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Introduction

A complex flag manifold is a compact complex manifold M that is homogeneous
for the action of a semisimple complex Lie group Ĝ; equivalently M is of the form
M = Ĝ/Q, with Q a complex parabolic subgroup of Ĝ. The orbits M in M of a
real form G of Ĝ inherit from the complex structure of M a G-homogeneous CR
structure. In this way we obtain a large class of CR manifolds, that we call parabolic
CR manifolds. They are homogeneous for the CR action of a real semisimple Lie
group. Special examples are the compact standard homogeneous CR manifolds,
corresponding to Levi-Tanaka algebras (see e.g. [MN97], [MN98], [MN01]), and the
symmetric CR manifolds in [LN05].

The orbits of G in M were already considered in [Wol69]. Here it is proved
that there is a unique compact G-orbit in M, that we call compact parabolic CR
manifold.

Among the several recent contributions to the study of this subject, we
cite [Kas93] in the context of infinite dimensional representation theory, [GM03],
[HW03] and [KZ03] for applications to the geometry of symmetric spaces.

In this work we stress the point of view of CR geometry. The main tool we
use are parabolic CR algebras, that is CR algebras of the form (g, q), where g is a
real semisimple Lie algebra and q is a parabolic subalgebra of the complexification
ĝ = C ⊗ g of g. These algebras, first introduced in [MN05], provide an algebraic
description of the local CR structure of homogeneous CR manifolds.

It is possible to find Cartan subalgebras h of g contained in q. Several CR and
topological invariants of M can thus be described in terms of carefully chosen bases
of the root system R(ĝ, ĥ) of ĝ with respect to ĥ = C⊗ h.

The open orbits are complex manifolds and have been extensively studied (see
e.g. [FHW06]). In particular, they are all simply connected (see [Wol69]). Also
the topology of the real flag manifolds has been thoroughly investigated (see e.g.
[CS99], [DKV83], [Wig98]). In this work we show that every parabolic CR manifold
M is the total space of a canonical fibration over a real flag manifold. The fiber
may be disconnected and each connected component is a simply connected complex
manifold, which can be retracted onto an open orbit. This essentially reduces the
computation of the fundamental group of M to counting the connected components
of the fiber.

The thesis is organized as follows.
The first part deals with general parabolic CR manifolds and comprises Chap-

ters 1–4.
In Chapter 1 we review the notions of CR algebras and homogeneous CR man-

ifolds from [MN05], that was also recently utilized in [Fel06] and [FK06]. We collect
here the main results and fix the notation that will be employed in the following
chapters.

iii



iv INTRODUCTION

In Chapter 2 we quickly rehearse parabolic complex Lie subalgebras and com-
plex flag manifolds and begin the study of the CR algebras that are associated to
the real orbits M in the complex flag manifolds M, also investigating the canonical
G-equivariant maps of [MN05] in this special situation.

Chapter 3 is the core of our investigation of the CR properties of M . Through
the introduction of adapted Cartan subalgebras and S- and V-fit Weyl chambers,
we associate to M special systems of simple roots. Weak (i.e. holomorphic accord-
ing to [BER99]) nondegeneracy and fundamentality (i.e. finite type according to
[BG77]) are proved to be equivalent to properties of these systems of simple roots.
These can be checked from the pattern of some cross marked diagrams associated
to M , that generalize those of [MN98], [LN05].

In Chapter 4 we turn to the construction of homogeneous CR manifolds that
fiber over our orbit M and that are useful both for finding the S- and V-fit Weyl
chambers and for investigating the topological properties of M in the following
sections. In particular, we construct the weakest CR model of M , that is a step
to build a chain of fibrations, with simply connected fibers, that in some instances
coincides with, and in general can be considered as a substitute of, the holomorphic
arc components of [Wol69].

In the second part, that comprises Chapters 5–7, the special case of compact
parabolic CR manifolds is studied in detail.

In Chapter 5 we characterize those parabolic CR algebras that correspond to
compact CR manifolds and associate to them a special subclass of the diagrams
introduced in Chapter 3. Then we study G-equivariant fibrations of compact par-
abolic CR manifolds and classify totally real and totally complex ones.

In Chapter 6 we investigate several nondegeneracy conditions for compact par-
abolic CR manifolds, sharpening the results of Chapter 3.

In Chapter 7 we recall the definition of essential pseudoconcavity, a notion
that generalizes that of pseudoconcavity, and characterize compact parabolic CR
manifolds that are essentially pseudoconcave.

The third part of the thesis, that includes Chapters 8–10, presents some appli-
cations of the theory developed in the previous chapters.

In Chapter 8 we investigate the connectivity of the isotropy subgroup of M .
This is needed to study the connectivity of the fibers of a fibration of M over a real
flag manifold M ′, that we utilize to compute the fundamental group of M . This is
a somehow delicate point: the simply connected fibers of our construction may be
not connected. We use classical results from [BT72], [BT65] to characterize Cartan
subgroups and isotropy subgroups of connected semisimple real linear groups in
terms of characters. Then we discuss the fundamental group of M .

In Chapter 9 we provide several examples which show how effective our results
are for the study of CR and topological properties of the orbits.

Finally, in Chapter 10, we describe the space of global CR functions on para-
bolic CR manifolds

All the results contained in this thesis were first presented in [AM06],
[AMN06a], [AMN06b], [Alt07].
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CHAPTER 1

Homogeneous CR manifolds and CR algebras

In this chapter we review some aspects of the theory of homogeneous CR mani-
folds. First we recall the basic definitions and results about CR manifolds and CR
maps (a general reference for this topic, covering much more than we need here, is
[BER99]). Then we introduce homogeneous CR manifolds and review the relation
between (germs of) homogeneous CR manifolds and CR algebras, along the lines
of [MN05].

1.1 CR manifolds

A CR manifold of type (n, k) is a triple (M,HM,J), consisting of:
(1) a smooth paracompact manifold M of real dimension (2n+ k),
(2) a smooth real vector subbundle HM of rank 2n of its real tangent bundle

TM ,
(3) a smooth complex structure J :HM −→ HM on the fibers of HM .

The integers n and k are the CR dimension and CR codimension of M . It is also
required that J satisfies the formal integrability conditions :

(1.1)
[
C∞(M,T 0,1M), C∞(M,T 0,1M)

]
⊂ C∞(M,T 0,1M).

where T 0,1M = {X + iJX | X ∈ HM} is the complex subbundle of the complexifi-
cation CHM of HM corresponding to the eigenvalue −i of J ; with T 1,0M = T 0,1M
we have T 1,0M ∩T 0,1M = 0 and T 1,0M ⊕T 0,1M = CHM . Any real smooth man-
ifold is a CR manifold, with n = 0. When k = 0 instead, we recover the abstract
definition of a complex manifold, via the Newlander-Nirenberg theorem.

If (M,HM,J) and (M ′, HM ′, J ′) are CR manifolds, a smooth f :M −→ M ′ is
a CR map if :

(1) df(HM) ⊂ HM ′,
(2) df ◦ J = J ′ ◦ df on HM .

Assume that (M ′, HM ′, J ′) is a CR manifold and f :M −→M ′ a smooth immersion.
For x ∈M we define HxM and Jxv for v ∈ HxM by setting :

(1.2)
{
HxM = [df(x)]−1

(
[df(TxM) ∩Hf(x)M

′] ∩ [J ′(df(TxM) ∩Hf(x)M
′)]
)

Jx(v) = [df(x)]−1 (J ′([df(x)](v))) .

If the dimension HxM is a constant integer, independent of x ∈ M , then the dis-
joint union HM of the HxM ’s, and the map J : HM −→ HM , equal to Jx on
the fiber HxM , define a CR manifold (M,HM,J). This is the CR structure on
M with the maximal CR dimension among those for which f is a CR map. In
this case the map f : M −→ M ′ is called a CR immersion. If (M ′, HM ′, J ′) is of
type (n′, k′) and (M,HM,J) of type (n, k), we always have n + k ≤ n′ + k′. The

3



4 1. HOMOGENEOUS CR MANIFOLDS AND CR ALGEBRAS

immersion is generic when the equality n+ k = n′ + k′ holds. When f : M −→M ′

is also an embedding, we say that f is a CR embedding or a generic CR embedding,
respectively.

A CRmap f : (M,HM,J) −→ (M ′, HM ′, J ′) is a CR submersion if f : M −→M ′

is a smooth submersion and moreover df(x)(HxM) = Hf(x)M
′ for all x ∈ M . If

(M,HM,J) is of type (n, k) and (M ′, HM ′, J ′) of type (n′, k′), the existence of a
CR submersion implies that n ≥ n′ and k ≥ k′.

When f :M −→M ′ is a CR submersion and a smooth fiber bundle, we say that
f : (M,HM,J) −→ (M ′, HM ′, J ′) is a CR fibration. The fibers are embedded CR
submanifolds of M ′ of type (n− n′, k − k′).

A CR diffeomorphism of (M,HM,J) onto (M ′, HM ′, J ′) is a diffeomorphism
f :M −→ M ′ such that both f and f−1 are smooth CR maps. The set of all CR
diffeomorphisms of (M,HM,J) onto itself (CR automorphisms) is a group with
the composition operation.

We say that (M,HM,J) is a homogeneous CR manifold if there is a Lie group
of CR automorphisms that acts transitively on M .

Let (M,HM,J) be a CR manifold. A vector field X ∈ C∞(U, TM), defined
on an open subset U of M , is an infinitesimal CR automorphism if the maps ϕX(t)
of the local 1-parameter group of local transformations generated by X are CR.
This is equivalent to the fact that [X, C∞(U, T 0,1M)] ⊂ C∞(U, T 0,1M). We say
that (M,HM,J ; o) is a locally homogeneous CR manifolds at a point o ∈M if, for
each v ∈ ToM , there is an infinitesimal CR automorphism X, defined in an open
neighborhood U of o in M , with v = X(o).

Homogeneous CR manifolds are locally CR homogeneous: a homogeneous
CR manifold (M,HM,J) has a real analytic CR structure and therefore (see e.g.
[AF79]) admits a generic embedding M ↪→ M̂ into a complex manifold M̂ . Then
the Lie algebra g of the Lie group G that acts transitively by CR automorphisms
on M can be identified with a Lie algebra of infinitesimal analytic CR automor-
phisms defined on U = M . Each X∗ ∈ C∞(M,TM), corresponding to an X ∈ g,
is the restriction of the real part of a holomorphic vector field Z∗, defined on an
open complex neighborhood Û of M in M̂ (i.e. X∗ = [ReZ∗] |M ; see e.g. [BER99,
§12.4]).

The germs of infinitesimal CR automorphisms of (M,HM,J) at a point o ∈M ,
with the Lie bracket, form a real Lie algebra G = G(M,HM,J ; o). We consider
its complexification Ĝ = C ⊗ G and denote by Q = Q(M,HM,J ; o) the complex
Lie subalgebra of Ĝ consisting of all Z ∈ Ĝ with Z(o) ∈ T 0,1

o M . The fact that Q is
actually a complex Lie subalgebra of Ĝ is a consequence of the formal integrability
of the partial complex structure J .

When (M,HM,J) is locally CR homogeneous at o ∈ M , the pair (G,Q) =
(G(M,HM,J ; o),Q(M,HM,J ; o)) completely determines the germ of the CR
manifold (M,HM,J) at o. Vice versa, if g is a finite dimensional real Lie algebra
and q a complex Lie subalgebra of its complexification ĝ, the general construction1

of a germ (M,o) of homogeneous manifold associated to the Lie algebra g and to its

1If g is a finite dimensional real Lie algebra and g+ a real Lie subalgebra of g, we can find a
germ (M,o) of analytic real manifold, unique modulo germs of analytic diffeomorphisms, for which

there is a real Lie algebras homomorphism ı : g −→ C∞(o)(M, TM) with {ı(X)(o) |X ∈ g} = ToM

and g+ = {X ∈ g | ı(X)(o) = 0}.
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Lie subalgebra g+ = g ∩ q (cf. e.g. [Pos86, Ch.VII]) yields a unique, modulo local
CR diffeomorphisms, germ of locally homogeneous CR manifold (M,HM,J ; o) at
o ∈M , such that the complexification ı̂ of the correspondence ı : g −→ C∞(o)(M,TM)

yields a homomorphism of complex Lie algebras: ı̂ : ĝ −→ Ĝ(M,HM,J ; o) with

(1.3) ı(g) ⊂ G(M,HM,J ; o) , ı̂(q) ⊂ Q(M,HM,J ; o)

and for which the induced map on the quotients

g/(g ∩ q) −→ G(M,HM,J ; o)/ (G(M,HM,J ; o) ∩Q(M,HM,J ; o))

is an isomorphism. In this case we say that the germ of (M,HM,J) at o is associ-
ated to the pair (g, q). (We shall consistently use “hat ” to indicate complexification:
e.g. ϕ̂ : ĝ −→ ĝ′ is the complexification of ϕ : g −→ g′).

These remarks led to the introduction in [MN05] of the abstract notion of a CR
algebra. A CR algebra (g, q) is the pair consisting of a real Lie algebra g and of a
complex Lie subalgebra q of its complexification ĝ = C⊗ g, such that the quotient
g/ (g ∩ q) is a finite dimensional real linear space. Note that we do not require that
g is finite dimensional. The intersection g+ = g ∩ q is the isotropy of (g, q). Let
H+ = {ReZ |Z ∈ q} and denote by Z̄ the conjugate of Z ∈ ĝ with respect to the
real form g.

A CR algebra (g, q) is :
• totally real if H+ = g+,
• totally complex if H+ = g,
• fundamental if H+ generates g as a real Lie algebra,
• transitive, or effective if g+ does not contain any nonzero ideal of g,
• ideal nondegenerate if all ideals of g contained in H+ are contained in

g+,
• weakly nondegenerate if there is no complex Lie subalgebra q′ of ĝ with :

q ( q′ ⊂ q + q̄,

• strictly nondegenerate if g+ = {X ∈ H+ | [X,H+] ⊂ H+}.
Clearly :
strictly nondegenerate =⇒ weakly nondegenerate =⇒ ideal nondegenerate .
Fundamentality of (g, q) is equivalent to the fact that the associated germ of

homogeneous CR manifold (M,HM,J ; o) is of finite type in the sense of [BG77],
i.e. that the smallest involutive distribution of tangent vectors containing HM also
contains ToM .

Strict and weak nondegeneracy hold, or do not hold, for all CR algebras
that are associated to the same germ (M,HM,J ; o) of locally homogeneous CR
manifold. They correspond indeed to the nondegeneracy of the (vector valued)
Levi form and of its higher order analog, respectively (see e.g. [MN05, §13]).
In particular, weak nondegeneracy at a point o ∈ M of a (germ of) CR man-
ifold (M,HM,J) means that, for every L ∈ C∞(M,T 1,0M) with L(o) 6= 0,
there exist finitely many vector fields Z̄1, . . . , Z̄m ∈ C∞(M,T 0,1M) such that
[L , Z̄1 , . . . , Z̄m](o) /∈ T 1,0

o M ⊕ T 0,1
o M .

When (g, q) defines at o a germ of homogeneous CR manifold, the two notions
of weak nondegeneracy, the one for CR algebras and the one above for CR man-
ifolds, coincide and also coincide with the holomorphic nondegeneracy of [BER99]
and the finite nondegeneracy of [Fel06].

We have the following :
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Proposition 1.1. Let (M,HM,J) and (M ′, HM ′, J ′) be CR manifolds.
Assume that M ′ is locally embeddable and that there exists a CR fibration
π : (M,HM,J) −→ (M ′, HM ′, J ′), with totally complex fibers of positive dimen-
sion. Then M is weakly degenerate.

Proof. Let f be any smooth CR function defined on a neighborhood U ′ of
p′ ∈ M ′. Then π∗f is a CR function in U = π−1(U ′), that is constant along
the fibers of π. Hence, if L ∈ C∞(M,T 1,0M) is tangent to the fibers of π in
U , we obtain that [Z̄1 , . . . , Z̄m, L] (π∗f) = 0 for every choice of Z̄1, . . . , Z̄m ∈
C∞(M,T 0,1M). Assume by contradiction that M is weakly nondegenerate at some
p with π(p) = p′. Then for some choice of Z̄1, . . . , Z̄m ∈ C∞(M,T 0,1M) we would
have vp = [Z̄1 , . . . , Z̄m, L] /∈ T 1,0

p M ⊕ T 0,1
p M . Since the fibers of π are totally

complex, π∗(vp) 6= 0. By the assumption that M ′ is locally embeddable at p,
the real parts of the (locally defined) CR functions give local coordinates in M ′

and therefore there is a CR function f defined on a neighborhood U ′ of p′ with
vp(π∗f) = π∗(vp)(f) 6= 0. This gives a contradiction, proving our statement. �

Differently, both ideal degenerate and ideal nondegenerate CR algebras may
correspond to the same (weakly degenerate) germ of locally homogeneous CR man-
ifold.

From [MN05, Theorem 9.1] we know that if (g, q) is fundamental, effective, and
ideal nondegenerate, then g is finite dimensional.

From this result we deduce the following :

Theorem 1.2. Let (g, q) be a fundamental effective CR algebra. Then there

exist a germ of homogeneous complex manifold (M̂,o) at a point o, and a germ of

homogeneous generic CR submanifold (M,HM,J ; o) of (M̂,o) at o, with associ-
ated CR algebra (g, q).

Proof. First we note that the statement holds true when g is finite dimen-
sional: by [Pos86, Ch.VII] there is a germ of homogeneous complex manifold (M̂,o)
at o corresponding to the complex Lie algebra ĝ and to its complex Lie subalgebra
q; the inclusion g ↪→ ĝ yields the embedding into (M̂,o) of a germ of homogeneous
CR manifold (M,HM,J ; o) at o, corresponding to the pair (g, q).

Consider now the general case. We keep the notation introduced above. By
[MN05, Lemma 7.2] there is a largest ideal a of g contained in H+. By [MN05,
Theorem 9.1], g/a is finite dimensional and by the first part of the proof there is
a germ of complex homogeneous manifold (N̂ ,o) at o, and a germ of generic CR
submanifold (N,HN, JN ; o) of N̂ at o, associated to the pair (g/a, q/(q ∩ â)) (here
â = C⊗Ra is the complexification of a in ĝ). If 2d is the real dimension of a/(a∩g+),
we can take M̂ = N̂ × Cd and, likewise, M = N × Cd, with HM = HN × T (Cd)
and J = JN × JCd . Then (M,HM,J ; (o, 0)) is associated to (g, q). �

Note that the ideal nondegeneracy of (g, q) implies that all ideals x of the com-
plex Lie algebra ĝ that are contained in q are contained in q ∩ q̄. Indeed, if x is a
(complex) ideal of ĝ contained in q, then a = (x + x̄) ∩ g is an ideal of g contained
in H+ = (q + q̄) ∩ g, and a ⊂ g+ = q ∩ g implies that x + x̄ ⊂ q ∩ q̄.

Let (g, q) be a CR algebra with a finite dimensional g. We denote by Ĝ the
connected and simply connected complex Lie group with Lie algebra ĝ and by Q its
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analytic Lie subgroup, generated by q. Let G be the analytic subgroup of Ĝ with
Lie algebra g and set G+ = G+(g, q) := Q ∩G. This is a Lie subgroup of G with
Lie subalgebra g+. Denote by G̃ a connected and simply connected Lie group with
Lie algebra g and by G̃+ = G̃+(g, q) its analytic Lie subgroup with Lie subalgebra
g+. Since Ĝ is simply connected, the conjugation σ of ĝ with respect its real form
g defines an antiholomorphic involution, still denoted by σ, in Ĝ. Thus G, being
the connected component of the identity in the set of fixed points of σ, is closed in
Ĝ. We have the implications :

Q closed in Ĝ =⇒ G+ closed in G , G+ closed in G =⇒ G̃+ closed in G̃ .

When G̃+ is closed in G̃, we can uniquely define a G̃-homogeneous CR mani-
fold M̃(g, q) = (M̃,HM̃, J̃), where the underlying smooth manifold M̃ is the G̃-
homogeneous space G̃/G̃+, and (g, q) is associated to the germ (M̃,HM̃, J̃ ; o) at
the base point o = e G̃+.

Likewise, for a closed G+ ⊂ G, we define the G-homogeneous CR manifold
M(g, q) = (M,HM,J) with M = G/G+ and (g, q) associated to (M,HM,J ; o)
for o = eG+.

If Q is closed, M̂ = M̂(ĝ, q) := Ĝ/Q is a Ĝ-homogeneous complex manifold
and M(g, q) can be identified, its partial complex structure being that of a generic
CR submanifold of M̂ , to the orbit of G through the base point o = eQ of M̂ .

Our canonical choice of M(g, q) aims to obtain a homogeneous CR manifold
with a generic CR embedding into a homogeneous complex manifold M̂ = M̂(ĝ, q),
that is “good” in some suitable sense.

