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No, life has not disappointed me!

On the contrary, I find it truer,

more desirable and mysterious

every year,ever since the day

when the great liberator came to

me, the idea that life could be

an experiment of the seeker for

knowledgeand not a duty, not a

calamity, not a trickery! And

knowledge itself: let it be

something else for others, for

example, a bed to rest on, or the

way to such a bed, or a

diversion, or a form of leisure,for

me it is a world of dangers and

victories in which heroic feelings,

too, find places to dance and

play. “Life as a means to

knowledge”with this principle in

one’s heart one can live not only

boldly but even gaily and laugh

gaily, too! And who knows how

to laugh anyway and live well if

he does not first know a good

deal about war and victory?

Friedrich Nietzsche

The Gay Science (Section 234)
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Chapter 1

Introduction

In economic literature it is common to discuss about the performance of

producers. And It is usual to discuss on productivity and efficiency of pro-

ducers. By the productivity of a producer, we mean the ratio of its inputs

to its outputs. If the producer has only one input and one output, the ratio

is easy to compute. But, when there are more inputs and more outputs

and more producers, it is needed to aggregate the production factors and to

compare the several firms. We refer these tecniques like Index Numbers.

By the efficiency of a producer, we mean a comparison between a pro-

ducer and a optimal value. The economic theory underlying efficiency anal-

ysis dates to the work of Koopmans (1951), Debreu (1951), and Farrell

(1957), who made the first attempt at empirical estimation of efficiencies

for a set of observed production units. A presence of inefficiency can be

attributed to differences in production technology, differences in the scale of

operation, difference in operating efficiency and differences in the operating

environment in which production occurs (Fried et al. 2008). It is a measure

that enables the management to gain information about the (X-)inefficiency

(Leibenstein 1966) referred to the production process of any unit, which

may be influenced by economic factors internal to any firm (the first three

factors above) and other factors not tightly under the control of the man-

agement (the fourth). Proper attribution is important to for the adoption

of managerial pratices and the design of public policies intended to improve

productivity performance.
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To be able to discuss on previous economic implication, we need to have

techniques for that aim. In the next subsection, we introduce the economic

model to measure the efficiency. In chapter 2 we present an application of

index numbers, in chapter 3 and 4 two different nonparametric techniques

to measure the efficiency.

1.1 Definition and measure of the efficiency fron-

tiers

Given vectors x ∈ R
p
+ of p input quantities and y ∈ R

q
+ of q output quanti-

ties, standard microeconomic theory of the firm posits a production set at

time t represented by

Pt ≡ {(x,y) | x can produce y at time t}. (1.1)

For purposes of efficiency measurement, the upper boundary of Pt, label

Pt∂ , is of interest. Pt∂ is referred as efficiency boundary or production

frontier. In the interior it contains all firms that are technically inefficiency

and on it there are the efficiency firms. For both efficiency and inefficiency

firms it is possible to define distances from Pt∂ . The Debreu-Farrell input

measure of efficiency for a given point (x,y) is:

θ(x,y | Pt) ≡ inf
{
θ > 0 | (θx,y) ∈ Pt

}
(1.2)

By costruction θ ≤ 1 for all (x,y) ∈ Pt; and a firm will be efficiency

(in a Debreu-Farrel sense) if θ = 1. The Debreu-Farrell output measure of

efficiency for a given point (x,y) is:

λ(x,y | Pt) ≡ sup
{
λ > 0 | (x, λy) ∈ Pt

}
, (1.3)

By costruction λ ≥ 1 for all (x,y) ∈ Pt; and a firm will be efficiency (in

a Debreu-Farrel sense) if λ = 1.

The Debreu-Farrel input and output oriented measure of efficiency are

not the only measure of efficiency defined in literature. In the applications,
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sometimes it is more easy to refear at the Shephard (1970) input or output

distance functions given by

δin(x,y | Pt) ≡ sup
{
δ > 0 | (δ−1x,y) ∈ Pt

}
(1.4)

and

δout(x,y | Pt) ≡ inf
{
δ > 0 | (x, δ−1y) ∈ Pt

}
, (1.5)

(respectively) to measure distance from an arbitrary point (x,y) ∈ R
p+q
+ to

the boundary Pt∂ in the input direction or the output direction. The Shep-

ard measures of efficiency are the reciprocal of Debreu-Farrel measure of

efficiency, then θ(x,y) = [δin(x,y)]−1 and λ(x,y) = [δout(x,y)]−1. Clearly,

the choice of type of distance, does not have effect on efficiency firms. In-

stead the choice of orientation (input or output) can have an impact on the

efficiency firms because the frontiers in inputs and output orientation could

be different. Usually, the choice of orientation is left to economic considera-

tion, considering the different implication of it. Färe et al. (1985) proposed

measuring efficiency along a hyperbolic path from the point of interest to

Pt∂ . The hyperbolic-graph distance function given by

γ(x,y | Pt) ≡ sup
{
γ > 0 | (γ−1x, γy) ∈ Pt

}
(1.6)

measures distance from the fixed point (x,y) to Pt∂ along the hyperbolic

path (γ−1x, γy). Note that for (x,y) ∈ Pt, γ(x,y | Pt) ≥ 1 by construction.

Untill now, we discuss about the definition of efficiency in a Debreu-

Farrel sense. Koopmans (1951) provide a definition of technical efficiency if

an increase in any output is possible only by decreasing one other output and

if a reduction in any input is possible only by increasing one other input. the

difference with the definition of efficiency provides by Debreu-Farrell is that

the second is a radial measure of efficiency and regards equiproportionate

reduction of all inputs or maximum expansion of all outputs.

In the application, Pt and Pt∂ (and then the distance functions) are

unknown and we need to estimate their. Typically, we know only a sample
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of observations:

Xn = {(xi,yi), i = 1, .., n} (1.7)

in the sector of interest. Starting from Xn, we obtain estimates of Pt and Pt∂ .

For this aim, it is possible to use parametric and nonparametric techniques1.

Here, we discuss about the second. Between the nonparametric techniques,

the most famous is the Data Envelopment Analysis (DEA). DEA uses a lin-

ear program to estimate the efficiency and it was developed from Charnes et

al. (1978). Its popularity is due to its flexibility, because no one parametric

structure of production process or frontier is imposed. Only in the last year,

its statistical properties have been investigated. However, this is a deter-

ministic frontier model, where all observation are assumed to be technically

attainable. DEA is not the only nonparametric technique: assuming Pt as

free disposability, we have the free disposal hull (FDH) estimator. In the last

years, new theories on efficiency measurements are appearing: from a side,

there is the study on property of DEA estimator and how to do inference

on it (Simar and Wilson, 1998,2000b); in the other side, there are robust

nonparametric estimators based on the concept of partial frontiers (Cazals

et al., 2002; Daouia and Simar, 2007, Daraio and Simar, 2007b, Wheelock

and Wilson, 2008a).

1For an introduction on parametric techniques, see Kumbhakar and Lovell (2000).
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1.2 Data Envelopment Analysis

1.2.1 The data generation process

Farrell (1957) was the first to use a linear program in an application to

measure the efficiency, but only with Charnes et al. (1978) it became popular

and it was label Data Envelopment Analysis (DEA)2. For several years, and

for many researchers today, the use of DEA was a mere resolution of a linear

program. The contribution of some researchers, has allowed to uderstand it

could not be only that3. The first aim regards the concept of estimator : data

envelopment analysis yields estimates of efficiency (θ̂, λ̂) and an estimator of

Pt∂ (label P̂t∂). So, when we use DEA estimator, we define a probabilistic

model.

Kneip et al. (1998), Kneip et al. (2007) and Park et al. (2000) define a

flexible and reasonable statistical model.

Assumption 1.2.1. The production set Pt is compact and free disposal,

i.e., if (x,y) ∈ Pt, (x̃, ỹ) ∈ Pt, and x̃ ≥ x, then (x̃, ˜̃y) ∈ Pt ∀ 0 ≤ ˜̃y ≤ y.

Assumption 1.2.2. (x,y) �∈ Pt if x = 0, y ≥ 0,y �= 0, i.e., all production

requires use of some inputs.

This assumption is also called “no free lunch”, i.e., it is not possible

procude any output without any inputs.

Assumption 1.2.3. The sample Xt
nt

= {(xi,yi)}nt
i=1 of nt observations on

input and output quantities at time t are realizations of identically, indepen-

dently distributed (iid) random variables with probability density function

f t(x,y) with support over Pt; that is

Prob((xi,yi) ∈ Pt = 1). (1.8)

So, we are assuming that all observations are assumed to be technical

efficiency4.
2Nowadays there are several books on DEA: for an exhaustive discussion on DEA

models, it is possible to read Coelli et al. (2005), Cooper et al. (2006), Thanassoulis et al.

(2008).
3For an a survay on the argument, it is possible to read Simar and Wilson (2000b),

Daraio and Simar (2007a) and Simar and Wilson (2008).
4This is also called deterministic frontier model.
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Assumption 1.2.4. At the frontier, the density f t is strictly positive, i.e.,

f t
0 = f t(xt∂

0 ,yt∂
0 ) > 0, and it is continous in any direction toward the interior

of Pt.

Assumption 1.2.5. Pt is convex: if {(x1, y1), (x2, y2)} ∈ Pt, then ∀α ∈
[0, 1] we have: (x, y) = α(x1, y1) + (1 − α)(x2, y2), and (x, y) ∈ Pt

1.2.2 The estimator of production set

Let Y = { yi, i = 1, .., n}, the matrix q × n of the set of outputs and let

X = {xi, i = 1, .., n}, the matrix p × n of the set of inputs; an estimator of

production set, can be constructed using linear program from the observed

input-output:

P̂DEA =
{

(x,y ∈ R
p+q
+ )| y ≤ Y κ, x ≥ Xκ, κ ≥ 0

}
(1.9)

.

λ is a vector n × 1 of weights. Its “role” should be clear in the next

sections

1.2.3 Costant return to scale model

Charnes et al. (1978) assume the convexity of the production set P, obtain-

ing a model analogus at that of Farrell (1957). In this way, they assume a

technology with costant return to scale (CRS). Their production set is the

convex cone of (1.9).

Output orientation

Considering output-orientation, the efficiency for the firm i, will be:

λ̂(xi,yi) = sup
{
λ|(x, λy) ∈ P̂DEA

}
(1.10)

.
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A solution for (1.10) is the following linear program:

maxλ,κ λ

s.t. λyi − Y κ ≤ 0

xi − Xκ ≥ 0

κ ≥ 0

(1.11)

.

λ is a scalar and it is the efficiency estimate. Then at the optimum,

(1.11) returns the efficiency estimator for the i firm and for a set of firms, it

is need to resolve (1.11) n times. The first constraint in (1.11) is repeated

q times (one time for each output): from a mathematical point of view, it

forces λ to be greater than (or equal to) 1. The second constraint is repeated

p times. Then a firm will be efficiency if λ is equal to 1.

Input orientation

Analogus, for the input function (1.2), it is possible to define a linear program

to compute the estimator θ̂ with the reference set P̂DEA:

minθ,κ θ

s.t. yi − Y κ ≤ 0

θxi − Xκ ≥ 0

κ ≥ 0

(1.12)

.

Here θ is a scalar and to obtain efficiency estimator for a set of firm,

the linear program (1.12) will be resolve n times. According to definition of

distance function (1.2), θ will be greater than 0, and a firm will be effciency

if θ is equal to 1.

1.2.4 Variable return to scale model

Banker et al. (1984) relax the assumption of costant return to scale, allowing

variable retur to scale (VRS) in the technology. Their production set is the

convex hull of (1.9).
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Output orientation

For the output oriented case, the the DEA estimator with variable return

to scale is computed by the following linear program:

maxλ,κ λ

s.t. λyi − Y κ ≤ 0

xi − Xκ ≥ 0
n∑

i=1

κi = 1

κ ≥ 0

(1.13)

.

The difference between (1.11) and (1.13) is the convexity constraint∑n
i=1 λi = 1. It evelops the data more tightly than (1.11) model, so the

efficiency estimates from (1.13) will be always equal or more efficiency (i.e.

more close to 1) than CRS model.

Variable return to scale allows to the estimate frontier to be either in-

creasing, constant or deacrising.

Input orientation

With input orientation and variable return to scale assumption, we gain

efficiency scores from:

minθ,κ θ

s.t. yi − Y κ ≤ 0

θxi − Xκ ≥ 0
n∑

i=1

κi = 1

κ ≥ 0

(1.14)

.
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Hyperbolic orientation

A DEA hyperbolic oriented is possible, using the distance function (1.6) and

the reference set (1.9), but the resulting model is nonlinear. However, it is

possible to resolve it with approximate algorithms (Wheelock and Wilson

2008a). In the last year, some authors (Wheelock and Wilson, 2008a, 2008b)

are using the hyperbolic distance, but not in a DEA environment (see section

1.4).

1.2.5 Non increasing return to scale model

Other estimator can be defined by modifying the constraint
∑n

i=1 λi = 1, in

particular, it is possible to define an estimator for non increasing return to

scale (NIRS). For the output oriented case, the linear program is computed

by:

maxλ,κ λ

s.t. λyi − Y κ ≤ 0

xi − Xκ ≥ 0
n∑

i=1

κi ≤ 1

κ ≥ 0

(1.15)

With NIRS, return to scale along the frontier are either constant or

deacrinsing, but not increasing. For brevity, we obmit here the formulation

of input oriented NIRS model, which is analogus to the (1.15).

1.2.6 Changing the reference set

Sometimes it could be of interest, to eximate the efficiency of the the firm

i respect to another reference set. As we will discuss in section 1.3, this is

one of the key points to do statistical inference with DEA.

Given another reference set X∗ = {X∗,Y ∗} of (pseudo)-observations, it

is possible to compute with DEA an estimate of distance function. The
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estimate of the output oriented distance function under CRS (λ̂∗), respects

to the reference set X∗ is computed by:

maxλ,κ λ

s.t. λyi − Y ∗κ ≤ 0

xi − X∗κ ≥ 0

κ ≥ 0

(1.16)

.

1.2.7 Free disposability hull

Deprins et al. (1984) proposed a more general version of DEA estimator,

relying only on the free disposability and relaxing the assumption 1.2.5. So

they obtained the FDH estimator. This estimator has an attractive property,

since it is difficult to find theoretical justification for postulating convex

production set in efficiency analysis.

The FDH estimator measures the efficiency for a given firm which pro-

duces x,y, relative to the boundary of the Free Disposal Hull of the sample

X,Y . The FDH estimator is computed, in the output case, by:

maxλ,κ λ

s.t. λyi − Y κ ≤ 0

xi − Xκ ≥ 0
n∑

i=1

κi = 1

κ ∈ {0, 1}

(1.17)

For the input case, the formulation is similar. Note the differences be-

tween 1.17 and 1.13.

1.2.8 Property of FDH/DEA estimator

Before to apply and to use an estimator, it should be important to investigate

its property. In particular, the basic property that an estimator should have,
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it is the consistence. The asymptotic properties of the distance function

estimation, are discussed by Simar and Wilson (2000b, 2008).

Althought its large use, the first result on concistence of DEA estima-

tor appears in Banker (1993). Banker shows the consistence of the input

efficiency estimator under VRS (θ̂V RS) but no information on rate of con-

vergence. More general result was obtained by Kneip et al. (1998). In

particular, they show:

θ̂V RS − θV RS = Op(n
− 2

p+q+1 ). (1.18)

Then, the DEA estimator, under VRS, converge to the theoretical estima-

tor with the rate showed in (1.18). The result is equal for output orientation

too. The rate of convergence depend from the dimensionality of the problem,

that is, the number of inputs and outputs. Kneip et al. (1998) called that

“curse of dimensionality”. It is important to note that the increase of the

number of input and output will result in more observations lying on the

frontier of the estimator P̂V RS .

The curse of dimensionality results from the fact that the set of obser-

vation are projected in an increasing number of orthogonal directions and

the Euclidean distance between the observations necessarily must increase

(Simar and Wilson 2008). In the next section, we will discuss one of the

technique to “mitigate” this problem of DEA estimator.

The convergence of FDH estimator was provided by Park et al. (2000),

in particular,

θ̂FDH − θFDH = Op(n
− 1

p+q ). (1.19)

So, the FDH estimator converge slowly than DEA estimator and the

curse of dimensionality is here a strong problem. This is the main drawback

to the pratical use of FDH estimator.

Finally, FDH and DEA estimators are biased by construction (Simar

and Wilson 2000b). This bias could be relevant: starting from Simar and

Wilson (1998), some methods based on bootstrap, to correct that bias were

proposed (see section 1.3).
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1.2.9 Reduction of dimensional spaces

Daraio and Simar (2007a) show a procedure applicable in case of high corre-

lation among the variables belonging to the same class (input and output).

In particular, if we want to aggregate H inputs, it permits to compute

a new input vector, here called “input factor”, according to the following

expression:

F inp = (f inp
1 , f inp

2 , ..., f inp
n ) =

H∑
h=1

αhx̄h (1.20)

where x̄h is h the column vector of normalized input5 and the scalar

αh is the first eigenvector of the matrix x̄′x̄ associated to its largest eigen-

value ν1. It represents the “inertia” associated to the F inp . Thus, the

ratio ν1/
∑H

h=1 νh measures the percentage of inertia, that is information,

explained by the first factor. Values of the ratio close to 1 suggest that most

information, contained in the original input matrix of dimension nxH, can

be summarized by the first factor in a nx1 dimension space.

Similarly, for K it is possible to compute the new output vector, called

”output factor”, according to the following expression:

F put = (f out
1 , f out

2 , ..., f out
n ) =

K∑
k=1

αkx̄k (1.21)

Consequently, with this tool, it is possible to reduce the dimensional

spaces and to apply DEA estimator when we have few observations.

1.3 Statistical inference with DEA

The efficiency estimation performed solving the linear programming, de-

scribed by (1.11)-(1.15), neglects the fact that estimates are obtained from

a finite sample of observations and, hence, does not take into account their

sensitivity to the sampling variations of the obtained frontier. A bootstrap
5The normalization is carried out dividing the original input vectors by their respective

means.
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approach it is possible to assess whether the efficiency distribution is influ-

enced by stochastic effects and to build the confidence intervals for the point

estimates and to correct for the bias.

The bootstrapping is based on the idea of repeatedly simulating the Data-

Generating Process (DGP), by resampling the sample data and applying the

original estimator, given by one of (1.11)-(1.15), to each simulated sample.

Since the “näıve” bootstrap6 yields inconsistent estimates in the context

of frontier estimation (Simar and Wilson, 1999a, 1999b), we employ the

smoothed bootstrap procedure implemented by Simar and Wilson (1998,

2008).

This procedure is based on the approximation7 λ̂i(x,y)−λi(x,y) of the

unknown sampling distribution of in a “simulated world” by the bootstrap

distribution λ̂∗
i (x,y)− λ̂i(x,y), where λ̂∗

i (x,y) are the bootstrap estimates,

obtained by simulating the DGP. This approximation is available thought

the Monte Carlo realizations (method) and provides important statistical

properties of the DEA estimators of the real efficiency levels. This approxi-

mation of the sampling distribution is proved to be consistent by Kneip et

al. (2007).

Hence, once approximations of DGP are obtained, it is possible to im-

plement the confidence intervals. The algorithm we compute can be sum-

marized in the following steps.

1. Compute with (1.11) the estimation of the efficiency scores Λ̂n ={
λ̂1, ..., λ̂n

}
, from the original data set Xn.

2. Select a value for the bandwidth hCV using the Least Square Cross

Validation (LSCV) method8.

3. Generate a bootstrap sample β∗
1 , .., β∗

n, drawing random sample of size

6Näıve bootstrap consists of drawing pseudo-observations {(x∗
i , y∗

i ), i = 1, .., n} inde-

pendently, uniformly, and with replacement from the set X of original observations.
7Here the procedure is discussed for output orientation under CRS. The procedure is

the same for other retur to scale assumption and for input orientation.
8The LSCV is a data driven method of unbiased cross validation and it assures the

minimization of Mean Integrated Square Error (MISE) (see Silverman, 1986 and Efron

and Tibshirani, 1993 for details).

16



n from the set Λ̂2n, obtained by reflection estimated efficiency scores9.

4. Generate the sample β∗∗
1 , .., β∗∗

n perturbing these draws by setting

β∗∗
i = β∗

i + hCV · ε∗i , ∀i = 1, .., n, where ε∗i are independent draws

from the kernel density function K(•)10.

5. Generate the sample β∗∗∗
1 , .., β∗∗∗

n from the sample β∗∗
1 , .., β∗∗

n , correct-

ing it regarding the mean and variance11 in the following way:

β∗∗∗
i = β̄∗ +

β∗∗
i − β̄∗

(1 + h2
CV σ2

Kσ−2
β )1/2

(1.22)

where:

β̄∗ = n−1
n∑

i=1

β∗
i

σ2
β = n−1

n∑
i=1

(β∗
i − β̄∗)

.

6. Compute the sample Λ̂∗
n =

{
λ̂∗

1, ..., λ̂
∗
n

}
, to come back to measure

greater than one, by computing:

λ̂∗
i =

⎧⎨⎩2 − β∗∗∗
i ∀β∗∗∗

i < 1

β∗∗∗
i otherwise

(1.23)

.

