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Minimizing the Completion Time of a Project Under

Resource Constraints and Feeding Precedence Relations: a

Lagrangian Relaxation Based Lower Bound

Lucio Bianco
∗

Massimiliano Caramia
†

Abstract

In this paper we study an extension of the classical Resource-Constrained Project

Scheduling Problem (RCPSP) with minimum makespan objective by introducing a

further type of precedence constraints denoted as “Feeding Precedences” (FP). This

kind of problem happens in that production planning environment, like make-to-order

manufacturing, when the effort associated with the execution of an activity is not

univocally related to its duration percentage and the traditional finish-to-start prece-

dence constraints or the generalized precedence relations cannot completely represent

the overlapping among activities. In this context we need to introduce in the RCPSP

the FP constraints. For this problem we propose a new mathematical formulation

and define a lower bound based on a resource constraints Lagrangian relaxation. A

computational experimentation on randomly generated instances of sizes of up to 100

activities show a better performance of this lower bound with respect to others. More-

over, for the optimally solved instances, its value is very close to the optimal one.

Keywords: Feeding precedences, Generalized precedence relations, Lagrangian re-

laxation, Makespan, Production planning.

1 Introduction

Production planning is a relevant problem in industrial processes. It consists in defining

the quantities to produce for each product and the times at which production processes

associated to each product have to start. In doing this, the production planner has to take
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into account constraints related to the resource availability, the demand satisfaction, and

the temporal relations among activities.

Temporal constraints are used to regulate e.g. separations between the starting/finishing

time of a certain activity (process) and the starting/finishing time of a successor activity

(process). An easy situation is that offered by the Finish-to-Start relations with zero time

lag, i.e., those constraints in which it suffices to constraint the starting time of an activity

to be greater than or equal to the finishing time of an immediate predecessor activity.

More complex situations are those in which the decision maker has to model systems in

which overlapping among processes is allowed (construction industry). These latter situ-

ations ask for the more complex Generalized Precedence Relationships (GPRs), see, e.g.,

Elmaghraby and Kamburoski (1992), Bartush et al. (1988), De Reyck (1998), and Bianco

and Caramia (2007).

GPRs allow one to model minimum and maximum time-lags between a pair of activities

(see, e.g., Demeulemeester and Herroelen, 2002, Dorndorf, 2002, and Neumann et al.,

2002). A time lag is an amount of time that must elapse at least (minimum time-lag)

or at most (maximum time-lag) between the starting/finishing time of an activity and

the starting/finishing time of another activity. For the sake of completeness, we recall

that four types of GPRs can be distinguished: Start-to-Start (SS), Start-to-Finish (SF ),

Finish-to-Start (FS) and Finish-to-Finish (FF ).

A minimum time-lag (SSmin
ij (δ), SFmin

ij (δ), FSmin
ij (δ), FFmin

ij (δ)) specifies that activity

j can start (finish) only if its predecessor i has started (finished) at least δ time units

before.

Analogously, a maximum time-lag (SSmax
ij (δ), SFmax

ij (δ), FSmax
ij (δ), FFmax

ij (δ)) imposes

that activity j should be started (finished) at most δ time slots beyond the starting (fin-

ishing) time of activity i.

In order to better understand GPRs we report some examples. If, for instance, a

company must place a pipe (activity j) in a given region, it is necessary to prepare the

ground (activity i) in advance. This situation can be represented by a constraint SSmin
ij (δ),

since the start of activity j must be δ units of time forward the starting time of activity i. In

another project, if a company must supply a client with a certain number of products which

must be also assembled within 100 days, this relationship can be modelled as SFmax
ij (100),

which says that the assembly process (activity j) must finish at most 100 days after the

starting time of the delivery (activity i) of the products.

However, sometimes also GPRs are not in charge to fully describe the planning problem

under consideration. This happens for production planning in make-to-order manufactur-

ing companies which commonly requires the so-called project-oriented approach. In this

approach a project consists of tasks, each one representing a manufacturing process, that
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is an aggregate activity. Due to the physical characteristics of these processes the effort

associated with a certain activity for its execution can vary over time. An example is

that of the human resources that can be shared among different simultaneous activities in

proportion variable over time. In this case the amount of work per time unit devoted to

each activity, so as its duration, are not univocally defined.

