss of generality j = 1 and k = 2 and l = 3). In this case let I = {i, α(s), α(t), β(2), β(3)}

and L = J ∪ {s, t}.

Since Cs ⊆ As and Ct ⊆ At it follows that in case (a) AL
I is isomorphic to a 3PC while in case

(b) it is isomorphic to 3PC1. In either cases we obtain a contradiction that proves that C is

laminar. Suppose now that C is nonempty but it is not a chain. Thus Cs ∩ Ct = ∅ for some

s, t ∈ S2(J). Pick α(s) and γ(s) in Cs ∩ A1 and Cs ∩ A2, respectively. Also pick α(t) and

γ(t) in Ct ∩ A1 and Ct ∩ A2, respectively. Observe that none of them belongs to A3. Thus,

by setting I = {α(s), α(t), β(2), β(3), γ(s), γ(t)} and L = J ∪ {s, t}, AL
I is isomorphic to 3PC2

contradicting that A is W -free. Finally if A is also Q6-free then S0(J) is empty, otherwise, by

letting I = {α(1), α(2), α(3), β(1), β(2), β(3)}, where α(j) ∈ Cs ∩ Aj and s ∈ S0(J), one has that

A
J∪{s}
I is isomorphic to Q6. 2

Let G = L(A) for some W -free matrix A. Following Golumbic and Jamison we say that the

maximal clique K of G is an edge-clique if A(K) 6= ∅; we say that K is claw-clique if A(K) = ∅.

Since F ∗
7 -free matrices (and hence W -free matrices) have strong Helly number 3, it follows that for

each claw-clique K of G there is a 3-pie J ⊆ K such that A(K) = A(J). We say that J represents

K.

Lemma 3 Let G be the intersection graph of some F ∗
7 -free matrix A and let G have q edges. Then

the number of edge-cliques of G is at most n1 + q, where n1 is the number of isolated vertices of

G.

Proof. Let K be an edge-clique of G = L(A). There is some i ∈ A(K). The matrix AK cannot

contain the matrix O3 = J3−I3 as submatrix (remark that O3 is the vertex edge incidence matrix

of a triangle). For, if AJ
I is isomorphic to O3 for some J ⊆ K and I ⊆ M , then i 6∈ I and AJ

I∪{i}

is isomorphic to F ∗
7 . Therefore, AK has strong Helly number 2 by the result in [2]. It follows

that if K is not a singleton then A(K) = As ∩ At for some s, t ∈ K. Moreover, it cannot happen

that A(K ′) = As ∩ At for some other edge-clique K ′, otherwise we should conclude K = K ′

contradicting maximality. Therefore, by picking s(K), t(K) ∈ K such that A(K) = As(K) ∩At(K)

for each non-singleton edge-clique K one defines an injection from the set of the non-singleton

edge-cliques into the set of edges of G and this proves the lemma. 2

Remark 1 Lemma 3 and its proof imply the following bound on the number of inclusionwise

maximal rows of F ∗
7 -free matrices: an F ∗

7 -free matrix with n columns has at most
(

n
2

)

inclusionwise

maximal rows.
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Remark 2 A binary matrix A is Helly if for any collection of pairwise intersecting columns there

is some row of A which intersects each of them in a nonzero entry. It is strong Helly if every

submatrix of A is strong Helly. Strong Helly matrices were characterized by Ryser (see [5]) and

Prisner [8]. Both results assert that A is strong Helly if and only if it is O3-free. After the result

in [2], strong Helly matrices are precisely those matrices that have strong Helly number 2. Hence,

strong Helly matrices are necessarily F ∗
7 -free. Prisner proved in [8] that if A is strong Helly then

L(A) has more edges than maximal cliques. Thus, Lemma 3 extends the result in [8].

Theorem 1 Let G be the intersection graph of some W -free matrix A and let G have n vertices

and q edges. Then the number of maximal cliques of G is at most q +
(

n
3

)

.