7. Define the bootstrap sample X∗
n = {(xi,y

∗
i ), i = 1, .., n} where y∗

i is

given by:

y∗
i =

λ̂i

λ∗
i

yi

.
9The reflection method was proposed by Silverman (1986) and it is used because the

efficiency estimates have a boundary since δout ≥ 1 by definition.
10β∗∗

i s are random sample from standar kernel density estimator of Λ̂2n. This technique

is called smoothing techniques (Silverman 1986) and it overcome the problems of nä’ie

boostrap discussed above. For further details on non parametric tecnique it is possible to

read Li and Racine (2007).
11Whith the smoothing technique, the smoothed values will not have the same mean

and variance of the boostrap sequences (Efron and Tibshirani 1993), then it is need to

correct the value with (1.22).
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8. Compute DEA efficiency estimates Λ̂∗
n =

{
λ̂∗

1, ..., λ̂
∗
n

}
, using the refer-

ence set X∗
n in (1.16).

9. Repeat steps 3-8 B times to obtain a set of boostrap estimates {Λ̂∗
n,b, b =

1, .., B}.

Simar and Wilson (1998) suggest to set B=2000 to have an accurate

convergence. The previous algorithm was implemented in a free software

package FEAR (Wilson 2007) for R software12.

Moreover, as well known, the DEA estimators are biased by construction.

Thus, it is possible to use the empirical bootstrap distribution to estimate

the bias (Efron and Tibshirani 1993) for the observation i as follows:

B̂IAS(λ̂i) =
1
B

B∑
b=1

λ̂∗
i,b − λ̂i. (1.24)

Therefore, we construct a bias-corrected estimator by computing:

̂̂
λi = λ̂i − B̂IAS(λ̂i). (1.25)

However, the bias correction introduces additional noise and could have

a higher mean square error then the original point estimates. The estimator

of sample variance of λ̂i,b is:

σ̂2
i =

1
B − 1

B∑
b=1

(λ̂∗
i,b −

1
B

B∑
b=1

λ̂∗
i,b)

2. (1.26)

It yields to avoid this correction in (1.24) (Efron and Tibshirani 1993) if:

µ =

∣∣∣B̂IAS(λ̂i)
∣∣∣

σ̂i
≤ 0.25. (1.27)

Finally, the confidence intervals are constructed following the modified

percentile method (Simar and Wilson 2000b), which automatically corrects

for bias without explicit use of the noisy biased estimator. The main idea
12www.R-project.org
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is to compute the quantiles from the empirical bootstrap distribution of the

pseudo estimates, exploiting the approximation of the unknown distribution

of λ̂(x,y) − λ(x,y) by the distribution of λ̂∗(x,y) − λ̂(x,y). If we know

the distribution of λ̂(x,y) − λ(x,y), it would be trivial to find the values

aα and bα, such that Prob(−bα ≤ λ̂(x,y) − λ(x,y) ≤ −aα) = 1 − α. Since

aα and bα are unknown, we use the empirical distribution of λ̂∗
i,b, to find the

values âα and b̂α such that:

Prob(−b̂α ≤ λ̂i(x,y) − λi(x,y) ≤ −âα) = 1 − α. (1.28)

Some algebraic transformations yield an estimated (1 − α)-percent con-

fidence interval, of the real value:

λ̂i + âα ≤ λ ≤ λ̂i + b̂α (1.29)

where âα and b̂α are the endpoints obtained deleting (α/2×100)-percent

of the sorted elements of the distribution of λ̂∗
i (x,y) − λ̂i(x,y).

Simar and Wilson (2000b) show in a Monte Carlo experiment, the per-

formance of Simar and Wilson (1998)’s algorithm: they check the coverage

in which the estimated confidence intervals included the true efficiency score.

Kneip et al. (2007) analyze the property of this tecniques and they prove

that the bootstrap provides consistent approximation of the sampling distri-

bution of λ̂(x,y) − λ(x,y).

1.3.1 Testing hypothesis of return to scale

Simar and Wilson (2002) discuss how to test hypotheses regarding returns

to scale in the context of non-parametric models of technical efficiency. They

present bootstrap estimation procedures which yield appropriate critical val-

ues for the test statistics. It regards the inconsistent estimation arising from

a priori assumption on the true, but unknown, reference technology P (Simar

and Wilson 2002).

In hyphotesis testing, the p-value of a null hypothesis can be estimated

with boostrap: a null hypothesis H0 will be rejected at the desidered level

(usually α = 5% when the p-value is lower than α.
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A two steps inference procedure is available: it allows determining whether

a particular technology is due to the real analyzed process or merely due to

the sampling variation. Formally, the procedure is given by Test1,

H0 : P is globally CRS,

against the alternative hypothesis

H1 : P is globally V RS.

If the null hypothesis H0 is rejected, before accepting the alternative hy-

pothesis H1, a second test is performed with a less restrictive null hypothesis.

Thus, Test 2 is performed and it tests

H0 : P is globally NIRS,

against

H1 : P is globally V RS.

For testing return to scale, it is needed to define a sensible statistic.

Simar and Wilson (2002) propose the ratio of means DEACRS on DEAV RS

scores, that is:

τ =
n−1

∑n
i=1 δ̂out

crs(xi,yi)

n−1
∑n

i=1 δ̂out
vrs(xi,yi)

. (1.30)

Where δ̂out
crs are the Shepard output oriented CRS efficiency scores and

δ̂out
vrs are the Shepard output oriented VRS efficiency scores13. The use of

Shepard distance function in (1.30) is due to the construction of an appro-

priate statistic. In this case, τ will be close to 1 if the null hypothesis is

true.
13Compute Shepard distance function is very simple, remember from section 1.1 that

δout(xi, yi) = [λ(xi, yi)]
−1.
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The p-value is defined by

p − value = Prob(τ ≥ τobs |H0), (1.31)

where τobs is the value of the statistic obtained from the sample. It

is possible to approximate (1.31) by a bootstrap distribution (Efron and

Tibshirani 1993):

p̂ − value = Prob(τ∗ ≥ τobs |Xn,H0) (1.32)

where τ∗ is the bootstrap distribution of τ . So, the empirical p̂ − value

is computed by:

p̂ − value =
B∑

b=1

#{τ∗ ≥ τobs}
B

. (1.33)

B is the number of boostrap replications. Note that (1.32)-(1.33) are

conditional on H0, so it need to generate the boostrap sample under the

null hypothesis H0.

τ∗ is obtained through the same bootstrap algorithm described in section

1.3, with the accurance to set the appropriate DEA model (CRS or VRS).

To generate the boostrap sample under H0, it is need to resample from a

smooth estimate of the distribution of the δ̂out
crs (Simar and Wilson 2002).
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1.4 The Quantile approach

Cazals et al. (2002) discuss a probabilistic interpretation of the Debreu-

Farrel efficiency scores, providing a new way of description of nonparametric

FDH estimators.

Assume that there exists a joint probability density f t(x,y) at time t

with bounded support over Pt 14. The density f t(x,y) implies a probability

function

Ht(x0,y0) = Pr(x ≤ x0,y ≥ y0). (1.34)

This is a non-standard probability distribution function, given the direction

of the inequality for y; nonetheless, it is well-defined. This function gives the

probability of drawing an observation from the probability density function

f t(x,y) that weakly dominates the DMU operating at (x0,y0) ∈ Pt; an

observation (x̃, ỹ) weakly dominates (x0,y0) if x̃ ≤ x0 and ỹ ≥ y0. Clearly,

Ht(x0,y0) is monotone, nondecreasing in x0 and monotone, non-increasing

in y0. Using Ht(·, ·), the hyperbolic distance function in (1.6) can be written

as

γ(x,y | Pt) = sup
{
γ > 0 | Ht(γ−1x, γy) > 0

}
. (1.35)

All studies of efficiency, productivity, etc., involve comparison of ob-

served performance to some benchmark. In traditional, non-parametric

studies, the frontier Pt∂ serves as the benchmark, but other benchmarks

can also be used to measure efficiency. Consider the hyperbolic α-quantile

distance function defined by

γα(x,y | Ft) = sup
{
γ > 0 | Ht(γ−1x, γy) > (1 − α)

}
(1.36)

for α ∈ (0, 1], where Ft denotes the law of the random (p + q)-tuple (x,y)

at time t implied by the distribution function Ht(x0,y0). If α = 1, then

γα(x,y | Ft) = γ(x,y | Pt). For 0 < α < 1 and a fixed point (x,y) ∈ R
p+q
+ ,

γα(x,y | Ft) > (respectively, <) 1 gives the proportionate, simultaneous

decrease (increase) in inputs and increase (decrease) in outputs required to

14f t(x, y) is zero for all (x, y) �∈ Pt, strictly positive for all (x, y) ∈ Pt∂, and continuous

in an interior neighborhood of Pt∂ .
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move from (x,y) along a path (γ−1x, γy), γ > 0, to a point with probability

(1 − α) of being weakly dominated. The hyperbolic α-quantile frontier is

defined by

Pt∂
α =

{
(γα(x,y | Ft)−1x, γα(x,y | Ft)y) | (x,y) ∈ Pt

}
. (1.37)

It is easy to show that Pt∂
α is monotone in the sense that if (x0,y0) ∈ Pt∂

α ,

(x̃, ỹ) ∈ Pt∂
α , and x̃ ≥ x0, then ỹ ≥ y0.

The idea of dominance in the sense used here dates at least to the work

of Deprins et al. (1984). As a practical matter, the idea is quite useful from

the perspective of managers, policy makers, and others. While a set of firms

may be ranked in terms of their estimated technical efficiencies or some other

criteria, the manager of an inefficient firm may have little to learn from a

more efficient firm unless the two firms use a similar mix of inputs to produce

a similar mix of outputs. In other words, the more efficient firm may not be a

relevant role model for the less efficient firm if they operate in very different

regions of the input-output space. By contrast, a firm that dominates a less

efficient firm is able to produce more with less, and consequently is likely

to have management practices or other features that the less efficient firm

should emulate.

Figure A.1 provides an illustration of the hyperbolic quantile where p =

q = 1 and with f(x, y) uniform over a quarter-circle so that the technology

displays variable returns to scale. The solid line shows the full frontier

Pt∂ = {(x, y) | x ∈ [0, 1], y = (2x − x2)1/2}. Wheelock and Wilson (2008b,

equation 3.10) derived the joint distribution Ht(x0, y0) for this problem;

using their result, the hyperbolic α-quantile Pt∂
α can be traced out. In

Figure A.1, this has been done for α = 0.99; Pt∂
α is illustrated by the dashed

curve.

The probabilistic formulation used here and in Wheelock and Wilson

(2008a, 2008b) is closely related to the work of Daouia and Simar (2007),

which builds on earlier work by Daouia (2003) and Aragon et al. (2005).

Daouia and Simar defined input- and output-oriented conditional α-quantiles

and corresponding efficiency measures. In Figure A.1, these input and out-

put conditional α-quantiles are shown by the dotted curves for α = 0.99.

The steeper of the two shows the input-oriented conditional α-quantile; the
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other shows the output-oriented conditional α-quantile; details of deriva-

tions are given in Wheelock and Wilson (2008b). For any α ∈ (0, 1), the

input- and output-oriented conditional α-quantiles differ from one another.

The input-oriented conditional α-quantile Pt∂
x,α will necessarily have steeper

slope than Pt∂ , while the output-oriented conditional α-quantile Pt∂
y,α will

have less steep slope than Pt∂ ; see Wheelock and Wilson (2008b) for addi-

tional discussion.

Before proceeding, note that if α = 1, then the hyperbolic α-quantile

distance function defined in (1.36) becomes equivalent to the Shephard-type

hyperbolic distance function defined in (1.6). In this case, the distance

function in (1.36) measures distance to Pt∂ , rather than to a quantile lying

within the interior of the set Pt. Choosing α < 1, however, avoids some

of the problems associated with estimation of boundaries of support (or

distance to such boundaries) as discussed in the next section.

1.4.1 Estimating technical efficiency with α-quantile estima-

tor

Estimation of the Shephard input and output distance functions defined in

(1.4) and (1.5), as well as of the hyperbolic distance function defined in (1.6),

requires an estimator of the production set Pt. Let St
nt

denote a sample of nt

input/output vectors at time t; in other words, St
nt

is a set of nt (p+q)-tuples

drawn from the density f t(x,y) with bounded support over Pt.

Estimation of the unconditional, hyperbolic α-quantile distance function

γα(x,y | Ft), and hence Pt∂
α , is straightforward. The empirical analog of

the distribution function defined in (1.34) is given by

Ĥt(x0,y0 | St
nt

) = n−1
n∑

i=1

I(xi ≤ x0,yi ≥ y0 | (xi,yi) ∈ St
nt

), (1.38)

where I(·) denotes the indicator function. Then an estimator of γα(x,y | Ft)

is obtained by replacing Ht(·, ·) in (1.36) with Ĥt(·, · | St
nt

) to obtain

γ̂α,nt(x,y | St
nt

) = sup
{

γ > 0 | Ĥt(γ−1x, γy | St
nt

) > (1 − α)
}

. (1.39)

Computing γ̂α,nt(x,y | St
nt

) is essentially a univariate problem. Given

a point of interest (x0,y0), it is easy to find initial values γa, γb such that
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γa < γb bracket the solution so that Ĥt(γ−1
a x0, γay0 | St

nt
) > (1 − α) and

Ĥt(γ−1
b x0, γby0 | St

nt
) < (1− α), and then solve for γ̂α,nt(x0,y0 | St

nt
) using

the bisection method. This method can be made accurate to an arbitrarily

small degree. Wheelock and Wilson (2008a, 2008b) list the steps that com-

prise an algorithm using this idea, and discuss some computational issues.

The algorithm presented here has been implemented in the freely-available

FEAR library provided by Wilson (2007).

Wheelock and Wilson (2008a) derived asymptotic results under mild

assumptions for the to the hyperbolic α-quantile distance function estimator

γ̂α,nt(x,y | St
nt

) of γα(x,y | Ft). In particular,

• γ̂α,nt(x,y | St
nt

) converges completely and hence is a strongly con-

sistent estimator of15 γα(x,y | Ft) (Wheelock and Wilson, 2008a,

Theorem 4.2);

• γ̂α,nt(x,y | St
nt

) is asymptotically normally distributed, with conver-

gence at the classical, parametric root-n rate (Wheelock and Wilson,

2008a, Theorem 4.3); and

• γ̂α,nt(x,y | St
nt

) can be viewed as a robust estimator of γ(x,y) when

α is regarded as a sequence in n tending to 1 at an appropriate rate

(Wheelock and Wilson, 2008a, Theorem 4.4).

See Wheelock and Wilson (2008a) for precise statements of the assumptions

required for these results.

The root-n convergence rate attained by the unconditional, hyperbolic

α-quantile distance function estimator is remarkable for a non-parametric

estimator, and is partly due to the summation that appears in (1.38) as

is apparent from inspection of the proof of Theorem 4.3 in Wheelock and

Wilson (2008a). This result means that the unconditional, hyperbolic α-

quantile efficiency estimator γ̂α,nt(x,y | St
nt

) does not suffer from the curse

of dimensionality that plagues most non-parametric estimators since its con-

vergence rate depends solely on the sample size n and involves neither p nor
15A sequence of random variables {ζn}∞n=1 converges completely to a random variable ζ,

denoted by ζn
c−→ ζ, if limn→∞

∑n
j=1 Pr (|ζj − ζ| ≥ ε) < ∞ ∀ ε > 0; this type of conver-

gence was introduced by Hsu and Robbins (1947), and is a stronger form of convergence

than almost-sure convergence, which is implied by complete convergence.
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q. Of course, when viewed as an estimator of distance to the full frontier,

γ̂α(n),n(x,y | St
nt

) trades its root-n convergence rate when α is fixed for

the slow convergence rate of FDH estimators, but retains the advantage of

robustness.

It is important to note that the results described above do not hold if

α = 1. In particular, if α = 1, the hyperbolic α-quantile estimator defined in

(1.39) measures distance along a hyperbolic path to the FDH of the sample

data. In this case, the estimator has an asymptotic Weibull distribution,

with convergence rate n−1/(p+q). Similarly, if α = 1, the conditional α-

quantile distance function estimators described by Daouia and Simar (2007)

become equivalent to FDH estimators of Shephard (1970) input and output

distance functions, which converge at the rate n−1/(p+q), as noted earlier.

1.4.2 Malmquist indices with the hyperbolic α-quantile esti-

mator

In the case of one input and one output, productivity could be assessed by

the ratio of output to input quantities. If Pt∂ exhibits constant returns to

scale everywhere, there is little conceptual difference between productivity

and technical efficiency, although the two might be measured differently.

Where there are multiple inputs and multiple outputs, productivity can-

not be measured reliably by simple ratios. Instead, in dynamic contexts,

Malmquist indices are typically used to measure changes in productivity.

These indices are usually defined in terms of the Shephard input and output

distance functions defined in (1.4) and (1.5), which in turn are estimated by

the DEA estimators as discussed in Section 1.4.1; see Färe and Grosskopf

(1996) for examples and discussion.

Wheelock and Wilson (2008b) showed that Malmquist indices can also

be defined in terms of the unconditional, hyperbolic α-quantile measures

discussed above in Section 1.4. Along the lines of Wheelock and Wilson

(2008b), define

Pt
α =

{
(x,y) | x ≥ x̃, y ∈ [0, ỹ] ∀ (x̃, ỹ) ∈ Pt∂

α

}
. (1.40)

Then Pt∂
α is the closure of the compliment of the closed set Pt

α, just as Pt∂

is the closure of the compliment of Pt.
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Now define the operator V(·) so that V(A) denotes the convex cone

of a set As ⊂ R
p+q
+ . to denote the convex cone of a set in R

p+q
+ . Then

Pt
α ⊆ V(Pt

α). As noted previously, different distance functions can be defined

by replacing Pt in (1.6) with some other set to measure distance from (x,y)

to the boundary of the other set; e.g., γ(x,y | V(Pα)) measures distance

from (x,y) along a hyperbolic path (γ−1x, γy), γ > 0 to the boundary of

the set V(Pt
α).

In order to measure the change in productivity of a firm operating at

times t1 and t2, define the Malmquist-type index

Mα,i(t1, t2) ≡
[

γ
(
xit2 ,yit2 | V(Pt1

α )
)

γ
(
xit1 ,yit1 | V(Pt1

α )
) ×

γ
(
xit2 ,yit2 | V(Pt2

α )
)

γ
(
xit1 ,yit1 | V(Pt2

α )
)] 1

2

(1.41)

along the lines of Wheelock and Wilson, where xit and yit denote the ob-

served input and output vectors for firm i at time t. This index is analogous

to those proposed by Färe et al. (1992, 1994), but with two important differ-

ences. First, productivity is benchmarked against the boundaries of V(Pt1
α )

and V(Pt2
α ), rather than the boundaries of V(Pt1) and V(Pt2). Second, the

hyperbolic direction is used, rather than an input or output direction, avoid-

ing the ambiguity discussed in Section 1.4

The index Mα,i(t1, t2) in (1.41) consists of a geometric mean of two ra-

tios appearing inside the square brackets in (1.41). The first ratio inside the

square brackets measures the change in productivity using as a benchmark

the convex cone of the set bounded by the hyperbolic α-quantile Pt1∂
α pre-

vailing at time t1, while the second ratio measures productivity change using

as a benchmark the convex cone of the set bounded by the quantile Pt2∂
α

prevailing at time t2. A particular firm either moves closer to each bench-

mark (becoming more productive), farther from each benchmark (becoming

less productive), or closer to one and farther from the other. Values of the

Malmquist index defined in (1.41) less than (equal to, greater than) unity

indicate an increase (no change, a decrease) in productivity.

Malmquist indices can be decomposed to identify the sources of changes

in productivity, and various decompositions of output- and input-oriented

Malmquist indices have been proposed in the literature (see Wheelock and

Wilson, 1999 for an example). Although many decompositions are possible,
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a measure of efficiency change and a measure of technical change are common

to most decompositions that have appeared in the literature. In terms of

unconditional hyperbolic α-quantiles, efficiency change from time t1 to time

t2 for firm i is measured by

Eα,i(t1, t2) =
(

γα(xit2 ,yit2 | Ft2)
γα(xit1 ,yit1 | Ft1)

)
. (1.42)

This index measures the change in efficiency experienced by firm i between

times t1 and t2, relative to the unconditional, hyperbolic α-quantiles at times

t1 and t2; values less than (equal to, greater than) unity indicate an increase

(no change, decrease) in efficiency between times t1 and t2.

Technical change encountered by the ith firm is measured by

Tα,i(t1, t2) ≡
[

γα

(
xit1 ,yit1 | Ft1

)
γα

(
xit1 ,yit1 | Ft2

) ×
γα

(
xit2 ,yit2 | Ft1

)
γα

(
xit2 ,yit2 | Ft2

)] 1
2

. (1.43)

where γα

(
xitj ,yitj | Ftk

)
measures distance from the firm’s location at time

tj to the hyperbolic α quantile Ptk
α prevailing at time tk, along a hyperbolic

path. The right-hand side of (1.43) is a geometric mean of two ratios that

measure the shift in the α-quantile relative to the ith firm’s position at times

t1 and t2. The first ratio will be less than (equal to, greater than) unity when

distance from the point (xit1 ,yit1) along the hyperbolic path (γ−1xit1 , γyit1),

γ > 0, to the hyperbolic α-quantile increases (remains the same, decreases)

from time t1 to t2. Similarly, the second ratio will be less than (equal to,

greater than) unity when distance from the point (xit2 ,yit2) along the hy-

perbolic path (γ−1xit2 , γyit2), γ > 0, to the hyperbolic α-quantile increases

(remains the same, decreases) from time t1 to t2. Hence Tα(t1, t2)(<,=, >)1

indicates that on average, the hyperbolic α-quantile (shifts upward, remains

unchanged, shifts downward).