This kind of problems is in general modelled by means of the so called Variable Intensity

formulation, that is a variant of the Resource Constrained Project Scheduling Problem

(see, e.g., Kis, 2006). In this formulation a variable intensity is introduced for each activity

to define the effort spent to process the activity in each time period. In the context defined

before the actual production is such that an activity usually starts at low intensity and

then gradually increases to a maximum. The resources needed to complete an activity are

consumed proportionally to the varying of intensity.

It follows that the durations of activities cannot be taken into play, generalized prece-

dence relations cannot be used any longer, and we need to introduce the so called “feeding

precedences” (see, e.g., Kis et al. 2004, Kis, 2005, 2006, and Alfieri et al., 2008). Feeding

precedences are of four types:

• Start-to-%Completed between two activities (i, j). This constraints imposes that

the processed percentage of activity j successor of activity i can be grater than

0 ≤ gij ≤ 1 only if the execution of i has already started (see Figure 1).

Time

Resource
Intensity

Activity i

Time

Resource
Intensity

Activity j α ≤ gij

Figure 1: Example of a Start-to-%Completed constraint between activities i and j.

• %Completed-to-Start between two activities (i, j). This constraints is used to impose

3



that activity j successor of activity i can be executed only if i has been processed

for at least a fractional amount 0 ≤ qij ≤ 1 (see Figure 2).

Time

Resource
Intensity

Activity i

Time

Resource
Intensity

Activity j

α ≥ qij

Figure 2: Example of a %Completed-to-Start constraint between activities i and j.

• Finish-to-%Completed constraints between two activities (i, j). This constraint im-

poses that the processed fraction of activity j successor of activity i can be greater

than 0 ≤ gij ≤ 1 only if the execution of i has been completed (see Figure 3).

Time

Resource
Intensity

Activity i

Time

Resource
Intensity

Activity j α ≤ gij

Figure 3: Example of a Finish-to-%Completed constraint between activities i and j.
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• %Completed-to-Finish constraints between two activities (i, j). This constraint im-

poses that the execution of activity j successor of i can be completed only if the

fraction of i processed is at least 0 ≤ qij ≤ 1 (see Figure 4).

Time

Resource
Intensity

Activity i

Time

Resource
Intensity

Activity j

α ≥ qij

Figure 4: Example of a %Completed-to-Finish constraint between activities i and j.

Another domain of application of feeding precedence constraints could be production

scheduling on different time horizons (long-term and short-term planning).

Examples of application of feeding precedence constraints to some manufacturing pro-

cesses can be found in Alfieri et al. (2008).

In this paper, we study the problem of scheduling activities under feeding precedence

constraints, scarce resources and minimum makespan as objective. Due to its NP-hard

complexity, this problem is optimally solvable for a very limited number of activities

(20 ÷ 25) within an acceptable computing time. For projects with a greater number of

activities the exact duration cannot be known a-priori and therefore at least an estimate

is necessary. To this end, in the following, we propose a lower bound based on a resource

constraints Lagrangian relaxation.

Section 2 describes a mathematical formulation of the feeding precedence constraints in

terms of mixed integer programming. Section 3 describes the problem with the objective

of minimizing the completion time, showing that it is polynomially solvable. In Section 4

we give the formulation of the problem with limited resources and describe the Lagrangian

relaxation along with its resolution. Section 5 is devoted to the experimental analysis of

the proposed lower bound and a comparison with the optimal solution and other lower

bounds obtained by different kinds of relaxation.
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2 A Mathematical Formulation of Feeding Precedence Con-

straints

In the following, we will assume that the planning horizon within which all the production

processes have to be scheduled is [0, T ), where T is the project deadline, and it is discretized

(without loss of generality) into T unit-width time periods [0, 1), [1, 2), . . . , [T − 1, T ). Let

us define with

• q1
ij , the fraction of activity i that has to be at least completed in order to let activity

j start;

• q2
ij , the fraction of activity i that has to be at least completed in order to let activity

j finish;

• g1
ij , the fraction of j that can be at most completed before the starting time of

activity i;

• g2
ij , the fraction of j that can be at most completed before the finishing time of

activity i;

• A is the set of activities to be carried out;

• A1 the set of pairs of activity for which a Start-to-%Completed constraint exists;

• A2 the set of pairs of activity for which a %Completed-to-Start constraint exists;

• A3 the set of pairs of activity for which a Finish-to-%Completed constraint exists;

• A4 the set of pairs of activity for which a %Completed-to-Finish constraint exists.