Proof. By Lemma 3, it suffices to show that G has at most
(

n
3

)

claw-cliques. To accomplish

this it suffices to prove that each 3-pie J in A represents at most one claw-clique. Observe that

if J represents K then K ⊆ S(J) and K = (K ∩ S2(J)) ∪ (K ∩ S0(J)) because S0(J) and S2(J)

partition S(J). Suppose, for the sake of contradiction, that J represents K and K ′. By the

maximality of K and K ′ we can find s ∈ K \K ′ and t ∈ K ′ \K such that As ∩At = ∅. By Lemma

1, the members of AS2(J) are pairwise intersecting . Thus s, t ∈ (K∆K ′) ∩ S0(J). It follows that

As ∩U(J) and At ∩U(J) are both members of A
S0(J)
U(J) and they are disjoint. Thus A

S0(J)
U(J) is not a

chain contradicting Lemma 2. We conclude that the number of claw-cliques is bounded as stated.

2

Theorem 2 Let G be the intersection graph of some W ∪{Q6}-free matrix A. Let G have q edges.

Then the number of maximal cliques of G is at most is at most 5q
3 .

Proof. By Lemma 3 it suffices to prove that the number of claw-cliques of G is at most 2q
3 . Let

us form a collection Π by picking for each claw-clique K of G a 3-pie which represents K (if there

are several the choice is arbitrary). Let π = |Π|. By the second part of Lemma 2, S0(J) = ∅ for

each J ∈ Π. Therefore, if J represents K then K ⊆ S(J) = S2(J). As K is maximal and S2(J)

is a clique (by Lemma 1), it follows that K = S2(J). Moreover, as each 3-pie J represents at

most one claw-clique (by the proof of Theorem 1), we conclude that the number of claw-cliques is

precisely π. A set {s, t} ⊆ N is called a good pair if it is a subset of some J ∈ Π. Let β be the

number of good pairs and let µ the maximum number of J ’s that contain a good pair. Since there

are three good pairs for each J ∈ Π it follows that 3π ≤ µβ. Now observe that if {s, t} is a good

pair then necessarily As ∩ At 6= ∅. Therefore, G contains an edge between s and t for each good

pair {s, t}. Hence, β ≤ q and 3π ≤ µq. Consequently, to complete the proof it suffices to show

that µ ≤ 2. This is accomplished next. Suppose that µ ≥ 3. Thus, there are j1, j2, j3 ∈ N such

that J1 = {s, t, j1}, J2 = {s, t, j2} and J3 = {s, t, j3} are in Π for some good pair {s, t}. Possibly

after renumbering, j1 = 1, j2 = 2 and j3 = 3. For j = 1, 2, 3, the definition of 3-pie implies

that Aj ∩ As ∩ At = ∅ and hence Aj ∩ (As ∪ At) ⊆ As∆At. Moreover, A1, A2, A3 are pairwise

disjoint. For, if A1 ∩ A2 6= ∅, say, then 2 ∈ S(J) = S2(J1). Since A2 ∩ As ∩ At = ∅ it follows

that A2 intersects the two branches A1 ∩ As and A1 ∩ At. Hence, by Lemma 1, J1 and J2 would

represent the same claw-clique, contradicting the definition of Π. We conclude that A1, A2, A3

are disjoint subsets of As∆At. Therefore, for j = 1, 2, 3, one can pick α(j) ∈ Aj ∩ (As \ At)

and γ(j) ∈ Aj ∩ (At \ As). But then, after setting I = {α(1), α(2), α(3), γ(1), γ(2), γ(3)} and

L = {1, 2, 3, s, t}, AL
I is isomorphic to 3PC2, contradicting that A is W -free. 2
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Relation to EPT graphs To show that Theorem 1 and Theorem 2 actually specialize to

EPT graphs we need a few elementary basic notions on binary matroids. Chapters 7 and 8 of

[1] and Chapters 20 and 21 of [9] contain all what we need here (the reader is referred also to

the textbooks cited therein). With every binary matrix A one can associate the binary matroid

M(A) generated by [Im, A]. Such a matroid is defined as the matroid whose circuits are the

minimal supports of the vectors in the nullspace of [Im, A], [Im, A] being a viewed as a matrix over

GF (2). Equivalently, M(A) is the matroid whose circuits are the minimal nonempty members in

{∆j∈JAj ∪ {j} | J ∈ 2N}. Two binary matrices are GF (2)-equivalent if one arises from the other

by a sequence of GF (2)-pivoting1. Any binary matrix A is GF (2)-equivalent to itself. GF (2)-

equivalent matrices generate the same binary matroid and, conversely, if M(A) = M(A′) then