A morphism of CR algebras (g, q)
ϕ−→ (g′, q′) is a homomorphism of real Lie

algebras ϕ : g −→ g′, with ϕ̂(q) ⊂ q′.
It is called :
• a CR immersion if the quotient map [ϕ] : g/g+ −→ g′/g′+ is injective and
ϕ̂−1(q′) = q;

• a CR submersion if both [ϕ] : g/g+ −→ g′/g′+ and [ϕ̂] : q/ĝ+ −→ q′/ĝ′+ are
onto;

• a local CR isomorphism if both [ϕ] : g/g+ −→ g′/g′+ and [ϕ̂] : q/ĝ+ −→ q′/ĝ′+
are isomorphisms;

• a CR isomorphism if ϕ is an isomorphism of real Lie algebras with
ϕ̂(q) = q′.

We quote from [MN05] :

Proposition 1.3. Let (g, q)
ϕ−→ (g′, q′) be a morphism of CR algebras,

with g and g′ finite dimensional. Let (M,HM,J ; o) and (M ′, HM ′, J ′; o′) be
the germs of homogeneous CR manifolds at o ∈ M , o′ ∈ M ′, associated to
(g, q), (g′, q′), respectively. Then there is a unique germ of smooth CR map
Φ : (M,HM,J ; o) −→ (M ′, HM ′, J ′; o′) with Φ(o) = o′ such that dΦo(ı(X)) =
ı′(ϕ(X)). Here ı, ı′ are the homomorphisms of Lie algebras ı : g −→ G(M,HM,J ; o)
and ı′ : g :−→ G(M ′, HM ′, J ′; o) of (1.3).

The germ Φ of smooth CRmap is a CR immersion, submersion, diffeomorphism
if and only if the corresponding morphism ϕ of CR algebras is a CR immersion, a
CR submersion, a local CR isomorphism, respectively.

Let G̃ and G̃′ be the connected and simply connected real Lie groups with Lie
algebras g and g′, respectively. If the analytic subgroup G̃+ of G̃ with Lie algebra
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g+ = q ∩ g and the analytic subgroup G̃′+ of G̃′ with Lie algebra g′+ = q′ ∩ g′ are

both closed, then there is a unique smooth CR map Φ̃ : M̃(g, q) −→ M̃(g′, q′) that
makes the following diagram commute :

g
exp−−−−→ G̃ −−−−→ M̃(g, q)

ϕ

y y yΦ̃

g′
exp−−−−→ G̃′ −−−−→ M̃(g′, q′)

The map Φ̃ is a CR immersion, a CR submersion or a local CR diffeomorphism if
and only if the corresponding CR morphism of CR algebras ϕ is a CR immersion,
a CR submersion or a local CR isomorphism, respectively.

Let Ĝ and Ĝ′ be the connected and simply connected complex Lie groups with
Lie algebras ĝ and ĝ′, respectively. Let G,Q ⊂ Ĝ and G′,Q′ ⊂ Ĝ′ be the analytic
subgroups with Lie algebras g, q and g′, q′, respectively. If G+ = Q ∩G and G′ =
Q′∩G′ are closed, then there is a unique smooth CR map Φ : M(g, q) −→M(g′, q′)
such that the diagram :

M̃(g, q) Φ̃−−−−→ M̃(g′, q′)y y
M(g, q) Φ−−−−→ M(g′, q′)

where the vertical arrows are the natural projections from the universal coverings,
commutes.

The map Φ is a CR immersion, a CR submersion or a local CR diffeomorphism
if and only if the corresponding morphism of CR algebras ϕ is a CR immersion, a
CR submersion or a local CR isomorphism, respectively.

If Q ⊂ Ĝ and Q′ ⊂ Ĝ′ are closed, the map M(g, q) Φ−→ M(g′, q′) is the re-

striction of the holomorphic map Φ̂ : M̂ = Ĝ/Q −→ M̂ ′ = Ĝ′/Q′ defined by the
commutative diagram :

ĝ
exp−−−−→ Ĝ −−−−→ M̂

ϕ̂

y y yΦ̂

ĝ′
exp−−−−→ Ĝ′ −−−−→ M̂ ′

where the central vertical arrow is the homomorphism of complex connected sim-
ply connected Lie algebras defined by the homomorphism ϕ̂ : ĝ −→ ĝ′ of their Lie
algebras. �

To discuss, later on, the structure of the fibers of some CR fibrations, we need
to introduce the notion of semidirect sum of CR algebras.

Let (g1, q1), (g2, q2) be CR algebras, and assume that g2 has a g1-module struc-
ture and that q2 is a q1-module for the restriction of the complexification of the
action of g1 on g2. Then q = q1 o q2 (semidirect sum) is a complex Lie subalgebra
of the complexification of the semidirect sum g = g1 o g2, and the CR algebra
(g, q) = (g1 o g2, q1 o q2) is called the semidirect sum of the CR algebras (g1, q1)
and (g2, q2) :

(1.4) (g, q) = (g1 o g2, q1 o q2) = (g1, q1) o (g2, q2) (semidirect sum) .
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We shall assume that g1 and g2 are finite dimensional. Denote by :
Ĝ, Ĝ1, Ĝ2 the connected and simply connected complex Lie groups with Lie

algebras ĝ, ĝ1, ĝ2, respectively;
G, G1, G2 the analytic real subgroups of the corresponding complex connected

Lie groups Ĝ, Ĝ1, Ĝ2, with Lie algebras g, g1, g2, respectively;
Q ⊂ Ĝ, Q1 ⊂ Ĝ1, Q2 ⊂ Ĝ2 the Lie subgroups corresponding to the Lie

subalgebras q ⊂ ĝ, q1 ⊂ g1, q2 ⊂ g2, respectively;
G̃, G̃1, G̃2 connected and simply connected real Lie groups with Lie algebras

g, g1, g2, respectively;
G+ = Q ∩G, G1 + = Q ∩G1, G2 + = Q ∩G2;
G̃ + ⊂ G̃, G̃1 + ⊂ G̃1, G̃2 + ⊂ G̃2 the analytic subgroups corresponding to the

Lie subalgebras g+ = q ∩ g, g1+ = q1 ∩ g1, g2+ = q2 ∩ g2, respectively.
Let (M,HM,J ; o), (M1, HM1, J1; o1),(M2, HM2, J2; o2) be the germs of lo-

cally homogeneous CR manifolds associated to the CR algebras (g, q), (g1, q1),
(g2, q2), respectively.

We obtain :

Theorem 1.4. The diffeomorphism G1 ×G2 3 (g1, g2) −→ g1g2 ∈ G1 o G2

defines a germ of CR diffeomorphism :

(M1, HM1, J1; o1)× (M2, HM2, J2; o2) −→ (M,HM,J ; o) .

If G̃1 + and G̃2 + are closed, then G̃+ is closed and we obtain a global CR diffeo-
morphism :

M̃(g1, q1)× M̃(g2, q2) −→ M̃(g, q) .

If G1 + and G2 + are closed, then G+ is closed and we obtain a global CR diffeo-
morphism :

(1.5) M(g1, q1)×M(g2, q2) −→M(g, q) .

When Q1 and Q2 are closed, also Q is closed and the map (1.5) is the restriction
of a biholomorphic map(

Ĝ1/Q1

)
×
(
Ĝ2/Q2

)
−→ Ĝ/Q . �

1.2 g-equivariant fibrations

Let g be a real Lie algebra and q, q′ complex subalgebras of its complexification
ĝ, with q ⊂ q′. Then the identity map in g and the inclusion q ↪→ q′ define a
g-equivariant morphism of CR algebras

(1.6) (g, q) −→ (g, q′) .

If (M,HM,J ; o) and (M ′, HM ′, J ′; o′) are germs of locally homogeneous CR
manifolds with associated CR algebras (g, q) and (g, q′), respectively, then the
identity map g −→ g defines, by passing to the quotients, the differential of a CR
map π(o) : (M,HM,J ; o) −→ (M ′, HM ′, J ′; o′) that is locally G-equivariant for a
(connected) real Lie group with Lie algebra g.
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Let G be a connected Lie group with Lie algebra g and assume that there are
two G-homogeneous CR manifolds (M,HM,J), (M ′, HM ′, J ′) that are associated
to (g, q) at some o ∈M and to (g, q′) at some o′ ∈M ′, respectively. Then there is
a unique G-equivariant CR map π : (M,HM,J) −→ (M ′, HM ′, J ′) with π(o) = o′.

In general π(o) (and π, when defined) are smooth, but not CR, G-equivariant
fibrations: a necessary and sufficient condition for (1.6) to be a g-equivariant CR
fibration, and hence for π(o) (and π, when defined) to be G-equivariant local (resp.
global) CR fibrations is that (see [MN05, Lemma 5.1])

(1.7) q′ = q + ĝ′+ .

We call (g, q′) the basis of the fibration (1.6). The fiber of (1.6) is the CR al-
gebra (g′+, q

′′) where q′′ = ĝ′+ ∩ q. It is a CR algebra associated to the germ

(F,HF, J |HF ; o), where (F ; o) =
(
π−1

(o)(o
′); o

)
, and the germ of partial complex

structure (HF, J |HF ; o) that is characterized by requiring that the smooth em-
bedding (π−1(o′); o) ↪→ (M ; o) is a CR immersion.

We know that (1.6) is always a CR fibration, with a totally complex fiber, when
q ⊂ q′ ⊂ q + q : indeed in this case q′ = q + ĝ′+.

From [MN05, §5] we have :

Proposition 1.5. Let (g, q) be a CR algebra. Then there exist :
• a largest ideal i of g with i ⊂ g+;
• a largest ideal a of g with a ⊂ H+;
• a largest complex Lie subalgebra q′ of ĝ with q ⊂ q′ ⊂ q + q̄;
• a smallest complex Lie subalgebra q′′ of ĝ with q + q̄ ⊂ q′′.

We have i ⊂ a ⊂ q′ ⊂ q′′ and q′′ = q̄ ′′ = ĝ ′′ for a real Lie subalgebra g′′ of g.
The identity in g defines g-equivariant CR fibrations (g, q) −→ (g, q′) −→ (g, q ′′),

where (g, q′) is weakly nondegenerate and (g, q ′′) is totally real. For all complex Lie
subalgebras f of ĝ with q ⊂ f ( q′, the CR algebra (g, f) is weakly degenerate. For
all complex Lie subalgebras f with q ⊂ f ⊂ q′, the g-equivariant map (g, q) −→ (g, f)
is a CR fibration with a totally complex fiber.

The CR algebra (g′′, q) is fundamental and, for all real Lie subalgebras l of g
with g′′ ( l ⊂ g the CR algebra (l, q) is not fundamental. �



CHAPTER 2

Parabolic CR algebras and
parabolic CR manifolds

In the first section of this chapter we collect the notions on complex parabolic sub-
algebras and fix the notation that will then be utilized throughout this work. This
is mostly a review of classical results, for which general references are [Bou02, Ch.IV
§2.6, Ch.VI §1], [Bou05, Ch.VIII §3], [Kna02, Ch.VII], [War72, Ch.1], [Wol69].

In the second section we introduce the main object of our study, namely par-
abolic CR algebras and parabolic CR manifolds, and begin to study some of their
properties.

2.1 Parabolic subalgebras and complex flag manifolds

Let ĝ be a complex Lie algebra. A maximal solvable complex Lie subalgebra b of ĝ
is called a Borel, or minimal parabolic complex Lie subalgebra of ĝ. A complex Lie
subalgebra q of ĝ is parabolic if it contains a complex Borel subalgebra b of ĝ.

For our purposes, it will be sufficient to consider the case of a semisimple ĝ.
Thus from now on we shall assume that ĝ is a semisimple complex Lie algebra.

A parabolic subalgebra q of ĝ contains a complex Cartan subalgebra ĥ of ĝ.
Let R = R(ĝ, ĥ) be the root system of ĝ with respect to ĥ. We denote by hR the
real form of ĥ on which all roots are real valued. Thus R is a subset of the real
dual space h∗R. The Killing form κĝ of ĝ restricts to a real positive scalar product
in hR. We shall write (A|B) = κĝ(A,B) for A,B ∈ hR. We set also (ξ|η) = (Tξ|Tη)
for ξ, η ∈ h∗R and (Tξ|A) = ξ(A), (Tη|A) = η(A) for all A ∈ hR (dual scalar product
in h∗R). Roots α, β ∈ R for which α ± β /∈ R are called strongly orthogonal. Note
that strongly orthogonal roots are also orthogonal for the scalar product in h∗R .

An element H ∈ ĥ is regular if α(H) 6= 0 for all α ∈ R. Denote by C(R) the set
of the Weyl chambers ofR. They are the connected components of the set of regular
elements of hR. For C ∈ C(R), and H ∈ C, the set R+(C) = {α ∈ R |α(H) > 0} is
independent of the choice of H ∈ C : it is called the set of positive roots with respect
to C. The set R−(C) = R+(Copp), for Copp = {−H |H ∈ C}, is the complement
of R+(C) in R and is called the set of negative roots with respect to C. A Weyl
chamber C also defines a partial order relation ”≺C” in h∗R, by :

(2.1) η ≺C ξ if η(A) < ξ(A) for all A ∈ C.

In particular R+(C) = {α ∈ R |α �C 0}.
With ĝα = {X ∈ ĝ | [H,X] = α(H)X ∀H ∈ ĥ}, we set

(2.2) Q = {α ∈ R | ĝα ⊂ q} .

11
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This is the parabolic set associated to q and ĥ. Parabolic sets of roots are abstractly
defined by the two conditions :

α, β ∈ Q , α+ β ∈ R =⇒ α+ β ∈ Q (closedness)(2.4 i)

Q ∪ Qopp = R where Qopp = {−α |α ∈ Q} .(2.4 ii)

Given (2.4 i), condition (2.4 ii) is equivalent to the fact that Q ⊃ R+(C) for some
Weyl chamber C ∈ C(R). We have

(2.5) q = qQ = ĥ⊕
∑
α∈Q

ĝα

and the correspondence Q ←→ qQ is one-to-one between parabolic subsets of R
and parabolic subalgebras of ĝ containing ĥ.

Given a parabolic set Q ⊂ R we set :

(2.6) Qr = Q∩Qopp{α ∈ Q | −α ∈ Q} and Qn = Q\Qr = {α ∈ Q | −α /∈ Q} .

Then

(2.7) qn =
∑
α∈Qn

ĝα

is the nilradical of q, i.e. the set of the elements Z of its radical r(q) for which
adĝ(Z) is nilpotent, and

(2.8) qr = ĥ⊕
∑
α∈Qr

ĝα

a reductive complement of qn in q. The complex parabolic Lie subalgebra q of ĝ is
its own normalizer and the normalizer of its nilradical qn :

(2.9) q = {Z ∈ ĝ | [Z, q] ⊂ q} = {Z ∈ ĝ | [Z, qn] ⊂ qn} .

If A ∈ hR, then the set

(2.10) QA = {α ∈ R |α(A) ≥ 0}

is parabolic, with QrA = {α ∈ R |α(A) = 0} and QnA = {α ∈ R |α(A) > 0}.
Vice versa, if Q is parabolic, set δ =

∑
{α |α ∈ Qn}, and define Tδ ∈ hR by

(Tδ|A) = δ(A) for all A ∈ hR. Then Q = QTδ = {α ∈ R | (α|δ) ≥ 0}. The set of
A ∈ hR for which Q = QA is in fact a relatively open convex cone in hR.

When Q = QA for some A ∈ hR, we shall also write qA for qQA .
The setsQn associated to parabolicQ’s are called horocyclic (see [War72, §1.1]).

The correspondence Qn ←→ qn =
∑
α∈Qn ĝα is one-to-one between horocyclic sets

of roots in R and nilradicals of complex parabolic Lie subalgebras containing ĥ.
Given a parabolic subset Q ⊂ R, we use the notation Q−n for its opposite horo-

cyclic set [Qn]opp = R\Q : the corresponding nilpotent algebra q−n =
∑
α∈Q−n ĝα

is a complement of q in ĝ.
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To a parabolic Q ⊂ R we associate the set of Weyl chambers :

(2.11) C(R,Q) = {C ∈ C(R) |R+(C) ⊂ Q} = {C ∈ C(R) |R+(C) ⊃ Qn} .

We denote by B(C) the simple roots of R+(C), for C ∈ C(R). Every α ∈ R can be
written in a unique way as a linear combination, with integral coefficients (either
all ≥ 0 or all ≤ 0), of the simple roots in B(C):

(2.12) α =
∑

β∈B(C)

kβα(C)β .

We define the support of a root α as:

(2.13) suppC(α) = {β ∈ B(C) | kβα(C) 6= 0} .

If Q is parabolic, C ∈ C(R,Q), and ΦC(Q) = B(C) ∩Qn, then

(2.14) Qn = {α ∈ R+(C) | suppC(α) ∩ ΦC(Q) 6= ∅} .

The correspondence

(2.15) B(C) ⊃ ΦC ←→ q = ĥ ⊕
∑

α∈R+(C)

ĝα ⊕
∑

α∈R−(C)

suppC(α)∩ΦC=∅

ĝα

is one-to-one between subsets ΦC of B(C) and complex parabolic Lie subalgebra of
ĝ that contain ĥ and have an associated parabolic set Q with C ∈ C(R,Q).

Having fixed a Weyl chamber C ∈ C(R) and ΦC ⊂ B(C), we shall denote by
qΦC the complex parabolic Lie subalgebra of ĝ defined by the right hand side of
(2.15) and by QΦC the corresponding parabolic set.

We denote by W(R) the Weyl group of R, (i.e. the group of isometries of h∗R
generated by the symmetries ξ −→ sα(ξ) = ξ − 2[(ξ|α)/‖α‖2]α for α ∈ R) and by
A(R) the group of all isometries of h∗R (with respect to the scalar product defined
above) that transform R into itself. For C ∈ C(R) we denote by AC(R) the sub-
group of A(R) consisting of the elements w ∈ A(R) for which w(R+(C)) = R+(C).
Then A(R) = AC(R) o W(R).

We define W(R,Q) and A(R,Q) as the subgroups of W(R) and A(R), re-
spectively, that transform Q into itself. Then we have Chevalley’s Lemma (see e.g.
[War72, Theorem 1.1.2.8]) :

Lemma 2.1. The group W(R,Q) is generated by the symmetries sα with
α ∈ Qr. If C ∈ C(R,Q), then the symmetries sα with α ∈ B(C) \ ΦC(Q) generate
W(R,Q) and A(R,Q) is a semidirect product A(R,Q) = AC(R,Q) o W(R,Q),
with AC(R,Q) = AC(R) ∩A(R,Q). �

Let Ĝ be a connected complex Lie group with Lie algebra ĝ. If Q is any Lie
subgroup of Ĝ with complex Lie subalgebra q that is parabolic in ĝ, then Q is
closed, connected and coincides with its normalizer in Ĝ and is the normalizer of
its Lie algebra for the adjoint representation :

(2.16) Q = {g ∈ Ĝ | gQ g−1 = Q} = {g ∈ Ĝ |Adĝ(g)(q) = q}
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The homogeneous space M = Ĝ/Q is compact and simply connected. Since the
center Z(Ĝ) of Ĝ is contained in all its parabolic subgroups, the choice of different
connected complex Lie groups Ĝ yields the same M. Hence we can consider the
complex flag manifold M = M̂(ĝ, q) as an object associated simply to the pair
(ĝ, q). We also recall (see [Wol69, §2.7]) that the integral cohomology H∗(M,Z) is
torsion free and 0 in odd degrees.

If ĥ is a Cartan subalgebra of ĝ contained in q and Q ⊂ R(ĝ, ĥ) the parabolic
set of roots associated to q, the complex dimension of M = M̂(ĝ, q) equals the
number of roots in Qn.

2.2 Parabolic CR algebras and CR manifolds

A CR algebra (g, q) is called parabolic if g is finite dimensional and q is a parabolic
subalgebra of its complexification ĝ.

By the results stated above, if (g, q) is a parabolic CR algebra, then all the
homogeneous spaces M̃ = M̃(g, q), M = M(g, q), and M = M̂(ĝ, q) are well de-
fined. We recall that Ĝ is the complex connected and simply connected Lie group
with Lie algebra ĝ, the groups G and Q are the analytic subgroups of Ĝ with Lie
algebras g and q, respectively. Then M = Ĝ/Q is a complex flag manifold and M

is an orbit in M of the real form G of Ĝ.
We say that M is a parabolic CR manifold.
Vice versa, if G is a connected real form of the complex semisimple Lie group

Ĝ, then all G-orbits in the complex flag manifolds M = M̂(ĝ, q) are homogeneous
CR manifolds of the form M = M(g, q′), for some parabolic complex Lie subalgebra
q′ of ĝ, conjugated to q by an inner automorphism.

It is worth noticing that, in the definition of the homogeneous CR manifold
M(g, q) = G/G+, we can define the isotropy G+ = G+(g, q) by

(2.17) G+ = {g ∈ G |Adĝ(g)(q) = q} .

Since the center of G is always contained in G+, we obtain an equivalent definition
of M(g, q) if we substitute to Ĝ any connected complex Lie group Ĝ′ with the
same Lie algebra ĝ and to G the analytic subgroup G′ of Ĝ′ with Lie algebra g.
However, it is more convenient to fix a simply connected Ĝ, since in this case, by
[BT72, Corollaire 4.7], we have :

(2.18) G = Ĝσ = {g ∈ Ĝ |σ(g) = g} ,

where σ : Ĝ −→ Ĝ is the anti-holomorphic involution of Ĝ corresponding to the
conjugation σ of ĝ defined by the real form g.