Furthermore, let us consider the following decision variables

• xit, the percentage of i executed till time period t.

• sit, a binary variable that assumes value 1 if activity i has started in a time period

τ ≤ t, and assumes value 0 otherwise.

• fit, a binary variable that assumes value 1 if activity i has finished in a time period

τ ≤ t, and assumes value 0 otherwise.

The feeding precedence constraints can be modelled as follows
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xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

sjt ≤ xi,t−1 + (1 − q1
ij) ∀(i, j) ∈ A2, t = 1, . . . , T (2)

xjt ≤ fi,t−1 + g2
ij ∀(i, j) ∈ A3, t = 1, . . . , T (3)

fjt ≤ xi,t−1 + (1 − q2
ij) ∀(i, j) ∈ A4, t = 1, . . . , T (4)

xit ≤ xi,t+1 ∀i ∈ A, t = 1, . . . , T − 1 (5)

sit ≤ si,t+1 ∀i ∈ A, t = 1, . . . , T − 1 (6)

fit ≤ fi,t+1 ∀i ∈ A, t = 1, . . . , T − 1 (7)

siT = 1 ∀i ∈ A (8)

fiT = 1 ∀i ∈ A (9)

xiT = 1 ∀i ∈ A (10)

si0 = 0 ∀i ∈ A (11)

fi0 = 0 ∀i ∈ A (12)

xi0 = 0 ∀i ∈ A (13)

sit ≥ xit ∀i ∈ A, t = 1, . . . , T (14)

xit ≥ fit ∀i ∈ A, t = 1, . . . , T (15)

sit ∈ {0, 1} ∀i ∈ A, t = 1, . . . , T (16)

fit ∈ {0, 1} ∀i ∈ A, t = 1, . . . , T (17)

xit ≥ 0 ∀i ∈ A, t = 1, . . . , T (18)

Constraints (1) model a Start-to-%Complete feeding constraint: if si,t−1 is equal to

zero, i.e., i has not started till time t, then the amount of j that has been processed must

be less than or equal to g1
ij . If si,t−1 = 1, then the amount of j processed can be greater

than g1
ij .

Constraints (2) model a %Complete-to-Start feeding constraint: if the total amount of

activity i processed till t− 1 is greater than or equal to q1
ij then sjt is less than or equal to

a quantity at least equal to one, and, therefore, sjt can be either zero or one; if, instead,

xi,t−1 is less than q1
ij then sjt must be necessarily zero, i.e., j must start after t.

Constraints (3) and (4) are the same as constraints (1) and constraints (2), respectively,

for the Finish-to-%Complete and the %Complete-to-Finish constraints.

Constraints (5) regulate the total amount processed of an activity i ∈ A over time.

Constraints (6) imply that if an activity i ∈ A is started at time t, then variable siτ = 1

for every τ ≥ t, and, on the contrary, if activity i is not started at time t, siτ = 0 for every

τ ≤ t. Constraint (7) is the same as constraint (6) when finishing times are concerned.

Constraints (8) and (9) say that every activity i ∈ A must start and a finish within

the planning horizon, respectively. Constraints (10) impose that at time period T the

execution percentage xit of every activity i ∈ A must be equal to 1.

Constraints (11), (12) and (13) represent initialization conditions for variable sit, fit, xit

when t = 0.
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Constraints (14) force the amount processed until t for an activity i ∈ A, i.e., xit, to

be zero if sit = 0.

Constraints (15) force fit for an activity i ∈ A to be zero if xit < 1.

Constraints (16), (17), and (18) limit the range of variability of the variables.

2.1 The problem with completion time objective function and unlimited

resources

Let us now examine the problem of scheduling activities under feeding precedence rela-

tionships and minimum makespan as objective function.

Since the completion time of an activity i ∈ A can be expressed as

fi =

(

T −
T
∑

t=1

fit + 1

)

,

we can write the following mixed integer programming:

min {maxi∈A fi} = min
{

maxi∈A

(

T −
∑T

t=1 fit + 1
)}

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

. . . . . .

. . . . . .

xit ≥ 0 ∀i ∈ A, t = 1, . . . , T (18)

By posing F = maxi∈A

(

T −
∑T

t=1 fit + 1
)

, this problem can be rewritten as:

minF

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

. . . . . .