As discussed by Wheelock and Wilson (2008b), estimators of the indices

Eα,i(t1, t2) and Tα,i(t1, t2) are obtained by replacing the unknown distance

functions on the right-hand sides of (1.42) and (1.43) with the correspond-

ing quantile-based estimators discussed above in Section 1.4.1. In the case

the quantile-based Malmquist index defined in (1.41), distance functions

γ
(
xitj ,yitj | V(Ptk

α )
)

must be estimated for j, k ∈ {1, 2}, but this is straight-

forward.
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In order to estimate γ
(
xitj ,yitj | V(Ptk

α )
)
, first compute estimates γ̂

tj |tk
i =

γ̂α,nk

(
xitj ,yitj | Stk

ntk

)
for all

(
xitj ,yitj

)
∈ Stj

ntj
. Then set x

∂,tj |tk
i =

(
γ̂

tj |tk
i

)−1
·

xitj , y
∂,tj |tk
i = γ̂

tj |tk
i yitj ∀ i = 1, . . . , nj. Then an estimate γ

(
xitj ,yitj | ̂V(Ptk

α )
)

of γ
(
xitj ,yitj | V(Ptk

α )
)

is given by the square root of the estimate

δout

(
xitj ,yitj | ̂V(Ptk

α )
)

, which can be computed as the solution of the

linear program (1.16).

Inference about the indices Mα,i(t1, t2), Eα,i(t1, t2), and Tα,i(t1, t2), is

straightforward, again because partial frontiers, instead of the full frontier

P∂ , are estimated. Bootstrap samples can be constructed by drawing from

the empirical distribution of the observations in St
nt

in each time period, and

computing bootstrap analogs of the estimates M̂α,i(t1, t2), T̂α,i(t1, t2), and

Êα,i(t1, t2). See Wheelock and Wilson (2008b) for additional discussion.
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1.5 Index numbers to measure total factor produc-

tivity

Index numbers are usually instruments to measure the changes in total factor

productivity (TFP)16. With those indices we want to measure the ability

for the firm, to convert inputs as capital and labor in outputs as goods

and services. Measuring productivity changes necessarily involves measuring

changes in the levels of output and the associated changes in the input usage.

Such changes are easy to measure in the case of a single input and a single

output, but are more difficult when inputs and outputs are considered.

In this section we introduce the Tornqvist index number to measure the

productivity. Let yij , pij quantity and price for the output i (i = 1, .., N) at

the time j (j = 1, ..T ), then the logarithmic Tornqvist index for two periods

s and t is:

ln Yst =
N∑

i=1

wis + wit

2
(ln yit − ln yis) (1.44)

where:

wij =
pij · yij∑N
i=1 pij · yij

i = 1, . . . , N ; j = s, t

wij is weights given by the value shares. Preference for the use of the

Torqvist index formula is due to the many important economic-theoretic

properties attributed to the index by Caves et al. (1982a). In the same way,

it is possible to define Xst the Tornqvist index for the input let xkj and bkj

quantity and price for the k-th input (k = 1, ..,M) at the time j (j = 1, ..T ):

ln Xst =
M∑

k=1

vks + vkt

2
(ln xkt − ln xks) (1.45)

where:
16For an a exhaustive discussion on index numbers, it is possible to read Coelli et al.

(2005) and Fried et al. (2008).
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vkj =
bkj · xkj∑M

k=1 bkj · xkj

k = 1, . . . ,M ; j = s, t

Then, the TFP in period s and t is:

ln TFPst =
ln Yst

ln Xst
=

1
2

N∑
i=1

(wis + wit)(log yit − log yis)

−
M∑

k=1

(vks + vkt)(ln xkt − ln xks)

(1.46)

The main trouble of 1.46 is the non transitivity17 of the relation when

there is a change in the base period. Caves et al. (1982b) derived a modified

formula to gain the transitive property:

ln TFP ∗
st =

[
1
2

N∑
i=1

(wit + wi)(ln yit − ln yi) −
1
2

N∑
i=1

(wis + wi)(ln yis − ln yi)

]
[

1
2

N∑
i=1

(vkt + vk)(ln xkt − ln xk) −
1
2

N∑
k=1

(vks + vk)(ln xks − ln xk)

]
(1.47)

where:

ln wi =
1
T

T∑
h=1

wih

ln yi =
1
T

T∑
h=1

yih i = 1, . . . , N

ln vk =
1
T

T∑
h=1

wkh

ln xk =
1
T

T∑
h=1

xkh k = 1, . . . ,M. (1.48)

The expressions in 1.48 are simple mean of outputs, inputs and value

share on T comparisons, and their weights on the same interval. In this way,
17Let s, t, r, three time periods, an index Ist is transitive if Ist = Isr × Irt.
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when we add or remove an observation, it is needed to recalculate all the

interval.
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Chapter 2

The evolution of Total Factor

Productivity of Alitalia

2.1 Introduction

From an historic point of view, the principles of liberalization of the air

transport services can be found in the Airline Deregulation Act (1978). For

the US air transport industry, it was the end of the regulation period and

the return to a lassaiz-faire economy. In fact, since 1938 the air transport in-

dustry was slightly controlled. Starting from that date, the fear of a market

failure pressed US Government to drastically reduces the degree of competi-

tion in the industry. In 1978, US Government moved towards liberalization,

culminated in the creation of a competitive market. The pursued aim was to

reduce the price control, increase competition through the rise of licenses and

remove monopolistic situations. The results were promising: the fares were

40% cheaper and the number of passengers grew by 140% (Thierer 1998).

Moreover, between 1976 and 1986 the eight largest US carriers exert costs

that were $4 billion per year less than those of the eight largest European

carriers (Good et al. 1995). Oum et al. (2005) point out as a share of the

cost differential could be generated by the existence of X-inefficiency which

are typical of the non competitive market. Thus, the liberalization of the air

transport in US has had twofold advantage: the passengers have benefit from

lower fares and the governments have had a lower engagement, with a reduc-
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tion of the costs for the public finances. The liberalization process in Europe

was slowly. At the begin, only the bilateral agreements between countries

granted the “Third and the Fourth Freedom”1. Precursors were Netherland

and Great Britain: in 1984 they drew up a bilateral agreement which allows

to each flag carrier to carry out flights with any fare or frequency until both

countries disapproved it. After that, the growth in bilateral agreements was

significant: more than 200 signed. However, an analysis of that agreements

shows us a great control of the governments in the choices on supply and

stages. So, only one carrier might flight between the two countries and the

fares were usually administrate. The result was the creation of duopoly

markets between pairs of countries. The European reforms ended in 1993

with the “Eighth freedom”2. Before 1993, only small regional airports were

fully liberalized. The main aim of the present paper is to investigate the

impact of liberalization on the efficiency of the Italian flag company from

1992, the year prior the last European reform, to 2006. Alitalia is a listed

company controlled by Italian government through the Treasury Minister

which holds 51% of the shares. At the moment, the carrier has economic

and financial crisis: several managements rounded at the control, but no

solution was founded3. In January 2007, the Italian government announced

its willingness to sell its shares in order to fully privatize Alitalia. After the

bids, only Air-France was able to buy the Italian company, but there was not

an agreement on the amount of dismissed employees (April 2008) and the

deal failed. At the moment the carrier works through the support of a l oan

of 300 million euro from Italian government. However, such a procedure is

not allowed by the European laws on state aid and some European carriers

have invoked the intervention of the European Court of Justice.

Previous studies on Alitalia concern mainly the performance of the com-
1The Freedoms of the air were formulated in the Convention on International Civil

Aviation of 1944. The Third freedom is the right to carry passengers or cargo from one’s

own country to another. The Fourth Freedom is the right to carry passengers or cargo

from another country to one’s own.
2The Eighth freedom (true cabotage) permits to carry passengers and cargo between

two airports in a foreign country.
3The last strategic plan was presented in 2005 (Alitalia 2005), but it failed to achieve

its aim (Boitani and Gallo 2006).
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pany compared to those of the other European carriers in the last years

(Arrigo 2005, Barone and Bentivogli 2006, Gitto and Minervini 2007, Bar-

bot et al. 2008) or the conducts settled to maintain its monopolistic position

in a competitive market (Giannaccari 2003). In this chapter, the employed

methodology, i.e. Tornqvist index number, allows to analyze the impacts of

liberalization and management decisions on the productivity of the Italian

flag company from 1992 to 2006.

2.2 The air transport industry

The air transport industry can be considered like a differentiated oligopoly4.

It is a network industry, where there are flight paths (edges) that connect

pairs of airports (nodes). Like many network industry, there are externality

due to its characteristics: then, revenues and costs are strong dependent on

the routes and there are scale, scope and density economies. Scale economies

derive from the possibility to reduce the unit cost employing aircrafts with

more capacity; so, the benefits result from fixed and semi-fixed costs (like pi-

lots and cabin crews) which are divided by a different number of passengers.

Further, the stage lengths can be a source of scale economies: indeed longer

stage length permit a better use of the airplanes since their use (given by

times of flight) should increase. The density economies derive from a growth

of the number of flights for the same flight path; in this case there are two

benefits: from one side there is a better use of the airplanes, to the other,

more flights reduce the waiting time for the business customers who exert an

inelastic demand5. Morrison and Winston (1986) have shown that double

frequency in national flight in the US increases the business demand of 21%.

It is possible to individuate two alternative sources of scope economies in

the air transport services. The first stems directly from the possibility to

transport passengers and freights into the same airplane (for instance, the

companies in order to reach such a cost advantages have introduced a limit

for the weight of baggage). The second one, is due to the complementary
4In a differentiated oligopoly, few firms produce products a commodity which differs

enough to have their own sloping demand curve.
5The so called Mohring (1972)’s effect.
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of stages. In fact it is reasonable to think about individual stages as dis-

tinct products. Then, the average cost is lower when an airline increases

adjacent stages in a hub and spoke network (Hanlon, 1999). To increase

the cost advantages due to the scope economies, companies have increased

the strategic alliances. In this new environment, 71% of world passenger

traffic is generated by the three global alliances (Alliance, SkyTeam and

Oneworld) composed by about forty carriers (University 2005). To enforce

this cost leverage, the carriers of the same alliance usually use the same fre-

quent flyer program with the purpose to retain the clients. But this business

model, heavily based on hub and spoke network, is not the only one in the

air transport industry. Starting from 1970s in United States, a new model

has been employed in the air services industry at the worldwide level the so

called “low cost” (LC). One of the most important difference is represented

by the network structure of the low cost carriers which are characterized by

point to point connections. Other differences stem by the type of clients,

mainly leisure and the reduction of some expenses such as personal, market-

ing and sales (AGCM 2005). Bigelli and Pompeo (2002) show that a “low

cost” carrier exerts, on average, cost that are about 50% of a “full service”

carrier. So, LC carriers aim directly to specific market, entering where and

when the demand is relevant. Further, LC carriers look at the more elastic

part of the demand, trying in that way to differentiate the service. Trethe-

way (2004) suggests the business model adopted by the LC carriers is more

robust and in the future, the full service carriers will take a smaller market

share. Thus, at the moment it is possible to individuate two alternative

business models to operate air transport services:

• the full service company, with hub and spoke network;

• the low cost company, with point to point network.

Due to the differences in these models, once chosen a strategy a carrier

has to set all its efforts to support it. In fact, if the company does not

support adequately the choice business model, adopting a clear strategy

and following actions, it increases dramatically its exposure to the failure. In

Italy, the market share for the LC carriers amounts to 26% in 2007 (E.N.A.C.

2001–2007).
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2.3 Data

Index numbers are usually employed to analyze the changes in TFP. In

fact, they allow to measure the ability of firms to convert inputs, as capital

and labor, in outputs, as goods and services. In this chapter, following

the literature on the measure of productivity in air transport (Oum and

Yu, 1995, Oum-Yu-1998) a modified Tornqvist index (Caves et al. 1982b),

showed in the expression (1.47) has been used.

Economic data has been obtained from annual Alitalia reports. In partic-

ular, we employ the consolidated annual reports, from 1995 to 2006, and the

annual report of Alitalia SpA, from 1992 to 1994. In fact, until 1994, Alitalia

was the owner of Aeroporti di Roma SpA (airport management company of

Roma Fiumicino and Ciampino airports) and consequently, consolidated re-

port could be source of bias. Traffic data are taken from Association of

European Airlines (AEA) and Italian Air Civil Authority (Ente Nazionale

Aviazione Civile, ENAC). Fleet composition is obtained by annual reports

while technical information about airplanes are taken from their websites.

Table 2.1: Descriptive statistics of Alitalia.

1992 1996 2000 2004 2006

Total Revenues (million e) 2,978 4,250 5,661 4,302 4,724

Total operating expenses 2,898 4,215 5,913 4,818 5,190

(million e)

Operating profit (loss) (million e) 80.2 35.5 (252.8) (515.5) (465.4)

Net profit (loss) (million e) (8.7) (621.2) (255.5) (812) (625.6)

Debt ratio 0.75 0.94 0.68 0.90 0.79

Total asset (million e) 2,176 3,223 4,700 4,476 4,184

Number of employees 19,256 19,410 22,184 21,539 11,466

Number of airplanes 105 138 175 190 188

Load factor (%) 65 69 72 71 74
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In Tab.2.1 some synthetic data are reported. From the Tab.2.1 it can be

noticed as the increase of the debt has not allow to achieve a net profit for

most of years. The company has obtained a net profit only in 1997, 1999

and 2002. The carrier increases the fleet and reduces drastically the employs

in 2006 when it spins out services related to aviation maintenance, airport

assistance, IT and telecommunications in Alitalia Servizi. Load factor of

the airline is low, if it is compared with those of Ryanair, Easyjet (80%) and

Air France-KLM (81%).

Following Good et al. (1995), Forsyth (2001), Oum and Yu, (1995, 1998),

Oum et al. (2005) the productivity evolution has been analyzed by employing

four outputs and five inputs. The outputs are: scheduled passengers service

(measured in revenue passenger kilometers, RPK), charter passenger service

(measured in revenue passenger kilometers, CRPK), scheduled cargo services

(measured in revenue ton kilometers, RTK) and other services. The other

services include revenues from no-core services as ground handling, aircraft

maintenance, airport and technical assistance. In order to apply (1.47), a

quantity index for the other services has been obtained by deflating other

revenues with consumer price index. The outputs evolution is depicted in

Fig. 2.1.

Figure 2.1: Composition of Revenues of Alitalia. Constant price (base=

1995).

The five inputs are: labor, flight equipment, fuel, average stage length,
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and other inputs. Labor is measured by full time equivalent employees,

which allows a better comparison due to seasonal characteristics of air trans-

port industry; labor price is obtained dividing labor cost by full time equiv-

alent employees. Flight equipment is measured by the typical volumetric

payload of airplanes6. We use this index as proxy of capital since it allows

to capture the difference in size and capacity of the fleet. Flight equip-

ment price is obtained dividing leasing, rental and amortization expenses

for aircrafts by flight equipment index. Fuel is measured in gallons of fuel

consumed and its expense is reported in the notes of consolidated financial

statement. How has been pointed out in Section 2.2, the network structure

has a great impact on cost structure for an airline, so we introduce such

variable measured by the average stage length. Its price has been obtained

by dividing total traffic and airport expenses on average stage length. Fi-

nally, other inputs concern the residual airline expenses; quantity index has

been obtained by deflating other expenses (given by difference between total

operating expenses and previous expenses) with consumer price index.

Now, before applying the methodology, we want to highlight some pecu-

liarities of the cost structure of the Italian flag carrier.

Figure 2.2: Composition of expenses of Alitalia. Constant price (base=

1995).

6An index is obtained by multiplying typical volumetric payload of an aircraft for its

frequency.
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From the Figure 2.2 it can be noticed as Alitalia exerts relevant expenses

for selling. Such variable includes cost due to brokerage fees, advertising and

promotional expenses. The impact of travel agent in limiting competition

in airline industry has been pointed out by Barrett (2006) and Bailey and

Williams (1998). This strategic conduct has been partially offset in recent

years by the diffusion of internet as selling device. Jarach (2002) noticed as

“the application of e-commerce solutions have had a considerable positive

impact on containing carriers’ costs by smoothing their dependence on com-

puter reservation system (CRS) interfaces and on travel agents’ commercial

practices”.

2.4 Results

2.4.1 Empirical results

The evolution of TFP, from 1992 to 2006, and its two component, the output

and input index, are reported in Fig. 2.3.

Figure 2.3: Total Factor Productivity, Output and Input Index of Alitalia.

1992-2006.

After the liberalization process, Alitalia increases the productivity until

1997 (17% more than 1992). This result can be explained by two factors:
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the increase of the air transport market (30%) and more efficient resource

allocation as consequence of the increase of competition (Oum et al. 2005).

After 1997, the slowdown in the productivity index has been caused by

an extraordinary expansion of inputs. It is important to notice that in

1998 Malpensa airport becomes the second hub for the Italian flag company.

A network configuration with two hubs is not so common in air-transport

industry. For example, Air France-KLM and few American carriers, have

two hubs, but they have huge markets in terms of destinations and traffic,

not comparable to that one of Alitalia. To better asses the strategy adopted

by the company during 90s, we compare the evolution of its supply, given by

available seat kilometer (ASK) and an index of unit cost, given by the ratio

aeronautical expenses (personnel, fuel, airport and traffic, amortization and

leasing) on ASK in Fig.2.4.

Figure 2.4: Evolution of market and costs of Alitalia. 1992-2006.

Looking at the Fig.2.4 it can be noticed four phases. The first phase,

from 1992 to 1998, has been characterized by a costless growth of the supply

at the same average cost. Staring from 1998 (second phase), the slope of

average cost change drastically due mainly to the new hub of Malpensa and

the increase of the fuel price. The third phase marks the Alitalia crisis:

increase of costs and supply reduction. The period is characterized by the

tragic events of the September 11th and it is denoted by the difficulty for
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the company to found alliances to support the previous input expansion7.

The fourth phase begins in 2002: the Italian flag company tries to reduce

its cost; for this aim, in 2006 there was the spin-off of Alitalia Servizi. More

insights can be obtained by the analysis of figures 2.5, 2.6 and 2.7.

Figure 2.5: ASK evolution: Alitalia and main European airlines. 1992-2006.

Figure 2.5 compares the ASK index for Alitalia and the main European

airlines (Air France, Lufhansa, KLM, British, Iberia). Figures 2.6 and 2.7

describe its national and international market8 evolution.

In fact, looking at Fig. 2.5, after 1997 the company increases its gap from

the main European companies in terms of supply. In the domestic market

the liberalization process has drastically reduce the market share of national

passengers (Fig. 2.6). The market share of international passengers shows a

moderate reduction since its dominant position in some stages between Italy

and other countries (Fig. 2.6 and 2.7). Looking at the worldwide market

(Fig. 2.7) Alitalia has reduced its market share where the level competition

is high (Europe and Asia). However, the stability of American market is the

result of the presence of bilateral agreements which reduce the competition.
7On April 2000 there was the failure of partnership with KLM (“KLM Ends Venture

with Alitalia”, Wall Street Journal, May 1st 2000).
8In Fig. 2.6 and 2.7, we considered the flights with origin and destination in Italy as

relevant market of Alitalia.
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Figure 2.6: Evolution of market share and number of passengers of Alitalia,

1995-2006.

Figure 2.7: International market share of Alitalia: 1997-2006.
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2.4.2 Alitalia conduct

The above empirical evidences are strictly connected to the decisions op-

erated by the company and by the Italian Government in new contest of

liberalization. The company from 1992 to 2000 increased the fleet of 25%.

The objective of such a conduct is controversial: in fact, to one hand the cap-

ital expansion can be explained by the market growth, to the other it could

mask an aggressive strategy pursued to block new entries in the internal mar-

ket. Moreover as discussed above, in 1998 the Government decision to open

the second hub of Milano Malpensa has dramatically increased expenses of

the company. With such a strategy, it is need to undertake conducts to sup-

port the market growth. In other terms the success of a full service airlines

after liberalization depends from the decisions made by companies to en-

hance a supply-oriented strategy; this means mainly increasing the number

of aircrafts and destinations (Gitto and Minervini 2007). The destinations

increase has been marginally pursued by the Italian company. In fact, mar-

ket expansion in the air transport industry can be reached mainly through

merger process and strategic alliances (Fan et al. 2001). However, such coop-

eration agreement failed in 2000 and the strategic alliances have been slowly

enforced since 2001, when the company joined Skyteam alliance with nine

big international carries (Northwest, KLM-Air France, Continental, Delta

Airlines, Korean Air, Aeromexico, CSA Czech Airlines and Aeroflot).

The Italian domestic market is classified by Association of European Air-

lines as one of the European “top domestic market”. However the Italian

flag company has loosed market shares as consequence of the increased com-

petition (Fig. 2.6). In this new environment the conduct of the incumbent

seems anticompetitive: the use of slots to block new entries, code-sharing

agreements to increase the tariffs on domestic stages, over commissions to

travel agents for discriminate the other Italian airlines and the use of the

same extra-fees with other Italian carriers to increase revenues (Italian An-

titrust decision n.2169 in 1994, n.4398 in 1996, n.6793 in 1999, n.9693 in

2001, n.10981 in 2002, n.11038 in 2002; see Giannaccari, 2003 for a discus-

sion).