We begin by proving some general facts about parabolic CR algebras, and their
associated CR manifolds.

Proposition 2.2. A parabolic CR algebra (g, q) is effective if and only if : (i)
g is semisimple, (ii) no simple ideal of ĝ is contained in q ∩ q.

An effective parabolic CR algebra (g, q) with g simple is either totally complex
or ideal nondegenerate.
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Proof. The statement follows by observing that: (a) for a parabolic (g, q) the
radical r of g is contained in g+; (b) if an ideal a of ĝ is contained in q ∩ q, then
a + a is the complexification of an ideal b of g contained in g+. �

Proposition 2.3. Let (g, q) be an effective parabolic CR algebra and let
g = g1 ⊕ · · · ⊕ g` be the decomposition of g into the direct sum of its simple
ideals. Then :

(i) q = q1 ⊕ · · · ⊕ q` where qj = q ∩ ĝj for j = 1, . . . , `;
(ii) for each j = 1, . . . , `, (gj , qj) is an effective parabolic CR algebra;

(iii) (g, q) is ideal (resp. weakly, strictly) nondegenerate if and only if for each
j = 1, . . . , `, the CR algebra (gj , qj) is ideal (resp. weakly, strictly) nonde-
generate;

(iv) (g, q) is fundamental if and only if for each j = 1, . . . , `, the CR algebra
(gj , qj) is fundamental.

(v) We have (∼= meaning biholomorphic or CR equivalence) :

M̂(ĝ, q) ∼= M̂(ĝ1, q1)× · · · × M̂(ĝ`, q`) ,

M̃(g, q) ∼= M̃(g1, q1)× · · · × M̃(g`, q`) ,

M(g, q) ∼= M(g1, q1)× · · · ×M(g`, q`) .

Proof. In fact ĝ =
⊕`

j=1 ĝj is a decomposition of ĝ into a direct sum of ideals.

The decomposition (i) of q follows then from the decomposition ĥ =
⊕`

j=1

(
ĥ ∩ ĝj

)
of any Cartan subalgebra of ĝ contained in q (see [Bou05, Ch.VII,§2,Prop.2]).

The proof of the other statements is straightforward. �

2.3 Adapted Cartan subalgebras and Cartan involutions

When q is parabolic in ĝ, its conjugate q̄ with respect to the real form g is also
parabolic in ĝ. Therefore the intersection q∩ q̄ contains a Cartan subalgebra ĥ that
is invariant under conjugation. The intersection h = ĥ ∩ g is a Cartan subalgebra
of g, contained in g+ = q ∩ g.

A Cartan subalgebra h of g contained in g+ = q ∩ g is said to be adapted to
(g, q). We also have :

Proposition 2.4. Let (g, q) be an effective parabolic CR algebra, with
isotropy subalgebra g+ = q ∩ g. The elements A of the radical r(g+) of g+ for
which adg(A) : g −→ g is nilpotent, form a nilpotent ideal n of g+. It admits a
reductive complement g0 in g+ :

(2.19) g+ = n⊕ g0 .

The reductive subalgebra g0 is uniquely determined modulo inner automorphisms
of g+ from the subgroup generated by those of the form exp

(
adg+(X)

)
with X ∈ n.

Proof. Indeed q, being parabolic, contains the semisimple and nilpotent parts
of its elements. If X ∈ q belongs to the real form g, then also its semisimple and
nilpotent parts belong to g. Therefore g+ is splittable, i.e. contains the semisimple
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and nilpotent part of its elements and we can apply [Bou05, Prop.7, §5, Ch.VII] to
obtain our statement. �

Let z0 be the center and s0 = [g0, g0] the semisimple ideal of g0. Then

(2.20) g0 = z0 ⊕ s0 .

Thus, a Cartan subalgebra h ⊂ g+ of g can be taken as the direct sum

(2.21) h = z0 ⊕ h0

of the center z0 of g0 and a Cartan subalgebra h0 of s0. Vice versa, every Cartan
subalgebra h of g adapted to (g, q) has the form (2.21) for some reductive subalgebra
g0 of g+.

It is also convenient to consider a Cartan decomposition (see e.g. [Bou05]) :

(2.22) g = k⊕ p

of g, corresponding to a Cartan involution ϑ . The set k = {X ∈ g |ϑ(X) = X} of
fixed points of ϑ is a maximal compact Lie subalgebra of g and p = {X ∈ g |ϑ(X) =
−X} its orthogonal for the Killing form κg of g. Any ϑ-invariant Cartan subalgebra
h of g decomposes into the direct sum h = h+⊕h− of its compact (or toroidal) part
h+ = h ∩ k ⊂ k and its noncompact (or vector part) h− = h ∩ p ⊂ p.

We say that the Cartan decomposition (2.22) is adapted to the effective par-
abolic CR algebra (g, q) if k contains a maximal compact Lie subalgebra of g+.
Then :

Lemma 2.5. If a Cartan decomposition (2.22) is adapted to the parabolic CR
algebra (g, q), then every Cartan subalgebra h of g that is adapted to (g, q) is con-
jugate, modulo an inner automorphism of g+, to a ϑ-invariant Cartan subalgebra
h0 of g that is adapted to (g, q).

Vice versa, if h is a Cartan subalgebra of g adapted to (g, q), then there exists
a Cartan decomposition (2.22), adapted to (g, q), such that h = (h ∩ k)⊕ (h ∩ p).

In particular, if {qi | i ∈ I} is a family of complex parabolic Lie subalgebras of
ĝ such that

⋂
i∈I qi is parabolic in ĝ, then there exist both a Cartan decomposition

(2.22) and a Cartan subalgebra h of g, compatible with (2.22), that are adapted to
all the (g, qi)’s. �

We say that (ϑ, h) is an adapted Cartan pair for (g, q) if :
(i) ϑ is the Cartan involution of a Cartan decomposition (2.22) adapted to (g, q) ;

(ii) h is a ϑ-invariant Cartan subalgebra of g contained in g+ = g ∩ q.
Being σ : ĝ 3 X −→ X̄ ∈ ĝ the conjugation in ĝ associated to the real form

g, and having fixed (2.22), we also consider the conjugation τ : ĝ −→ ĝ of ĝ with
respect to its compact real form u = k ⊕ i p and use the same symbol ϑ to denote
the C-linear extension to ĝ of the Cartan involution ϑ of g. We obtain in this way
three commuting involutions σ, τ, ϑ of ĝ, each being the composition product of
the other two :

(2.23) τ = ϑ ◦ σ = σ ◦ ϑ , σ = ϑ ◦ τ = τ ◦ ϑ , ϑ = σ ◦ τ = τ ◦ σ .

In particular u is invariant under σ: σ(u) = u.
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Let (ϑ, h) be a Cartan pair adapted to (g, q). Then hR decomposes as :
hR = h− ⊕ i h+ and hR is a Cartan subalgebra of a split real form gR of ĝ. The
involutions σ, τ and ϑ transform hR into itself. Hence, by transposition, they define
involutions on h∗R, that we still denote by the same symbols σ, τ and ϑ, and that
transform the set of roots R into itself. We set ᾱ = σ(α) for all α ∈ h∗R. We have :

(2.24) τ(α) = −α , ϑ(α) = −ᾱ ∀α ∈ h∗R .

The reductive complement qr of qn in q of (2.8) is q ∩ τ(q), while the reductive
complement g0 of n in g+ of (2.19) can be taken equal to g+ ∩ ϑ(g+).

2.4 The fundamental and weakly nondegenerate reductions

We consider the CR fibrations of Proposition 1.5 in the special case of a parabolic
CR algebra.

Theorem 2.6. Every effective parabolic CR algebra (g, q) admits a unique
g-equivariant CR fibration (g, q) −→ (g, ĝ′), where ĝ′ ⊃ q is the complexification of
a real parabolic subalgebra g′ of g, and the fiber is fundamental. The basis (g, ĝ′)
is a totally real parabolic CR algebra and also the fiber (g′, q) is parabolic.

This yields a G-equivariant CR fibration π : M(g, q) −→M(g, ĝ′) with compact
basis. Each connected component of the fiber is CR diffeomorphic to M(g′, q),
hence of finite type.

Proof. Let (g, q) be an effective parabolic CR algebra. The complex sub-
algebra q′′ generated by q + q̄ is parabolic in ĝ because contains q, and is the
complexification of a real parabolic subalgebra g′ of g because q̄ ′′ = q′′. Then (1.6)
yields a g-equivariant CR fibration with a totally real basis. The fiber is (g′, q).
This is parabolic because q, being parabolic in ĝ, is also parabolic in ĝ′ ⊂ ĝ.

The final statement follows from the commutative diagram :

M(g, q) −−−−→ M̂(ĝ, q)

π

y π̂

y
M(g, ĝ′) −−−−→ M̂(ĝ, ĝ′)

that yields an embedding of each fiber of π : M(g, q) −→ M(g, ĝ′) into a fiber of
π̂ : M̂(ĝ, q) −→ M̂(ĝ, ĝ′). The basis M(g, ĝ ′) is compact because g ∩ ĝ′ is parabolic
in g. �

Theorem 2.7. Let (g, q) be an effective parabolic CR algebra. Then there is
a unique g-equivariant CR fibration (g, q) −→ (g, q′) with a weakly nondegenerate
basis (g, q′) and a totally complex fiber. The basis (g, q′) is a parabolic CR algebra.

Proof. We recall from [MN05, §5], that q′ is the unique maximal subalgebra
of ĝ that contains q and is contained in q + q. Clearly q′ is parabolic because it
contains the parabolic subalgebra q. �

2.5 The fiber of a G-equivariant fibration

Next we investigate the general structure of the fiber of a G-equivariant fibration
M(g, q) −→M(g, q′) for a pair of complex parabolic subalgebras q ⊂ q′ of ĝ.
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Theorem 2.8. Let q ⊂ q′ be complex parabolic Lie subalgebras of ĝ. With
g′ = g ∩ q′, the CR algebra (g′, q̄′ ∩ q) is the fiber of the g-equivariant fibration
(g, q) −→ (g, q′) (see Chapter 1).

The nilradical n′ of g′, consisting of the adg-nilpotent elements of the radical
r(g′) of g′, has a reductive complement g′0 in g′ such that :

(i) The CR algebra (g′0, ĝ
′
0 ∩ q) is parabolic.

(ii) The fiber (g′, ĝ′ ∩ q) is the semidirect sum of the parabolic CR algebra
(g′0, ĝ

′
0 ∩ q) and of the nilpotent CR algebra (n′, n̂′ ∩ q).

(iii) The nilpotent CR algebra (n′, n̂′ ∩ q) is totally complex.
(iv) The connected components of the fibers of the G-equivariant fibration

π : M(g, q) −→ M(g, q′) are CR diffeomorphic to the Cartesian product
of a parabolic CR manifold M(g′0, q ∩ ĝ′0) and of a Euclidean complex
manifold (∼= C`).

Proof. Fix a Cartan pair (ϑ, h), that is adapted for both (g, q) and (g, q′).
Since q ⊂ q′ and q is parabolic, we have the inclusions : qr ⊂ q′ r and qn ⊃ q′ n .
The complexification of the fiber g′ is :

ĝ′ = q′ ∩ q̄ ′ = ĝ′0 o n̂′ ,

where :{
ĝ′0 = q′ r ∩ q̄′ r,

n̂′ = (q′ r ∩ q̄′ n)⊕ (q′ n ∩ q̄′ r)⊕ (q′ n ∩ q̄′ n) = (q′ ∩ q̄′ n) + (q′ n ∩ q̄′) .

Thus g′ = g′0 o n′, where n′ = n̂′ ∩ g is a real form of the nilradical n̂′ of q′ ∩ q̄′ and
g′0 := ĝ′0 ∩ g a reductive complement of n′ in g′.

We have :
ĝ′ ∩ q = (ĝ′0 o n̂′) ∩ q = (ĝ′0 ∩ q) o (n̂′ ∩ q) ,

so that :
(g′, ĝ′ ∩ q) = (g′0, ĝ

′
0 ∩ q) o (n′, n̂′ ∩ q) .

The complex Lie subalgebra ĝ′0 ∩ q is parabolic in ĝ′0, because ĝ′0 is reductive, q is
parabolic in ĝ, and ĝ′0 ∩ q contains a Cartan subalgebra of ĝ′0 and of ĝ.

Note that n̂′ ∩ q is contained in, but in general not equal to, the nilradical n̂ of
q ∩ q̄. We have :

n̂′ ∩ q ⊃ q′ n ∩ q̄ ′ ,

so that :
n̂′ ∩ q + n̂′ ∩ q ⊃ q′ n ∩ q̄ ′ + q′ ∩ q̄′ n = n̂′

shows that actually :
n̂′ ∩ q + n̂′ ∩ q = n̂′

and the nilpotent CR algebra (n′, n̂′ ∩ q) is totally complex.

The G-equivariant fibration π : M(g, q) −→M(g, q′) is the restriction of the Ĝ
equivariant fibration π̂ : M̂(ĝ, q) −→ M̂(ĝ, q′). The typical fiber F of π̂ is Q′/Q.
Since q is a parabolic complex Lie subalgebra of q′, the fiber F is a complex flag
manifold and, in particular, is compact, connected and simply connected. Thus
the typical fiber F of π : M(g, q) −→ M(g, q′) is a submanifold of a complex flag
manifold.
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Denote still by τ : Ĝ −→ Ĝ the involution of Ĝ associated to the conjugation
τ : ĝ −→ ĝ with respect to the compact real form u = k ⊕ i p. Since q′

n ⊂ qn,
the fiber F can be viewed also as a flag manifold of the reductive complex closed
connected Lie subgroup Q′ r = Q′ ∩ τ(Q′) of Ĝ. The fiber F is contained in the
orbit F0 ⊂ F of the closed complex Lie subgroup Ĝ′ := Q′∩σ(Q′) of Q′. The group
Ĝ′ is connected because it contains a Cartan subgroup of Ĝ, and decomposes into
the semidirect product

(2.25) Ĝ′ = Ĝ′0 o N̂′ ,

where Ĝ′0 and N̂′ are the analytic complex Lie subgroups of Ĝ generated by the
Lie subalgebras ĝ′0 and n̂′, respectively. We have Ĝ′0 = Q′ r ∩ σ(Q′ r), so that
Ĝ′0 is closed in Ĝ. Moreover, since adĝ(Z) is nilpotent for all Z ∈ n̂, by Engel’s
theorem and the semisimplicity of ĝ, we obtain that exp : n̂′ −→ N̂′ is an analytic
diffeomorphism, and N̂′ is Euclidean.

The validity of (iv) is then a consequence of the next Proposition. �

Proposition 2.9. Let N̂′ be a connected nilpotent complex Lie group with
complex Lie algebra n̂′ and n′ a real form of n̂′. Let N′ be the real analytic Lie
subgroup of N̂′ with Lie algebra n′, and Q0 a closed connected complex Lie sub-
group of N̂′, with Lie algebra q0 ⊂ n̂′, and set N = Q0 ∩N′. Assume that the CR
algebra (n′, q0) is totally complex. With E = N′/N and Ê = N̂′/Q0, the natural

map E −→ Ê obtained from the inclusion N′ ↪→ N̂′ is a diffeomorphism.

Proof. The condition that (n′, q0) is totally complex is equivalent to the equal-
ity n′+q0 = n̂′. Since n̂′ is nilpotent, this equality implies (see the proof below) that
the map N′ ×Q0 3 (n, q) −→ n · q ∈ N̂′ is onto, and hence the inclusion N′ ↪→ N̂′

yields, by passing to the quotients, a smooth one-to-one map f : E −→ Ê. We
note that E = N′/N is a complex manifold with the homogeneous CR structure
defined by the CR algebra (n′, q0). With this complex structure on E, and with
the complex structure that Ê inherits from N̂′, the map f is holomorphic. Being
one-to-one, f is a biholomorphism.

We give here a simple argument to prove that N̂′ = N′Q0.
Consider the lower central series

n̂ = C(0)(n̂′) ⊃ C(1)(n̂′) = [n̂′, n̂′] ⊃ · · · ⊃ C(h)(n̂′) =
[
C(h−1)(n̂′), n̂′

]
⊃ · · ·

· · · ⊃ C(m)(n̂′) =
[
C(m−1)(n̂′), n̂′

]
= {0} .

Since n̂′ is nilpotent and N̂′ is connected, the exponential map exp : n̂′ −→ N̂′

is surjective. Let Z ∈ n̂′. We want to prove that there is g ∈ N′ such that
g−1 · exp(Z) ∈ Q0. To this aim, let X ∈ n′ and W ∈ q0 be such that Z = X +W .
Let Z1 ∈ n̂′ be such that exp(Z1) = exp(−X) exp(Z) exp(−W ). We claim that, if
Z ∈ Ch(n̂′), then Z1 ∈ Ch+1(n̂′).

While proving this claim, we can assume that N̂′ is also simply connected, so
that all Lie subgroups N̂′h = exp

(
C(h)(n̂′)

)
are closed and simply connected. For
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each integer h ≥ 0 we have a commutative diagram :

n̂′
exp−−−−→ N̂′

πh

y yph
n̂′/Ch+1(n̂′)

[exp]−−−−→ N̂′/N̂′h+1

where [exp] denotes the exponential map on the quotient. If Z ∈ Ch(n̂′), then πh(Z)
belongs to the center of the quotient Lie algebra n̂′/Ch+1(n̂′). Hence we obtain :

[exp] (πh(Z1))= [exp](−πh(X)) · [exp](πh(Z)) · [exp](πh(X − Z))
= [exp](−πh(X))) · [exp] (πh(Z) + πh(X − Z))
= [exp](−πh(X))) · [exp](πh(X))) = 1N̂′/N̂′

h+1
.

Since [exp] is a diffeomorphism, we obtain that Z ∈ Ch+1(n̂′).
We show by recurrence that for every Z ∈ C(m−i)(n̂′) there is some X ∈ n such

that exp(−X) · exp(Z) ∈ Q0. This is trivially true when m = 0, as Z = 0 in this
case. If Z ∈ C(m−i)(n̂′) for some i > 0, and X ∈ n′ is such that X − Z ∈ q0, then
exp(−X) · exp(Z) · exp(X − Z) = exp(Z1) for some Z1 ∈ C(m−i+1)(n̂′). By the
recursive assumption, there is X1 ∈ n′ such that exp(−X1) exp(Z1) ∈ Q0. Then
g = exp(X1) · exp(X) ∈ N′ and g−1 · exp(Z) ∈ Q0. For i = m we obtain our
contention. �

From Theorem 2.8 we obtain :

Theorem 2.10. Let M = M(g, q) and M ′ = M(g, q′) be parabolic CR mani-
folds. If q ⊂ q′ ⊂ q+ q̄, then the G-equivariant fibration M −→M ′ is a CR fibration
and has a totally complex simply connected fiber.

Proof. We already noted in Chapter 1 that the CR algebra associated to the
fiber F of the fibration M −→ M ′, and hence F itself, is totally complex when
q ⊂ q′ ⊂ q + q̄. By Theorem 2.8, the connected components of the fiber are the
product of a Euclidean complex nilmanifold and of a manifold M(g′0, ĝ

′
0 ∩ q), for a

totally complex parabolic CR algebra (g′0, ĝ
′
0 ∩ q). This M(g′0, ĝ

′
0 ∩ q) is an open

orbit of a connected real form G′0 of a connected complex Lie group Ĝ′0 with Lie
algebra ĝ′0, and thus is simply connected by [Wol69, Theorem 5.4]. �

Corollary 2.11. Let (g, q′) be the weakly nondegenerate reduction of the
effective parabolic CR algebra (g, q). Then

(2.26) f : M = M(g, q) −→M ′ = M(g, q′)

is a G-equivariant CR fibration with complex simply connected fibers. �

We give here a simple general criterion that ensures the existence and the con-
nectedness of the fiber of some G-equivariant fibrations.

Proposition 2.12. Keep the notation introduced above. The isotropy sub-
group G+ is the closed real semi-algebraic subgroup of G :

G+ = NG(qΦ) = {g ∈ G |Adĝ(g)(qΦ) = qΦ} .
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The isotropy subgroup G+ admits a Chevalley decomposition

G+ = G0 o N

where :
(i) N is a unipotent, closed, connected, and simply connected subgroup with

Lie algebra n;
(ii) G0 is a reductive Lie subgroup, with Lie algebra g0, and is the centralizer

of its center z = zg0(g0) in G :

G0 = ZG(z) = {g ∈ G |Adg(g)(H) = H ∀H ∈ z} .