. . . . . .

xit ≥ 0 ∀i ∈ A, t = 1, . . . , T (18)

F ≥
(

T −
∑T

t=1 fit + 1
)

∀i ∈ A (19)

Proposition 1 Minimizing the completion time of a set of activities under feeding prece-

dence constraints and unlimited resources is polynomially solvable.

Proof: The thesis comes out by observing that

T
∑

t=1

fit = max
t=1,...,T

(T − t)fit,

that substituted in constraints (19) gives:

F ≥

(

T − max
t=1,...,T

(T − t)fit + 1

)

∀i ∈ A.

8



Denoting

Fi = max
t=1,...,T

(T − t)fit

we have formulation can be rewritten as

minF

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

. . . . . .

. . . . . .

xit ≥ 0 ∀i ∈ A, t = 1, . . . , T (18)

F ≥ (T − Fi + 1) ∀i ∈ A (19′)

Fi ≥ (T − t)fit ∀i ∈ A, t = 1, . . . , T (19′′).

In the latter formulation we have at most two variables for each constraint, and therefore

it is polynomially solvable (see, e.g., Hochbaum and Naor, 1994).

2.2 The Scenario with Scarce Resources: a Lower Bound Calculation

When resources are limited, we have to introduce an additional constraints taking into

account the resource availability. In detail, we assume that K renewable resources are

available in amounts of bk units, with k = 1, . . . , K. Each activity i ∈ A has to be carried

out by using qik units of resource k = 1, . . . , K. The formulation P of the problem with

resource constraints is therefore:

minF

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

. . . . . .

. . . . . .

F ≥
(

T −
∑T

t=1 fit + 1
)

∀i ∈ A (19)
∑|A|

i=1
qik(xit − xi,t−1) ≤ bk k = 1, . . . , K, t = 1, . . . , T (20)

where constraints (20) impose that, in each time slot and for each resource type, the

sum of the overall resource requirement does not exceed the total availability.

Proposition 2 Minimizing the completion time of a set of activities under feeding prece-

dence constraints and limited resources is NP-hard.

Proof: We know, from the state of the art, that problem P ′, obtained by adding to

P the classical (finish-to-start) precedence constraints, is difficult (see, e.g., Kiss, 2006).

Assume to write P inserting the set of precedence constraints (PC); we have the following

formulation of P ′:
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minF

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

. . . . . .

. . . . . .
∑|A|

i=1
qik(xit − xi,t−1) ≤ bk k = 1, . . . , K, t = 1, . . . , T (20)

sj,t ≤ xi,t−1 ∀(i, j) ∈ PC, t = 1, . . . , T (21)

Note that precedence constraints (21) are a special case of feeding precedence constraints

(2) with q1
ij = 1, i.e., the set PC can be interpreted as a subset in A2 with q1

ij = 1,∀(i, j) ∈

PC. Therefore, P is as difficult as P ′, i.e., it is NP-hard.

Starting from this complexity result, in the following, we pose the goal of calculating

a good lower bound to the optimal solution of P . We will tackle this objective by showing

the Lagrangian relaxation of constraints (20) in problem P .

The Lagrangian model PLaR is as follows:

min
{

F −
∑K

k=1

∑T
t=1 λkt

[

bk −
∑|A|

i=1
qik(xit − xi,t−1)

]}

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

. . . . . .

. . . . . .

F ≥
(

T −
∑T

t=1 fit + 1
)

∀i ∈ A (19)

where for each value of the λkt multipliers, the optimal solution of the model PLaR

provides a lower bound to the optimal solution of problem P . The dual Lagrangian model

is to find the best λkt values to maximize the following problem

maxλkt

{

min
{

F −
∑K

k=1

∑T
t=1 λkt

[

bk −
∑|A|

i=1
qik(xit − xi,t−1)

]}}

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

. . . . . .

. . . . . .

F ≥
(

T −
∑T

t=1 fit + 1
)

∀i ∈ A (19)

By constraints (15) and (19) we have xit ≥ fit and F ≥ (T −
∑T

1 fit + 1); therefore,

F ≥ (T −
T
∑

1

xit + 1)

and, hence,
T
∑

1

xit ≥ (T − F + 1) (a).