A and A′ are GF (2)-equivalent. A minor in M(A) is a matroid of the form M(C) where C is

a submatrix of some matrix A′ which is GF (2)-equivalent to A. A regular matroid is a binary

matroid not containing M(F7) and M(F ∗
7 ) as minors – Tutte’s deep characterization of regular

matroids asserts that the binary matroid M is regular if and only if each A such that M = M(A)

is a regular matrix, namely, it can be turned into a totally unimodular matrix by changing the

sign to some of its entries [1, 9]. The matrices 3PC and 3PC1 are not regular [1]. Therefore, if

A is regular then A is {F7, F
∗
7 , 3PC, 3PC1}-free. A binary matroid is graphic if it is generated by

an EPT matrix and it is co-graphic if it generated by the transpose of an EPT matrix [3]. For a

graph G and a spanning forest T of G the EPT matrix generated by T is the EPT matrix whose

generic column is the edge-sets of the path C(e, T ) \ {e}, where for e ∈ E(G) \ E(T ), C(e, T )

is the unique (fundamental) circuit through e in the graph (V (G), E(T ) ∪ {e}). The graphic

matroid of G is denoted by M(G) and the co-graphic matroid of G is denoted by M∗(G). EPT

matrices are regular because they can be signed to become network matrices which are totally

unimodular [9] (this amounts to orient the edges of T ). Therefore graphic and co-graphic matroid

are regular (since being totally unimodular is preserved under transposition). The matrices H∗
3,3

and Y ∗
3,3 are two of the three non isomorphic EPT matrices that generate the graphic matroid of

the complete bipartite graph K3,3. They are respectively generated by the two non isomorphic

spanning tree H and Y of K3,3 whose degree sequences are (1, 1, 1, 1, 3, 3) and (1, 1, 1, 2, 2, 3),

respectively. Therefore, H3,3 and Y3,3 are GF (2)-equivalent matrices. Moreover, it is not hard to

see that 3PC2 is GF (2)-equivalent to a matrix containing H3,3 as submatrix. It follows that if A

generates a regular matroid with no M∗(K3,3) minor then A is W -free. By another deep result

of Tutte graphic matroids are precisely those regular matroids with no M∗(K3,3) and M∗(K5)

minors. The matrix Q6 is the incidence matrix of the collection formed by the edge sets of the

triangles of the K4. Hence, Q∗
6 is the EPT matrix of the K5 generated by the spanning tree

isomorphic to the star K1,4. Thus, M(Q6) = M∗(K5). Therefore, EPT matrices are W ∪ {Q6}-

free matrices. In view of the preceding discussion the following corollary is a straightforward

consequence of Theorem 1 and Theorem 2 and the result of Monma and Wey asserting that EPT

graphs have at most 2n edge-cliques [7].

Corollary 1 Let A be a binary matrix with n columns which generates a regular matroid with

no M∗(K3,3) minor. Then L(A) has O(n3) maximal cliques. If A is an EPT matrix then L(A)

1Recall that pivoting A over GF (2) on a nonzero entry (the pivot element) means replacing

A =

(

1 a

b D

)

by Ã =

(

1 a

b D + ba

)

where the rows and columns of A have been permutated so that the pivot element is a1,1 ([1], p. 69, [9], p. 280).
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has at most min{2n + 2q/3, 5q/3} maximal cliques, q being the number of edges of the EPT graph

L(A).

As a concluding remark let us justify the use of the symbol W for the set of forbidden sub-

matrices considered in this paper. The bipartite graph B(A) of a matrix A ∈ {0, 1}M×N is the

bipartite graph with color classes M and N where i ∈ M and j ∈ M are linked if ai,j = 1. The

graphs B(F7) and B(F ∗
7 ) are both isomorphic to a graph called odd wheel with three spokes. The

graph B(H3,3) is isomorphic to an even wheel with four spokes. Thus, by the discussion preceding

Corollary 1, for each H ∈ W , either B(H) is a wheel or H is GF (2)-equivalent to a matrix H ′

such that B(H ′) is either a wheel or contains a wheel as induced subgraph2. This justifies the use

of prefix W .
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