Proof. Let g ∈ G+. Then Adg(g)(g0) is a reductive complement of n in g+.
Since all reductive complements of n are conjugated by an inner automorphism
from Adg+(N), we can find a gn ∈ N such that Adg+(g−1

n g)(g0) = g0. Consider
the element gr = g−1

n g. We have :

Adg(gr)(g0) = g0, Adĝ(gr)(qΦ) = qΦ,
Adĝ(gr)(qnΦ) = qnΦ, Adĝ(gr)(q̄Φ) = q̄Φ,

because gr ∈ Q ∩ Q̄. We consider the parabolic subalgebra of ĝ defined by :

qΦ′ = qnΦ ⊕ (qrΦ ∩ q̄Φ) = qnΦ + (qΦ ∩ q̄Φ) .

It has the property that qrΦ′ = q̄rΦ′ is the complexification of g0. Clearly
Adĝ(gr)(qΦ′) = qΦ′ and Adĝ(gr)(qrΦ′) = qrΦ′ . Hence gr ∈ Qr

Φ′ and the state-
ment follows because Qr

Φ′ = ZĜ(zqr
Φ′

(qrΦ′)) is the centralizer of the center of its Lie
algebra and z is a real form of zqr

Φ′
(qrΦ′). �

Proposition 2.13. Let (g, q), (g, q′) be two effective parabolic CR alge-
bras. Assume that g+ = q ∩ g ⊂ g′+ = q′ ∩ g and that g+ contains a Car-
tan subalgebra h that is maximally noncompact among the Cartan subalgebras
of g that are contained in g′+. Then the germ of local G-equivariant submersion
(M(g, q),o) −→ (M(g, q′),o′), defined by the projection g/g+ −→ g/g′, extends to a
G-equivariant fibration π : M(g, q) −→M(g, q′) with connected fibers.

Proof. Decompose G+ = G0 o N and G′+ = G′0 o N′. Let H = ZG(h) =
{h ∈ G |Adg(h)(H) = H , ∀H ∈ h} be the Cartan subgroup of G corresponding to
h. We have Adĝ(h)(q) = q and Adĝ(h)(q′) = q′ for all h ∈ H. Hence H ⊂ G0∩G′0.
Since h is maximally noncompact in g′0 and a fortiori in g0, by [Kna02, Prop.7.90],
all connected components of G′0 and G0, and also of G′+ and G+, intersect H.
The connected component of the identity G0

+ of G+ is contained in the connected
component [G′+]0 of the identity in G′+. Since G+ is generated by G0

+ and H,
and likewise G′+ is generated by [G′+]0 and H, we obtain at the same time that
G+ ⊂ G′+ and that the fiber G′+/G+ is connected. �

Using Proposition 2.13, we can prove :
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Theorem 2.14. Let (g, q) and (g, q′) be two effective parabolic CR algebras
such that:

q ∩ q̄ = q′ ∩ q̄ ′ .

Then the CR manifolds M = M(g, q) and M ′ = M(g, q′) are diffeomorphic, by a
G-equivariant diffeomorphism.

Proof. Let h be a Cartan subalgebra of g, contained in g+ = q∩g = g′+ = q′∩g
and maximally noncompact as a Cartan subalgebra of g+.

Let A,A′ ∈ hR be such that q = qA, q′ = qA′ . We can assume that q 6= q′,
so that A and A′ are linearly independent. Then we set At = A + t(A′ − A),
for 0 ≤ t ≤ 1, so that A0 = A and A1 = A′. Let us take a partition
t0 = 0 < t1 < · · · < tm−1 < tm = 1 such that the rank of adĝ(At) is constant for t in
the open intervals tj−1 < t < tj , 1 ≤ j ≤ m, so that qAt = qAt′ for tj−1 < t, t′ < tj .
Let Mj = M(g, qAtj ), for 0 ≤ j ≤ m, and Nj = M(g, qA(tj−1+tj)/2), for 1 ≤ j ≤ m.
Since : qA(tj−1+tj)/2 ⊂ qAtj−1

∩ qAtj , there are G-equivariant maps :

Mj−1
fj←−−−− Nj

Fj−−−−→ Mj

for all 1 ≤ j ≤ m. By Proposition 2.13, all these maps, being covering maps with
connected fibers, are diffeomorphisms. Thus :

(Fm ◦ f−1
m ) ◦ (Fm−1 ◦ f−1

m−1) ◦ · · · ◦ (F1 ◦ f−1
1 ) : M −→M ′

is a G-equivariant diffeomorphism. �



CHAPTER 3

Fit Weyl chambers and CR geometry of M(g, q)

Let M(g, q) be a parabolic CR manifold and (ϑ, h) a Cartan pair adapted to (g, q).
In this Chapter we introduce some special Weyl chambers, that we call S-fit and
V-fit, and describe some geometric properties of M , namely fundamentality and
weak nondegeneracy, in terms of properties of the simple roots associated to these
special Weyl chambers.

We keep the notation of the preceding chapters, for roots, parabolic sets, Car-
tan decomposition, etc. In particular, we denote by σ : h∗R 3 α −→ ᾱ ∈ h∗R the
adjoint map of the restriction to hR = h− ⊕ i h+ of the conjugation in ĝ defined by
the real form g. We say that a root α is real if ᾱ = α, imaginary if ᾱ = −α, complex
if ᾱ 6= ±α and denote by Rre, Rim and Rcp the sets of real, imaginary and complex
roots, respectively. When α is imaginary, the eigenspace ĝα is contained either in
k̂ = C ⊗R k, or in p̂ = C ⊗R p. In the first case we say that α is compact, in the
second that α is noncompact. Thus Rim is the disjoint union of the set R• of the
compact and of the set R∗ of the noncompact imaginary roots : Rim = R• ∪R∗.

3.1 S-fit and V-fit Weyl chambers

The conjugation σ defines an involution in h∗R that belongs to the group A(R)
of isometries of the root system R. Vice versa, every involution σ in A(R) can
be obtained from a conjugation with respect to a real form g of ĝ. Note that, in
general, σ does not uniquely determine the isomorphism class of g. Let us describe
the structure of an arbitrary involution σ in A(R) :

Theorem 3.1. Let σ be an involution in A(R). Then there exist: a set
of pairwise strongly orthogonal roots α1 , . . . , αm in R, with σ(αj) = −αj for
j = 1, . . . ,m, a Weyl chamber C ∈ C(R), and an involution  ∈ AC(R), with
(αi) = αi, and hence commuting with sαi , for all i = 1, . . . ,m, such that :

(3.1) σ =  ◦ sα1 ◦ · · · ◦ sαm ;

(3.2) α ∈ R+(C) =⇒
{

either σ(α) = −α
or σ(α) ∈ R+(C)

Recall that two roots α, β ∈ R are strongly orthogonal if α± β /∈ R.

Proof. Let F−(σ) = {α ∈ h∗R |σ(α) = −α}, take a maximal subset α1, . . . , αm
of pairwise orthogonal roots in F−(σ)∩R and consider  = σ◦sα1◦· · ·◦sαm . We have
(αi) = σ(−αi) = αi for all i = 1, . . . ,m. We claim that (α) 6= −α for all α ∈ R.
Indeed, if there was α ∈ R with (α) = −α, from (α|αi) = ((α)|(αi)) = −(α|αi)
we obtain that (α|αi) = 0 for all i = 1, . . . ,m. Hence sαi(α) = α for all α and

23
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therefore σ(α) = (α) = −α, contradicting the fact that α1, . . . , αm was a maximal
system of pairwise orthogonal roots in R∩ F−(σ).

To obtain that α1, . . . , αm are strongly orthogonal it suffices to choose the
sequence α1, . . . , αm with a maximal sum

∑m
i=1 ‖αi‖2. Indeed, if αj and αh are or-

thogonal, but not strongly orthogonal, then both αj+αh and αj−αh are roots. Set-
ting α′i = αi for i 6= j, h, and α′j = αj+αh , α′h = αj−αh, we obtain a new sequence
α′1, . . . , α

′
m of pairwise orthogonal roots in F−(σ)∩R. It is contained in a maximal

one and the inequality
∑m
i=1 ‖α′i‖2 =

(∑m
i=1 ‖αi‖2

)
+‖αj‖2 +‖αh‖2 >

∑m
i=1 ‖αi‖2,

contradicts the maximality of
∑m
i=1 ‖αi‖2.

We claim that there exists a Weyl chamber C such that :

(∗) (R+(C)) = R+(C) .

Indeed (∗) is equivalent to (B(C)) ⊂ R+(C). For a Weyl chamber C, denote
by nC the number of the elements in R+(C) ∩ (R+(C)). Fix C with nC max-
imum. If C does not satisfy (∗), take α ∈ B(C) with (α) /∈ R+(C) and con-
sider the chamber C ′ = sα(C). From R+(C ′) = (R+(C) \ {α}) ∪ {−α} and
(−α) ∈ R+(C) \ {α} ⊂ R+(C ′), we obtain nC′ = nC + 1, contradicting our
choice of C. Hence C satisfies (∗) and therefore also (3.2). This completes the
proof. �

Using Theorem 3.1, we obtain the formula :

(3.3) σ(β) = (β)−
m∑
j=1

(
β|α∨j

)
αj , with α∨j = 2αj/‖αj‖2 , ∀β ∈ h∗R .

Likewise, we have the following :

Theorem 3.2. Let σ be an involution in A(R). Then there exists a set of pair-
wise strongly orthogonal roots δ1, . . . , δm ∈ R, with σ(δj) = δj for j = 1, . . . ,m,
a Weyl chamber C ∈ C(R) and an involution $, that commutes with sδj , satisfies
$(δj) = −δj for all j = 1, . . . ,m, and transforms C into Copp, such that :

(3.4) σ = $ ◦ sδ1 ◦ · · · ◦ sδm ,

(3.5) α ∈ R+(C) =⇒
{

either σ(α) = α

or σ(α) ∈ R−(C) .

Proof. We take σ′ = s0 ◦ σ, where s0 is the symmetry with respect to the
origin of h∗R. By the preceding Theorem, σ′ = ◦sδ1 ◦· · ·◦sδm , where  ∈ AC(R) for
some C ∈ C(R), and δ1, . . . , δm is a maximal system of strongly orthogonal roots
in F−(σ′) ∩ R = {α ∈ R |σ(α) = α}, with (δj) = δj . The statement follows by
taking $ = s0 ◦ . �

With $ and δ1, . . . , δm as in Theorem 3.2, we obtain the formula :

(3.6) σ(β) = $(β) +
m∑
j=1

(
β|δ∨j

)
δj , with δ∨j = 2 δj/‖δj‖2 , ∀β ∈ h∗R .
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A Weyl chamber C ∈ C(R) that satisfies condition (3.2) (resp. (3.5)) is said to be2

S-adapted (resp. V-adapted) to the conjugation σ.

For general CR algebras (g, q), there could be no adapted Cartan subalgebras
h that are either maximally compact or maximally noncompact in g . This is a
major drawback in the classification of the orbits of G in M (see e.g. the references
in [BL02]), but, while discussing fundamentality, weak nondegeneracy and some
topological properties, it turns out that the choice of h is not as crucial as that of
special Weyl chambers C in C(R,Q). In general C(R,Q) may not contain any Weyl
chamber that is either S- or V-adapted to σ. In the following lemmas we describe
chambers in C(R,Q) that are as close as possible to being S- or V-adapted.

Lemma 3.3. Let (ϑ, h) be a Cartan pair adapted to (g, q). Then there exists
a Weyl chamber C ∈ C(R,Q) that satisfies the equivalent conditions :

(i) If α /∈ Rim, α �C 0, and ᾱ ≺C 0, then both α and −ᾱ belong to Qn .
(ii) ᾱ �C 0 for all α ∈ B(C) \ (ΦC ∪Rim) .

Assume that C satisfies the equivalent conditions (i) and (ii). Then :
(iii) If moreover h is maximally noncompact among the Cartan subalgebras of

g contained in g+ = q ∩ g, then B(C) ∩R∗ ⊂ ΦC .

Proof. Choose C ∈ C(R,Q) with a maximal R+(C) ∩ σ (R+(C)). Then (ii)
is satisfied. Indeed, if there was α ∈ B(C)\(ΦC ∪Rim) with ᾱ ≺C 0, we would take
C ′ = sα(C). Then R+(C ′) = (R+(C) \ {α}) ∪ {−α} ⊂ Q, so that C ′ ∈ C(R,Q),
and R+(C ′)∩ σ (R+(C ′)) % R+(C)∩ σ (R+(C)), yielding a contradiction. Clearly
(i) ⇒ (ii). Vice versa, if α =

∑
β∈B(C) k

β
αβ ∈ R+(C) and ᾱ ≺C 0 , then either

α ∈ Rim, or else there is some β ∈ suppC(α) ∩ Rcp with β̄ ≺C 0 ; by (ii), we have
β ∈ ΦC and hence α ∈ Qn. The same argument, applied to −ᾱ, shows that also
−ᾱ ∈ Qn. This completes the proof of the equivalence (i)⇔ (ii).

Finally, if α ∈ (B(C) ∩R∗) \ ΦC , both α and ᾱ = −α belong to Q. Let
Γ = {(Xα, Hα)α∈R} be a Chevalley system, as in [Bou05]. Then Tα = Xα−X−α ∈
p∩g+ (for this construction cf. [Sug59]) is a semisimple element of g that commutes
with all elements of h− and of j+ = {H ∈ h+ |α(H) = 0}. Hence j = h−⊕RTα⊕ j+

is a Cartan subalgebra of g, contained in g+, with j− = h− ⊕ RTα % h−. Thus, if
h− is maximal, we have B(C0) ∩R∗ ⊂ ΦC . �

An alternative construction of a Weyl chamber C satisfying (i) and (ii) of
Lemma 3.3 is the following (which is a particular case of a general construction
that will be described in Chapter 4). Fix a Weyl chamber C0 ∈ C(R) that is S-
adapted to σ (recall that this means σ (R+(C0) \ Rim) ⊂ R+(C0)), and consider
the Borel subalgebra :

bC0 = ĥ⊕
⊕

α∈R+(C0)

ĝα ⊂ ĝ .

Then b = qn ⊕ (qr ∩ bC0) is a Borel subalgebra of ĝ, corresponding to a Weyl
chamber C ∈ C(R,Q) that satisfies (i) and (ii) of Lemma 3.3.

2If we choose h maximally noncompact, then in an S-adapted Weyl chamber C the conjuga-

tion can be described by a Satake diagram; if instead we take h with a maximal compact part,
in a V-adapted Weyl chamber the conjugation is described by a Vogan diagram (see e.g. [Ara62],

[Kna02].
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A Weyl chamber C ∈ C(R,Q) that satisfies the equivalent conditions (i) and
(ii) of Lemma 3.3 is called S-fit to (g, q).

With arguments similar to those employed to prove Lemma 3.3, we obtain :

Lemma 3.4. Let (ϑ, h) be a Cartan pair adapted to (g, q). Then there exists
a Weyl chamber C ∈ C(R,Q) that satisfies the equivalent conditions :

(iv) If α /∈ Rre, α �C 0, and ᾱ �C 0, then both α and ᾱ belong to Qn .
(v) ᾱ ≺C 0 for all α ∈ B(C) \ (ΦC ∪Rre) .

Assume that C satisfies the equivalent conditions (iv) and (v). Then :
(vi) If moreover h is maximally compact among the Cartan subalgebras of g

contained in g+ = q ∩ g, then B(C) ∩Rre ⊂ ΦC . �

A Weyl chamber C ∈ C(Q,R) that satisfies the equivalent conditions (iv) and
(v) of Lemma 3.4 is called V-fit to (g, q).

V-fit Weyl chambers can also be obtained as follows : if bC0 = ĥ⊕
∑
α∈R+(C0) ĝα

is the Borel subalgebra associated to a Weyl chamber C0 that is V-adapted to the
conjugation σ, then qn ⊕ (qr ∩ bC0) is the Borel subalgebra associated to a Weyl
chamber C ∈ C(R,Q) that is V-fit to (g, q).

3.2 Fundamental parabolic CR algebras

Fundamental parabolic CR algebras can be more easily characterized when de-
scribed in terms of a S-fit Weyl chamber. Indeed we have:

Theorem 3.5. Let (g, q) be an effective parabolic CR algebra. Fix a Cartan
subalgebra h of g adapted to (g, q) and fix an S-fit Weyl chamber C ∈ C(R,Q) for
(g, q). Then (g, q) is fundamental if and only if :

(3.7) ∀α0 ∈ ΦC ∩ Q̄ n

{
either ∃β ∈ B(C) \ ΦC with α0 ∈ suppC(β̄) ,
or ∃β ∈ ΦC with β̄ ∈ R−(C) and α0 ∈ suppC(β̄) .

Proof. The parabolic CR algebra (g, q) is fundamental if, and only if, there is
no complex parabolic subalgebra q′ of ĝ with q + q̄ ⊂ q′ ( ĝ. All complex parabolic
q′ that contain q are of the form q′ = qΨC for some set of simple roots ΨC ⊂ ΦC .
We can limit ourselves to consider the cases where ΨC = {α0} for some α0 ∈ ΦC .
Thus we obtain :

(3.8) (g, qΦC ) is not fundamental⇐⇒
{ ∃α0 ∈ ΦC such that
{β ∈ R |β �C α0} ⊂ Q̄ n .

Indeed, q + q̄ ⊂ q′ if and only if q′ n ⊂ qn ∩ q̄ n. Thus it suffices to further
restrict our consideration to simple roots α0 ∈ ΦC ∩ Q̄n and check whether
F = {β ∈ R |β �C α0} is contained or not in Q̄n.

First we show that condition (3.7) is sufficient. Let α0 ∈ ΦC ∩ Q̄n. If
β ∈ B(C)\ΦC and α0 ∈ suppC(β̄), then β̄ �C α0 by the assumption that C is S-fit
to (g, q) ; hence β̄ ∈ F \ Q̄n. Likewise, if β ∈ ΦC , β̄ ≺C 0 and α0 ∈ suppC(β̄), then
−β̄ ∈ F \ Q̄ n. This completes the proof of sufficiency.

To prove that (3.7) is also necessary, fix again α0 ∈ ΦC ∩ Q̄n. If (g, q) is fun-
damental, then F 6⊂ Q̄n, and hence there is a root α with α �C α0 and ᾱ /∈ Qn. If
ᾱ �C 0, then suppC(ᾱ) ∩ ΦC = ∅. Since α0 ∈ suppC(α) ⊂

⋃
β∈suppC(ᾱ) suppC(β̄),
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there is at least a β ∈ B(C) \ ΦC with α0 ∈ suppC(β̄). Assume now that α0 does
not belong to suppC(β̄) for any β ∈ B \ ΦC . Then, for a root α �C α0 that does
not belong to Q̄n, we have ᾱ ≺C 0. From α0 ∈

⋃
β∈suppC(ᾱ) suppC(β̄) we obtain

that α0 ∈ suppC(β̄) for some β ∈ B(C) with β̄ ≺C 0, and hence in ΦC . �

Theorem 3.5 provides a criterion, only involving the conjugation of the simple
roots of an S-fit Weyl chamber, for an effective parabolic CR algebra to be totally
real. We found convenient to formulate the criterion for an arbitrary Weyl chamber
C ∈ C(R,Q).

Proposition 3.6. Let (g, q) be an effective parabolic CR algebra, h an
adapted Cartan subalgebra, and C ∈ C(R,Q). A necessary and sufficient con-
dition in order that (g, q) be totally real is that :

(3.9)
{
α ∈ B(C) \ ΦC =⇒ suppC(ᾱ) ∩ ΦC = ∅

α ∈ ΦC =⇒ ᾱ ∈ R+(C) .

Proof. The case where Q = R is trivial. Assume that Q 6= R. The first
condition in (3.9) implies that B(C) \ ΦC ⊂ Q̄ r. Hence Qr = Q̄ r. In particular,
if α ∈ Qn, then ᾱ ∈ R \ Qr. Then, since Qn = R+(C) \ Qr, the second condition
implies that ᾱ ∈ Qn for all α ∈ ΦC . Hence ΦC ⊂ Q̄n. Therefore B(C) ⊂ Q, so
that we also have Qn

= Qn and hence Q = Q. The condition is obviously also
necessary. �

Proposition 3.6 prompts a recursive method to construct the totally real basis
of the canonical g-equivariant fibration (g, q) −→ (g, q′), with totally real basis and
fundamental fiber.

After taking any C ∈ C(R,Q), we define recursively :

(3.10)



Υ(0)
C = {α ∈ ΦC | ᾱ ∈ R+(C)}

Υ(1)
C = Υ(0)

C \
⋃
α∈B(C)\Υ(0)

C

suppC(ᾱ)

Υ(h+1)
C = Υ(h)

C \
⋃
α∈B(C)\Υ(h)

C

suppC(ᾱ) for h ≥ 1

ΥC =
⋂
h≥0 Υ(h)

C (finite intersection) .