If we multiply both the left- and right-hand sides of (a) by λktqik, and sum up with

respect to i, k, t, we get the following relation:

|A|
∑

i=1

K
∑

k=1

T
∑

t=1

λktqikxit ≥ (T − F + 1)

|A|
∑

i=1

K
∑

k=1

T
∑

t=1

λktqik (b).
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Rewriting the objective function accordingly, we have:

max
λkt







−
K
∑

k=1

T
∑

t=1

λktbk + min



F +

|A|
∑

i=1

K
∑

k=1

T
∑

t=1

λktqikxit −

|A|
∑

i=1

K
∑

k=1

T
∑

t=1

λktqikxi,t−1)











≤

≤ max
λkt







−
K
∑

k=1

T
∑

t=1

λktbk + min



F + (T − F + 1)

|A|
∑

i=1

K
∑

k=1

T
∑

t=1

λktqik −

|A|
∑

i=1

K
∑

k=1

T
∑

t=1

λktqik)











,

where the second expression is obtained by minoring, inside the min term, the triple

summation with the positive sign by exploiting (b), and majoring the triple summation

with the negative sign, by posing xi,t−1 = 1.

Now we are in position to find an estimate λ̃kt of the optimal values λ∗
kt of the La-

grangian multipliers by solving the following problem:

maxλkt

{

−
∑K

k=1

∑T
t=1 λktbk + min

[

F
(

1 −
∑|A|

i=1

∑K
k=1

∑T
t=1 λktqik

)

+
∑|A|

i=1

∑K
k=1

∑T
t=1 Tλktqik

]

F ≥ 0.

λkt ≥ 0, k = 1, . . . , K, t = 1, . . . , T

In fact, noting that the above problem admits a bounded solution if



1 −

|A|
∑

i=1

K
∑

k=1

T
∑

t=1

λktqik



 ≥ 0.

the estimate λ̃kt of the Lagrangian multipliers is obtained by optimally solving the

following linear programming:

maxλkt

∑K
k=1

∑T
t=1 λkt

[

∑|A|
i=1

Tqik − bk

]

∑|A|
i=1

∑K
k=1

∑T
t=1 λktqik ≤ 1

λkt ≥ 0, k = 1, . . . , K, t = 1, . . . , T

The lower bound is therefore obtained by optimally solving the following problem:

min
{

F −
∑K

k=1

∑T
t=1 λ̃kt

[

bk −
∑|A|

i=1
qik(xit − xi,t−1)

]}

xjt ≤ si,t−1 + g1
ij ∀(i, j) ∈ A1, t = 1, . . . , T (1)

. . . . . .

. . . . . .

F ≥
(

T −
∑T

t=1 fit + 1
)

∀i ∈ A (19)

This problem can be shown to be polynomially solvable by using the same arguments

as those used in Proposition 1.
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3 Computational Results

3.1 Implementation details

The experimentation on the lower-bound formulation PLaR has been carried out by imple-

menting the latter in the C and the AMPL language. The AMPL code have been solved

by means of the CPLEX solver, version 8.0.0. The machine used for the experiments is a

PC Core Duo with a 1.6 GHz Intel Centrino Processor and 1 GB RAM.

Experiments have been generated with the following features:

• the number of activities |A| has been chosen equal to 10, 20, 30, 40, 50, 80 and 100;

• a density fd of feeding precedence constraints has been selected equal to 10%, 30%

and 50%;

• the number K of renewable resources has been kept equal to 4;

• an amount bk of resource availability per period for each resource k = 1, . . . , K has

been set equal to 4;

• a request qik of resource k = 1, . . . , K for every activity i ∈ A has been assigned

uniformly at random from 1 to 2, from 1 to 3, and from 1 to 4;

• the values g1
ij , q

1
ij , g

2
ij , q

2
ij have been assigned uniformly at random in the range

(0.00, 1.00).