To sum up the company once incurred in new capital investments has not
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been able to support a supply-oriented strategy with the consequence of the

reduction in its TFP till 2000. Afterward the new growth on productivity,

started in 2002, has been caused mainly by the cost reduction policy adopted

by the company. However the high cost structure is still a problem for

Alitalia9.

2.5 Conclusions

Employing the index number methodology we study the productivity evolu-

tion of the Italian flag company from 1992 to 2006. In fact since the second

half of 90’s, the Italian air-transport market, as those of most European

countries, has been characterized by new competitive paradigm, stemming

from the liberalization process, which has affected the strategies of the in-

cumbent and its majority shareholder: the Italian Government.

The slowdown in the company productivity is linked to the absence of a

clear supply-oriented strategy, which should follow the expansion of inputs

occurred since 1992 and finished with the creation of the second Italian hub.

The company has suffered on the domestic market by the raise of competition

and by slow capacity to change its strategy, sometime more interested in

preserving its incumbent position rather than exploiting or retaining new

markets. On the international market the failure of the agreement with

KLM, partially compensated by the participation to the Skyteam alliance,

has not allowed an expansion of its market. Company privatization and

consolidation of domestic market seems the only solution; (Macchiati and

Siciliano 2007), analyzing the experience of British, Iberia and Lufthansa,

highlight as the consolidation and the privatization have produced increases

in labor productivity and profitability of airlines.

9The company has received State aid yet in 2008.
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Chapter 3

Liberalization of air

transport and airports

3.1 Introduction

Since the mid-1980s, the worldwide air transport sector has been charac-

terized by significant structural, institutional and regulatory changes. In

particular, the deregulation policies in the air transport services, started in

US after the mid-1980s and followed by Europe at the end of 80s, were de-

signed to foster competition in both domestic and international markets and

to enhance carriers’ performance Oum and Yu (1995). At the same time,

most governments have adopted policies whose effects have impacted on air-

port management and ownership structure. In particular, commercialization

and privatization of airports have become the worldwide trend Oum et al.

(2006), although the processes of implementation have been very different

and heterogeneous among countries. The common aim of governments in

promoting airport privatization includes a desire to: remove airports from

the public sector, increase capital investment in existing airports, protect

airport administration from political interference and impose commercial

disciplines on airport management Lin and Hong (2006).

The Italian scenario has been permeated by deeply institutional changes,

enabled by national and European directives. Such directives proposed

changes for concession agreements, government and entrance of private capi-
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tal in the airport management companies. In turn, these institutional forces

have set up high standards to the diffusion of mixed private-government

ownership and the disappearance of 100% government corporation owner-

ship.

In this new context characterized by a complex and dynamic structure,

the need to intensify the monitoring of airport performances from investors

and governments perspective has been risen. In general, the performance

measures could be helpful in policy decision to choose the best framework to

organize the airport system. Indeed, they provide meaningful insights across

the airports, identify the best performers and determine the main variables

that impact on airport performance.

As well known, the performance of airports is measured in terms of their

productivity and efficiency. Thus, the efficiency analysis of airport industry

has been becoming a “hot” topic and it is handled as a general methodology

in evaluating the effects of regulatory reform on airports’ performance. Many

scientific papers have been published on the airport performances but there

is still room for new researches. Indeed, most of them have focused on

productivity and efficiency analysis of US and major international airports

(Gillen and Lall 1997, Sarkis 2000, Mart̀ın and Romàn 2001, Pels et al. 2001,

Oum et al. 2006), omitting the role played by regional airports in attracting

air-transport services operated by low cost companies. Moreover, there are

few papers dealing with the Italian airport industry, some of which take into

account the two Italian systems (Roma and Milano).

The objective of the present chapter is twofold. The first is to analyze

the performance of a representative sample of Italian airports in terms of

technical efficiency by means of a robust non parametric method over the

2000-2004. The methodological approach is based on the theoretical develop-

ments introduced by Simar and Wilson (1998, 2000a, 2002) in the efficiency

analysis. The DEA estimators are used to define the estimated production

frontier, conditioned to the original data while the bootstrap procedure to

correct the efficiency bias as well as allow whether the efficiency are really

determinated by the analyzed process or merely inducted by sampling vari-

ations. Moreover, the bootstrapped procedure is employed to test globally

return to scale. Since the complexity of the system (e.g. difference in life
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cycles of the airport, management, government policy, market structures),

the inferential approach is able to provide a more accurate analysis. The

second objective is to identify the avenues to improvement in the ability to

generate financial returns and use the airport capacity. To provide more

insights to the airport management companies and political decision mak-

ers, a Physical and a Revenue Model are evaluated; further, the statistical

analysis is interpreted in terms of managerial strategy, by means of a scatter

plot-matrix (Pacheco and Fernandes, 2003).

3.2 Previous study on efficiency of Italian airport

sector

Barros and Dieke (2007, 2008) propose two studies to empirically address the

operational and financial efficiency of the Italian airports sector, investigat-

ing also for the main drivers of the inefficiency, by using a double bootstrap

procedure (Simar and Wilson 2007). Although their innovative approach

of applying the two stage methodology, certainly accurate from an econo-

metric point of view, both papers suffer from some pitfalls. The drawbacks

concern the lack of an accurate (a) choice of the variables to use, in terms of

endogenous and exogenous variables with regard to the production problem,

(b) characterisation of the airports (in terms of public vs private) and (c)

analysis of the efficiency estimates (in terms of sensitivity to the sampling

variation), with the consequence of non-robust policy implications.

In particular, about Barros and Dieke (2008), it is possible to individuate

the following drawbacks:

1. Management Status (see Table1, pag 1041). Most Italian airport

companies are associated forms constituted by more shareholders (pub-

lic and/or private). To determinate the management status (as Barros

and Dieke called it), it is need to look at the majority ownership. From

the Italian Statistical register of Air Transport, it is possible to derive

the composition. In particular:

• Puglia regional government (Regione Puglia) holds 99.31% of

the shares in Aeroporti di Puglia SPA (Bari - Palese Macchie,
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Brindisi-Papola Casale, Foggia Gino Lisa, Taranto Grottaglie)

(so, public status). The authors classify Bari - Palese Macchie

with a private management status.

• SAC SPA (Catania - Fontanarossa) is full owned by ASAC, a mix

of public and private company where the majority is private (so,

private status). The authors classify it with a public management

status.

• Aeroporto di Genova S.p.a. (Genova - Sestri) is 60% owned by

Local Port Authority (Autorit Portuale di Genova) and 25% by

Chamber of Commerce of Genova (so public status). The authors

classify it with a private management status.

• S.E.A. SPA (Milano Linate and Milano Malpensa) is 84.56%

owned by Local Council of Milano (so public status). The au-

thor classify it with a private management status.

• S.A.C.B.O. S.p.A. (Bergamo - Orio al Serio) is 49.9% owned by

S.E.A. SPA (see above) and 33.6% by Local governments of Berg-

amo (so, public status). They classify it with a private manage-

ment status.

• SAGAT S.p.A. (Torino - Caselle) is 51% owned by Local gov-

ernments of Torino (Local Council, Province, Region) (so, public

status). The authors characterized it with a private management

status.

The authors use these information in the second stage regression of

their paper, to conclude: “Airports that are partially private con-

tribute to efficiency (Fung et al. 2008, Pels et al. 2003). This is an

expected result, since private airports seem to be more efficient than

public”.

2. Exclusion of most important airports (see pag 1045). The au-

thors do not include in analysis the most important airports like Roma

Ciampino (1, 765, 930 passengers in 2003, 14th Italian airport) and Mi-

lano Linate (8, 755, 871 passengers in 2003, 3th Italian airport).
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3. Concession Agreement. The authors do not discuss about the role

played by concession agreements between the central government and

airport companies. It is important because the agreement typology

has impact on the airport revenues.

4. Data misspecification (see Table 1, pag. 1041). the authors use as

data source the Italian Statistical register of Air Transportation. It

reports costs and revenues (in a ratio form) for the companies that

manage the airports instead of cost and revenues for each airport. It

means, for instance, costs and revenues of A.D.R. SPA are the sum

of costs and revenues for the airports of Roma Fiumicino and Roma

Ciampino. This is the situation for the airports of Bari - Palese Mac-

chie, Brindisi - Papola Casale, Foggia Gino Lisa, Taranto Grottaglie

(Aeroporti di Puglia SPA.) and Milano Linate and Milano Malpensa

(S.E.A. SPA), too. The authors neglect this fact and assign aggregate

measures (related to more than one airport) to some variables, mixing

data (such as passengers, movements, etc..) of an airport with costs

and revenues of many.

5. Lack of accuracy in the application of the double bootstrap

procedure (see pag. 1045). The authors claim: “We use the para-

metric bootstrap for regression to construct the bootstrap confidence

intervals for the estimates of parameters (δ, σ2
ε ), which incorporates

information on the parametric structure and distributional assump-

tion”. Oppositely, they do not show the most significant results of

this procedure such as the confidence intervals and do not provide

any information about that. Moreover, it is not clear which algorithm

they apply for estimating the second stage regression, since Simar and

Wilson (2007) proposed two algorithms to apply for different pursuits.

6. Misspecification of the estimated technology frontier (see pag.1046).

The authors state: “To estimate the cost frontier, we used balanced

panel data on 31 Italian airport authorities for the years 2001-2003”.

Oppositely, they estimate a production frontier, using Data Envelop-

ment Analysis (DEA). Even more, and always in contradiction with
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what they do, in some lines below they claim “We measured the produc-

tion of the airport authorities according to a generalized Cobb-Douglas

production function”. I point out that the Cobb-Douglas is one of the

functional forms to assume in the parametric approach to estimate the

production function. Since they use DEA approach, it is not needed

of functional form (i.e. the functional form has not to been assumed).

7. Curse of dimensionality (see pag. 1046). They state: “The com-

bination of the measured indicators ensures adherence to the DEA

convention that the minimum number of DMU observations should be

greater than three times the number of inputs plus outputs [120 ≥
3(6 + 3)] (Raab and Lichty, 2002).” Currently, there are some papers

that prove the rate of convergence of DEA-VRS model (see Kneip

et al.,1998 and Simar and Wilson, 2008 for more details), making

meaningless, from a statistical viewpoint, some Rules of thumbs, like

that one used in the paper. The Curse of dimensionality (Simar and

Wilson 2008) states that the number of observations has to increase

exponentially (not linearly proportional) respect to the number of in-

puts and outputs to maintain the same order of estimation error. This

problem is severe and needs attention because the number of inputs

and outputs strongly determines the number of how many DMUs are

close or on the efficiency frontier. This consideration makes their re-

sults dubious. Indeed, on pag.1047, they find “The overall conclusion

is that Italian airports are well managed as far as technical efficiency

is concerned”).

8. Descriptive statistics on double bootstrap (see Table 5, pag.1049).

The total number of observations (1000 observations) is dubious. In-

deed, the authors use a dataset of 31 airports, over a 3 year time period.

Using the double bootstrapped algorithm, the number of observations

should be given by the number of airports times the numbers of years,

replicated by the number of bootstrap fixed. Independently from the

number of bootstrap replications set (2000 are suggested by Simar and

Wilson, 2007 to have a better estimation), the number of observations

should be a multiple of 93 (given by 31x3), that is inconsistent with
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1000, as they report.

9. Explanatory variables in the second stage (see pag. 1049). The

inclusion of WLU (i.e. sum of number of passengers and amount of

cargo) in the explanation variables is dubious because it is not exoge-

nous due to the fact number of passengers and amount of cargo are

used as input variables in the first stage. A choice between input and

environmental variables is requested in this analysis.

10. Economies of scope (see pag. 1049). They state: “North is a

dummy variable which is one for airports belonging to north part of

the country, the more developed region and zero otherwise. It aims to

capture economies of scope in the activity.” There is not clear evidence

of relation between North regions and economies of scopes.

11. Farrell distance measurement (see Table 4 and expression 7 on

pag.1048, table 5 on page 1049 and expressions 4, 5 on pag. 1045).

The Debreu-Farrell output measure of efficiency θ is, by costruction,

≥ 1. It means increasing values of θ are less inefficiency. In Table

4 they are expressed by the inverse values. In the second stage of

the analysis, it is not clear if the authors use the efficiency scores (ac-

cording to expression 7 on page 1048, i.e. values less than 1) or their

inverses (according to expressions 4,5 on page 1045, as done by the

Simar and Wilson, 2007). This point is important because, depending

on it, there could be different interpretation of the sign of the param-

eters to estimates. Indeed, if they use efficiency score greater than 1,

the parameters estimated in table 5 require the opposite interpretation

provided. Indeed, an environmental variable with a positive sign will

have a negative impact on efficiency. On the other hand, if they use

efficiency score less than 1, they do not respect the algorithm, that is

built on that way to avoid working on two bounds (0 and 1) instead

of only one.

12. Bias correction (see pag. 1040). They state: “The empirical esti-

mates of efficiency are upwardly biased (Simar and Wilson 2007)”; but

they do not correct it, although a bootstrap procedure has been pro-
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posed to estimate the bias of efficiency scores and to obtain confidence

intervals (e.g. see for details Simar and Wilson (1998), 1998, 2000a,

2008).

13. References (see pag.1040). They state: ”Overall, (Simar and Wilson

2007) propose a procedure to deal with these challenges, based on

a double bootstrap that enables consistent inference within models

explaining efficiency scores while simultaneously producing standard

errors and confident intervals for these efficiency scores. For example,

an alternative bootstrap procedure adopted by Xue and Harker (1999)

has been shown to be inconsistent by Simar and Wilson (1999a)”. I

point out that Simar and Wilson (1999a) shows the inconsistence of

the bootstrap procedure used by Ferrier and Hirschberg (1997) and

not about Xue and Harker (1999).

These points constitute a set of issues I have met in the paper by Barros

and Dieke, 2008. In the remaining of this chapter, I try to provide a more

accurate picture of the Italian airport sector and, at the same time, a more

reliable estimation of the technical efficiency. I overcome the main statistical

issues, sources of erroneous results but neglected by these authors, providing

a more structure assessment for the Italian airport industry.

Curi et al. (2008) estimates the efficiency of 19 Italian airports during the

period 2000-2004 but they assume variable return to scale (VRS) technology

and made no attempt at statistical inference.

3.3 The Italian airport industry

Since 1987, significant policy developments have affected the European air-

port industry, enforcing a set of liberalization and privatization measures.

The Community’s airport industry has undergone fundamental organiza-

tional changes that have reflected the reassessment of the government’s role

played in the airport sector and the aim to enhance managerial incentives in

private enterprises and to sever the link between managers and politicians

(Gönenȩt al. 2001).
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In Italy, the airport reform process has been very slow to move along

and difficult to implement as it involves three different actors. The State, as

owner of lands and infrastructures, the management companies, both public

and private, and the control organism, ENAC . Moreover, the existence of

special laws and different concession agreements have been sources of het-

erogeneity in the airport governance forms. Indeed, since the mid-1950s,

only some airport management companies as those of Genova (GOA), Mi-

lano Linate (LIN), Milano Malpensa (MXP), Roma Ciampino (CIA), Roma

Fiumicino (FCO) and Torino (TRN) are in charge for the provision of all

airport’s services (airside and landside), through special laws . They have

been collecting all revenues derived from all airport operations and services

and are also responsible for the infrastructural development. This form of

concession agreement, known as “Total” (T)1, assigns to the management

companies the right to use and manage the airport land for a period of 40

years. In 1997, the Italian law by decree n. 17 (March, 25th 1997) has ex-

tended the possibility to all commercial airports to obtain “Total” concession.

Other forms of concession agreements are represented by the “Partial” (P)2,

“Provisional partial” (PP)3 and “Direct” (D)4. In the P agreement the man-

agement company provides services for aircraft (taxiways, apron areas, fire

fighting, etc), passenger and freight (security cleaning, etc.). The company

is responsible for non flight airport infrastructures (aerostation, car-parking,

etc) and receives revenues from passenger handling charges. The remaining

infrastructures are managed by the State which derives revenues from all the

remaining aeronautical charges. The PP agreement usually precedes the P

and differs by the fact that the State receives all the aeronautical revenues.

Finally, in the D agreement all the activities are managed by the State.

Moreover, starting from 1999, some airports have obtained a T concession

of three years as trial by ENAC. So far, only Napoli received a T concession

after three years of trial in 2002.

The most important changes on the handling services liberalization have
1In Italian, “Totale”.
2In Italian, “Parziale”.
3In Italian, “Parziale precario”.
4In Italian, “Diretta”.
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been driven by the Italian law n.351/95 and European directive 96/67/CE.

The former has allowed airport management companies to exploit the possi-

bility, but not the duty, to give in outsourcing handling services to external

companies. On the other hand, the latter has enforced Italian law since Jan-

uary, 1st 2001. From that time on, the airports whose annual traffic is not

less than 3 million passengers or 75,000 tonnes of freight or whose traffic has

been not less than 2 million passenger movements or 75,000 tonnes of freight

during the six-month period before April, the 1st or October, the 1st of the

previous year, have had to open their handling services to the competition.

This implies a restriction of the liberalization of handling services to only

the main airports, excluding the secondary airports.

Lastly, the other issue is the increasing spread of low cost carrier phe-

nomenon. It has constituted a large growth opportunity for small airports

by means of the increase in passengers’ movement by and to them. Totally,

the entire system has undergone important changes which have partially

damped the strong Italian polarized structure in the two systems of Roma

and Milano (Bernardi 1983). Indeed, since the end of 1970s, more than

50% of the passenger traffic was absorbed by them. After the liberalization

process, this percentage was held constant although the increase in the traf-

fic demand, proving that the increase in the passenger demand has been

absorbed by the other Italian secondary airports (Ferrario 2006).

Turning to the composition of the sector, the Italian airport industry is

constituted of 101 airports; among them only 45 contribute to the amount

of generated traffic and relative commercial activities (E.N.A.C. 2001–2007).

Our sample includes up to 16 airports, shown in Table 3.1, and covers on av-

erage 89.9%, 95.6% and 83.6% of the total number of passengers, cargos and

movements registered in Italy from 2000 to 2004. It does not include those

airports devoted to the regional and commercial aviation, characterized by

less than 150, 000 passenger movements. Following the airport classification

based on traffic volume, the analyzed set contains 11 airports with more

then 1, 500, 000 passenger movements with a cover rate of traffic equal to

95.9%, 97.8% and 93.3% by and to Italy. The remaining airports are the so

called “regional airports” in which operate many low cost companies.

The impact of the Italian government policies on capital composition
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of the airports management companies is summarized in Table 3.1. Most

of Italian airports are privatized and few of them are characterized by a

private majority. Comparing the operating efficiency, expressed by the ROI

index, to the capital composition (Table 3.1), it is evident the absence of any

systematic tendency between high values of ROI and the type of ownership

structure: private vs public. The unique evidence is shown by the Airports

of Roma, managed by a company with private majority, if compared with

those of Milano, managed by a company with public majority. However,

airports, characterized by less than 1.5 million of passengers, show scarce

capacity to generate returns on the invested capital. As shown in Table 3.2,

the Italian airport infrastructure is characterized by a peculiar structure,

that distinguishes it from the rest of European airports (OECD 2001). It is

constituted by a high number of small airports wide spread over the coun-

try, different in nature and volume of served traffic, business and governance

structure. Indeed, some airports serve mostly international traffic, such as

CIA, FCO, MPX and BGY whereas others serve mostly domestic passen-

gers (e.g. LIN, NAP, PMO, TRN, see Table 3.2). Moreover, some airports

face high fluctuation in served traffic, caused by seasonality in passengers’

demand, high ratio between maximum and minimum value of WLUs. Inside

each group, both the volume and growth rate of traffic served is very dif-

ferent: the volume of traffic ranges from 15 million passengers for MPX to

3 million passengers for BGY in 2004, while the growth rate faces a steady

increase owing to the air-transport services liberalization process (see Table

3.2).

In particular, CIA has shown an average increase of 40% while BGY

50% in the international passengers. The two hubs, Roma Fiumicino and

Milano Malpensa have shown, respectively, 3.11% and −0.04% growth rates.

As far as the domestic traffic, there have been small variations in the entire

Italian system, expect for Milano Malpensa (−10.4%) and Roma Ciampino

(−32.7%), pointing out their orientation towards international traffic. Look-

ing at the revenues composition, it can be noticed as the non aeronautical

revenues represent a significant portion of total airport revenues. Generally

speaking, the polarized structure of the entire Italian system persists over

the considered period but, at the same time, smaller airports are absorbing
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the increase in volume of traffic, outlining a new way of making business

and supporting the regional development.

3.4 The analytical framework

So far, few studies have focused on the productivity and efficiency of Ital-

ian airports since they have boasted of benefits of exercising monopoly and

being a public utility, owned by a management focused only on core busi-

ness. The need to measure, monitor and benchmark the performance of

airports is risen with the airport economic regulation that has promoted

a truly dynamic environment, characterized by privatization, commercial-

ization, rapid growth of traffic, airline market deregulation and alliances.

Strategically speaking, the pressure to be more operational competitive and

productive has increased to attract air carrier operations since the freedom

of airlines to move their base of operations (Ashford 1994). Indeed, it is well

recognized that the possibility to create the “lock-in” of the air carries is a

critical strategic issue that determines the long viability of airports; in turn,

the “lock-in” may be determinated by the efficiency of airports (Sarkis 2000).