One easily verifies, using the previous results, that :

Proposition 3.7. The natural g-equivariant fibration (g, qΦC ) −→ (g, qΥC ) is
the fundamental reduction of (g, qΦC ). In particular, (g, qΦC ) is fundamental if and
only if ΥC = ∅. �

3.3 Weakly nondegenerate parabolic CR algebras

We turn now to weak nondegeneracy for an effective parabolic CR algebra (g, q).
We shall see that this property can be better examined in terms of V-fit Weyl
chambers. We start with a Lemma:
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Lemma 3.8. Let (g, q) be an effective parabolic CR algebra, h a Cartan subal-
gebra of g adapted to (g, q), and C ∈ C(R,Q) a V-fit Weyl chamber for (g, q). Let
ΦC = B(C) ∩ Qn and q′ = qΨC ⊃ q (cf. (2.15) for the notation), with ΨC ⊂ ΦC .
Then the g-equivariant fibration of CR algebras (g, q) −→ (g, q′) is a CR fibration
with a totally complex fiber if and only if

(3.11) ᾱ ≺C 0 ∀α ∈ ΦC \ΨC .

Proof. The g-equivariant CR homomorphism (g, q) −→ (g, q′) is a CR fibra-
tion with a totally complex fiber if, and only if, q ⊂ q′ ⊂ q + q̄. Thus, we need to
show that these inclusions are equivalent to (3.11) when C ∈ C(R,Q) satisfies (iv)
and (v) of Lemma 3.4.

Clearly, it suffices to consider the case where the difference ΦC \ ΨC consists
of a single simple root α0. We shall assume in the following that ΦC \ΨC = {α0}.

First we prove that, if ᾱ0 ≺C 0, then Q′ = QΨC ⊂ Q ∪ Q̄ . Assume by
contradiction that there is β ∈ Q′ \

(
Q∪ Q̄

)
. Then −β,−β̄ ∈ Qn ⊂ R+(C).

Moreover β ∈ Q′r, because Q′n ⊂ Qn ⊂
(
Q∪ Q̄

)
. Thus suppC(β) ∩ ΨC = ∅,

and hence suppC(β) ∩ ΦC = {α0}, because −β ∈ Qn. As C is V-fit, ᾱ ≺C 0 for
all α ∈ suppC(β) \ Rre. Since β is not real, this implies that β̄ �C 0, giving a
contradiction. Hence Q′ ⊂

(
Q∪Q

)
, and this proves that q ⊂ q′ ⊂ q + q̄ when

ᾱ0 ∈ R−(C).
Vice versa, assume that q ⊂ q′ ⊂ q + q̄. In particular, −α0 ∈ Q̄. If ᾱ0 ∈ Qr,

then ᾱ0 and α0 = ¯̄α0 belong to opposite cones R±(C) and thus ᾱ0 ≺C 0. When
ᾱ0 /∈ Qr, we have −ᾱ0 ∈ Qn ⊂ R+(C), and thus ᾱ0 ≺C 0. The proof is complete.�

Using Lemma 3.8, we obtain a characterization of weakly nondegenerate CR
algebras:

Theorem 3.9. Let (g, q) be an effective parabolic CR algebra, and let h be a
Cartan subalgebra of g adapted to (g, q). Let C ∈ C(R,Q) be V-fit to (g, q). Then
(g, q) is weakly nondegenerate if and only if :

(3.12) ᾱ �C 0 ∀α ∈ ΦC .

Proof. Fix a Weyl chamber C ∈ C(R,Q) for which (iv) and (v) of Lemma 3.4
are valid. By Lemma 3.8, the necessary and sufficient condition for (g, q) to be
weakly degenerate is that there exists α0 ∈ ΦC contradicting (3.12). �

Corollary 3.10. Let (g, q) be a weakly nondegenerate parabolic CR algebra.

Let Q be the parabolic set associated to q in R = R(ĝ, ĥ), for an admissible Cartan
subalgebra h of (g, q). Then (g, q) is totally real if and only if Q̄n ∩Qr = ∅.

Proof. Choose a V-fit Weyl chamber C ∈ C(R,Q) for (g, q). The second
condition in (3.9) being automatically satisfied because C is V-fit and (g, q) weakly
nondegenerate, we observe that the first line in (3.9) is equivalent to the condition
that Q̄n ∩Qr = ∅. �
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3.4 Cross-marked diagrams and examples

In the examples that will follow, here and in the next chapters, to describe specific
parabolic CR algebras, we shall utilize cross-marked diagrams. They are Dynkin
diagrams, where the simple roots in B(C), for a Weyl chamber C ∈ C(R,Q), are
indicated by :

◦ if the root is real;
• if the root is compact imaginary;
~ if the root is noncompact imaginary;

⊕ if the root is complex and its conjugate belongs to R+(C);

	 if the root is complex and its conjugate belongs to R−(C)

and we cross-mark the roots in ΦC . Some extra information about the action of σ
on the simple roots in B(C) is provided by some arrows and dotted arrows joining
pairs of simple roots that have the same, or opposite, restriction to h− ⊂ hR, or
that are the edges of segments whose nodes are the support of real or imaginary
roots. However, as we shall see, the most important information is carried by the
colors of the nodes.

Example 3.1. Consider the CR manifold M consisting of 3-planes `3 of C6

with dimC(`3∩ ¯̀
3) = 1. This is an orbit of SL(6,R) in the Grassmannian of 3-planes

of C6. Let ε1, . . . , ε6 be the canonical basis of C6. It is convenient to represent the
Lie algebra sl(6,R) in the basis

e1 = ε1 + iε6 , e2 = ε2 + iε5 , e3 = ε3 , e4 = ε4 , e5 = ε2 − iε5 , e6 = ε1 − iε6 .

Then M is the orbit of the 3 plane generated by e1, e2, e3.
We can take hR to be the set of real diagonal matrices. The parabolic q is qA for

A = diag(1, 1, 1,−1,−1,−1). The Weyl chamber C corresponding to the canonical
basis αi = ei − ei+1 (i = 1, . . . , 5) belongs to C(R,Q) and is V-fit. We have indeed

ᾱ1 = e6−e5= −α5

ᾱ2 = e5−e3= −(α3 +α4)

ᾱ3 = e3−e4= α3

ᾱ4 = e4−e2= −(α2 +α3)

ᾱ5 = e2−e1= −α1

so that the associated diagram is :

	 ||

∗

##	||
∗

##
© 	 	

α1 α2 α3 α4 α5
×

We have ΦC = {α3}, σ ([R+(C) ∩Qr] \ Rre) ⊂ R−(C), Φ̄C = ΦC ⊂ R+(C).
Hence, by Lemma 3.4, (g, q) is weakly nondegenerate. Our M is a CR manifold of
hypersurface type (8, 1). Its Levi form has two positive, two negative and four zero
eigenvalues. Hence M is fundamental and weakly, but not strictly nondegenerate.

We obtain an S-fit chamber by describing sl(6,R) in the basis :

e1 = ε1 , e2 = ε2 + iε5 , e3 = ε3 + iε4 , e4 = ε3 − iε4 , e5 = ε2 − iε5 , e6 = ε6 .
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One verifies that, with the basis of simple roots αi = ei − ei+1 (1 ≤ i ≤ 5) the
corresponding diagram is :

⊕ || ##⊕||
∗

##
~ ⊕ ⊕

α1 α2 α3 α4 α5
×

We have ᾱ1 = α1 + α2 + α3 + α4 �C α3, in accordance with the fact that (g, q) is
fundamental.

Example 3.2. Consider the CR manifold M∗ consisting of all flags `1 ⊂ `2 ⊂
`4 ⊂ `5 ⊂ C6 (the subscript is the dimension of the linear subspace), with

dimC(`1 ∩ ¯̀
1) = 0 , `2 = `1 + ¯̀

1 , dimC(`4 ∩ ¯̀
4) = 3 , dimC(`5 ∩ ¯̀

5) = 3 .

We note that M∗ is not connected. Thus an orbit of SL(6,R) in M∗ will be a
connected component M of M∗. We can better describe such an M in terms of the
choice of a suitable basis of C6. Denoting by ε1, . . . , ε6 the canonical basis of C6,
we introduce the basis :

e1 = ε1 + iε2, e2 = ε1 − iε2, e3 = ε3, e4 = ε4 + iε6, e5 = ε5, e6 = ε4 − iε6 .

Our M is the orbit, under the action of SL(6,R), of the flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e3, e4〉 ⊂ 〈e1, e2, e3, e4, e5〉 .

We can take the Cartan subalgebra h of sl(6,R) that is described, in the basis
e1, . . . , e6, by :

h = {diag(λ, λ̄, a, µ, b, µ̄) |λ, µ ∈ C, a, b ∈ R , 2Re(λ+ µ) + a+ b = 0}

and consider the corresponding root system R of sl(6,C) with respect to ĥ. We
identify hR with the space of real diagonal matrices in sl(6,C) and the eh’s to the
evaluation of the h-th diagonal entry of H ∈ hR. Let (g, q) be the effective parabolic
CR algebra associated to M and Q the parabolic set of q. Then the Weyl chamber
C ∈ C(R) with basis B(C) = {αi = ei − ei+1 | 1 ≤ i ≤ 5} belongs to C(R,Q) and
ΦC = {α1, α2, α4, α5}. We have :

ᾱ1 = −α1

ᾱ2 = α1+α2

ᾱ3 = α3+α4+α5

ᾱ4 = −α5

ᾱ5 = −α4 .

Thus (3.10) yields in this case :{
Υ(0)
C = {α2}

Υ(1)
C = Υ(0)

C = ΥC .

Thus the basis of the fundamental reduction is the Grassmannian of 2-planes `2
in C6 with ¯̀

2 = `2. We give below the diagrams for (g, q), for its fundamental



3.4. CROSS-MARKED DIAGRAMS AND EXAMPLES 31

reduction (g, q′), and for the fiber (g, q′′), (recall that the basis of the fundamental
reduction of a parabolic is still parabolic).

(g, q) ~ ⊕ ⊕�� ��	��
∗

��	
α1 α2 α3 α4 α5
× × × ×

(g, q′) ~ ⊕ ⊕�� ��	��
∗

��	
α1 α2 α3 α4 α5

×

(g, q′′) ~ ⊕�� ��	��
∗

��	
α1 α3 α4 α5
× × ×

The fiber M ′′ is the product of a complex disk (a connected component of the set
of CP1 \ RP1 ' S2 \ S1) and a connected CR manifold N , consisting of flags in
C6/C2: these can be identified to pairs `2 ⊂ `3 ⊂ C4 such that dimC(`2 ∩ ¯̀

2) = 1,
`3 6⊃ `2 + ¯̀

2 and dimC(`3 ∩ ¯̀
3) = 2. It is convenient to utilize the basis e4, e3, e5, e6

of C4 ' 〈e3, e4, e5, e6〉 ⊂ C6. Then β1 = e4 − e3, β2 = e3 − e5, β3 = e5 − e6 is
the basis related to a Weyl chamber CN in which the diagram associated to the
parabolic CR algebra of N is :

	||
∗

##
© 	

β1 β2 β3
× ×

Since CN is V-fit, we see from this diagram that N is weakly degenerate. The
basis N ′ of its weakly nondegenerate reduction, consists of planes `2 of C4 with
dimC(`2 ∩ ¯̀

2) = 1, and corresponds to the diagram :

	||
∗

##
© 	

β1 β2 β3
×

The parabolic CR manifold N ′ is of hypersurface type (3, 1), with a degenerate
Levi form of signature (1,−1, 0). Thus it is 1-pseudoconcave (see e.g. [HN96]) and
weakly, but not strictly, nondegenerate. The fiber F of the SL(4,R)-equivariant
weakly nondegenerate reduction N −→ N ′, that lies above a given 2-plane `2 with
dimC(`2 + ¯̀

2) = 3, is isomorphic to the pencil of 3-planes in C4, that contain `2
and are distinct from (`2 + ¯̀

2). Thus F ' CP1 \ {a point} ' C. Note that the CR
algebra that is naturally associated to the fiber fails in this case to be parabolic.
In fact, the CR algebra (g], q]) of the fiber is given by :

g] =



λ 0 ζ̄ 0
z h s z̄
0 0 k 0
0 0 ζ λ̄


∣∣∣∣∣∣∣
λ, z, ζ ∈ C
h, k, s ∈ R
h+ k + 2Reλ = 0

 ,

q] =



λ1 0 ζ2 0
0 λ2 θ z2

0 0 λ3 0
0 0 ζ1 λ4


∣∣∣∣∣∣∣
λi, zi, ζi, θ ∈ C∑4
i=1 λi = 0

 ,

where both g] and its complexification ĝ] are nilpotent.





CHAPTER 4

Canonical fibrations over
a parabolic CR manifold

Given an effective parabolic CR algebra (g, q), we constructed in the previous
chapters new parabolic complex subalgebras q′ of ĝ with q ⊂ q′, to obtain smooth
fibrations M(g, q) −→ M(g, q′), namely with a weakly nondegenerate basis and to-
tally complex fibers, and with totally real basis and fundamental fibers. Here, we
consider smooth fibrations M(g, q′) −→M(g, q), obtained by choosing special para-
bolic q′ ⊂ ĝ with q′ ⊂ q, and that will be useful to find suitable Weyl chambers in
C(R,Q) and to investigate the topology of the general M(g, q).

We keep the notation of the preceding chapters. In particular, we fix a Cartan
pair (ϑ, h), assuming that it is adapted to all the parabolic CR algebras that we
shall consider.

We have :

Proposition 4.1. Let (ϑ, h) be a Cartan pair adapted to the effective para-
bolic CR algebras (g, q) and (g, e). Then :

(4.1) l = qn ⊕ (qr ∩ e)

is a parabolic complex Lie subalgebra of ĝ with :

(4.2)


h ⊂ l
ln= qn ⊕ (qr ∩ en) ⊃ qn

lr= qr ∩ er ⊂ qr

l = ln ⊕ lr ⊂ q .

Proof. Let Q, E be the parabolic sets in R corresponding to the complex
parabolic Lie subalgebras q, e, respectively. To prove that l is parabolic, we need
to prove that

(4.3) L = Qn ∪ (Qr ∩ E) = Qn ∪ (Qr ∩ Er) ∪ (Qr ∩ En)

is a parabolic subset of R.
Let A,B ∈ hR be such that Q = QA, E = QB and fix ε > 0 so small that

ε |α(B)| < α(A) for all α ∈ Qn. Then we claim that

L = {α ∈ R |α(A+ εB) ≥ 0} .
Indeed, when α ∈ Qn, then α(A + εB) ≥ α(A) − ε |α(B)| > 0; when α /∈ Q, then
−α ∈ Qn and hence α(A+εB) < 0; finally for α ∈ Qr, we have α(A+εB) = ε α(B)
and hence α ∈ L if and only if α ∈ E .

The proof of (4.2) is straightforward. �

Vice versa, when l is a complex parabolic subalgebra of ĝ with h ⊂ l ⊂ q,
then l = qn ⊕ (qr ∩ l), so that (4.1) gives a way to construct all complex parabolic
subalgebras of ĝ with h ⊂ l ⊂ q.

33
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4.1 The canonical CR lift

We give a first application of the above construction.

Proposition 4.2. Let (ϑ, h) be a Cartan pair adapted to the effective para-
bolic CR algebra (g, q) . Consider the complex parabolic Lie subalgebra

(4.4) w = qn ⊕ (qr ∩ ϑ(q))

of ĝ. The σ-invariant reductive subalgebra qr ∩ q̄ r is a complement in w of its
nilradical wn. We have :

(4.5)

{
wr = qr ∩ q̄ r , wn = qn ⊕ (qr ∩ ϑ(qn)) ⊃ qn , w = wn ⊕wr ⊂ q ,

wn ∩ w̄n = qn ∩ q̄n , wr = w̄ r , w ∩ w̄ = qr ∩ q̄ r ⊕ qn ∩ q̄n ,

and w is the smallest parabolic subalgebra of ĝ that satisfies the conditions :

(4.6) qr ∩ q̄r ⊂ w ⊂ q and w + w̄ = q + q̄ .

Proof. By Proposition 4.1, w is complex parabolic in ĝ. Indeed ϑ(q) is
complex parabolic in ĝ and contains h. The parabolic set associated to ϑ(q) is
ϑ(Q) = {α | − ᾱ ∈ Q} = Q̄r ∪ Q̄−n. Hence the parabolic set corresponding to w
is :

(4.7) W = Qn ∪ (Qr ∩ ϑ(Q)) =
(
Qr ∩ Q̄ r

)
∪Qn ∪

(
Qr ∩ Q̄−n

)
.

We obtain (4.5) by using Proposition 4.1.
We have Wr = W̄ r = Qr ∩ Q̄ r, and W ∪ W̄ =Wr ∪Wn ∪ W̄ n = Q∪ Q̄. The

right hand side of this equality can be written as a disjoint union :

Q∪ Q̄ =
(
Qr ∩ Q̄ r

)
∪
(
Qn ∪ Q̄n

)
∪
(
Qr \ Q̄

)
∪
(
Q̄ r \ Q

)
.

In particular, Qr \Q̄ ⊂ W for the parabolic setW of any complex parabolic w that
satisfies (4.6), and this shows that the w we constructed is the smallest complex
parabolic subalgebra of ĝ that satisfies (4.6). �

Since w ⊂ q, we have a g-equivariant CR fibration (g,w) −→ (g, q). We call
(g,w) the canonical CR-lift of (g, q).

Theorem 4.3. The canonical CR lift (g,w) −→ (g, q) is a g-equivariant CR fi-
bration (in particular a CR submersion) with totally complex fibers. When (g, q) is
weakly nondegenerate, then (g,w) −→ (g, q) is the weakly nondegenerate reduction
of (g,w).

Proof. The statement is an immediate consequence of Lemma 3.8 and of the
next lemma. �

Lemma 4.4. Let (ϑ, h) be a Cartan pair adapted to the effective parabolic
CR algebra (g, q). Let (g,w) be its canonical CR-lift. Then a Weyl chamber
C ∈ C(R,Q) is V-fit for (g, q) if and only if C ∈ C(R,W) and is V-fit for (g,w).
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Proof. Assume that C ∈ C(R,Q) is V-fit for (g, q). We want to show that
R+(C) ⊂ W. Since Qn ∪

(
Qr ∩ Q̄ r

)
⊂ W, it suffices to prove that α ∈ W for

α ∈ (R+(C) ∩Qr) \ Q̄ r. Since C is V-fit for (g, q), for such a root α we have
ᾱ ≺C 0. Hence ϑ(α) = −ᾱ ∈ R+(C) ⊂ Q, i.e. α ∈ Qr ∩ ϑ(Q) ⊂ W. A chamber
C ∈ C(R,W) that is V-fit for (g, q) is also V-fit for (g,w), because w ⊂ q.

Let now C ∈ C(R,W) ⊂ C(R,Q) be V-fit for (g,w). Note that R+(C)∩Qr =
(R+(C) ∩Wr) ∪ (Wn \ Qn), and Wn \ Qn = Qr ∩ Q̄−n. Since ᾱ ≺C 0 for all
α ∈ Q̄−n, we obtain that σ(R+(C) ∩ Qr \ Rre) ⊂ R−(C) and therefore C is also
V-fit for (g, q). �

In terms of a base of the root system we have:

Proposition 4.5. Let (ϑ, h) be a Cartan pair adapted to the effective para-
bolic CR algebra (g, q), and let (g,w) be its canonical lift. Let C ∈ C(R,Q) be

V-fit for (g, q), and ΦC = B(C) ∩Qn, Φ̃C = B(C) ∩Wn. Then :

(4.8) Φ̃C = ΦC ∪ {α ∈ BC | suppC(ᾱ) ∩ ΦC 6= ∅} .

Proof. By Lemma 4.4, w = qΦ̃C
for some set of simple roots Φ̃C with

ΦC ⊂ Φ̃C ⊂ B(C). Let Q = QA = {α ∈ R |α(A) ≥ 0}, with A ∈ hR. Fix a
real ε > 0 with ε |ᾱ(A)| < α(A) for all α ∈ Qn. Then :

(4.9) W = {α ∈ R |α(A− εĀ) ≥ 0 } .

Indeed, W ⊂ Q because α(A − εĀ) < 0 when α ∈ R and α(A) < 0; moreover
Qn ⊂ Wn, and a root α ∈ Qr belongs to W if and only if ᾱ(A) ≤ 0, i.e. if and only
if ϑ(α) ∈ Q.