3.2 Analysis of the results

fd = 10%, qik ≃ unif(1, 2)

|A| IM LiR RR FR LaR IM LiR RR FR LaR

Average objective value Objective function stand. dev

10 4.400 (5/5) 2.235 2.900 3.400 3.742 1.06 0.60 1.15 0.89 0.67
20 7.400 (5/5) 3.754 5.000 5.100 6.792 0.70 0.82 0.39 0.96 1.41
30 8.200 (3/5) 4.146 5.600 5.860 7.289 5.11 1.02 0.67 0.43 1.56
40 18.400 (2/5) 6.287 8.800 8.780 12.894 4.80 0.68 0.73 0.61 1.42
50 24.600 (0/5) 8.541 12.000 11.900 16.782 5.09 1.10 1.53 0.84 2.98
80 34.800 (0/5) 11.486 17.400 17.200 26.328 4.20 2.42 0.77 0.89 0.87
100 45.000 (0/5) 15.422 20.800 21.000 32.556 5.18 2.55 1.00 0.48 2.06

Table 1: Comparison among objective values achieved by the integer model (IM), its linear
relaxation (LiR), the integer model with resource relaxation (RR) and feeding constraints
relaxation (FR), and the Lagrangian relaxation (LaR).

Results are shown in Tables 1-6, and are reported as averages over five instances; in

particular, in Tables 1, 3 and 5 we reported the objective values of the integer model (IM),
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fd = 10%, qik ≃ unif(1, 2)

|A| IM LiR RR FR LaR

Average CPU time (sec.)

10 0.644 0.810 0.146 0.000 0.028
20 62.338 7.058 0.177 0.000 0.031
30 1784.319 29.514 0.841 0.125 0.031
40 3127.139 166.417 1.464 0.196 1.203
50 3600.000 459.500 1.731 0.860 1.786
80 3600.000 1647.931 2.052 0.894 3.374
100 3600.000 3242.449 2.995 0.987 4.626

Table 2: Comparison among CPU times spent by the integer model (IM), its linear re-
laxation (LiR), the integer model with resource relaxation (RR) and feeding constraints
relaxation (FR), and the Lagrangian relaxation (LaR).

its linear relaxation (LiR), the integer model with resource relaxation (RR) and feeding

constraints relaxation (FR), and the Lagrangian relaxation (LaR). In Tables 2, 4 and 6,

instead, we reported the CPU times.

Analyzing Table 1, where fd = 10% and qik follows a uniform probability distribution

between 1 and 2, we notice that (see values into parentheses below column IM) only

instances with 10 and 20 activities have been all solved to optimality by CPLEX. When

|A| = 30 three out of five instances have been optimally solved within 3600 seconds of CPU

time, and only two out of five in the case |A| = 40; instances with 50, 80 and 100 activities

have not been solved at all within the time limit. This means that in the column IM

values associated with 30, 40, 50, 80 and 100 activities are upper bounds on the minimum

makespan.

Examining the values reported in column LiR it appears how for |A| = 10, 20, i.e.,

when all the instances are solved at the optimum, the lower bound obtained by the linear

relaxation of IM is about 50% far from the optimum, highlighting how linear relaxation is a

non-effective lower bounding strategy for this kind of problem. As soon as |A| increases, as

it can be expected, LiR tends to behave poorly, being the gap IM−LiR

IM
≃ 66% for |A| ≥ 40.

Taking into account RR, i.e., the lower bound obtained by relaxing the resource con-

straints, the gap to IM values reduces. In particular, RR is able to improve on LiR values

from a minimum of 30% (see |A| = 10) to a maximum of 52% (see |A| = 80), and the gap
IM−RR

IM
ranges from 32% to 54%. Note that once the resource constraints have been relaxed

the resulting problem is polynomially solvable as proved in Proposition 1. Its solution can

be obtained, e.g., by applying the algorithm reported in Hochbaum and Naor (1994) or

by using a commercial software as CPLEX, as we done. The result is that computational

times are very limited, as reported in Table 2.

A similar behaviour can be observed taking into account the lower bound FR obtained
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by relaxing the feeding constraints and thus taking into account resource constraints only.

FR can be computed in a closed form by the following simple formula

max
k=1,...,K

∑

i∈A

qik

bk

.

Due to the latter consideration, computing times are negligible, even with respect to RR.

Analyzing LaR behaviour, we note how it is always able to outperform the competing

lower bounds used in this comparison. In particular, the percentage gap LaR−BestLb

BestLb
, where

BestLb is the best results taken among LiR, RR and FR, ranges from 10%, when |A| = 10,

to 55% when |A| = 100. Moreover, the gap IM−LaR

IM
is 15% and 8% when |A| = 10 and

|A| = 20, respectively, and ranges from 11% to 27% when |A| ≥ 30.