Contemporaneously, the airports have been moving to more complex

business model focused on the diversification: the business related to the

traditional activity, called aeronautical business, focuses on transportation

of both passengers and goods while the new business, called non-aeronautical

business, focuses on the commercial activities (as parking, hotels, shops,..),

that allows exploiting the complementary demand between aeronautical ser-

vices and commercial services (Oum et al. 2004). Figures B.1 and B.2 show

a graphical process model, developed using the standard IDEF05, of entire

Italian airport system at macro level. They depict:

• the different forms of airports’ businesses;

• the different demands to be served ;

• the resources needed to get each activity worked;

• the regulation to which each activity is submitted.
5www.idef.com.

59



The performance analysis is evaluated in terms of technical efficiency

since it is the most crucial indicator to keep a check on to be more competi-

tive and productive increasing. The managerial evaluation is done focusing

on:

• the meaningful actions of the management to monitor and improve as-

pects of their own operational performance by reference to, and learn-

ing from, other organizations (Francis et al. 2002);

• comparing a set of different airports to improve their competitive po-

sition through the identification and adaptation of best practise (Gra-

ham, 1999, 2001).

From an analytical point of view, departing from the previous studies,

the DEA estimator of technical efficiency is used in a sophisticated and

robust approach, which takes into account the statistical inference (Simar

and Wilson 2000b). From a managerial point of view, technical efficiency

scores are evaluated using two different models:

I Physical Model that expresses technical efficiency as function of airports

characteristics variables, following Sarkis (2000);

II Revenue Model that expresses technical efficiency as function of eco-

nomic variables, following Fernandes and Pacheco (2003).

The first model emphasizes the level of the exploitation of resources em-

ployed due to the ability of managing the operational processes and airport

capacity, while the second one, the exploitation of the business diversifica-

tion strategy due to the ability of capitalizing the advantages from the new

reformed system. The results obtained by the previous analysis method-

ology are jointly evaluated by means of a scatter plot matrix (Fernandes

and Pacheco 2003), to give operative support to both managers and policy

makers in future strategy developments of the Italian sector.

3.4.1 The analytical methodology

In this section, the analytical methodology is discussed in regard to the in-

dustrial sector analyzed. The technical efficiency analysis is modelled using
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the efficiency measurement defined in section 1.2, as well as the advanced

developments proposed by Simar and Wilson (1998) and discussed in section

1.3, which allow obtaining more accurate measures for the problem of effi-

ciency measurement. The approach used here aims to identify the economic

problem of production related to the Italian airport industry, convert it into

a statistical model and, finally, interpret the statistical results in managerial

standpoints.

Starting from Gillen and Lall (1997) that presented their pioneristic work

on the investigation of airports efficiency of US market, a huge economic lit-

erature has grown following the traditional approach that consists in point

estimation of the efficiency, output orientation in the distance measurement

from the estimated frontier, returns to scale defined as function of the re-

search objectives or locally tested by means of comparisons between the two

forms, constant return to scale (CRS) or variable return to scale (VRS).

However, the above approaches neglect the statistical properties of the non

parametric estimators that, in turn, depend on the properties of the process

which generate the original dataset. Indeed, they dealt with estimates of

the efficiency from DEA model without taking into account the uncertainty

due to the sampling variation. So far, in air transport field the efficiency

analysis has been carried out by employing both parametric (e.g. stochastic

frontiers) and non parametric Techniques (e.g. index numbers). Parametric

techniques (e.g. Pels et al., 2003) requires the functional specification of

the underlying production frontier and have the limit of the single output.

The index number (e.g. Oum et al., 2006), instead, need the knowledge of

the input and output prices. For the above reasons DEA method is mostly

employed. In fact, Parker (1999) applied DEA to study the relative perfor-

mance of British Airport Authority, before and after privatization, Sarkis

(2000) continued the examination of the productivity of US airports. Adler

and Berechman (2001) used DEA to measure the quality of airports from

point of view of air carriers, using principal component analysis to reduce

the dimensionality of the space of inputs and outputs. Mart̀ın and Romàn

(2001) applied DEA to evaluate the performance of Spanish airports. Pels

et al. (2001) made the analysis for a set of European airports. Abbott and

Wu (2002) investigated the efficiency and productivity of 12 Australian air-
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ports using DEA. Fernandes and Pacheco (2003) used DEA to analyze the

efficiency of Brazilian airports taking into consideration two different dimen-

sions: financial and physical. Pels et al. (2003) studied the contribution of

the airline inefficiency (low load factor) to the European airports inefficiency

in terms of passenger movements. Lin and Hong (2006) used DEA to assess

the operational performance of 20 major airports around the world.

In this chapter, the overall productivity performance of the Italian air-

port industry is considered, explicitly taking into account the diverse nature

of the airport operation and market environment, using a more robust and

accurate methodology. This methodology allow to analysis the sensitivity

of the efficiency measures to the sampling variation, providing confidence in-

tervals and correction for the bias inherent in the DEA procedure. Deeply, I

am able to purify the effects due to the analyzed process from those inducted

by sampling variation on the efficiency estimates. Hence, non parametric

frontier techniques, based on a statistical inference approach (Simar and

Wilson, 2000, 2002, 2006), are used to measure the technical efficiency. This

approach consists in performing a smoothed homogeneneous bootstrap pro-

cedure to implement statistical inference for the efficiency point estimates

and obtain the relative confidence intervals (see Section 1.3).

I assume an output orientation model to align the management strategy

to the criterion of technical efficiency measurement. It assures to take into

account the objectives set by the management of exploiting the facilities to

satisfy the steady growth demand in aviation market (Mart̀ın and Romàn

2001). The efficiency indexes are derived using the Shephard (1970) output

distance function (equation (1.5)).

In our case, the sample is composed by 16 observations and I propose

two production models (see Section 3.5): in the first model, the produc-

tion process is described in a six dimensional-space (three inputs and three

outputs) while in the second one, I have five dimensions (three inputs and

two outputs). Thereby, to preserve the speedy of the convergence rate and

avoid additional noise to the estimation, I aggregate the input and output

vectors. So, for both models two proxy factors, which best summarize the

information hold by all input and output variables, are computed reducing

the dimensional space from six (or five) to two (i.e. one input and one out-
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put). Due the high level of correlation among the variables6, the procedure

proposed by Daraio and Simar (2007a) and showed in Section 1.2.9 is applied

and the two proxy factors are computed7.

Moreover, attention has been devoted to the technological frontier. In-

deed, I test the hypothesis of Global Returns to Scale -Constant (CRS), Non

Increase (NIRS) or Variable (VRS)- using a formal statistical test, proposed

by Simar and Wilson (2002) and showed in Section 1.3.1.

I use FEAR package Wilson (2007) for R software to compute DEA

estimates. The results throughout this paper are obtained from 5000 boot-

strap iterations. I employ the Cross-Validation method for the choice of the

bandwidth and the results appear robust with respect to variations8.

3.5 Data

To estimate the output distance functions and, hence, the efficiency scores,

three sources are used: balance sheet of each airport, Traffic Data of As-

saeroporti, and Annual Statistics from E.N.A.C. (2001–2007). The criterion

for selecting the strategical variables requires considering the new nature of

the airports, described by Figures B.1 and B.2. The Physical Model aims to

measure Technical Efficiency by capturing the effects of operations strategy,

regards the airside activity9.

Labour, number of runways and apron dimension are chosen as input

variables while number of movements, number of passengers and amount of

cargos as output variables. The labour variable is measured by the number

of employees who work directly for an airport (Oum et al., 2003, 2006). The

number of runways variable is used to provide a better estimation of the air-

port dimension than the runway length should gives since the disappearance
6Correlations between the variables is always greater than 80%. See Tab.B.3-B.4.
7They are reported in Tab.B.5-B.6.
8I check the robustness of the results setting the bandwidth h at 0.5 and 1.5 times the

previous value.
9The analysis is restricted to the airside activity since the lack of data of strategical

variables regarding the landside. The number of gates and/or terminal should be good

strategical variables to measure the technical efficiency of the landside activity, but here

it is not included due to the lack of complete data across the panel.
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of the distinction between national and international runways. It is simply

measured by the sum of total of runways. Finally, the apron dimension, ex-

pressed in square meters, is assumed as a proxi to measure the operational

and service aspects of the airside: it is a part of the airport intended to

aircraft operations (manoeuvring, refuelling, servicing, maintenance, park-

ing and movement of aircrafts), passengers and cargo service (loading and

unloading). On the other hand, the number of movements variable includes

both takes-off and landings (E.N.A.C., 2001–2007), the number of passenger

movements is measured by the sum of passengers arriving or departing via

commercial airplane and of passengers stopping temporarily at a designed

airport (Sarkis and Talluri, 2004). The amount of cargos is included be-

cause it is becoming increasingly important for many Italian airports and it

is expressed in tons. Differently, the Revenue Model aims to measure the

Technical Efficiency by capturing the effects of the diversification business

strategy, regarding both airside and landside activities.

Labour cost, other costs and airport size are taken as input variables

while aeronautical and non-aeronautical revenues as output variables. For

most airports, input data are not accounted separately following the classi-

fication aeronautical and non aeronautical service; therefore, as input vari-

ables I use aggregate data. The labour cost variable is measured as the cost

of labour, taken from the annual balance sheet. Following Oum et al. (2006),

the “other cost” variable is chosen to measure all the expenses not directly

related to capital and personnel and reflects also the expenses on outsourc-

ing activities of the airports. This variable allows taking into account the

effects of the new adopted strategy with respect to outsourcing activities

on productivity performance. From the output side, I use the revenues as

output variables. For all airports, revenues are separately accounted for the

two businesses. Inclusion of non aeronautical services output removes bias in

efficiency estimates, otherwise underestimated in those airports with more

proactive managers focused on exploiting the revenue generation opportu-

nities from non aviation business. Indeed, non aviation revenue for some

airports generate high portion of their total revenues (e.g. CIA FCO with

45.7% and GOA with 44.4%, see Table 3.1). It represents the revenue given

by concessions, parking and rental space to airline, car rental agencies and
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other concessionaire (Gillen and Hinsch, 2001).

It is worth to highlight that the management companies, respectively of

Rome Ciampino and Fiumicino airport and Milano Linate and Malpensa

airport do not provide for the managed airport separated balance sheet.

Thus, I consider Ciampino and Fiumicino (CIA FCO) as well as Linate

and Malpensa (LIN MPX) as a single airport. Table 3.3 and 3.4 report

descriptive statistics on the employed variables of each model.

3.6 Estimation and analysis

3.6.1 Preliminary results

The analytical methodology suggests the reduction of dimensional space for

the efficiency analysis, aggregating the input and output variables (Tables

B.1 and B.2, Appendix B) for each model in each year. Such a strategy can

be pursued, since the variables present high and persistent correlation value

(Tables B.3 and B.4). Hence, the factors F inp and F out are computed, using

the parameters αk and βk reported in Tables B.5 and B.6.

Next, I investigate Returns to Scale in airport process, using F inp and

F out as input and output variables, respectively. I test the null hypothesis

of Globally Constant Returns to Scale (GCRS) in the technology versus the

alternative hypothesis of Globally Variable Returns to Scale (GVRS). I use

the statistics described in equation 1.30 and 5000 bootstrap replications. I

fall to reject the null hypothesis of constant returns to scale at 5% level for

each statistics (Table B.7). They point out that the airports of our sample

work at the maximum average productivity and the sources of inefficiency

are attributable only to the management policy and not to the deficiency of

the scale.

3.6.2 A look to the estimate frontiers

When we have only one input and one output, it is easy to plot the obser-

vations and the estimate frontiers. In Fig. 3.1-3.2 the estimate frontiers of

both models are showed. The solid line is the bias-corrected CRS frontier

and the dashed line is the CRS frontier. It is possible to note that the non

bias-corrected frontier is downer than bias corrected frontier. Further, the
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VRS frontier is reported: note that this is very close to CRS frontier.

Figure 3.1: Estimate frontiers for “Physical Model”, 2004.
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3.6.3 Efficiency and Sensitivity results

The output distance estimates, and hence the efficiency scores, are performed

from the two models using F inp and F out and assuming a CRS technology.

Tables B.8-B.12, and B.13-B.17 report the computed estimated over the pe-

riod 2000-2004, respectively, for the Physical and Revenue Model. Columns

from 2 to 6 give, respectively, the original DEA efficiency estimates, the

corresponding bias corrected efficiency estimates, the bias estimates, the es-

timated standard deviations across bootstrap replications, the µ ratio. The

remaining columns contain estimated lower and upper bounds for confidence

intervals at 5% confindence level. As shown by µ ratio, the bias is substan-

tial and should not be neglected. Hence, I correct all the point estimates
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Figure 3.2: Estimate frontiers for “Revenue Model”, 2004.
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according to the relation given by (1.25) and I carry out the analysis taking

into account the new unbiased estimates. Indeed, important insights are pro-

vided considering the stochastic nature of the estimation problem. Firstly,

DEA efficiency scores overestimate the real efficiency, being biased upwards

(Table 3.5 and 3.6). Secondly, the difference in the efficiency within the

sample might be no statistically significant. For instance, let’s focus on the

Revenue Model for the CIA FCO and LIN MXP 2004. CIA FCO is 100%

efficient while LIN MXP is efficient at a level of 97.2%. They differ in point

estimate of 2.8%. This percentage difference decrease with the bias-corrected

measure (column 3, Table B.17). The main result is the that this difference

is not statically significant since the overlapping of their confidence intervals

to a large degree.

Meaningful industrial considerations are stated looking at the geometric
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Table 3.5: Physical Model: Descriptive statistics of the original and bias-
corrected efficiency scores.

Mean 2000 2001 2002 2003 2004 Overall
Original 0.500 0.503 0.453 0.411 0.417 0.455
Bias Corrected 0.449 0.450 0.390 0.345 0.353 0.395

Table 3.6: Revenue Model: Descriptive statistics of the original and bias-
corrected efficiency scores.

Mean 2000 2001 2002 2003 2004 Overall
Original 0.547 0.512 0.553 0.612 0.593 0.562
Bias Corrected 0.509 0.467 0.510 0.575 0.552 0.521

mean efficiency scores. The two models exhibit different tendency of the bias-

corrected estimates on average. In the Physical Model, the overall mean is

0.395 while the Revenue Model is 0.521, proving that Italian airport system

is quite inefficient from both perspective, but certainly more competitive

from a revenue perspective.

Moreover, looking at the frequency distributions of the bootstrapped

efficiency estimates over the all period (Figure 3.3 and 3.4), most airports

seem to cluster around levels of efficiency of around 0.4 (22 observations

on 80) for the Physical Model and around 0.7 (23 observations on 80) for

the Revenue Model. The most striking finding is that physical performance

differs from the revenue one, showing a more concentrate distribution of

efficiency close to 0. Such diversity on performance can be potentially might

stem from two considerations.

From an operational point of view, the Italian airport industry still shows

a backward management of the airside capacity, encumbering it to increase

efficiency and quality of airport processes. From a financial point of view,

the benefits of governance reform stem from the application of a commercial

view to the entire airport enterprise, even if the reform governance does not

attain from cost reduction or increased capital investment.

Looking at the impact of the concession agreement, (Tab. 3.7), the

69



Figure 3.3: Frequency distribution of bias corrected efficiency scores (Phys-
ical Model).
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airports with T concession show better result for both models on average.

In fact, it can be noticed that more restrictive is the concession agreement

form less is the airport efficiency. For the Physical Model differences between

T and P concession are slightly.

Table 3.7: Geometric means of bias-corrected efficiency scores by concession
agreements and models.

Provisional
Total (T) Partial (P) Partial (PP)

Physical Model 0.514 0.451 0.247
Revenue Model 0.716 0.576 0.314
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Figure 3.4: Frequency distribution of bias corrected efficiency scores (Rev-
enue Model).
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Useful insights for operational and financial managers are provided by

the rankings, based on the bootstrapped efficiency scores, depicted by Tables

3.8 and 3.9.

They allow identifying stable benchmarks for improving the poorly per-

forming airports and providing good managerial implications. Indeed, it has

been proven that airports relatively straightforward in improvement direc-

tion are those with stable benchmarks Sarkis and Talluri (2004). The tables

show stationary rankings for most airports for both models. Few airports

change drastically their positions over time. In the Physical Model, CTA

gets worse ranking passing from fourth to seventh position in 2002 but pre-

serving it stable over the last years. LIN MPX, instead, shows a decrease in

ranking in 2001, followed by a great retrieval, levelling off in second position
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Table 3.8: Airport ranking (Physical Model).

Airport code 2000 2001 2002 2003 2004
AHO 13 13 14 15 13
AOI 10 11 11 10 10
BGY 1 1 1 1 1
BLQ 3 5 6 5 6
CIA FCO 4 3 3 4 3
CTA 5 4 7 7 7
GOA 15 14 13 13 14
LIN MXP 7 9 5 2 2
NAP 2 2 2 3 4
PMO 11 10 10 12 12
PSA 12 12 12 11 11
PSR 16 15 15 16 16
SUF 14 16 16 14 15
TRN 6 6 4 6 5
VCE 9 8 9 8 8
VRN 8 7 8 9 9

Table 3.9: Airport ranking (Revenue Model).

Airport code 2000 2001 2002 2003 2004
AHO 15 15 16 16 16
AOI 10 12 13 13 13
BGY 7 10 11 9 8
BLQ 2 2 3 4 6
CIA FCO 1 1 1 1 1
CTA 12 11 9 10 9
GOA 9 4 7 8 11
LIN MXP 3 3 2 2 2
NAP 4 7 4 5 4
PMO 8 8 8 7 7
PSA 13 13 12 12 12
PSR 16 16 15 15 15
SUF 14 14 14 14 14
TRN 6 6 5 6 5
VCE 5 5 6 3 3
VRN 11 9 10 11 10

over the last years. In the Revenue Model, GOA ranks the fourth position

in 2001 and then gets worse till achieving the eleventh position while NAP

undergoes a downturn in 2001, resuming its position over the remains years.
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On the other hand, some airports have not changed over the five-year pe-

riod: they are BGY for the Physical Model and CIA FCO and SUF for the

Revenue Model. Both BGY and CIA FCO result at the top of the ranking

for the whole period.

To identify the cluster of best performers, I refine these results evalu-

ating the statistical differences among the bootstrapped efficiency estimate

through the overlapping of their confidence intervals. In the Physical Model,

BGY is certainly the best performer if I evaluate the bootstrapped efficiency

scores.

Turning to the inference analysis, its confidence intervals range from a

minimum lower bound equal to 0.734 (in 2003) to the upper bound, con-

stant over the 5 periods, equal to 0.996. This implies that BGY does not

reach the maximum level of efficiency (equal to 1) and gets worst over the

five years since the wider bootstrapped range towards decreasing values of

lower bound. Moreover, its performance is quite not statistical different

from BLQ and NAP in 2000 and BLQ and NAP in 2002. For the last years,

BGY appears to be the best significant performer in the cluster. In the Rev-

enue Model, CIA FCO is distinctly the best performer if I look at the point

corrected efficiency scores. Turning to the inference analysis, its confidence

intervals range from a minimum lower bound equal to 0.811 (in 2001) to

the upper bound, equal to 0.998. The width of the confidence intervals is

constant. This highlights that BGY tends to reach very high values of the ef-

ficiency scores. Oppositely to the insights given by the point estimates, BGY

performance is statistically similar to the performance gained by LIN MPX

in 2003 and 2004 since the huge overlapping of their confidence intervals.

Thereby they constitute the revenue benchmark.

Fig. B.3 and B.4 depict the boxplots of the bootstrapped efficiency

scores over the all period. For the Physical Model, it is worth noting the

fact that most airports get worse their efficiency since the shift of their con-

fident intervals downwards. Moreover, some airports among them (CTA,

NAP, VCE and VRN) vary drastically the range of their confidence inter-

vals. Only LIN MPX improves its efficiency, denoted by an upward shift o f

the confidence intervals while BGY appears to hold the efficiency stationary.

The worse performers (AHO, AOI, GOA, PMO, PSR, PSA) show less vari-
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ability of their efficiencies due to narrower confidence intervals. The boxplot

related to the Revenue Model depicts a different industrial scenario of effi-

ciency evolution. For most airports, the confidence intervals shift upwards

regard to the year before. AOI and CTA lose in efficiency while CIA FCO

appears to hold stationary its range of efficiency variation. Moreover, it is

clear that the variation of the efficiency scores among airports is less than

that from the Physical Model since the narrower confidence intervals. It

assures more accuracy to the analysis. It is evident that the two Italian

Hubs are the best benchmarks in the diversification strategies. To check the

robustness of the results with the respect to the choice of bandwidth in the

bootstrap algorithm described Section 1.3, the analysis on the same data is

repeated setting the bandwidth h first at 0.5 times the value chosen by the

cross-validation procedure, then to 1.5 times the cross-validated bandwidth.

The results reveal that the bootstrap procedure is very robust with respect

to choices of the bandwidth parameter used in the kernel density estimator,

since the decrease or increase in h has negligible effect on the estimated

confidence interval for each DMU in the sample.

3.6.4 Strategical Analysis

The Italian airport system is moving toward a very complex context charac-

terized by a progressive realization of the privatization process. This trend

is offering new paradigm of business that aims to replace the old, non profit,

public service model of infrastructure management with a new commercial

model. This turning to private sector has got as result partnerships between

public owners of airports and private management firms as result. Under

the new commercial model, management is expected to run the enterprise

to profit, maximizing all possible revenue sources, subject to regulatory con-

straints and customers’ needs to satisfy. This enterprise approach to airport

management allows conducting a strategical analysis of airport competitive

arena. The statistical results obtained by the application of the analytical

methodology are jointly analyzed by means of a scatter plot matrix Fernan-

des and Pacheco (2003) of the geometric mean over the period 2000-2004

(Figure 3.5).