Thus we have :

Φ̃C = B(C) ∩Wn = {α ∈ B(C) |α(A− εĀ) > 0}
= ΦC ∪ {α ∈ B(C) |α(A) = 0 , ᾱ(A) < 0}
= ΦC ∪ {α ∈ B(C) | suppC(ᾱ) ∩ ΦC 6= ∅ } ,

because Φ̃C \ ΦC ⊂ Rcp and, for a complex α in B(C) \ ΦC we have ᾱ ∈ R−(C) :
hence ᾱ(A) < 0 whenever ᾱ(A) 6= 0, i.e. suppC(ᾱ) ∩ ΦC 6= ∅. �

We can slightly improve the criterion of weak non-degeneracy of Theorem 3.9,
by using Weyl chambers adapted to the canonical CR lift. We have indeed :

Proposition 4.6. Let (ϑ, h) be a Cartan pair adapted to the effective par-
abolic CR algebra (g, q), and let (g,w) be the canonical CR-lift of (g, q). If
C ∈ C(R,W) , then :

(4.10) (g, q) is weakly non-degenerate if and only if ᾱ �C 0 ∀α ∈ ΦC .
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Proof. (⇒) We argue by contradiction. Assume that ᾱ0 ≺C 0 for some
α0 ∈ ΦC . We want to prove that Q′ ∪ Q̄ ′ = Q∪ Q̄ for the parabolic set

(4.11) Q′ = QΨC = Q∪ {β ∈ R | suppC(β) ∩ ΦC ⊂ {α0}} ,
corresponding to ΨC = ΦC \{α0} ⊂ B(C). It suffices to verify that β̄ ∈ Q if β ≺C 0
and suppC(β) ∩ ΦC = {α0}. Since C ∈ C(R,W), each α ∈ B(C) either belongs to
Wn = Qn∪

(
Qr ∩ Q̄−n

)
, or toWr = Qr ∩Q̄ r. Thus B(C)\ΦC ⊂ Q̄ r ∪Q̄−n, and,

being ᾱ0 ≺C 0, we get −ᾱ ∈ Q for all α ∈ suppC(β), yielding β ∈ Q̄.
(⇐) Assume that (g, q) is weakly degenerate. Then, for some α0 ∈ ΦC , (4.11)
defines a parabolic set Q′ with Q′ ∪ Q̄ ′ = Q ∪ Q̄. In particular, −α0 ∈ Q̄. If
−α0 ∈ Q̄n, then −ᾱ0 ∈ Qn ⊂ R+(C) and ᾱ0 ≺C 0. Otherwise, ᾱ0 ∈ Q r ∩ Q̄n and,
because Q r ∩ Q̄n ⊂ W−n, the condition that C ∈ C(R,W) implies that ᾱ0 ≺C 0.�

Proposition 4.6 gives a way to construct the weakly non-degenerate reduction
of a parabolic CR algebra :

Corollary 4.7. Let (g,w) be the canonical CR-lift of the parabolic CR al-
gebra (g, q) and h a Cartan subalgebra of g adapted to (g, q). If C ∈ C(R,W) ⊂
C(R,Q), ΦC = B(C) ∩Qn, and

(4.12) ΨC = {α ∈ Φ(C) | ᾱ ∈ R+(C)} ,
then the g-equivariant CR fibration (g, q) −→ (g, qΨC ) is the weakly nondegenerate
reduction of (g, q). �

Furthermore we have:

Proposition 4.8. Let (ϑ, h) be a Cartan pair adapted to the effective par-
abolic CR algebra (g, q), and let (g,w) be the canonical lift of (g, q). Then the
natural G-equivariant projection M(g,w) −→M(g, q) is a CR fibration with totally
complex connected fibers.

Proof. Our CR manifolds are described as homogeneous spaces by the quo-
tients M(g, q) = G/G+ with G+ = NG(q) and M(g,w) = G/W+, where
W+ = NG(w).

We want to prove that every connected component of G+ contains an element
of W+.

Let g+ = g ∩ q be the Lie algebra of G+ and consider its decomposition in
(2.19) of Proposition 2.4 : we have g+ = n ⊕ g0, where n is the ideal of the nilpo-
tent elements of the radical of g+ and g0 = qr ∩ q̄ r ∩ g is a ϑ-invariant reductive
complement of n in g+.

Being algebraic, G+ has a Chevalley decomposition (see [Che55, Chap.5,
Sect.4]) into the semidirect product N o G0 of the analytic subgroup with Lie
algebra n and of a closed Lie subgroup G0 with Lie algebra g0.

Let g ∈ G+ and denote by Γg the connected component of g in G+. Since
N is connected, we can as well take from the start g in G0, so that in particular
Adg(g)(g0) = g0.

Since g0 is a real form of qr ∩ q̄ r, by complexification we obtain that
Adĝ(g)(qr ∩ q̄ r) = qr ∩ q̄ r. Thus Adĝ(g)(w) is a parabolic complex subalgebra
of ĝ with qr ∩ q̄ r ⊂ Adĝ(g)(w) ⊂ q. Since dimC(Adĝ(g)(w)) = dimC(w), it follows
from the characterization of w in Proposition 4.2, that Adĝ(g)(w) = w, and hence
g ∈W+. �
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4.2 The weakest CR model

Next we describe a construction that is similar to the one discussed above. We keep
the notation introduced therein.

Proposition 4.9. Let (ϑ, h) be a Cartan pair adapted to the effective para-
bolic CR algebra (g, q), and let :

(4.13) v = qn ⊕ (qr ∩ q̄) .

Then v is a parabolic subalgebra of ĝ, such that :

(4.14)

{
vr = v̄ r = qr ∩ q̄ r , vn = qn ⊕ (qr ∩ q̄n) ⊃ qn , v = vr ⊕ vn ⊂ q

vn ∩ v̄n = qn ∩ q̄n , v̄ r = vr , v ∩ v̄ = q ∩ q̄ .

It is uniquely determined by the condition of being the smallest complex parabolic
subalgebras q′ ⊂ ĝ with :

(4.15) q ∩ q̄ ⊂ q′ ⊂ q .

We note that the latter characterization of v is independent from the choice of
the Cartan pair (ϑ, h).

Proof. All Cartan subalgebras h adapted to (g, q) are also contained in q̄. We
apply Proposition 4.1. The parabolic set corresponding to v is :

(4.16) V = Qn ∪
(
Qr ∩ Q̄

)
=
(
Qr ∩ Q̄ r

)
∪Qn ∪

(
Qr ∩ Q̄n

)
.

Then it is easy to verify (4.14) by using Proposition 4.1.
All complex parabolic q′ ⊂ ĝ that satisfy (4.15), also satisfy q′ n ⊃ qn, because

q′ ⊂ q, and qr ∩ q̄ ⊂ q ∩ q̄ ; hence v ⊂ q′ if q′ satisfies (4.15). �

The parabolic subalgebra (g, v) defined in Proposition 4.9 is called the weakest
CR model of (g, q).

By Theorem 2.14, since q ∩ q̄ = v ∩ v̄, we have :

Theorem 4.10. Let (g, q) be an effective parabolic CR algebra and (q, v) its

weakest CR model. Then the holomorphic projection M̂(ĝ, v) −→ M̂(ĝ, q) restricts
to a smooth diffeomorphism M(g, v) −→M(g, q). �

An alternative construction of the weakest CR model is given by the following
Lemma.

Lemma 4.11. Let (g, q) be an effective parabolic CR algebra and h a Cartan
subalgebra of g adapted to (g, q). Let Q = QA = {α ∈ R |α(A) ≥ 0}, with A ∈ hR.
Then the parabolic set V of the parabolic complex v ⊂ ĝ of the weakest CR model
(g, v) of (g, q) is given by :

(4.17) V = {α ∈ R |α(A+ εĀ) ≥ 0}

where ε is any positive real number with ε|ᾱ(A)| < α(A) for all α ∈ Qn.
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Proof. Since α(A+εĀ) < 0 when α /∈ Q, we have Qn ⊂ Vn and hence V ⊂ Q.
Moreover α ∈ Qr belongs to V if and only if ᾱ(A) ≥ 0, i.e. if and only if α ∈ Q̄. �

Lemma 4.11 yields:

Proposition 4.12. Let (ϑ, h) be a Cartan pair adapted to the effective par-
abolic CR algebra (g, q), and let (g,w) be the canonical lift of (g, q). Then (g,w)
coincides with its weakest CR model.

Proof. We use the notation of Lemma 4.11. By Proposition 4.5, w = qB with
B = A− εĀ ∈ hR for 0 < ε < ε0. Then, by Lemma 4.11, the weakest CR model of
(g,w) is (g, v′) where v′ = qC with C = A−ε′Ā ∈ hR, with ε′ = ε−δ

1−εδ for 0 < δ < δ0
sufficiently small, and hence v′ = w. �

We have :

Lemma 4.13. Let (g, v) be the weakest CR model of (g, q) and h a CR algebra
of g adapted to (g, q) (and hence also to (g, v)). If Q, V are the parabolic sets

corresponding to q and v in R = R(ĝ, ĥ), then :

(4.18) Qn ∩ Q̄−n = Vn ∩ V̄ −n .

Proof. We have : Vn = Qn ∪
(
Qr ∩ Q̄n

)
and hence V̄ −n = Q̄−n ∪(

Q̄ r ∩Q−n
)
. Since :(

Qr ∩ Q̄n
)
∩
(
Q̄ r ∩Q−n

)
= ∅,

(
Qr ∩ Q̄n

)
∩ Q̄−n = ∅, Qn ∩

(
Q̄ r ∩Q−n

)
= ∅,

we obtain (4.18). �

The connection between the weakest CR model and S-fit Weyl chambers is the
following:

Lemma 4.14. Let (g, q) be an effective parabolic CR algebra and (g, v) its
weakest CR model. Then a Weyl chamber C ∈ C(R,Q) is S-fit for (g, q) if and
only if C ∈ C(R,V) and is S-fit for (g, v).

Proof. We have C(R,V) ⊂ C(R,Q) because V ⊂ Q. Since Vn = Qn ∪(
Qr ∩ Q̄n

)
, for C ∈ C(R,V) and α ∈ Vn \ Qn, we get ᾱ ∈ Qn ⊂ Vn ⊂

R+(C). If moreover C ∈ C(R,V) is S-fit for (g, v), then ᾱ �C 0 also for
α ∈ (Vr ∩R+(C))\Rim; since Qr ∩R+(C) = (Vr ∩R+(C))∪ (Vn \ Qn), it follows
that C is S-fit also for (g, q).

To complete the proof, it suffices to show that an S-fit Weyl chamber for (g, q)
is admissible for (g, v). Let C be S-fit for (g, q). The elements α of Vn \Qn belong
to Qr ∩ Q̄n : this implies that ᾱ �C 0 and therefore that α �C 0, by the assump-
tion that C is S-fit for (g, q). Hence Vn ⊂ R+(C) and therefore C ∈ C(R,V) when
C ∈ C(R,Q) is S-fit for (g, q). �

In terms of a base of the root system we have:
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Proposition 4.15. Let (g, q) be a parabolic CR algebra, with q = qΦC for an
S-fit Weyl chamber C ∈ C(R,Q). Then its weakest CR model is (g, qΦ]

C
), for

(4.19) Φ]C = ΦC ∪ {β ∈ B(C) ∩Rcp | suppC(β̄) ∩ ΦC 6= ∅} .

Proof. Let C ∈ C(R,Q) be S-fit for (g, q). If Q = QA for A ∈ hR, then
ΦC = {β ∈ B(C) |β(A) > 0} and, by Lemma 4.11 and Lemma 4.14, C ∈ C(Q,V)
and thus v = qΦ]

C
for Φ]C = {β ∈ B(C) |β(A) + εβ̄(A) > 0} with ε > 0 and suffi-

ciently small, yielding the characterization in the statement of the Proposition. �

From Corollary 3.10 we obtain :

Corollary 4.16. Let (g, v) be the weakest CR model of a parabolic CR
algebra (g, q). Then :

(i) (g, v) is either totally real, or weakly degenerate.
(ii) If (g, q) is weakly non-degenerate, then v = q if and only if (g, q) is totally

real. �

By using Corollary 4.16, starting from a parabolic CR algebra (g, q), we can
construct a chain of parabolic CR algebras (g, qh), (g, vh) and g-equivariant CR
homomorphisms :

(4.20)

(g, q)y
(g, q1) ←−−−− (g, v1)y

(g, q2) ←−−−− (g, v2)y
(g, q3) ←−−−− (g, v3)

...
where each vertical arrow is a weakly nondegenerate reduction and each horizontal
arrow is a lifting to the weakest CR model.

If we denote by P(ĝ) the set of all parabolic complex Lie subalgebras of ĝ, and
set v0 = g−1 = g, we have, for all integers h > 0 :

(4.21)
{

qh = the largest a ∈ P(ĝ) such that vh−1 ⊂ a ⊂ vh−1 + v̄h−1 ,

vh = the smallest a ∈ P(ĝ) such that qh ∩ q̄h ⊂ a ⊂ qh .

This characterization shows that the construction in (4.20) is uniquely determined
and independent of the choices of the adapted Cartan pairs in (g, qh) and (g, vh).

We know that the G-equivariant maps M(g, vh) −→ M(g, qh) (for h > 0) are
smooth diffeomorphisms, while the G-equivariant maps M(g, vh) −→ M(g, qh+1)
(for h ≥ 0) are CR fibrations. In particular, there is a smallest integer m ≥ −1 such
that dimRM(g, vh) > dimRM(g, vh+1) for h < m+1, and M(g, vh) = M(g, vm+1) =
M(g, qm) for all h > m + 1. Hence, by the characterization of the fibers in Theo-
rem 2.8, we have :
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Proposition 4.17. With the notation above : let (g, qh), (g, vh) be the se-
quence of weakly nondegenerate parabolic CR algebra and of their weakest CR
models defined above. Then there exists a smallest integer m ≥ 0 such that
qh = vh = qm for all h > m. Moreover, (g, qm) is totally real and m is the
smallest nonnegative integer for which (g, qm) is totally real.

By composition, we obtain a G-equivariant fibration M(g, q) −→ M(g, qm)
where the basisM(g, qm) is a totally real parabolic CR manifold and each connected
component of the fiber is a Cartesian product of Euclidean complex nilmanifolds
and of simply connected totally complex parabolic CR manifolds. �

A concrete example of this sequence of fibrations is given below.

Example 4.1. Let ε1, . . . , ε6 be the canonical basis of R6 ⊂ C6. Let G =
SL(6,R) consist of the matrices of Ĝ = SL(6,C) which have real entries in the
canonical basis. We consider in C6 the basis :

e1 = ε1 +iε4, e2 = ε2 +iε5, e3 = ε3 +iε6, e4 = ε1−iε4, e5 = ε2−iε5, e6 = ε3−iε6

and we want to investigate the G-orbit M of the flag

〈e1〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e3〉 ⊂ 〈e1, e2, e3, e4〉 ⊂ 〈e1, e2, e3, e4, e5〉 .

Let (g, q), with g = sl(6,R), be the associated parabolic CR algebra. We consider
the Cartan subalgebra h of sl(6,R) that is represented, in the basis e1, . . . , e6, by
the diagonal matrices diag(λ1, λ2, λ3, λ̄1, λ̄2, λ̄3) with Re(λ1 + λ2 + λ3) = 0. Then
hR consists of the 6× 6 traceless real diagonal matrices.

The cross-marked diagram associated to (g, q) in the adapted Weyl chamber C
with simple roots B(C) = {αi = e1 − ei+1 , 1 ≤ i ≤ 5}, is the following :

⊕ zz
∗

$$⊕ zz
∗

$$	 zz
∗

$$⊕ ⊕
α1 α2 α3 α4 α5
× × × × ×

Since q is a complex Borel subalgebra of ĝ, the chamber C is S-fit and then (g, q)
is fundamental by Theorem 3.5, because ᾱ3 = −(α1 + α2 + α3 + α4 + α5). The
chamber C is also V-fit, and we obtain the weakly non-degenerate basis (g, q1) by
dropping the cross under the simple root α3 with ᾱ3 ≺C 0. The diagram associated
to (g, q1) is :

⊕ zz
∗

$$⊕ zz
∗

$$	 zz
∗

$$⊕ ⊕
α1 α2 α3 α4 α5
× × × ×

The parabolic q1 is defined by the element A1 = diag(2, 1, 0, 0,−1,−2) ∈ hR. To
compute its weakest CR model (g, v1), we observe that Ā1 = diag(0,−1,−2, 2, 1, 0),
so that A1 + εĀ1 = diag(2, 1 − ε,−2ε, 2ε,−1 + ε,−2). To take a Weyl chamber
adapted to (g, v1), it is convenient to consider the basis obtained from e1, . . . , e6

by reordering its elements according to the decreasing ordering of the diago-
nal entries of A1 + εĀ1. We obtain the new basis : e1, e2, e4, e3, e5, e6 . With
α′1 = e1 − e2, α

′
2 = e2 − e4, α

′
3 = e4 − e3, α

′
4 = e3 − e5, α

′
5 = e5 − e6 being

the simple roots a Weyl chamber C ′ ∈ C(R,V1), we obtain the diagram :

⊕��
∗

��	 zz
∗

$$⊕ 	��
∗

��⊕
α′1 α′2 α′3 α′4 α′5
× × × × ×
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The weakly nondegenerate reduction (g, q2) of (g, v1) has the diagram :

⊕��
∗

��	 zz
∗

$$⊕ 	��
∗

��⊕
α′1 α′2 α′3 α′4 α′5
× × ×

We have q2 = qA2 , with
A2 = diag(2, 1,−1, 1,−1,−2), Ā2 = diag(1,−1,−2, 2, 1,−1),

so that A2 + εĀ2 = diag(2 + ε, 1 − ε,−1 − 2ε, 1 + 2ε,−1 + ε,−2 − ε). To de-
scribe (g, v2), for v2 = qA2+εĀ2

, it is convenient to consider the Weyl chamber
C ′′ ∈ C(R,V2) that corresponds to the simple roots related to the ordered basis
e1, e4, e2, e5, e3, e6 of C6, for which the entries of A2 + εĀ2 are decreasing: with
α′′1 = e1 − e4, α

′′
2 = e4 − e2, α

′′
3 = e2 − e5, α

′′
4 = e5 − e3, α

′′
5 = e3 − e6 , we obtain

for (g, v2) the diagram :

~ ⊕ ~ ⊕ ~

α′′1 α′′2 α′′3 α′′4 α′′5
× × × × ×

Since v2 is Borel, C ′′ is V-fit for (g, v2) and the diagram of the weakly non-
degenerate reduction (g, q3) of (g, v2) is obtained by dropping the crosses under
the α′′i ’s with ᾱ′′i ≺C′′ 0 :

~ ⊕ ~ ⊕ ~

α′′1 α′′2 α′′3 α′′4 α′′5
× ×

The parabolic CR algebra (g, q3) is totally real, as q3 = qA3 with
A3 = diag(1, 0,−1, 1, 0,−1) = Ā3.

Hence (g, q2) = (g, vh) = (g, qh) for all h ≥ 3. The map M(g, q) −→ M(g, q3) is
given by (`1, `2, `3, `4, `5) −→ (`1 + ¯̀

1, `2 + ¯̀
2).





Part 2

The compact orbit





CHAPTER 5

Compact parabolic CR algebras and manifolds

In this chapter we describe compact parabolic CR algebras: they are defined as
the parabolic CR algebras (g, q) for which the associated parabolic CR manifold
M(g, q) is compact, and correspond to the unique closed orbit of a real connected
semisimple Lie group in a flag manifold of its complexification.

5.1 Satake diagrams

We recall the following result, due to Araki [Ara62] (cf. Theorem 3.1):

Proposition 5.1. Let g be a real semisimple Lie algebra, (ϑ, h) a Cartan pair,
σ : h∗R −→ h∗R the involution associated to the conjugation of ĝ induced by g. Then

h is maximally noncompact if and only if ĝα ⊂ k̂ for all α ∈ Rim.
Assume now that h is maximally noncompact and let R = R(ĝ, ĥ). Then there

exists a Weyl chamber C ∈ C(R) such that:
(i) ᾱ = σ(α) � 0 for all α ∈ R+(C) \ R•, i.e. C is S-adapted to σ;

(ii) there are pairwise strongly orthogonal roots β1, . . . , βm ∈ R• such that
sβ1 ◦ · · · ◦ sβm is the element w(C,C̄) of the Weyl group that transforms C

into C̄; in particular w(C,C̄) is an involution : w2
(C,C̄)

= 111 ;

(iii) there is an involution εC ∈ Aĥ, such that εC(C) = C, that commutes with

σ and with w(C,C̄), such that :

(5.1) σ = εC ◦ w(C,C̄) .

The Weyl chamber C is uniquely determined modulo the analytic Weyl group
Wh = NG(h)/ZG(h). �

With the notation of Proposition 5.1, and in particular with C and εC satis-
fying (i), (ii), and (iii), it follows from (3.3) that for all α ∈ B(C) \ R• there are
integers nα,β ≥ 0 such that:

ᾱ = εC(α) +
∑

β∈B∩R•

nα,ββ.

To the Weyl chamber C we associate the Satake diagram of g. It is obtained
from the Dynkin diagram of ĝ, whose nodes correspond to the roots in B(C), by
painting black those corresponding to imaginary roots and joining by a curved
arrow those corresponding to distinct roots α1, α2 ∈ B(C) \ R• with εC(α1) = α2.

Satake diagrams coincide with the diagrams defined in § 3.4, with the differ-
ence that, in a Satake diagram, real and complex roots are both represented by a
white node (i.e. “◦”). However, there is no loss of information. In fact, a root α
corresponding to a white node in a Satake diagram is real if and only if there is no
arrow issuing from it and it is not connected by a line to a black node.

45
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5.2 Compact parabolic CR algebras

A real Lie subalgebra t of g is triangular if all linear maps adg(X) ∈ glR(g) with
X ∈ t can be simultaneously represented by triangular matrices in a suitable basis
of g. All maximal triangular subalgebras of g are conjugate by an inner auto-
morphism (cf. [Mos61, §5.4]). A real Lie subalgebra of g containing a maximal
triangular subalgebra of g is called a t-subalgebra.