Finally, we observe that computing times of LaR as negligible and comparable to those

of RR.

fd = 30%, qik ≃ unif(1, 3)

|A| IM LiR RR FR LaR IM LiR RR FR LaR

Average objective value Objective function stand. dev

10 5.200 (5/5) 2.897 3.600 4.640 4.984 0.40 0.09 0.40 0.24 0.49
20 9.000 (5/5) 4.977 6.600 6.800 8.486 0.63 0.25 0.32 0.25 0.80
30 15.200 (2/5) 7.098 7.400 7.800 9.323 4.27 0.18 0.22 0.28 0.80
40 24.400 (1/5) 8.958 11.800 11.740 16.760 4.68 0.35 1.53 1.10 2.04
50 36.800 (0/5) 11.225 16.000 15.900 21.160 4.83 0.27 1.75 1.41 3.03
80 51.600 (0/5) 16.289 22.800 22.700 33.400 5.08 3.16 0.92 0.89 1.17
100 69.200 (0/5) 20.485 27.800 28.000 43.040 5.91 3.28 1.36 1.23 2.98

Table 3: Comparison among objective values achieved by the integer model (IM), its linear
relaxation (LiR), the integer model with resource relaxation (RR) and feeding constraints
relaxation (FR), and the Lagrangian relaxation (LaR).

fd = 30%, qik ≃ unif(1, 3)

|A| IM LiR RR FR LaR

Average CPU time (sec.)

10 0.650 0.872 0.150 0.000 0.031
20 67.606 7.656 0.182 0.000 0.031
30 1826.545 30.950 0.869 0.135 0.034
40 3214.540 177.806 1.532 0.202 1.316
50 3600.000 466.022 1.891 0.872 1.891
80 3600.000 1812.452 2.086 0.9442 3.438
100 3600.000 3591.460 3.124 1.038 4.637

Table 4: Comparison among CPU times spent by the integer model (IM), its linear re-
laxation (LiR), the integer model with resource relaxation (RR) and feeding constraints
relaxation (FR), and the Lagrangian relaxation (LaR).

Analyzing Table 3, we notice that, as soon as the degree of freedom of activities
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decreases (here fd = 30% and qik follows a uniform probability distribution between 1

and 3), the number of instances solved at the optimum by CPLEX for |A| = 30 and

|A| = 40 reduces, i.e., two out of five instances have been optimally solved within 3600

seconds of CPU time, and only one out of five in the case |A| = 40; instances with 50, 80

and 100 activities clearly remain optimally unsolved within the time limit, and one can

expect that the upper bound quality is lowered by the increased difficulty of the instances.

Values reported in column LiR follow a trend similar to that observed for Table 1.

These values are about 50% of the optimum when |A| = 10 and |A| = 20, and range from

53% to 72% when |A| ≥ 30.

RR and FR have a similar behavior, as observed in Table 1. In particular, the gap IM−RR

IM

ranges from 27% to 60%, and the gap IM−FR

IM
ranges from 10% to 60%. Computing times

of RR and FR remain very limited.

The Lagrangian relaxation LaR, in this more constrained scenario, is always able to

outperform the competing lower bounds. In particular, the percentage gap LaR−BestLb

BestLb
is

7%, when |A| = 10, and is 54% when |A| = 100. Moreover, the gap IM−LaR

IM
is 4% and 6%

when |A| = 10 and 20, respectively, and is about 36% when |A| ≥ 30. Computing times

of LaR remain negligible.

fd = 50%, qik ≃ unif(1, 4)

|A| IM LiR RR FR LaR IM LiR RR FR LaR

Average objective value Objective function stand. dev

10 7.400 (5/5) 3.442 4.800 5.800 6.276 0.44 0.16 0.73 0.32 0.74
20 10.800 (5/5) 5.235 8.400 8.500 10.049 0.74 0.46 0.44 0.32 1.05
30 19.200 (1/5) 6.612 9.200 9.760 12.298 5.74 0.33 0.28 0.48 1.21
40 30.800 (0/5) 10.821 15.200 14.680 19.562 5.71 0.36 1.95 1.73 2.32
50 41.800 (0/5) 14.012 20.000 19.890 26.942 6.71 0.52 3.48 2.18 3.62
80 60.800 (0/5) 19.189 29.000 28.380 33.692 6.58 4.89 0.92 1.60 2.01
100 89.800 (0/5) 25.255 34.200 35.000 54.556 6.68 4.47 2.60 1.54 3.01

Table 5: Comparison among objective values achieved by the integer model (IM), its linear
relaxation (LiR), the integer model with resource relaxation (RR) and feeding constraints
relaxation (FR), and the Lagrangian relaxation (LaR).