The bi-dimensional visualization of the space jointly generated using the
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Figure 3.5: Airport efficiency matrix.
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two bootstrapped efficiency estimates (Physical and Revenue) allows the

positioning of Italian airports within the four quadrants. This may helps to

analysis how Physical and Revenue efficiencies affect the airport unit and to

delineate possible local and global strategies for, respectively, management

and political decision makers.

The first quadrant contains the “HH” airports. They represent the air-

port class able to guarantee log-run opportunities for both growth and prof-

itability for the entire Italian airport system. They are efficient from a

revenue point of view but operate with little inefficiency in the process man-

agement. Thus, they boast leadership positions inside the competitive arena

but, at the same time, need for continuous investments and further spending

to defend their dominant positions and maintain their growth. This airport

class is composed by BGY, BLQ, CIA FCO, CTA, LIN MPX, NAP and
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TRN. In particular, BGY could be considered as benchmark for airports

devoted to taking off/landing of low cost carries. It is becoming, together

with CIA, one of the most important Italian scalo, whose developments are

due to particularly favourable geographic position, being centrally located

in a highly industrialized area and close to a tourist area. CIA FCO could

be taken as private majority owned benchmark as well as LIN MXP, as pub-

lic majority owned. They appear to reach efficiency levels not statistical

different in the last years. Instead, NAP could be considered as benchmark

for the management efficiency. In fact, it was the first airport in Italy to

undergo privatization, managed by GE.S.A.C. The airport operator com-

pany was privatized in 1997 with the acquisition of the majority of shares

by BAA, a world leader in the field of airport management. In March 2003

GE.S.A.C. assumed total management of Naples International Airport with

a 40 year license. The presence of BLQ in the first quadrant is attributable

to the effort employed to pass the evaluating and inspection process for ob-

taining the forty-year complete concession by ENAC. This need has led the

company to carry out some activities for improving all the system (both

airside and landside). Instead, TRN has been completely renovated since

it has followed modernization and requalification processes, launched in the

spring of 2004, both to measure up to the challenges of the Olympic Winter

Games in 2006 and the future traffic needs.

The second quadrant contains the “HL” airports (GOA, PMO, VCE and

VRN); they are the most profitable airports in the Italian airport portfolio,

therefore, they can be milked for money. They need an improvement in

the management of their operational facilities to maintain their strong po-

sition for as long as possible. In fact, most of them have supported huge

investments to upgrade infrastructure and do not still have optimized their

use.

The third quadrant contains the “LL” airports (AHO, AOI, PSA, PSR

and SUF); they are consumer resources with, at best case, marginal prof-

itability. They are be affected by both seasonality and low volume of air

traffic (Table 3.2) that do not allow to exploit their capacity. Moreover,

high investments have been done to obtain certifications from ENAC with

low return to investment in the short period. PSR has shown low ROI values
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due to the high investments in infrastructures although it has faced a steady

increase of the traffic given by the so called “Rynair Effect”, started since

2001. Thus, a good strategy is the retrenchment both in physical and rev-

enue efficiency, for example, boosting the attractiveness to new air carriers

and well managing the demand.

The fourth quadrant contains the “LH” airports and, fortunately, any

airport is positioned, since this category offers low returns on high invest-

ments done. Looking at this Table jointly with Table 3.1, it is possible to

note that the “HH” and “HL” airports are those classified in Table 3.1 with

more than 1,500,000 passengers, with the exception of GOA. This indicate

that, in the airport sector, the capacity of exploitation of efficiency is corre-

lated both to the dimension of passengers’ and carriers’ demand both to the

capacity to manage the seasonality of air transport services. Each quadrant

shows different strategical implications depending on the objectives set by

the management and policy makers but it is extremely important to search

a balanced airport portfolio to achieve high level of competitiveness both in

international and national scenario.

3.7 Conclusion

This chapter presents new evidence on the technical efficiency of the Ital-

ian airport industry, after the privatization and liberalization processes over

the period 2000-2004. It is the first study to examine technical efficiency

of the current Italian airport industry thought on a robust non parametric

approach based on bootstrap method (Simar and Wilson 1998, 2000a, 2002)

for the frontier estimation. Like previous studies, I treated the efficiency

measures using the Data Envelopment Analysis (DEA) estimators but, un-

like them, I account for the statistical nature of the estimators, avoiding any

sources of misleading.

Since the peculiarity of the Italian airport infrastructure and the new

competitive environment, I handle the technical efficiency measure and eval-

uation problems in a statistical setting where important issues are addressed

and suggest some global strategical insights for both managers and policy

makers, evaluating two different models: Physical and Revenue. I address
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the important economic issue of identifying of the underlying airport tech-

nology by means statistics for testing hypothesis regarding returns to scale

of the technology, based on a bootstrap procedure. Moreover, I provide a

sensitivity analysis efficiency by means of confidence intervals. Since the

curse of dimensionality due to the nature of the economic problems (small

number of airports and high number of input and output variables). Firstly,

I find strong evidence of Globally Costant Returns to Scale for each year.

Secondly, the Italian airports are statistically more efficient from a financial

point of view and shows gains in efficiency in the Revenue model and losses

in Physical Model, both statistically significant. It should be attributed to

the different nature of each airport; for instance, difference in traffic demand,

position and governance reforms. The analysis points out some relevant as-

pects of the entire airport system:

• the possibility to achieve high level in technical efficiency scores also

for the regional airports, as exhibited by BGY, through serving low

cost carries, although its proximity to the airport system of Milano;

• the room to increase high level in technical efficiency for airports man-

aged by both a full private corporations, as NAP, and a private ma-

jority ownership corporations , as CTA, CIA FCO and VCE.

The best Italian performers are identified following the sensitivity analysis

of the technical efficiencies for both Models. From an operational point

of view, BGY is the best significant performer for all period. It results

not statically different from NAP and BLQ in 2000 and from NAP and

CIA FCO in 2002. From a financial point of view, CIA FCO and LIN MPX

constitute the benchmark. By means of a bi-dimensional visualization, three

airport classes are identified and high level of heterogeneity of Italian airport

portfolio is remarked. The matrix exhibits the following positioning:

• BGY, BLQ, CIA FCO, LIN MXP, NAP and TRN are in dominant

position but need investments to defend it in future scenario;

• CTA, GOA, PMO, VCE and VRN are in comfortable position in re-

lation of the group since they should improve their operation manage-

ment without need of immediate investments;
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• AHO, AOI, PSA, PSR and SUF are in worst position and they need

a revitalization program.

The bi-dimensional analysis points out the path to be followed by airport

managers and political decision makers to create a balanced portfolio.
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Chapter 4

Italian hospital efficiency

4.1 Introduction

Over the last thirty years, the health systems of many industrial countries

have undergone significant reforms aimed at reducing cost in the provision

of health care services. Among European countries, Italy in particular has

experienced wide-ranging changes in its health-care sector as the Italian

government has attempted to reduce the negative impact of the health-care

expenditure on its budget deficit and public debt. In part, the Maastricht

criteria on deficit and debt of European countries acceding to European

monetary union in the year 2000 has motivated attempts to reduce costs in

Italy’s health-care system. Figure 4.1 shows how health-care expenditures as

a percentage of gross domestic product (GDP) have varied over 1988–2007.

In 2005, public health expenditure totaled 95.1 billion euros; 40.6 billion

euros of those expenditures were for inpatient care ISTAT (2005). Despite

attempts to reduce public expenditure, public health-care expenditure in

Italy increased at a faster rate than GDP from 1998 to 2007, due perhaps

in part to low annual GDP growth during this period.

Only 15 percent of Italian citizens purchase private health insurance,

primarily to cover expenses related to ambulatory specialist care and private

hospital care for obstetrics and minor surgery (France et al., 2005); the vast

majority depend exclusively on public health insurance to cover health-care

expenses1. Consequently, any successful effort to reduce costs of health-care
1This situation is not unlike that in the U.S.; see Wilson and Carey (2004) for additional

discussion.
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Figure 4.1: Health-care Expenditure as Percentage of GDP, 1988-2007.
Source: OECD.
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provision are likely to involve hospitals. This chapter examines the hospital

sector of the Italian health-care system in order to (i) examine the effects of

previous cost-cutting measures on hospital performance, and (ii) to assess

the potential for further reductions in expenditures by improving efficiency

among hospitals.

Only a few papers have examined the efficiency of Italian hospitals.

Cellini et al. (2000) used non-parametric data envelopment analysis (DEA)

estimators to examine technical efficiency among Italian hospitals operating

in 1996; they do not found clear evidence of systematic differences between

private and public hospitals in terms of their technical efficiencies2. Sicil-
2Cellini et al. (2000) attempted to explain technical inefficiency by regressing DEA

efficiency estimates on various environmental variables in a second-stage, ordinary least-
squares (OLS) regression. As discussed by Simar and Wilson (2007), the classical inference
methods used by Cellini et al. in their second-stage regression is invalid due to correlation
among the DEA estimates that are used as the endogenous variable; moreover, the use
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iani (2006) examined efficiency among 17 Italian hospitals from 1996 to

1999, comparing efficiency estimates obtained from nonparametric DEA es-

timators and parametric, stochastic frontier estimators. Such comparisons,

however, are misguided since the underlying assumptions required for sta-

tistical consistency of these two estimators are quite different. In particular,

under typical assumptions where parametric, stochastic frontier estimators

are used, DEA estimators are inconsistent3. Barbetta et al. (2007) used both

parametric and non-parametric techniques to estimate technical efficiency of

Italian hospitals for the period 1995–2000. They evaluate the introduction of

a prospective payment system based on diagnostic related groups and found

a decline in technical efficiency over the period they examined. Barbetta et

al. attributed this decline to policies aimed at reducing hospitalization rates;

since hospital capacity is relatively inflexible in the short-run, a reduction

in hospital use would be reflected by excess capacity in the short-run.

This chapter employs some recently-developed non-parametric estima-

tion methods to analyze technical efficiency and how efficiency has changed

over time among Italian hospitals. In addition, I investigate changes in

productivity and other features of the Italian hospital industry. I use the

newly-developed, non-parametric, unconditional hyperbolic α-quantile esti-

mator introduced by Wheelock and Wilson (2008a). This estimator has

several advantages over the traditional DEA estimator that has been widely

used. In particular, the new efficiency estimator is robust with respect to out-

liers and asymptotically normal. In addition, the new estimator converges at

the classical parametric rate root-n, unlike the DEA estimator which suffers

from the well-known curse-of-dimensionality. The unconditional hyperbolic

α-quantile estimator has been used to examine productivity change among

U.S commercial banks by Wheelock and Wilson (2008b), but so far has not

been used in a health-care setting.

of OLS is inappropriate in the context of the statistical model presented by Simar and
Wilson (2007).

3See Section 1.2.1 for details on the statistical properties and underlying assumption
required by DEA estimators.
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4.2 The Italian Hospital Industry

France et al. (2005) provide a detailed overview of the Italian health-care

system. They observe that the Servizio Sanitario Nazionale (SSN), or na-

tional health service, is required by law to provide equal access to primary

care. However, they also observe that lower income groups face barriers

to specialist care. In addition, there are large and growing differences in

regional health service organization and provision which complicate the uni-

form provision of comprehensive care.

Decision-making and administration in the Italian health-care system are

carried out at three levels: (i) the State (i.e., federal government); (ii) the 21

Regioni4; and (iii) local organizations, which are responsible for provision of

health-care services. The local organizations were known as Unitá Sanitarie

Locali (USLs), until 1992, when legislation to reform the health-care system

changed these organizations to Aziende Sanitarie Locali (ASLs)5.

The SSN was created in 1978 along the lines of the British National

Health Service6. The system was designed to provide health-care services

to all Italian citizens7. The State determines livelli essenziali di assistenza

(LEAs), or essential levels of care to be provided to all residents; the State

in turn provides funding to the Regioni, which have responsibility for ad-

ministration of publicly funded health-care within their geographic domains.

The Regioni vary a great deal in terms of their demographic characteristics,

wealth levels, and health-care expenditures. Table 4.1 gives some statistics

on health-care expenditures in each ofthe Regioni.

Looking at the demography structures and the wealth, it is clear the gap

among the more economic development area (Nord and Centro) and the

remaining one (Mezzogiorno); deficit in health expenditure is accumulated
4The Italian constitution of 1948 defines twenty Regions. However, for INHS Trentino

Alto Adige is divided into two parts: Bolzano and Trento. Consequently, we refer to 21
Regions throughout the remainder of this chapter.

5To avoid potential confusion, I retain the Italian names of organizations in Italy. USL
is sometimes translated as “local health-care authority”, which is close to “local health-
care enterprise”, the translation sometime used for ASL. Other translations are perhaps
also possible.

6See France et al. (2005) and Del Vecchio (2003) for detailed descriptions of the SSN
and its evolution.

7Since 2002, coverage is also provided to non-citizens who are legal residents in Italy.
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Table 4.1: The Italian Servizio Sanitario Nazionale, 2005

Total Health Surplus
Expenditure Expenditure or Deficit

Patients (millions e) (e) (millions e)

North:
Piemonte 736,864 7,105 1,638.62 1
Valle D’Aosta 19,748 225 1,823.00 −14
Lombardia 1,952,154 14,269 1,512.48 −14
Bolzano 103,239 995 2,073.53 28
Trento 77,928 803 1,605.96 −2
Veneto 839,261 7,265 1,539.48 −114
Friuli Venezia Giulia 201,044 1,927 1,597.18 27
Liguria 389,725 2,969 1,854.21 −253
Emilia Romagna 802,808 6,790 1,628.51 −16

Central:
Toscana 651,480 5,743 1,591.27 −15
Umbria 170,745 1,379 1,597.16 −8
Marche 267,047 2,304 1,512.01 −18
Lazio 1,352,636 10,387 1,964.49 −1,733

South:
Abruzzo 348,147 2,182 1,675.51 −241
Molise 78,577 650 2,022.21 −139
Campania 1,233,964 9,603 1,658.56 −1,788
Puglia 804,069 6,103 1,499.57 −412
Basilicata 107,227 901 1,513.48 −43
Calabria 389,005 2,972 1,480.93 −79
Sicilia 1,230,508 7,924 1,580.01 −574
Sardegna 358,316 2,662 1,610.54 −317

North 5,122,771 42,348 1,593.85 −358
Central 2,441,908 19,813 1,755.90 −1,774
South 4,549,813 32,997 1,589.93 −3,593

TOTAL 12,114,492 95,158 1,623.66 −5,725

in the less economic development area.

Delivery of health-care services is performed by the ASLs, which are re-

sponsible for varying hospital and community services in geographical areas

typically containing about 300,000 persons. France et al. (2005) note that
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in 2003, publicly funded hospital care was provided in 1,308 facilities; of

these, 59 percent were publicly owned and accounted for 86.3 percent of

total hospital discharges. France et al. also note that 79 percent of public

hospitals were managed directly by ASLs, while another group of 96 large

hospitals (including teaching hospitals) operate as quasi-independent public

enterprises known as Aziende Ospedaliere (AOs). Only about 2.9 percent of

hospitals in Italy operate as non-profit organizations (NPs); most of these

are owned by the Catholic Church. In 2002, 41 percent of all hospitals in

Italy operated as for-profit organizations; these hospitals treated 13.7 per-

cent of inpatient cases and accounted for 13.8 percent of hospital beds in

Italy (Sistema Informativo Sanitario, 2005).

Reforms were enacted in 1992 by law #502/1992 in an attempt to con-

tain costs. Through law #502/1992, the State gave the Regioni more re-

sponsibility than they had previously for organizing health-care provision.

In addition, law #502/1992 imposed managerial principles on the ASLs8.

Figure 4.2 gives a schematic overview of the system. The Regioni are

responsible for organization, administration and management of funds col-

lected from a regional tax (specifically, the Imposta Regionale sulle Attivita’

Produttive).

The organizational units that physically provide health-care services are

the ASLs, AOs and private hospital and ambulatory care organization ac-

credited for provision of the LEA services. Hospitals operated by an ASL

do not have independent corporate governance; rather, they are directly

managed by the ASL. In order to distinguish these hospitals from the AOs

mentioned earlier, I will refer to hospitals operated by an ASL as Ospedali

a Gestione Diretta (OGDs) throughout.

Unlike the OGDs, AOs have a corporate structure and are not directly

controlled by an ASL. Instead, they report to the governmental authority

of the region in which they are located. Legislation by the State (laws

#502/1992 and #229/1999) has determined the managerial structure of
8Prior to enactment of law #502/1992, there were 659 USLs, which as noted earlier were

transformed and consolidated into ASLs. By year 2000, there were 197 ASLs operating in
Italy. Consolidation of activities in a smaller number of ASLs likely enabled the Regioni
to exploit economies of scale by eliminating duplicated administrative tasks among the
USLs.
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Figure 4.2: Italian Health Care System. Source: Health Care Systems in
Transition: Italy, 2001. European Observatory on Health Care Systems.

the AOs. AOs have a corporate structure with a general manager who is

appointed by the governor of the Region in which the AO is located. In

the typical AO organizational chart, an administrative director, a clinical

director, and clinical directorates report to the general manager. Lega (2008)

discusses the tradeoffs inherent in this system under the current political
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environment. Lega argues that the AOs should have clear objectives, and

that AOs’ general managers require support both within and from outside

the hospitals (e.g., to avoid conflicts with leading physicians), and they

should not be replaced too frequently9.

The increased autonomy given to the Regioni has led a wide variety

of organizational structures and practices for the provision of the health

care. For example, the region Abruzzo has developed along the lines of

the ASL-centered model, where the ASL receives financial support from

la Regione on a capitation basis, and negotiates services with accredited

public and private providers. In Abruzzo, hospitals remain connected to

ASLs; similarly, Marche and Umbria have both reduced the number of AOs

operating within their boundaries in recent years. Other Regioni have taken

a different approach by focusing on the hospitals themselves; for example,

Lombardia has given more autonomy to its hospitals, and has the largest

number of AOs among the 21 Regioni. Despite the differences that have been

allowed to develop across the Regioni, the State retains substantial control

over the health-care system in Italy; for example, the State mandates that

any hospital utilizing less than 75 percent of its beds be closed.

Hansmann (1980) suggests that the incentives created by payment sys-

tems may have a larger impact on hospital managers’ behavior than differ-

ences in forms of ownership (e.g., AOs versus OGDs) or corporate structure.

The Italian payment system is characterized by a variety of forms that de-

riving from decentralization and from regional responsibility. Prior to 1992,

hospitals’ budgets were based on historical cost, but this system has been

replaced; hospitals are today reimbursed according to a prospective payment

scheme based on Diagnosis Related Groups (DRGs). The new system de-

fines three cost groups, depending on the nature of care that is required

for treatment: (i) acute inpatient days; (ii) out-patient visits; and (iii) long-

term care. Each of the Regioni was given wide latitude in implementing a

DRG-based reimbursement scheme, with the result that there is now sub-

stantial variation over the 21 Regioni. Barbetta et al. (2007) discuss the

introduction of this system in Italy but they do not look at the differences
9Carbone and Lecci (2006) show that general mangers of AOs have an average tenure

as manager of 3.8 years.
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between the Regioni.

The reforms of the 1990s were made with the idea of leaving the individ-

ual Regioni free to design their own reimbursement systems within broad

guidelines, and to make each of the Regioni responsible for controlling health-

care costs within their territories. Hence each Region was, in principle, able

to design a system suitable to the particular conditions (e.g., age distribu-

tion, urban versus rural, etc.) being faced. Differences among the systems

adopted by the Regioni can be discussed in terms of three dimensions, as

was done by Centro Studi Assobiomedica (2005) and Carbone et al. (2006):

• the specific DRG system that was adopted;

• predominant structure of hospitals within each Region (i.e. AO versus

OGD); and

• methods used to monitor and control budgets and operations.

Use of the DRG tables varies across the Regioni. All regions reimburse

hospitals according to DRG classifications, but regional governments are

free to set reimbursement rates for each DRG category. Three different

approaches are used among the Regioni :

• the “national system,” where regions adopt reimbursement rates set at

the national level, perhaps with changes for a small number of specific

DRGs or perhaps with adjustments to reflect peculiarities across types

of hospitals;

• the “weight system” (metodo dei pesi), where regions use the coeffi-

cients from the original, national DRG tables, but calculate a different

(lower) average cost for DRGs;

• the “analytic system,” where regions define new reimbursement rates

using their own cost analyses.

Regions using the national system adopt reimbursement rates set at the

national level, but in some cases reimburse more for a few specific DRGs. In

addition, regions have discretion to update the DRG reimbursement rates

to reflect the rate of overall price inflation. In the weight system, regions set
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standard costs of production, but maintain the weights or coefficients in the

original DRG tables set at the national level. Consequently, these regions

modify average reimbursement rates for patients, but maintain proportions

listed in the DRG tables. Regions using the analytic system reimburse hos-

pitals independently of the DRG tables set at the national level. Typically,

these regions use analyses of hospital costs in their own territory to create

their own reimbursement system.

With regard to the predominant structure of hospitals within a Region,

regions may increase or reduce specific reimbursement rates depending on

the type of hospital that supplies a given service. Typically, reimbursement

rates paid to AOs are higher than those paid to OGDs. This difference is

due to the greater complexity and specialization of AOs versus OGDs. Dif-

ferences in reimbursement rates may also reflect the presence of emergency

treatment units or units for specialized treatment in hospitals.

Methods to monitor and control budget and operations concerns the cre-

ation or use of mechanisms to prevent over-payment for hospital services.