An effective parabolic CR algebra (g, q) will be called compact if g+ = q ∩ g is
a t-subalgebra of g.

We observe that a maximal triangular subalgebra of g contains a maximal
Abelian subalgebra of semisimple elements of g having real eigenvalues. Hence we
have :

Proposition 5.2. An effective compact parabolic CR algebra (g, q) admits
an adapted Cartan pair (ϑ, h) in which h is a maximally noncompact Cartan sub-
algebra of g. �

Theorem 5.3. Let g be a semisimple real Lie algebra and q a parabolic sub-
algebra of its complexification ĝ. Then, up to CR isomorphisms, there is a unique
compact parabolic effective CR algebra (g′, q′) with g′ isomorphic to g and q′ iso-
morphic to q.

Proof. Fix a maximal triangular subalgebra t of g. Its complexification t̂ is
solvable and therefore is contained in a maximal solvable subalgebra, i.e. a Borel
subalgebra, b of ĝ. Modulo an inner automorphism of ĝ, we can assume that b ⊂ q.
The CR algebra (g, q) is compact parabolic.

Let q, q′ be parabolic subalgebras of ĝ such that g+ = q∩g and g′+ = q′∩g are
t-subalgebras of g. By an inner automorphism of g, we can assume that g+ and g′+
contain the same maximal triangular subalgebra t of g and hence a same maximal
Abelian subalgebra of g of semisimple elements having real eigenvalues. Hence,
using another inner automorphism of g, we can assume that q and q′ contain the
same maximally noncompact Cartan subalgebra h of g.

The inner automorphism of ĝ transforming q into q′ can now be taken to be an
element of the analytic Weyl group, leaving the Cartan subalgebra h and hence g
invariant. It defines a CR isomorphism between (g, q) and (g, q′). �

We recall that a CR algebra (g, q) is totally real if q = q, or, equivalently, if
g+ = q∩g = H+ = g∩ (q + q). This is equivalent to the fact that M(g, q) is totally
real, i.e. a CR manifold with CR dimension 0. For a totally real effective parabolic
CR algebra (g, q) the real subalgebra g+ of g is parabolic, hence a t-subalgebra of
g. Thus we have :

Proposition 5.4. A totally real effective parabolic CR algebra is compact.�

Effective compact parabolic CR algebras correspond to compact orbits. In fact
we have :

Theorem 5.5. The CR manifold M(g, q), associated to an effective parabolic
subalgebra (g, q), is compact if and only if (g, q) is compact.
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Proof. Since G is a linear group, a G-homogeneous space G/G+ is compact
if and only if G+ contains a maximal connected triangular subgroup (see [Oni93,
II, Ch.5, §1.1]), i.e. if g+ is a t-subalgebra of g. �

In the following we will use the characterization of compact parabolic CR al-
gebras given above. However, we also give a characterization of effective compact
parabolic CR algebras (g, q) in terms of the set of roots Q associated to q by any
choice of an adapted Cartan pair (ϑ, h).

Proposition 5.6. A necessary and sufficient condition in order that an effec-
tive parabolic CR algebra (g, q) be compact is that:

(5.2) Qn ∩ Q̄−n ⊂ R• ,

i.e. all roots in Qn ∩ Q̄−n are compact imaginary.

Proof. A necessary and sufficient condition for (g, q) to be compact is that
g+ + k = g. By complexification this condition can be rewritten as :

(5.3) ĝ = q ∩ q̄ + k̂ .

Since ĥ ⊂ q ∩ q̄, it suffices to show that (5.2) is equivalent to :

(5.4) ĝα ⊂ q ∩ q̄ + k̂ for all α ∈ R .

To make the equivalence more clear, we first prove :

Lemma 5.7. For all α /∈
(
Qn ∩ Q̄−n

)
∪
(
Q−n ∩ Q̄n

)
=
(
Qn \ Q̄

)
∪
(
Q̄n \ Q

)
we have

ĝα ⊂ q ∩ q̄ + k̂ .

Proof. We get : R \
[(
Qn \ Q̄

)
∪
(
Q̄n \ Q

)]
= Qr ∪ Q̄ r ∪

(
Qn ∩ Q̄

)
∪(

Q̄n ∩Q
)
.

Clearly ĝα ⊂ q ∩ q̄ ⊂ q ∩ q̄ + k̂ when α ∈
(
Qn ∩ Q̄

)
∪
(
Q̄n ∩Q

)
.

Since the statement is invariant if we interchange q and q̄, to complete the proof
of the lemma it suffices to show that ĝα ⊂ q ∩ q̄ + k̂ for all α ∈ Qr.

Let C ∈ C(R,Q) be V-fit, so that σ ((R+(C) ∩Qr) \ Rre) ⊂ R−(C). We
also use the notation k̂α,−ᾱ = k̂ ∩ (ĝα + ĝ−ᾱ). This is a one-dimensional complex
subspace of ĝ when α ∈ R \ R∗.

For α ∈ Qr ∩ (Rre ∪Rim), we have α ∈ Qr ∩Q̄ r ⊂ Q∩Q̄ and hence ĝα ⊂ q∩ q̄.
If α ∈ Qr ∩R+(C) ∩Rcp, then −ᾱ ∈ R+(C) ⊂ Q. Hence −α,−ᾱ ∈ Q∩ Q̄, so

that : ĝ−α ⊂ q ∩ q̄ ⊂ q ∩ q̄ + k̂ , ĝα ⊂ ĝ−ᾱ + k̂(α,−ᾱ) ⊂ q ∩ q̄ + k̂ . �

We conclude now the proof of Proposition 5.6. If condition (5.2) is satisfied,
then

(
Qn ∩ Q̄−n

)
∪
(
Q−n ∩ Q̄n

)
⊂ R•, hence gα ⊂ k̂ for all α ∈

(
Qn ∩ Q̄−n

)
∪(

Q−n ∩ Q̄n
)
. In view of Lemma 5.7, we obtain (5.4) and hence (5.3).

Vice versa, assume that there is α ∈ Qn ∩ Q̄−n \ R•. If α ∈ R∗, then ĝα ∈ p̂,
and cannot be contained in q ∩ q̄ + k̂. Otherwise, α ∈ Rcp and α,−ᾱ ∈ Qn ∩ Q̄−n.
This implies that ĝα ⊕ ĝᾱ ⊕ ĝ−α ⊕ ĝ−ᾱ = k̂(α,−ᾱ) ⊕ k̂(−α,ᾱ) ⊕ p̂(α,−ᾱ) ⊕ p̂(α,−ᾱ) has
intersection {0} with q ∩ q̄ and therefore (5.3) cannot possibly hold true. �

We also have:
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Proposition 5.8. An effective parabolic CR algebra (g, q) is compact if and
only if its weakest CR model (cf. § 4.2) (g, v) is compact.

Proof. The statement follows by (4.18) and the characterization of compact
parabolic CR algebras given in Lemma 5.6. �

With respect to an adapted Cartan pair (ϑ, h), compact parabolic CR algebras
are characterized as those which can be described in a S-adapted Weyl chamber.
More precisely, we have:

Proposition 5.9. If (g, q) is an effective compact parabolic CR algebra and
h is a maximally noncompact Cartan subalgebra of g contained in q, then there
exists an S-fit and S-adapted Weyl chamber C for (g, h).

Proof. Let (g, q) be compact. Modulo an inner automorphism of ĝ, we can
assume that any given parabolic subalgebra q of ĝ contains a Borel subalgebra b of
the form:

b = ĥ⊕
∑

α∈R+(C)

ĝα

for a Weyl chamber C ∈ C(R) that is S-adapted to the conjugation σ defined by
the real form g. Then b ∩ g is contained in g+ and contains a maximal triangular
subalgebra t of g (see for instance [Vin94, 4.4, 4.5]). The statement follows from
the uniqueness stated in Theorem 5.3. �

We may summarize the above discussion in the following:

Theorem 5.10. Let (g, q) be an effective parabolic CR algebra and (ϑ, h) an
adapted Cartan pair with h maximally noncompact among the Cartan subalgebras
of g contained in g+. Then (g, q) is compact if and only if:

(i) h is maximally noncompact among all Cartan subalgebras of g;
(ii) any S-fit Weyl chamber in C(R,Q) is S-adapted.

Proof. If (g, q) satisfies (i), (ii), then g+ contains a maximal triangular sub-
agebra of g (see [Vin94, 4.4, 4.5]), hence (g, q) is compact.

Vice versa, let g, q be an effective compact parabolic CR algebra, and (ϑ, h) an
adapted Cartan pair with h maximally noncompact in g+. By Proposition 5.2, h is
maximally noncompact in g, thus (i) is proved. Let C ∈ C(R,Q) be an S-fit Weyl
chamber. Assume by contradiction that there exists α ∈ B \ Rim such that ᾱ ≺ 0.
Since C is S-fit, we have that α ∈ Rcp ∩ Qn and ᾱ ∈ R−(C) ∩ Qr. This implies
that all roots βi ∈ suppC ᾱ belong to B ∩ Qr, hence for each β ∈ suppC ᾱ either
βi ∈ Rim or β̄i �C 0. If ᾱ =

∑
i kiβi, with ki < 0, then α =

∑
i kiβ̄i, so we should

have suppC β̄i 3 α for some βi ∈ Rim∩ ∈ suppC ᾱ, but this yields a contradiction,
because α ∈ ΦC and suppC ᾱ ⊂ Qr. �

In view of this characterization, we can describe compact parabolic CR algebras
by cross-marked Satake diagrams. Let SSS be the Satake diagram of the semisimple
real Lie algebra g. The nodes of SSS correspond to the simple roots B(C) of a Weyl
chamber C ∈ C(R) adapted to the conjugation σ defined by g. Fix a subset ΦC of
B(C) and consider the diagram (SSS,ΦC) obtained from SSS by adding a cross-mark
on each node of SSS corresponding to a root in ΦC .
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We associate to the pair (SSS,ΦC) the CR algebra (g, qΦC ), where qΦC is the
parabolic subalgebra defined by (2.15).

Two cross-marked Satake diagrams (SSS,ΦC) and (SSS,ΨC) are said to be equiva-
lent if there exists an ε ∈ Aut(SSS) such that ΨC = ε(ΦC).

Theorems 5.3 and 5.10 yield :

Theorem 5.11. The correspondence:

(SSS,ΦC)←→ (g, qΦC )

is bijective between cross-marked Satake diagrams (modulo equivalence of cross-
marked Satake diagrams) and effective compact parabolic CR algebras (modulo
CR isomorphisms).

Example 5.1. The diagram

• ◦ •
α1 α2 α3
× ×

corresponds to
g = sl(2,H) ⊂ sl(4,C),
q = {Z ∈ sl(4,C) |Z(〈e1〉) ⊂ 〈e1〉, Z(〈e1, e2, e3〉) ⊂ 〈e1, e2, e3〉 },

where e1, e2, e3, e4 is the canonical basis of C4 with e1H = 〈e1, e2〉 and e3H =
〈e3, e4〉.

The associated compact orbit is the CR manifold M = M3,2 whose points are
the pairs (`1, `3) consisting of a complex line `1 and a complex 3-plane `3 of C4 with
`1 ·H ⊂ `3. It is strictly nondegenerate, of CR dimension 3 and CR codimension 2;
all its nonzero Levi forms have one positive, one negative and one zero eigenvalues
(see for instance [HN]).

Example 5.2. The diagram:

◦ yy %%• ◦
α1 α2 α3

×
corresponds to

g = su(1, 3) ⊂ ĝ = sl(4,C)
q = {Z ∈ sl(4,C) |Z(〈e1, e2〉) ⊂ 〈e1, e2〉 }

where e1, e2, e3, e4 is a basis of C4 such that:

su(1, 3) =

{
Z ∈ sl(4,C)

∣∣∣∣∣
( 0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

)
Z + Z∗

( 0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

)
= 0

}

The associated compact orbit is a CR manifold M = M3,1, of hypersurface type,
with a Levi form having one positive, one negative and one zero eigenvalues, and
is weakly nondegenerate but not strictly nondegenerate.
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Example 5.3. The diagram :

◦ww ''• • • ◦
α1 α2 α3 α4 α5

×
corresponds to

g = su(1, 5) ⊂ ĝ = sl(6,C)
q = {Z ∈ sl(6,C) |Z(〈e1, e2, e3〉) ⊂ 〈e1, e2, e3〉 }

where e1, e2, e3, e4, e5, e6 is a basis of C4 such that

su(1, 5) =
{
Z ∈ sl(4,C)

∣∣∣∣ ( 1

I3
1

)
Z + Z∗

(
1

I3
1

)
= 0

}
The associated compact orbit is the CR manifold M = M8,1, of hypersurface type,
with a Levi form having two positive, two negative and four zero eigenvalues, and
is weakly nondegenerate but not strictly nondegenerate.

Example 5.4. The two diagrams :

◦ yy %%• ◦
α1 α2 α3
×

and ◦ yy %%• ◦
α1 α2 α3

×

are isomorphic. Indeed the map z(αi) = α4−i for i = 1, 2, 3 defines an isomorphism
of cross-marked Satake diagrams. The corresponding effective compact parabolic
CR-algebras correspond to g = su(1, 3) and q = q{α1}, q = q{α3}, respectively. Let

K =

( 0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

)

and identify g with the Lie algebra of 4× 4 complex matrices with trace zero that
satisfy X∗K + KX = 0. The CR isomorphism (g, qα1) −→ (g, qα3) is given by the
map su(1, 3) 3 X −→ − tX ∈ su(1, 3).

5.3 g-equivariant fibrations

In this section we discuss g-equivariant fibrations of compact parabolic effective
CR algebras. Here we focus on the CR algebra aspects, preparing for applications
that will be discussed later.

We keep the notation of the previous sections. In particular, g is a semisimple
real Lie algebra, (ϑ, h) an adapted Cartan pair, with h a maximally noncompact
Cartan subalgebra of g, R = R(ĝ, ĥ), C an S-fit and S-adapted Weyl chamber,
B = B(C) is the set of simple roots in R+ = R+(C).

Let ΨC ⊂ ΦC ⊂ B. Then qΦC ⊂ qΨC and the identity on g defines a natural
g-equivariant morphism of CR algebras :

(5.5) π : (g, qΦC ) −→ (g, qΨC ) .



5.3. g-EQUIVARIANT FIBRATIONS 51

We prove that the fiber of (5.5) can still be described by a compact parabolic CR
algebra. The fiber is :

(5.6) (g′, q′), where


g′ = g ∩ qΨC = g ∩ q̄ΨC

ĝ′ = qΨC ∩ q̄ΨC

q′ = q̂ΦC ∩ ĝ′ = q̂ΦC ∩ qΨC ∩ q̄ΨC = qΦC ∩ q̄ΨC .

Denote by R′ and Q′ the sets of roots α ∈ R for which ĝα is contained in ĝ′ and
q̂′, respectively :

(5.7)
{ R′ = QΨC ∩ Q̄ΨC

Q′ = QΦC ∩ Q̄ΨC ,

define :

(5.8)


R′′ = R′ ∩ (−R′) = QrΨC ∩ Q̄

r
ΨC

Q′′ = Q′ ∩R′′

A = R′ \ R′′ =
(
QnΨC ∩ Q̄ΨC

)
∪
(
Q̄nΨC ∩QΨC

)
and set :

(5.9)


ĝ′′ = ĥ⊕

⊕
α∈R′′ ĝ

α

q′′ = q′ ∩ ĝ′′

â =
⊕

α∈A ĝα .

Then R′′ is σ-invariant, ĝ′′ = qrΨC ∩ q̄rΨC is reductive, q′′ is parabolic in ĝ′′ and
â = (qnΨC ∩ q̄ΨC ) + (qΨC ∩ q̄nΨC ) is an ideal in ĝ′, which is invariant with respect to
the conjugation defined by the real form g.

Lemma 5.12. â ⊂ qΦC .

Proof. We first show that QnΨC ∩ Q̄ΨC ∩ R• = ∅. Assume by contradiction
that there is α ∈ QnΨC ∩Q̄ΨC ∩R•. From α ∈ QnΨC we obtain that ᾱ = −α ∈ Q̄nΨC ,
that is α 6∈ Q̄ΨC , which gives a contradiction.

Since QnΨC is contained in R+ and QnΨC ∩ Q̄ΨC does not contain imaginary
roots, also its conjugate QnΨC ∩ Q̄ΨC = Q̄nΨC ∩ QΨC is contained in R+. Hence
A ⊂ R+ ⊂ QΦC . �

Lemma 5.13. B′′ = B ∩R′′ is a basis of R′′ .

Proof. Indeed, assume that α ∈ R′′ is the sum of two positive roots: α = β+γ
with β, γ ∈ R+. Then α ∈ QrΨC implies that also β, γ ∈ QrΨC . If β, γ /∈ R•, then
by the same argument applied to ᾱ = β̄+ γ̄ ∈ QrΨC we obtain that β, γ also belong
to Q̄rΨC and hence to R′′.

Consider now the case where, for instance, β ∈ R•. Then β̄ = −β ∈ QrΨC
implies that β ∈ R′′ and therefore γ = α−β ∈ R′′, showing that also in this case α
is not simple in [R′′]+ = R+ ∩R′′. This shows that B′′ is exactly the set of simple
roots in [R′′]+, and thus a basis of R′′. �

We have obtained:
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Proposition 5.14. The CR algebra (g′′, q′′) is compact parabolic. Its cross-
marked Satake diagram (SSS ′′,ΦC ′′) is the subdiagram of (SSS,ΦC) consisting of the
simple roots α such that :

either (i) α ∈ R• \ΨC , or (ii) α 6∈ R• and ({α} ∪ supp(ᾱ)) ∩ΨC = ∅.
The cross-marks are left on the nodes corresponding to roots in ΦC ∩ B′′. �

We say that a Satake diagram is σ-connected if either is connected or consists
of two connected components, joined by curved arrows.

Theorem 5.15. Let (5.5) be a g-equivariant fibration. Then the effective quo-
tient of its fiber is the compact parabolic CR algebra whose cross-marked Satake
diagram consists of the union of all σ-connected components of the diagram SSS ′′
described in Proposition 5.14, containing at least one cross-marked node. �

Example 5.5. Let g = su(1, 3) and let ΦC = {α1, α2}, ΨC = {α1}. Then the
cross-marked Satake diagrams corresponding to the CR algebra (g, qΦC ), the basis
(g, qΨC ) and the corresponding effective fiber are given by:

◦ yy %%• ◦
α1 α2 α3
× ×

−−−−→

•
×

◦ yy %%• ◦
α1 α2 α3
×

In the case ΨC = {α2} we have instead:

◦ yy %%• ◦
α1 α2 α3
× ×

∼−−−−→ ◦ yy %%• ◦
α1 α2 α3

×

The fiber is trivial and the map is a CR morphism, but not a CR isomorphism.
The corresponding map M(g, qΦC ) −→M(g, qΨC ) is an analytic diffeomorphism and
a CR map, but not a CR diffeomorphism.

Recall that g-equivariant morphism of CR algebras (5.5) is a CR-fibration if
the quotient map

(5.10) qΦC/
(
qΦC ∩ qΦC

)
−→ qΨC/

(
qΨC ∩ qΨC

)
is onto. Set MΦC = M(g, qΦC ), MΨC = M(g, qΨC ), and F = M(g′′, q′′). The
condition that (5.5) is a CR-fibration is equivalent to the fact that every point of
MΦC has an open neighborhood which is CR diffeomorphic to the product of an
open submanifold of MΨC and F .

The following Proposition provides a criterion to detect if a g-equivariant fi-
bration is a CR fibration.

Proposition 5.16. The following conditions are equivalent:
(i) (5.5) is a CR-fibration;

(ii) QrΨC \ QΦC ⊂ Q̄ΨC ;

(iii) QrΨC ∩Q
n
ΦC
⊂ Q̄rΨC .
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Proof. First we prove the equivalence (i) ⇔ (ii). A necessary and sufficient
condition in order that (5.5) be a CR-fibration is that the sum of the CR dimen-
sions of (g, qΨC ) and of the fiber (g′, q′) equals the CR-dimension of the total space
(g, qΦC ) :

dimCqΦC − dimCqΦC ∩ q̄ΦC= dimCqΨC − dimCqΨC ∩ q̄ΨC

+dimCqΦC ∩ q̄ΨC − dimCqΦC ∩ q̄ΦC .

Since all subspaces considered in this formula contain ĥ, this is equivalent to :

(∗) |QΦC | = |QΨC |−|QΨC ∩Q̄ΨC |+ |QΦC ∩Q̄ΨC | = |QΨC \Q̄ΨC |+ |QΦC ∩Q̄ΨC | ,

(where we used |A| for the number of elements of the finite set A). Since
QΦC ⊂ QΨC , we always have :

QΦC ⊂
(
QΨC \ Q̄ΨC

)
∪
(
QΦC ∩ Q̄ΨC

)
.

The two sets on the right hand side are disjoint. Hence (∗) is equivalent to :

QΨC \ Q̄ΨC ⊂ QΦC .

As QnΨC ⊂ R
+ ⊂ QΦC , this is equivalent to

QrΨC \ QΦC ⊂ Q̄ΨC .