Finally, we examine Table 5, where fd = 50% and qik follows a uniform probability

distribution between 1 and 4. The trend is that now we are not able to solve any instances

with 40 activities and only one out of five instances is solvable with 30 activities within

the time limit.

The columns LiR, RR and FR show similar behavior patterns with respect to the previous

two scenarios, being the linear relaxation the poorest among the three approaches, and RR

and FR comparable, with a gap IM−RR

IM
ranging from 35% to 62%, and a gap IM−FR

IM
ranging

from 22% to 61%. Running times of RR and FR are modest as one can expect.

15



fd = 50%, qik ≃ unif(1, 4)

|A| IM LiR RR FR LaR

Average CPU time (sec.)

10 0.675 0.958 0.150 0.000 0.032
20 69.331 8.120 0.197 0.000 0.031
30 1924.402 31.106 0.892 0.145 0.034
40 3600.000 181.435 1.573 0.208 1.389
50 3600.000 498.157 1.937 0.899 2.013
80 3600.000 1871.226 2.291 1.018 3.761
100 3600.000 3598.157 3.325 1.060 4.911

Table 6: Comparison among CPU times spent by the integer model (IM), its linear re-
laxation (LiR), the integer model with resource relaxation (RR) and feeding constraints
relaxation (FR), and the Lagrangian relaxation (LaR).

LaR offers again the best lower bound values with a percentage gap LaR−BestLb

BestLb
ranging

from 8% to 56%. The percentage gap IM−LaR

IM
is equal to 16%, when |A| = 10, and 7% when

|A| = 20. Moreover, the gap IM−LaR

IM
ranges from 36% to 39% when |A| ≥ 30. Running

times of LaR range from 0.74 seconds to 3.62 seconds.

For the sake of completeness, in Figure 5 we report the gap IM−LaR

IM
over increasing

density of feeding constraints, for the case in which qik follows a uniform probability

distribution between 1 and 3. This has been conducted for four values of |A|, i.e., 10,

15, 20 and 25. These values have been selected as those for which, given a larger CPU

time limit equal to 2 hours, CPLEX was able to optimally solve at least three out of five

instances, and values are reported as averages computed only on these optimal values.

Reading over the chart, it appears that the trend of the gap, even though it remains

quite limited, is increasing with the feeding constraints density. This is what one could

expect, since, when the effect of the resources is overwhelmed by the effect of the feeding

constraints, the resources penalization term of LaR tends to be less effective.
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Figure 5: Percentage gap between the optimum values of IM and LaR over increasing

density of feeding constraints (qik ≃ unif(1, 3)).
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4 Conclusions

We studied the problem of scheduling a set of activities under feeding precedence con-

straints, scarce resources and minimum makespan objective function. The problem is

NP-hard and a lower bound based on a Lagrangian relaxation of the resource constraints

has been proposed. Calculating a high quality lower bound value in a hard combinatorial

problem with minimum objective functions is an important issue, and its importance is

more appreciable when the problem under study models a real application. This is the

case of project management where the importance of a good lower bound on the minimum

makespan has an important practical interest. Indeed, even if a lower bound procedure

does not return a feasible schedule, it allows the decision maker to verify if a given dead-

line suggested by the project commitment may be realistic or should be discarded a-priori

because it results lower than the lower bound calculated. Therefore, it comes out that

a poor lower bounding procedure may lead to the acceptance of a deadline that, even if

greater than such lower bound, is lower than the shortest possible schedule length, i.e.,

the minimum makespan. We experimented with randomly generated instances of sizes of

up to 100 activities, comparing the quality of the Lagrangian relaxation lower bound to

that produced by linear relaxation, resource relaxation and feeding constraints relaxation.

Tests have been carried out for different densities of feeding and resource constraints, and

in all these scenarios we noticed a better performance of the proposed lower bound with

respect to the competing ones. Future work will be devoted to develop an exact algorithm.
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