Cantú and Jommi (2002) discuss the risk of an increase in numbers of oper-

ations in a system where reimbursements are directly connected to supplied

services. Regions may set limits on the number of operations performed in

a hospital or for a specific DRG; if a hospital reaches the limit, the corre-

sponding reimbursement rates are reduced. ASLs in a decentralized system)

or the Regioni (in a centralized system) set the limits and monitor services

provided by hospitals.

By now, the Regioni have had several years to adapt and modify their

systems in response to reforms in the Italian health-care sector. In addition,

the Ministry of Health has collected a large amount of data that permits

investigation of differences in these responses, performance, etc. across the

Regioni. Given the substantial variation over the Regioni in their response

to heath-care reform, it is important for policy-makers at both national

and local levels to understand how these responses have translated into

performance.

89



4.3 The Data

Data on Italian public hospitals in 2001 and 2005 were obtained from the

Italian Ministry of Health10. In in 2001, there were 777 public hospitals

providing services to patients in dataset; in 2005, there were 669 public

hospitals in dataset. After eliminating observations with missing values,

the data I use for estimation include 660 observations for 2001 and 575

observations for 2005.

Table 4.2 shows, for each of the Regioni, the numbers of hospitals in each

of the four management types represented in our sample for 2001 and 2005:

Aziende Ospedaliere (AOs), teaching hospitals (THs), non-profit hospitals

(NPs), and Ospedali a Gestione Diretta (OGDs)11.

Our specification of inputs and outputs for hospitals is roughly consis-

tent with specifications that have been used in other hospital studies (e.g.,

see Ancarani et al., 2008; Barbetta et al., 2007; Burgess and Wilson, 1996;

Chang et al., 2004; Grosskopf and Valdmanis, 1993 and Grosskopf et al.,

2004). In particular, I specify five inputs (physicians, nurses, other em-

ployees, outpatient beds, and inpatient beds) and four outputs (number of

inpatients, number of outpatients, long-term days, and number of surgical

procedures). All inputs and outputs are physical quantities; no reliable price

data are available.

The physician input is measured in terms of the number of salaried

physicians in each hospital12. Similarly, the nursing input is measured by

the number of salaried employees working as nurses; other employees are

measured as the total number of employees in a hospital, minus numbers of

doctors and nurses. Outpatient beds consist of the number of beds for outpa-

tients, while inpatient beds are the number of beds available for treatment of
10See http://www.ministerosalute.it/.
11Legislation 132/1968 classified some hospitals managed by religious bodies as public

hospitals; these hospitals comprise the non-profit hospitals listed in Table 4.2.
12In Italy, the Regioni have responsibility for remuneration of physicians. Physicians

working in hospitals typically receive their salaries from the ASL, AO, or OGD which
employs them. This differs somewhat from the situation in the U.S. , where most doctors
have a private practice together with loose associations with one or more hospitals where
they are permitted to treat patients, but are not typically employees of a hospital (with the
exception of physicians working in hospitals operated by the U.S. Department of Veterans
Affairs).
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Table 4.2: Distribution of Hospital Types over Regioni

2001 2005

Region AO TH NP OGD AO TH NP OGD

North:
Piemonte 7 1 8 23 8 0 2 20
Valle D’Aosta 0 0 0 1 0 0 0 1
Lombardia 27 16 6 18 29 17 5 1
Bolzano 0 0 0 6 0 0 0 7
Trento 0 0 1 8 0 0 1 6
Veneto 2 0 8 56 2 1 9 23
Friuli Venezia Giulia 3 3 0 11 3 2 0 8
Liguria 3 2 2 15 3 2 2 10
Emilia Romagna 5 1 0 29 5 1 0 20

Central:
Toscana 4 3 0 28 4 3 1 30
Umbria 2 0 0 7 2 0 0 8
Marche 4 1 0 27 2 1 0 23
Lazio 3 8 7 44 4 10 9 40

South:
Abruzzo 0 0 0 19 0 0 0 20
Molise 0 1 0 3 0 1 0 6
Campania 8 3 1 37 8 4 3 43
Puglia 6 4 1 46 2 3 2 27
Basilicata 1 0 0 6 2 0 0 6
Calabria 4 0 0 27 4 1 0 26
Sicilia 17 4 0 47 15 4 0 43
Sardegna 1 2 0 22 1 3 0 26

North 47 23 25 167 50 23 19 96
Central 13 12 7 106 12 14 10 101
South 37 14 2 207 32 16 5 197

TOTAL 97 49 34 480 94 53 34 394

inpatients. The number of beds provides a proxy measure for capital, which

is otherwise difficult to measure; using beds as a proxy for capital is typical

in hospital studies. Separating the bed counts into inpatient and outpatient
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Table 4.3: Summary statistics for Inputs and Outputs

Min Mean Median Max Std. Dev.

2001 (660 obs.):
doctors 3.0 143.7 82.0 1501.0 170.2
nurses 8.0 352.0 199.0 2726.0 412.1
other employees 2.0 313.2 154.5 2985.0 410.0
acute beds 1.0 30.1 16.0 269.0 37.6
long-term beds 19.0 305.4 180.0 2310.0 333.3

inpatients 200.5 11470.5 6516.1 91589.4 13349.3
outpatients 1.0 1447.2 789.5 27681.0 2033.1
patient days 868.9 86183.2 44928.9 695155.5 109439.3
operations 15.4 21184.8 11552.9 227128.8 27390.3

2005 (575 obs.):
doctors 2.0 174.3 104.0 1297.0 189.7
nurses 11.0 387.8 228.0 2872.0 423.0
other employees 1.0 365.3 184.0 3878.0 469.4
acute beds 1.0 37.6 24.0 271.0 41.0
long-term beds 6.0 308.0 200.0 1822.0 309.2

inpatients 169.5 11694.9 7130.5 72711.4 12644.8
outpatients 2.0 1462.0 838.0 44124.0 2420.9
patient days 1447.3 88619.6 50575.6 611537.8 102320.5
operations 3.9 12394.2 6380.7 121550.6 16791.3

categories captures, as far as possible, how hospital managers allocate scarce

capital across patients receiving different types of treatment. As discussed

earlier in Section 4.2, several regions have included favorable reimbursement

rates for treatment of outpatients in an attempt to encourage hospitals to

provide more treatment on an outpatient-basis than was previously done.

Output quantities are adjusted by multiplying numbers of inpatients,

long-term days and surgical procedures by a hospital case-mix index (CMI)

in order to weight output quantities by the severity of the illness treated,

or intensity of treatment received. This approach has become standard in

the hospital literature; see Grosskopf and Valdmanis (1993) for additional

discussion. Table 4.3 gives summary statistics for the input and output
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quantities for both 2001 and 2005. As in the U.S., the difference in size

among Italian hospitals is large, with sizes ranging from 20 to more than

2,000 beds. The distribution of size in both 2001 and 2005 is skewed to the

right; i.e., there are relatively large numbers of small hospitals compared to

numbers of very large hospitals.

Our choice of the non-parametric, unconditional, hyperbolic α-quantile

estimator is motivated in part by the summary statistics in Table 4.3. With

highly skewed data, as in our application, parametric specification of translog

production or cost functions is problematic. Analyzing U.S. hospital data,

Wilson and Carey (2004) found that a translog cost function was trivially

rejected by the data13. The risk of mis-specifying the response function is

avoided by fully non-parametric estimation, but, as noted earlier, DEA and

FDH estimators incur the dreaded curse of dimensionality. Our specification

of inputs and outputs involves p + q = 9 dimensions, resulting in a conver-

gence rate of n−2/(p+q+1) = n−1/5 for DEA estimators of efficiency14. This

is the same convergence rate as that achieved by the Nadarya-Watson kernel

estimator and by local-linear estimators in bivariate regression problems (Li

and Racine 2007). Although there are several hundred observations in each

year, these numbers are likely to small to avoid substantial estimation error

if the DEA estimator is used. In addition, DEA estimators are sensitive

to outliers. By contrast, the non-parametric, unconditional, hyperbolic α-

quantile estimator converges at the classical parametric rate of n−1/2, and

is robust with respect to outliers.

4.4 Estimation Results

Using α-quantile estimators requires choosing a value for α to define the

quantile to be used for benchmarking efficiency, productivity, etc. I initially
13A number of studies have discussed mis-specification issues when the translog func-

tional form is used with data displaying wide variation in size of institutions. For Monte
Carlo evidence, see Guilkey et al. (1983) and Chalfant and Gallant (1985). For evidence
involving consumer demand, see Cooper and McLaren (1996) and Banks et al. (1997).
For evidence involving banks, see McAllister and McManus (1993), Mitchell and Onvural
(1996), and Wheelock and Wilson (2001). The distribution of bank sizes in the U.S. is
similar to the distribution of hospital size in Italy, in that the distribution is characterized
by right-skewness.

14See Section 1.2.8 for details.
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computed contemporaneous efficiency estimates using (1.39) for each hos-

pital in 2001 and 2005 for each α ∈ {0.9, 0.925, 0.95, 0.975, 0.99}, and

compared the efficiency estimates within each year across the five values of

α. Figure C.1 shows, for 2005, scatter plots of the contemporaneous effi-

ciency estimates for each of the five values of α plotted against each other.

The estimates fall mostly along a 45-degree line in each panel of Figure C.1,

indicating that there is little qualitative difference in the choice of α over

the range 0.9 to 0.99. Results for 2001 were similar. In addition, I computed

estimates of productivity, efficiency, and technology change using the same

five values of α, and found no qualitative differences among the results cor-

responding to the different values of α (see Table 4.4). Consequently, in the

remainder of this section I focus on results obtained with α = 0.95.

Table 4.4: Malmquist index and decomposition for Italian hospitals. Hyper-
bolic estimates, 2001-2005.

α = 0.9 α = 0.95 α = 0.97 α = 0.99
Productivity change 1.189 1.183 1.174 1.157
Efficiency change 0.972 0.984 0.982 1.005
Technology change 1.223 1.202 1.195 1.151

For each hospital appearing in our sample for both 2001 and 2005, I

computed estimates of the indices defined in (1.41), (1.42), and (1.43), and

then used a naive bootstrap (based on resampling from the empirical distri-

butions of input/output vectors in each year) to estimate confidence inter-

vals for the hospital-specific productivity, efficiency change, and technology

change indices defined above in Section 1.4.2. For each hospital, I then

examine whether the estimated confidence intervals each index lie strictly

below 1 (indicating an improvement), include 1 (indicating no statistically

significant change), or strictly above 1 (indicating a decrease or worsening).

Table 4.5 shows results for changes in productivity, efficiency, and tech-

nology for the northern, central, and southern regions of Italy, as well as for

the country as a whole. The results indicate that a majority of hospitals

in Italy declined in terms of productivity over 2001–2005, although some

hospitals showed improvement in productivity. In total, about 82 percent of
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Table 4.5: Numbers of Hospitals Experiencing Changes in Productivity, Ef-
ficiency, and Technology, by Region, 2001-2005 (α=0.95)

Productivity Efficiency Technology
Change Change Change

North
decline 117 28 125
no change 15 78 24
improvement 17 43 0

Central
decline 92 16 105
no change 10 55 13
improvement 16 47 0

South
decline 171 57 178
no change 7 83 20
improvement 20 58 0

Total
decline 380 101 408
no change 32 216 57
improvement 53 148 0

Italian hospitals became less productive over the period of our sample, while

about 11 percent became more productive. About 78 percent of hospitals in

both the northern and central regions became less productive, while about

86 percent of hospitals in the southern regions became less productive.

The results in Table 4.5 also indicate that changes in efficiency among

Italian hospitals over 2001–2005 were more modest than the changes in

productivity; across the entire country, about 46 percent of hospitals in

our sample had no significant change in efficiency. Among hospitals that

experienced a statistically significant change in efficiency, about 60 percent

showed an improvement in efficiency. Significant improvements outnumber

significant declines in efficiency in the northern and central regions, and are

roughly even in the southern regions of Italy.

The fourth column of Table 4.5 gives results for changes in technology,
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Table 4.6: Numbers of Hospitals Experiencing Changes in Productivity, Ef-
ficiency, and Technology, by Hospital Type, 2001-2005 (α=0.95)

Productivity Efficiency Technology
Change Change Change

AO
decline 73 27 60
no change 10 49 26
improvement 3 10 0

TH
decline 32 5 38
no change 4 19 4
improvement 6 18 0

NP
decline 21 4 24
no change 2 12 1
improvement 2 9 0

OGD
decline 254 65 286
no change 57 157 26
improvement 42 111 0

i.e., shifts in the α-quantile. For the majority of hospitals, the results in-

dicate that the α-quantile shifted downward or inward during 2001–2005;

there are no hospitals with a significant improvement, or upward shift of the

α-quantile. Conceivably, the full frontier Pt∂ could remain fixed, and the

α-quantile could change over time if there was a change in the distribution of

efficiency over time. However, a two-sample Kolmogorov-Smirnov test fails

to reject the null hypothesis of identical distributions for efficiencies in 2001

and 2005 (the p-value of the test is 0.1343). Moreover, the apparent down-

ward shift in technology is consistent with the other results in Table 4.5;

in particular, most hospitals experienced a decline in productivity, mean-

ing that the used more input to produce less output in 2005 as opposed

to 2001. At the same time, many hospitals had no significant change in

efficiency, and improvements in efficiency were almost evenly balanced by
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declines in efficiency. This suggests that the technology, as well as the α-

quantile, shifted downward, and hospitals roughly matched this shift, leaving

efficiency largely unchanged, but resulting in a decline in productivity.

Figures C.2–C.4 give further insight into the changes among Italian hos-

pitals over 2001–2005. In Figure C.2, bootstrap estimates of confidence

intervals for the productivity index defined in (1.41) are divided among the

northern, central, and southern regions, sorted by their lower bounds, and

then plotted in three panels to give an idea of the distribution and magni-

tudes of the changes in productivity both within regions and across regions.

Once again, results for the northern and central regions are similar, but

in the southern regions, many of the declines in productivity (indicated by

confidence intervals lying entirely above the horizontal line at one on the ver-

tical axis) are larger in magnitude than any declines found in the northern

and southern regions.

Figures C.3 and C.4 show similar plots of estimated confidence intervals

for efficiency change and technology change, respectively. Figure C.4 reveals

that the changes in technology are similar across all regions, but in Figure

C.3, it is apparent that hospitals in the southern regions in many cases expe-

rienced larger declines in efficiency than in the other regions, consistent with

the larger decline in productivity in the southern regions as seen if Figure

C.2. Thus, while the change in technology was similar over regions, many

hospitals in the southern regions experienced exceptionally large declines

in efficiency, resulting in corresponding large declines in productivity over

2001–2005.

Analogous to Table 4.5, Table 4.6 displays numbers of hospitals that

experienced significant changes in productivity, efficiency, and technology

for the four hospital types represented in our sample. In addition, Figures

C.5–C.7 show estimated confidence intervals for changes in productivity, ef-

ficiency, and technology by hospital type. The results reveal that changes in

technology were broadly similar across hospital types. In addition, changes

in productivity and efficiency appear broadly similar across AO, TH, and

NP hospitals. However, many OGD hospitals experience substantially larger

declines in productivity and efficiency than did hospitals in the other three

groups. This is consistent with the distribution of hospital types over the
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Regioni shown in Table 4.2; the southern regions have the largest proportion

of OGD hospitals.

Finally, Figures C.8–C.10 show estimated confidence intervals for changes

in productivity, efficiency, and technology as measured by the indices defined

in (1.41)–(1.43) by region and hospital type. As in previous Figures, the es-

timated confidence intervals in each panel are sorted by their lower bounds.

There are relatively few teaching and non-profit hospitals in the southern

regions. However, among AO as well as OGD hospitals, Figures C.8 and

C.9 show that the largest declines in productivity and efficiency among hos-

pitals in the southern regions are larger in magnitude than the declines in

productivity and efficiency among AO and OGD hospitals in the northern

and central regions. In other words, these results suggest that the appar-

ent poor performance of hospitals in the southern regions are not merely

a consequence of the fact that relatively more OGD hospitals are located

in the south than in the northern and central regions; i.e., both AO and

OGD hospitals in the south experienced substantial declines in productivity

and efficiency. On the other hand, with regard to changes in technology,

Figure C.10 confirms the earlier observations; i.e., technology seems to have

declined similarly across both hospital types as well as regions.
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Conclusions

This thesis showed several methods to measure the productivity and the

efficiency. Its aim was to present these methods and to show how these can

be used in several industry sectors. In particular, I presented an application

of the Tornqvist index numbers to measure the total factor productivity of

Alitalia, the main Italian airline (Chapter 2); a study of Italian airport sector

with the use of bootstrapped-dea (Chapter 3); and an investigation of the

efficiency of public Italian hospitals using a hyperbolic, α-quantile estimator

(Chapter 4).

The Tornqvist index numbers (Section 1.5) are commmon in the study of

productivity and they have a great variety of applications. Their drawback

concers the required data, given that they require information on price and

quantity for each input and output.

In the studies of efficiency, the DEA (Section 1.2) is become a very

common methodology. DEA is a nonparametric tecnique and its large use is

due to potential simplicity, given that no specification on the functional form

of frontier. Althought its large use due to potential simplicity, its statistical

properties and its basic assumptions are not often considered and this is

source of mistake (Section 1.2.1). In the last years, the statistical properties

of DEA were investigated (Section 1.2.8) and now we can use the boostrap

to do inference on efficiency estimates (Section 1.3).

Further, recently, a “family” of nonparametric estimators was developed:

the partial frontiers (Section 1.4). Their aim is to overcome to two main

problems of DEA estimator: the curse of dimesionality and the sensitive to

outliers. Indeed, the partial frontiers do not envelop all data point and are

more robust to outlier and gain a rate of convergence equal to root-n.

The applications show how to apply these methods and discuss the eco-
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nomic implication of the results. The empirical evidence shows as the Ali-

talia productivity slowdown has been caused by the company failure to follow

a supply-oriented strategy once expanded its inputs. Company privatization

and consolidation of domestic market seems the only solution.

In the Italian airport industry, the analysis highlights a very diversified

airports portfolio, characterized by constant return to scale technology and

heterogeneous benchmarks. Looking at the political implications, the empir-

ical evidences show as the institutional changes, which have deeply modified

the governance structures of the Italian airports, have generated increase in

efficiency. However, this improvement manly relies on the non core airports

business activities. Thus, while Italian airport management companies have

taken the opportunity of the new business they are still working on improv-

ing efficiency of the core activities, a crucial aspect of the entire system since

its huge impact on the air transport service and consumers.

In the study of public Italian hospital sector, we find evidence of de-

creased productivity over the sample period, as well as declines in produc-

tion possibilities (i.e., technology); the poor performance appears especially

pronounced in the southern regions of Italy.
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Appendix A

Figure A.1: Conditional Input, Conditional Output, and Hyperbolic Quan-
tiles (α = 0.99; f(x, y) uniform over a quarter-circle)
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NOTE: The solid curve shows the frontier P∂ . The dashed curve illustrates

the hyperbolic α quantile P∂
α. The two dotted curves show conditional α-

quantiles; the steeper of the two is the input conditional α-quantile, while

the less-steeply sloped dotted curve corresponds to the output conditional

α-quantile.
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Appendix B

Table B.1: Definition of Inputs and Output (Physical Model)

Variable code Type of variable Description
In1 Input 1 Number of employees
In2 Input 2 Number of runways
In3 Input 3 Apron area
Ou1 Output 1 Number of passengers
Ou2 Output 2 Amount of cargos
Ou3 Output 3 Number of movements

Table B.2: Definition of Inputs and Output (Revenue Model)

Variable code Type of variable Description
In1 Input 1 Labor costs
In2 Input 2 Soft Costs
In3 Input 3 Airport size
Ou1 Output 1 Aeronautical Revenue
Ou2 Output 2 Non aeronautical Revenue
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Table B.3: Correlation matrices (Physical Model)

2000 In1 In2 In3 Ou1 Ou2 Ou3
In1 1
In2 0.821 1
In3 0.973 0.863 1
Ou1 0.933 0.916 0.952 1
Ou2 0.96 0.878 0.965 0.931 1
Ou3 0.942 0.909 0.961 0.996 0.945 1

2001 In1 In2 In3 Ou1 Ou2 Ou3
In1 1
In2 0.73 1
In3 0.983 0.8 1
Ou1 0.868 0.898 0.923 1
Ou2 0.953 0.831 0.978 0.914 1
Ou3 0.902 0.877 0.95 0.994 0.941 1

2002 In1 In2 In3 Ou1 Ou2 Ou3
In1 1
In2 0.831 1
In3 0.985 0.812 1
Ou1 0.944 0.901 0.923 1
Ou2 0.961 0.82 0.958 0.89 1
Ou3 0.953 0.885 0.941 0.996 0.909 1

2003 In1 In2 In3 Ou1 Ou2 Ou3
In1 1
In2 0.942 1
In3 0.911 0.831 1
Ou1 0.992 0.931 0.921 1
Ou2 0.876 0.816 0.954 0.876 1
Ou3 0.989 0.926 0.933 0.997 0.89 1

2004 In1 In2 In3 Ou1 Ou2 Ou3
In1 1
In2 0.947 1
In3 0.919 0.831 1
Ou1 0.991 0.937 0.911 1
Ou2 0.89 0.824 0.954 0.87 1
Ou3 0.988 0.931 0.928 0.997 0.886 1
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Table B.4: Correlation matrices (Revenue Model)

2000 In1 In2 In3 Ou1 Ou2
In1 1
In2 0.9019 1
In3 0.9354 0.9829 1
Ou1 0.9969 0.924 0.9482 1
Ou2 0.8764 0.9967 0.9772 0.8987 1

2001 In1 In2 In3 Ou1 Ou2
In1 1
In2 0.9019 1
In3 0.9354 0.9829 1
Ou1 0.9969 0.924 0.9482 1
Ou2 0.8764 0.9967 0.9772 0.8987 1

2002 In1 In2 In3 Ou1 Ou2
In1 1
In2 0.9499 1
In3 0.9277 0.9843 1
Ou1 0.9825 0.9902 0.9736 1
Ou2 0.9237 0.9947 0.989 0.9764 1

2003 In1 In2 In3 Ou1 Ou2
In1 1
In2 0.9932 1
In3 0.9822 0.9846 1
Ou1 0.9976 0.9958 0.9871 1
Ou2 0.9913 0.9979 0.9875 0.9932 1

2004 In1 In2 In3 Ou1 Ou2
In1 1
In2 0.9938 1
In3 0.9812 0.9818 1
Ou1 0.9963 0.9966 0.9874 1
Ou2 0.9902 0.9955 0.9888 0.9933 1
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Table B.5: Input and Output Factors (Physical Model).

2000 2001 2002 2003 2004
α1 0.726 0.724 0.681 -0.62 0.618
α2 0.35 0.310 0.368 -0.423 0.426
α3 0.592 0.616 0.634 -0.661 0.661
β1 0.577 0.565 -0.562 0.551 0.548
β2 0.641 0.647 -0.653 0.661 0.658
β3 0.506 0.512 -0.508 0.510 0.516

Table B.6: Input and Output Factors (Revenue Model).

2000 2001 2002 2003 2004
α1 -0.653 -0.673 -0.638 0.598 0.602
α2 -0.604 -0.577 -0.594 0.605 0.594
α3 -0.457 -0.464 -0.49 0.526 0.534
β1 0.659 0.677 0.658 0.656 0.659
β2 0.752 0.736 0.753 0.755 0.752
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Table B.7: Tests of Return to Scale: p-values (H0: technology is globally
CRS ; H1: technology is VRS ).

p-value 2000 2001 2002 2003 2004
Physical model 0.456 0.279 0.331 0.231 0.244
Revenue Model 0.12 0.072 0.077 0.085 0.078

Table B.8: Original and bias-corrected DEA estimates, Physical model;
hcv = 0.692, Year 2000.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.288 0.259 0.029 0.028 1.047 0.228 0.287
AOI 0.442 0.397 0.045 0.043 1.048 0.35 0.44
BGY 1.000 0.899 0.101 0.097 1.046 0.792 0.997
BLQ 0.927 0.833 0.094 0.09 1.047 0.734 0.924
CTA 0.778 0.699 0.079 0.075 1.046 0.616 0.776
GOA 0.226 0.203 0.023 0.022 1.047 0.179 0.225
SUF 0.255 0.229 0.026 0.025 1.046 0.202 0.255
LIN MXP 0.599 0.539 0.061 0.058 1.047 0.475 0.598
NAP 0.929 0.835 0.094 0.09 1.047 0.736 0.927
PMO 0.437 0.393 0.044 0.042 1.048 0.346 0.436
PSR 0.208 0.187 0.021 0.02 1.05 0.165 0.207
PSA 0.357 0.321 0.036 0.035 1.047 0.283 0.356
CIA FCO 0.796 0.715 0.081 0.077 1.047 0.63 0.793
TRN 0.608 0.546 0.062 0.059 1.047 0.481 0.606
VCE 0.551 0.495 0.056 0.053 1.047 0.436 0.549
VRN 0.591 0.531 0.060 0.057 1.047 0.468 0.59
Mean 0.500 0.449
Dev. Std. 0.264 0.237
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Table B.9: Original and bias-corrected DEA estimates, Physical model;
hcv = 0.776, Year 2001.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.302 0.27 0.032 0.03 1.067 0.238 0.301
AOI 0.434 0.388 0.046 0.043 1.067 0.342 0.433
BGY 1.000 0.894 0.106 0.099 1.066 0.788 0.997
BLQ 0.771 0.689 0.082 0.077 1.067 0.608 0.769
CTA 0.789 0.705 0.084 0.078 1.067 0.621 0.786
GOA 0.29 0.259 0.031 0.029 1.068 0.228 0.289
SUF 0.173 0.155 0.018 0.017 1.072 0.136 0.173
LIN MXP 0.551 0.492 0.058 0.055 1.068 0.434 0.549
NAP 0.996 0.89 0.106 0.099 1.067 0.785 0.993
PMO 0.451 0.403 0.048 0.045 1.068 0.355 0.45
PSR 0.203 0.181 0.022 0.020 1.07 0.16 0.202
PSA 0.404 0.361 0.043 0.04 1.068 0.318 0.403
CIA FCO 0.913 0.816 0.097 0.091 1.067 0.719 0.91
TRN 0.668 0.597 0.071 0.066 1.066 0.526 0.666
VCE 0.556 0.497 0.059 0.055 1.067 0.438 0.555
VRN 0.61 0.546 0.065 0.061 1.067 0.481 0.608
Mean 0.503 0.45
Dev. Std. 0.269 0.241

Table B.10: Original and bias-corrected DEA estimates, Physical model;
hcv = 1.124, Year 2002.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.266 0.229 0.037 0.035 1.054 0.2 0.265
AOI 0.400 0.345 0.055 0.053 1.053 0.300 0.398
BGY 1.000 0.862 0.138 0.131 1.052 0.751 0.996
BLQ 0.627 0.541 0.087 0.082 1.053 0.471 0.625
CTA 0.570 0.491 0.079 0.075 1.052 0.428 0.568
GOA 0.269 0.232 0.037 0.035 1.054 0.202 0.268
SUF 0.166 0.143 0.023 0.022 1.052 0.125 0.165
LIN MXP 0.633 0.545 0.087 0.083 1.053 0.475 0.630
NAP 0.918 0.791 0.127 0.12 1.052 0.689 0.914
PMO 0.401 0.346 0.055 0.053 1.053 0.301 0.400
PSR 0.231 0.199 0.032 0.03 1.054 0.173 0.230
PSA 0.340 0.293 0.047 0.045 1.053 0.255 0.338
CIA FCO 0.792 0.682 0.109 0.104 1.052 0.594 0.788
TRN 0.730 0.629 0.101 0.096 1.052 0.548 0.727
VCE 0.406 0.350 0.056 0.053 1.053 0.305 0.405
VRN 0.428 0.369 0.059 0.056 1.052 0.322 0.426
Mean 0.453 0.390
Dev.Std. 0.252 0.217
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Table B.11: Original and bias-corrected DEA estimates, Physical model;
hcv = 1.234, Year 2003.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.209 0.175 0.034 0.032 1.065 0.154 0.208
AOI 0.316 0.265 0.051 0.048 1.064 0.232 0.315
BGY 1.000 0.838 0.162 0.152 1.063 0.734 0.996
BLQ 0.623 0.522 0.101 0.095 1.064 0.457 0.620
CTA 0.537 0.45 0.087 0.082 1.063 0.394 0.535
GOA 0.236 0.197 0.038 0.036 1.064 0.173 0.235
SUF 0.225 0.188 0.037 0.034 1.066 0.165 0.224
LIN MXP 0.738 0.618 0.12 0.112 1.063 0.541 0.734
NAP 0.71 0.595 0.115 0.108 1.063 0.521 0.707
PMO 0.299 0.251 0.049 0.046 1.064 0.22 0.298
PSR 0.177 0.149 0.029 0.027 1.063 0.130 0.177
PSA 0.311 0.261 0.050 0.047 1.063 0.228 0.310
CIA FCO 0.689 0.577 0.112 0.105 1.063 0.505 0.686
TRN 0.585 0.49 0.095 0.089 1.063 0.429 0.582
VCE 0.418 0.35 0.068 0.064 1.064 0.306 0.416
VRN 0.391 0.328 0.063 0.060 1.064 0.287 0.389
Mean 0.411 0.345
Dev. Std. 0.239 0.200

Table B.12: Original and bias-corrected DEA estimates, Physical model;
hcv = 1.151, Year 2004.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.225 0.19 0.035 0.034 1.032 0.166 0.224
AOI 0.325 0.275 0.05 0.049 1.031 0.24 0.324
BGY 1.000 0.846 0.154 0.150 1.03 0.738 0.996
BLQ 0.598 0.505 0.092 0.090 1.031 0.441 0.595
CTA 0.56 0.474 0.087 0.084 1.031 0.414 0.558
GOA 0.223 0.189 0.035 0.033 1.033 0.165 0.222
SUF 0.213 0.180 0.033 0.032 1.031 0.157 0.212
LIN MXP 0.763 0.645 0.118 0.114 1.031 0.563 0.760
NAP 0.672 0.568 0.104 0.101 1.031 0.496 0.669
PMO 0.289 0.244 0.045 0.043 1.032 0.213 0.287
PSR 0.185 0.156 0.029 0.028 1.031 0.137 0.184
PSA 0.319 0.270 0.049 0.048 1.032 0.236 0.318
CIA FCO 0.747 0.632 0.115 0.112 1.031 0.552 0.744
TRN 0.603 0.510 0.093 0.090 1.031 0.445 0.60
VCE 0.459 0.388 0.071 0.069 1.032 0.339 0.457
VRN 0.405 0.342 0.063 0.061 1.032 0.299 0.403
Mean 0.417 0.353
Dev. Std. 0.242 0.204
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Table B.13: Original and bias-corrected DEA estimates, Revenue model;
hcv = 0.499, Year 2000.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.175 0.162 0.012 0.012 1.046 0.146 0.174
AOI 0.652 0.607 0.045 0.043 1.043 0.545 0.650
BGY 0.708 0.659 0.049 0.047 1.043 0.591 0.707
BLQ 0.927 0.863 0.064 0.061 1.043 0.774 0.925
CTA 0.466 0.434 0.032 0.031 1.044 0.389 0.465
GOA 0.673 0.627 0.047 0.045 1.044 0.563 0.672
SUF 0.290 0.270 0.020 0.019 1.046 0.243 0.290
LIN MXP 0.864 0.805 0.060 0.057 1.043 0.722 0.863
NAP 0.843 0.785 0.058 0.056 1.044 0.704 0.841
PMO 0.684 0.637 0.047 0.045 1.045 0.571 0.683
PSR 0.139 0.13 0.010 0.009 1.043 0.116 0.139
PSA 0.432 0.402 0.030 0.029 1.044 0.361 0.431
CIA FCO 1.000 0.931 0.069 0.066 1.043 0.836 0.998
TRN 0.708 0.659 0.049 0.047 1.044 0.592 0.707
VCE 0.785 0.730 0.054 0.052 1.043 0.655 0.783
VRN 0.571 0.532 0.039 0.038 1.043 0.477 0.570
Mean 0.547 0.509
Dev. Std. 0.258 0.240

Table B.14: Original and bias-corrected DEA estimates, Revenue model;
hcv = 0.626, Year 2001.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.168 0.153 0.015 0.014 1.041 0.136 0.168
AOI 0.462 0.422 0.040 0.038 1.038 0.374 0.461
BGY 0.548 0.500 0.047 0.046 1.038 0.444 0.547
BLQ 0.808 0.738 0.07 0.067 1.038 0.655 0.806
CTA 0.514 0.47 0.044 0.043 1.037 0.417 0.513
GOA 0.747 0.683 0.065 0.062 1.038 0.606 0.746
SUF 0.276 0.252 0.024 0.023 1.038 0.224 0.275
LIN MXP 0.766 0.700 0.066 0.064 1.037 0.621 0.764
NAP 0.709 0.648 0.061 0.059 1.039 0.575 0.707
PMO 0.619 0.566 0.054 0.052 1.037 0.502 0.618
PSR 0.144 0.132 0.012 0.012 1.039 0.117 0.144
PSA 0.425 0.388 0.037 0.035 1.039 0.345 0.424
CIA FCO 1.000 0.914 0.086 0.083 1.037 0.811 0.998
TRN 0.714 0.652 0.062 0.06 1.038 0.579 0.713
VCE 0.746 0.681 0.065 0.062 1.038 0.605 0.744
VRN 0.551 0.503 0.048 0.046 1.038 0.447 0.550
Mean 0.512 0.467
Dev. Std. 0.238 0.218
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Table B.15: Original and bias-corrected DEA estimates, Revenue model;
hcv = 0.553, Year 2002.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.271 0.249 0.021 0.020 1.074 0.223 0.270
AOI 0.404 0.372 0.032 0.030 1.071 0.332 0.403
BGY 0.525 0.484 0.041 0.039 1.070 0.432 0.524
BLQ 0.792 0.729 0.062 0.058 1.069 0.651 0.790
CTA 0.596 0.549 0.047 0.044 1.069 0.49 0.595
GOA 0.674 0.621 0.053 0.050 1.070 0.554 0.673
SUF 0.311 0.287 0.025 0.023 1.072 0.256 0.311
LIN MXP 0.822 0.757 0.065 0.061 1.070 0.676 0.820
NAP 0.763 0.703 0.060 0.056 1.069 0.628 0.761
PMO 0.646 0.595 0.051 0.048 1.071 0.532 0.645
PSR 0.285 0.262 0.023 0.021 1.071 0.234 0.284
PSA 0.450 0.414 0.036 0.033 1.071 0.37 0.449
CIA FCO 1.000 0.921 0.079 0.074 1.069 0.822 0.998
TRN 0.706 0.65 0.056 0.052 1.07 0.581 0.705
VCE 0.696 0.641 0.055 0.051 1.07 0.573 0.695
VRN 0.529 0.487 0.042 0.039 1.071 0.435 0.528
Mean 0.553 0.51
Dev. Std. 0.21 0.194

Table B.16: Original and bias-corrected DEA estimates, Revenue model;
hcv = 0.432, Year 2003.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.267 0.25 0.016 0.016 1.038 0.227 0.266
AOI 0.418 0.393 0.026 0.025 1.037 0.355 0.417
BGY 0.667 0.626 0.041 0.039 1.034 0.567 0.666
BLQ 0.853 0.801 0.052 0.050 1.033 0.725 0.852
CTA 0.619 0.581 0.038 0.036 1.035 0.526 0.618
GOA 0.686 0.644 0.042 0.040 1.035 0.583 0.684
SUF 0.385 0.361 0.023 0.023 1.035 0.327 0.384
LIN MXP 0.992 0.931 0.06 0.058 1.035 0.843 0.990
NAP 0.821 0.771 0.05 0.048 1.034 0.698 0.82
PMO 0.715 0.672 0.044 0.042 1.034 0.608 0.714
PSR 0.335 0.314 0.02 0.02 1.034 0.285 0.334
PSA 0.485 0.455 0.03 0.029 1.034 0.412 0.484
CIA FCO 1.000 0.939 0.061 0.059 1.033 0.85 0.999
TRN 0.764 0.717 0.047 0.045 1.035 0.649 0.763
VCE 0.868 0.815 0.053 0.051 1.033 0.737 0.866
VRN 0.601 0.565 0.037 0.035 1.034 0.511 0.601
Mean 0.612 0.575
Dev. Std. 0.228 0.214
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Table B.17: Original and bias-corrected DEA estimates, Revenue model;
hcv = 0.518, Year 2004.

Eff. Bias-
Airport Code Eff. Scores Corrected Scores Bias Std µ LB UB
AHO 0.297 0.276 0.02 0.020 1.046 0.247 0.296
AOI 0.447 0.416 0.031 0.030 1.045 0.372 0.446
BGY 0.650 0.605 0.045 0.043 1.044 0.542 0.649
BLQ 0.726 0.676 0.05 0.048 1.044 0.605 0.725
CTA 0.59 0.55 0.041 0.039 1.043 0.492 0.589
GOA 0.578 0.538 0.040 0.038 1.044 0.481 0.577
SUF 0.355 0.330 0.024 0.023 1.044 0.296 0.354
LIN MXP 0.972 0.905 0.067 0.064 1.042 0.810 0.970
NAP 0.792 0.737 0.055 0.052 1.043 0.660 0.790
PMO 0.700 0.651 0.048 0.046 1.043 0.583 0.698
PSR 0.322 0.299 0.022 0.021 1.043 0.268 0.321
PSA 0.459 0.428 0.032 0.030 1.045 0.383 0.458
CIA FCO 1.000 0.931 0.069 0.066 1.042 0.833 0.998
TRN 0.782 0.728 0.054 0.052 1.043 0.651 0.780
VCE 0.850 0.791 0.059 0.056 1.044 0.708 0.848
VRN 0.585 0.545 0.04 0.039 1.042 0.487 0.584
Mean 0.593 0.552
Dev. Std. 0.219 0.204
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Figure B.1: The Italian airport system : AO level
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Figure B.2: The Italian airport system : A1 and A2 level
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Figure B.3: Boxplot of the Bootstrapped Efficiency Scores (Physical Model).
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Figure B.4: Boxplot of the Bootstrapped Efficiency Scores (Revenue Model).
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Appendix C

Table C.1: Malmquist index and decomposition by region. 2001-2005, α =
0.99.

REGION n obs Productivity change Efficiency change Technology change
ABRUZZO 19 1.241 1.065 1.165
BASILICATA 7 1.447 1.221 1.185
BOLZANO 6 1.307 1.114 1.173
CALABRIA 26 1.251 1.073 1.165
CAMPANIA 45 1.210 1.050 1.153
EMILIA ROMAGNA 25 1.092 0.959 1.139
FRIULI 12 1.219 1.029 1.184
LAZIO 57 1.071 0.940 1.139
LIGURIA 16 1.019 0.933 1.093
LOMBARDIA 46 1.129 0.973 1.160
MARCHE 24 1.099 0.939 1.170
MOLISE 3 1.946 1.633 1.192
PIEMONTE 25 1.037 0.962 1.078
PUGLIA 12 1.179 0.974 1.210
SARDEGNA 24 1.142 0.996 1.146
SICILIA 62 1.222 1.042 1.172
TOSCANA 30 1.180 1.017 1.161
TRENTO 6 1.173 1.075 1.091
UMBRIA 7 1.168 1.119 1.044
VALLE AOSTA 1 1.106 1.039 1.065
VENETO 12 1.062 0.903 1.176
NORD 149 1.104 0.973 1.135
CENTRO 118 1.109 0.969 1.145
MEZZOGIORNO 198 1.228 1.053 1.166
ITALY 465 1.157 1.005 1.151
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Figure C.1: Comparison of Efficiency Estimates for Various Values of α
(2005)

alpha=0.9

0.0 1.0 2.0 0.0 1.0 2.0

0.
0

1.
0

2.
0

0.
0

1.
0

2.
0

alpha=0.925

alpha=0.95

0.
0

1.
0

2.
0

0.
0

1.
0

2.
0

alpha=0.975

0.0 1.0 2.0 0.0 1.0 2.0 0.0 1.0 2.0

0.
0

1.
0

2.
0

alpha=0.99

119



F
ig

ur
e

C
.2

:
E

st
im

at
ed

P
ro

du
ct

iv
it
y

C
ha

ng
e,

20
01

–2
00

5,
by

R
eg

io
n

(α
=

0.
95

)

0
50

10
0

15
0

024681012

N
o

rt
h

ho
sp

ita
ls

Estimated CIs

0
20

40
60

80
10

0
12

0

024681012

C
en

tr
al

ho
sp

ita
ls

Estimated CIs

0
50

10
0

15
0

20
0

024681012

S
o

u
th

ho
sp

ita
ls

Estimated CIs

120



F
ig

ur
e

C
.3

:
E

st
im

at
ed

E
ffi

ci
en

cy
C

ha
ng

e,
20

01
–2

00
5,

by
R

eg
io

n
(α

=
0.

95
)

0
50

10
0

15
0

0.01.02.03.0

N
o

rt
h

ho
sp

ita
ls

Estimated CIs

0
20

40
60

80
10

0
12

0

0.01.02.03.0

C
en

tr
al

ho
sp

ita
ls

Estimated CIs

0
50

10
0

15
0

20
0

0.01.02.03.0

S
o

u
th

ho
sp

ita
ls

Estimated CIs

121



F
ig

ur
e

C
.4

:
E

st
im

at
ed

T
ec

hn
ol

og
y

C
ha

ng
e,

20
01

–2
00

5,
by

R
eg

io
n

(α
=

0.
95

)

0
50

10
0

15
0

1.01.52.02.53.03.54.0

N
o

rt
h

ho
sp

ita
ls

Estimated CIs

0
20

40
60

80
10

0
12

0

1.01.52.02.53.03.54.0

C
en

tr
al

ho
sp

ita
ls

Estimated CIs

0
50

10
0

15
0

20
0

1.01.52.02.53.03.54.0

S
o

u
th

ho
sp

ita
ls

Estimated CIs

122



Figure C.5: Estimated Productivity Change, 2001–2005, by Hospital Type
(α = 0.95)
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Figure C.6: Estimated Efficiency Change, 2001–2005, by Hospital Type
(α = 0.95)
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Figure C.7: Estimated Technology Change, 2001–2005, by Hospital Type
(α = 0.95)
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Figure C.8: Estimated Productivity Change, 2001–2005, by Type and Re-
gion (α = 0.95)
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Figure C.9: Estimated Efficiency Change, 2001–2005, by Type and Region
(α = 0.95)
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Figure C.10: Estimated Technology Change, 2001–2005, by Type and Re-
gion (α = 0.95)
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