Next we prove that (ii)⇒ (iii). We distinguish several cases.
If α ∈ QrΨC ∩R•, then ᾱ = −α ∈ QrΨC , that is α ∈ Q̄rΨC .
If α ∈ QrΨC ∩ Q

n
ΦC

and α 6∈ R•, then ᾱ � 0, hence α ∈ Q̄ΨC . On the other
hand −α ∈ QrΨC \ QΦC and, by (ii), −α ∈ Q̄ΨC , thus α ∈ Q̄rΨC .

Finally we prove that (iii)⇒ (ii). Let α ∈ QrΨC \QΦC . Then −α ∈ QrΨC∩Q
n
ΦC

,
and (iii) implies that −α ∈ Q̄rΨC , which is equivalent to α ∈ Q̄rΨC . �

In particular, we obtain :

Proposition 5.17. If Q̄ΨC = QΨC , then (5.5) is a CR-fibration.

Proof. Indeed condition (iii) of Proposition 5.16 is trivially satisfied if Q̄ΨC =
QΨC . �

We recall (see [MN05]) that a CR algebra (g, q) is totally complex if q + q̄ = ĝ.
This condition is equivalent to g + q = ĝ and to the fact that every homogeneous
CR manifold M with associated CR algebra (g, q) is actually a complex manifold.

Proposition 5.18. If Q̄ΨC ∪QΨC = Q̄ΦC ∪QΦC , then (5.5) is a CR-fibration
with a totally complex fiber.
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Proof. Indeed we obtain: QΨC \ QΦC ⊂ Q̄ΦC ⊂ Q̄ΨC , and hence (ii) of
Proposition 5.16 follows because QrΨC ⊃ Q

r
ΦC

, QnΨC ⊂ Q
n
ΦC

.
To show that the fiber is totally complex, we need to verify that qΨC ∩ q̄ΨC =

qΦC ∩ q̄ΨC + qΨC ∩ q̄ΦC . This is obvious because qΦC ⊂ qΨC ⊂ qΦC + q̄ΦC . �

Our next aim is to characterize g-equivariant CR fibrations in terms of cross
marked Satake diagrams. For this we introduce some notation.

The component Ψ̌C(α) of a root α ∈ B(C) is the set of roots β ∈ B(C) be-
longing to the connected component of the node corresponding to α in the graph
obtained from SSS by deleting those nodes that correspond to roots in ΨC \ {α} and
the lines and arrows issuing from them.

Given a subset E of B(C), its exterior boundary ∂eE in SSS is the set of roots α
in B(C) \ E such that, for some β ∈ E , α+ β ∈ R.

It will be convenient in the following to identify the nodes of SSS with the corre-
sponding roots in B(C). In particular, for a connected subset E of a Satake diagram
SSS, we set δ(E) =

∑
α∈E α ∈ R.

We denote by Ξ = B(C) \ R• the set of non imaginary simple roots.

Lemma 5.19. If α ∈ R \ R•, then

suppC(ᾱ) ⊃
(
∂e(suppC(α)) ∩R•

)
∪ εC

(
suppC(α) \ R•

)
.

Proof. By inspecting the conjugation diagrams in [Ara62], we find that, if
α ∈ Ξ :

(5.11) suppC(ᾱ) =
(
Ξ̌(α) \ {α}

)
∪ {εC(α)}.

If α =
∑
kiαi ∈ R \ R•, then

suppC(ᾱ) ⊃
( ⋃
ki>0
αi∈Ξ

suppC(ᾱi)
)
\
(
suppC(α) ∩R•

)
,

in particular suppC(ᾱ) contains εC
(
suppC(α) \ R•

)
.

If β ∈ ∂e
(
suppC(α)

)
∩ R•, then, since suppC(α) 6⊂ R•, there exists αi ∈

suppC(α) ∩ Ξ such that β ∈ Ξ̌(αi). This implies that suppC(ᾱ) 3 β. �

Theorem 5.20. A necessary and sufficient condition for (5.5) to be a CR
g-equivariant fibration is that for every α ∈ ΦC \ ΨC either one of the following
conditions hold:

(i) Ψ̌C(α) ⊂ R• ;
(ii) Ψ̌C(α) 6⊂ R•, εC(Ψ̌C(α) \ R•) ∩ΨC = ∅, and ∂eΨ̌C(α) ∩R• = ∅ .

Proof. Condition (ii) in Proposition 5.16 is equivalent to the fact that, for
every root β:

(5.12)
suppC(β) ∩ΨC = ∅
suppC(β) ∩ ΦC 6= ∅

}
=⇒ suppC(β̄) ∩ΨC = ∅.
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Fix α ∈ ΦC \ΨC and let β = δ(Ψ̌C(α)). Then, according to Lemma 5.19, either
β ∈ R• or suppC(β̄) ⊃ εC

(
Ψ̌C(α) \ R•

)
∪
(
∂eΨ̌C(α) \ R•

)
, showing that either (i)

or (ii) must be valid.
Fix again α ∈ ΦC \ ΨC and let αj ∈ Ψ̌C(α). If αj ∈ R• then ᾱj = −αj

and suppC(ᾱj) ∩ ΨC = ∅. If αj 6∈ R•, formula (5.11) implies that either
suppC(ᾱj) ⊂ Ψ̌C(α) or ᾱj = εC(αj). In both cases suppC(ᾱj) ∩ ΨC = ∅. For
a generic β ∈ R \ R• such that suppC(β) ⊂ Ψ̌C(α) we have that:

suppC(β̄) ⊂
⋃

αj∈suppC(β)

suppC(ᾱj),

hence suppC(β̄) ∩ΨC = ∅. �

5.4 Totally real and totally complex compact parabolic CR algebras

We already observed (Theorem 5.5) that a totally real parabolic CR algebra is
compact, hence can be described by a cross marked Satake diagram. Now we char-
acterize the cross-marked Satake diagrams that correspond to totally real parabolic
CR algebras.

Theorem 5.21. An effective parabolic CR algebra (g, q) with corresponding
cross marked Satake diagram (SSS,ΦC) is totally real if and only if the followig con-
ditions hold true:

(i) ΦC ∩R• = ∅;
(ii) εC(ΦC) = ΦC .

Proof. The conditions are clearly necessary. Indeed, if α ∈ ΦC ∩ R• or
α ∈ εC(ΦC) \ ΦC , then α ∈ Q but ᾱ 6∈ Q.

Vice versa, if condition (i) holds true then R• ⊂ Q ∩ Q̄. Furthermore, if
α ∈ Rcp ∩R−(C) then condition (ii) implies that α ∈ Q−n if and only if α ∈ Q̄−n.
This shows that Q = Q̄, thus q = q̄. �

We also characterize the cross-marked Satake diagrams that correspond to to-
tally complex parabolic CR algebras.

Theorem 5.22. A simple effective compact parabolic CR algebra (g, qΦC )
with associated cross-marked Satake diagram (SSS,ΦC) is totally complex if and
only if either:

(i) g is a compact real form, or
(ii) g is of the complex type and all cross-marked nodes are in the same con-

nected component of SSS, or
(iii) (SSS,ΦC) is one of the following:{

Φ = {α1}
Φ = {α`}

(A II)

{
Φ = {α`}
Φ = {α`−1}

(D II)
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Proof. The CR algebra (g, q) is totally complex if and only if g+q = ĝ. This
is equivalent to the fact that the parabolic CR manifold G ·o is open in the complex
flag manifold Ĝ/Q. Since it is also closed, it follows that G is transitive on Ĝ/Q.
The result then follows from [Wol69, Corollary 1.7]. �



CHAPTER 6

Nondegeneracy condition for
compact parabolic CR algebras

In this chapter we find conditions on cross marked Satake diagrams of a compact
parabolic CR algebra that are equivalent to geometric CR nondegeneracy condi-
tions for the corresponding compact parabolic CR manifold.

6.1 Fundamental compact parabolic CR algebras

We give a criterion to read off the property of being fundamental from the cross-
marked Satake diagram :

Theorem 6.1. An effective compact parabolic CR algebra (g, qΦC ) is funda-
mental if and only if its corresponding cross-marked Satake diagram (SSS,ΦC) has
the property:

(6.1) α ∈ ΦC \ R• =⇒ εC(α) /∈ ΦC .

Here εC is the involution in B(C) defined in Proposition 5.1.

Proof. Assume that α1 and α2 = εC(α1) both belong to ΦC , and let
ΨC = {α1, α2}. Then ΨC ⊂ ΦC and hence qΦC ⊂ qΨC . To show that (g, qΦC )
is not fundamental, it is sufficient to check that qΨC = qΨC . To this aim it suffices
to verify that QnΨC = Qn

ΨC . Let B(C) = {α1, α2, α3, . . . , α`}. Every root α ∈ QnΨC
can be written in the form α =

∑`
i=1 kiαi with k1 + k2 > 0. Since C is adapted to

the conjugation σ, using (5.1) we obtain :

ᾱ =
∑̀
i=1

kiεC(αi) +
∑

β∈B•(C)

kα,ββ =
∑̀
i=1

k′iαi,

with k′1 + k′2 = k2 + k1 > 0, showing that also ᾱ ∈ QnΨC . Thus condition (6.1) is
necessary.

Assume vice versa that there exists a proper parabolic subalgebra q′ of ĝ
with qΦC ⊂ q′ = q ′. Then q′ = qΨC for some ΨC ⊂ ΦC , ΨC 6= ∅. Since
Qn

ΨC = QnΨC ⊂ R
+(C), we have ΨC ∩ R• = ∅. Hence, again by (5.1), we ob-

tain that εC(α) ∈ ΨC for all α ∈ ΨC . �

From Theorem 6.1, Theorem 5.15, and Proposition 5.17 we obtain :

57
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Theorem 6.2. Let (g, qΦC ) be an effective compact parabolic CR algebra and
let (SSS,ΦC) be the corresponding cross-marked Satake diagram. Let

ΨC = {α ∈ ΦC \ R• | εC(α) ∈ ΦC}.

Then
(i) The diagram SSS ′ obtained from SSS by erasing all the nodes corresponding to

the roots in ΨC and the lines and arrows issued from them is still a Satake
diagram, corresponding to a semisimple real Lie algebra g′.

(ii) (g, qΨC ) is a totally real effective compact parabolic CR algebra.
(iii) The natural map (g, qΦC ) −→ (g, qΨC ), defined by the inclusion qΦC ⊂ qΨC ,

is a g-equivariant CR fibration. The effective quotient of its fiber is the
fundamental compact parabolic CR algebra (g′′, qΦ′

C
), associated to the

cross-marked Satake diagram (SSS ′′,ΦC ′), where Φ′C = ΦC \ ΨC and SSS ′′ is
the union of the σ-connected components of SSS ′ that contain some root of
Φ′C . �

The map in (iii) is the fundamental reduction of (g, qΦC ) and the totally real
CR algebra (g, qΨC ) its basis.

Example 6.1. Let g ' su(2, 2) and let ΦC = {α2, α3} (we refer to the diagram
below). We have εC(αi) = α4−i for i = 1, 2, 3 and hence ΨC = {α ∈ ΦC | εC(α) ∈
ΦC} = {α2}. In particular (g, q{α2,α3}) is not fundamental. We obtain by Theo-
rem 6.2 a g-equivariant CR fibration (g, q{α2,α3}) −→ (g, q{α2}) with fundamental
fiber (g′, q′{α3}), with g′ ' sl(2,C).

◦ ww ''◦ ◦
α1 α2 α3

× ×

×
◦�� ��◦
α1 α3

−−−−−−−−−−−→ ◦ ww ''◦ ◦
α1 α2 α3

×

6.2 Weak nondegeneracy

In this section we characterize those compact parabolic CR algbras (g, qΦC ) that
are weakly nondegenerate. We recall that this means that there is no nontrivial
complex CR fibration M(g, qΦC ) −→ N with totally complex fibers. This is also
equivalent to the fact that M(g, qΦC ) is not, locally, CR equivalent to the product
of a CR manifold with the same CR codimension and of a complex manifold of
positive dimension.

From Proposition 5.18 we obtain :

Lemma 6.3. A fundamental effective compact parabolic CR algebra (g, qΦC )
is weakly degenerate if and only if there is ΨC ( ΦC such that the g-equivariant
fibration (g, qΦC ) −→ (g, qΨC ) is a CR fibration with totally complex fiber. �
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Lemma 6.4. Let (g, qΦC ) be a compact fundamental effective parabolic CR
algebra. A necessary and sufficient condition in order that (g, qΦC ) be weakly de-
generate is that there exists ΨC ⊂ ΦC satisfying conditions in Theorem 5.20 and
such that qΨC ⊂ qΦC + q̄ΦC . �

We now give a characterization of the pairs (ΦC ,ΨC) for which (5.5) is a CR
fibration with totally complex fiber in terms of properties of the roots α in ΦC \ΨC .

Lemma 6.5. Let (g, qΦC ) be a compact fundamental effective parabolic CR al-
gebra, with g of the real type (i.e. ĝ is also simple). Let ∅ 6= ΨC ⊂ ΦC and assume
that (5.5) is a CR fibration with a totally complex fiber. Then each α ∈ ΦC \ΨC

satisfies one of the following conditions:
(i) Ψ̌C(α) ⊂ R•;

(ii) (a) Ψ̌C(α) ∩R• = ∅ and (b)
(
Ψ̌C(α)

)
∩ εC

(
Ψ̌C(α)

)
= ∅;

(iii) (a) ∅ 6= Ψ̌C(α) ∩R• 6= Ψ̌C(α) and (b) εC
(
Ψ̌C(α) \ R•

)
= Ψ̌C(α) \ R•.

Proof. Fix α ∈ ΦC \ΨC with Ψ̌C(α) 6⊂ R• and let δ = δ
(
Ψ̌C(α)

)
.

If β ∈ Ψ̌C(α) \ R• and εC(β) ∈ Ψ̌C(α), then suppC(δ̄) 3 εC(β). Since it is
connected and does not meet ΨC , we obtain suppC(δ̄) ⊂ Ψ̌C(α). This implies
that Ψ̌C(α) \ R• = εC

(
Ψ̌C(α) \ R•

)
. In this way we have shown that either

εC
(
Ψ̌C(α) \ R•

)
∩ Ψ̌C(α) \ R• = ∅, or εC

(
Ψ̌C(α) \ R•

)
= Ψ̌C(α) \ R•

If Ψ̌C(α) ∩ R• is not empty, then there exists β ∈ Ψ̌C(α) \ R• such that
∂e{β}∩ Ψ̌C(α)∩R• 6= ∅. Hence suppC(β̄)∩ Ψ̌C(α) 6= ∅ and, by the same argument
as above, εC(β) ∈ Ψ̌C(α) and we get (iii.b).

Finally we consider the case where Ψ̌C(α)∩R• = ∅. The boundary ∂e
(
Ψ̌C(α)

)
is not empty, thus it contains a root β ∈ ΨC and β 6∈ R• because of Theorem 5.20.
The fact that g, qΨC is fundamental implies that εC(β) 6∈ ΨC . In particular εC(β) 6∈
∂e
(
Ψ̌C(α)

)
. By applying again Theorem 5.20, we have εC

(
Ψ̌C(α) \ R•

)
∩ΨC = ∅,

hence εC(β) 6∈ Ψ̌C(α). Since εC(β) ∈ ∂e
(
suppC(δ̄)

)
and suppC(δ̄) ∩ R• 6⊂ Ψ̌C(α),

it follows that suppC(δ̄) ∩ Ψ̌C(α) = ∅, thus Ψ̌C(α) ∩ εC
(
Ψ̌C(α)

)
= ∅. �

Lemma 6.6. With the same hypotheses of Lemma 6.5, the effective quotient
of the fiber of the g-equivariant CR fibration (g, qΦC ) −→ (g, qΨC ) has cross-marked
Satake diagram SSS ′,Φ′C) with:

SSS ′ =
⋃

α∈ΦC\ΨC

Ψ̌C(α) ∪ εC
(
Ψ̌C(α) \ R•

)
and Φ′C = ΦC ∩SSS ′.

In particular the fiber is totally complex if and only if, for each α ∈ ΦC \ΨC ,
either condition (i) or condition (ii) of Lemma 6.5 holds.

Proof. From Theorem 5.15 we know that SSS ′ ⊂
⋃
α∈ΦC\ΨC Ψ̌C(α) ∪

εC
(
Ψ̌C(α)\R•

)
. Equality then follows from the observation that if β ∈ Ψ̌C(α)\R•

then suppC(β̄) ∩ΨC = ∅.
To prove the second statement, we can assume that there is exactly one root

α ∈ ΦC \ΨC . In cases (i) and (ii) of Lemma 6.5 the cross-marked Satake diagram
of the fiber is of the types described in Theorem 5.22 (i), (ii) and is totally complex.
If we are in case (iii) of Lemma 6.5, then Ψ̌C(α) ∩R• 6= ∅, and the fiber is totally
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complex if and only if
(
Ψ̌C(α),ΦC ∩Ψ̌C(α)

)
is one of the diagrams in Theorem 5.22

(iii).
Since ∂e

(
Ψ̌C(α)

)
∩ R• = ∅ and εC

(
∂eΨ̌C(α)

)
∩
(
Ψ̌C(α) ∪ ∂eΨ̌C(α)

)
= ∅, the

involution εC is not the identity, hence SSS must be of one of the types (cf. the
Appendix) A III, A IV, D Ib, D IIIb, E II or E III. We exclude types A III, A IV,
D Ib and E II because they do not contain subdiagrams of type A II or D II, so we
are left with the types D IIIb and E III.

Type D IIIb must be excluded because in this case we have α = α1 or α`−2,
Ψ̌C(α) = {α1, . . . , α`−2} and ∂e

(
Ψ̌C(α)

)
= {α`−1, α`} = εC

(
∂eΨ̌C(α)

)
.

Similarly type E III must be excluded because we have α = α3 or α5,
Ψ̌C(α) = {α2, α3, α4, α5} and ∂e

(
Ψ̌C(α)

)
= {α1, α6} = εC

(
∂eΨ̌C(α)

)
. �

Theorem 6.7. Let (g, qΦC ) be a simple fundamental effective compact para-
bolic CR algebra and assume that it is not totally complex. Let Π be the set of
simple roots α in ΦC that satisfy either one of :

(i) Φ̌C(α) ⊂ R•;
(ii)

(
Φ̌C(α) ∪ ∂eΦ̌C(α)

)
∩R• = ∅ and εC

(
Φ̌C(α)

)
∩ ΦC = ∅.

Then (g, qΦC ) is weakly nondegenerate if and only if Π = ∅.
Set ΨC = ΦC \ Π. Then (g, qΦC ) −→ (g, qΨC ) is a g-equivariant CR fibration

with totally complex fiber and fundamental weakly nondegenerate base.

Proof. Fix α ∈ ΦC \ΨC . Then the validity of either one of conditions (i) and
(ii) is necessary and sufficient for (g, qΦC ) −→ (g, qΦC\{α}) to be a g-equivariant CR
fibration with totally complex fiber. This observation, together with Lemma 6.6
and Lemma 6.4, yield our first statement.

To prove the last part of the Theorem, we make the following
Claim. Let α, β ∈ ΦC with α ∈ Π. Then β satisfies either (i) or (ii) for ΦC if and
only if β satisfies either (i) or (ii) for Φ′C = ΦC \ {α}.

Assuming that this claim is true, we conclude as follows. If Π = {β1, . . . , βk},
we have g-equivariant CR fibrations with totally complex fibers:

(g, qΦC ) −→ (g, qΦC\{β1}) −→ (g, qΦC\{β1,β2}) −→ · · · −→ (g, qΦC\Π).

Their composition is still a g-equivariant CR fibration with totally complex fiber,
and the base (g, qΨC ) is weakly nondegenerate.

Now we prove the claim. If β 6∈ ∂e
(
Φ̌C(α)

)
∪ ∂eεC

(
Φ̌C(α)

)
, then Φ̌C(β) =

Φ̌′C(β), εC
(
Φ̌C(β)

)
= εC

(
Φ̌′C(β)

)
, and there is nothing to prove.

Assume β ∈ ∂e
(
Φ̌C(α)

)
; then Φ̌′C(β) = Φ̌C(β) ∪ Φ̌C(α). If Φ̌C(α) ⊂ R•, then

Φ̌C(β) ⊂ R• if and only if Φ̌′C(β) ⊂ R•.
If Φ̌′C(β) ∩ R• = ∅, we need to prove that, if β satisfies (i) or (ii), then

Φ̌C(α) ∩ εC
(
Φ̌C(β)

)
= ∅. This is true because otherwise εC(β) ∈ ∂e

(
Φ̌C(α)

)
,

and this yields a contradiction, because we assumed that (g, qΦC ) is fundamental.
Finally, if β ∈ ∂eεC

(
Φ̌C(α)

)
, then β 6∈ R• and εC(β) ∈ ∂e

(
Φ̌C(α)

)
, again

contradicting the assumption that (g, qΦC ) is fundamental. �

6.3 Strict nondegeneracy

In this section we give necessary and sufficient conditions for a weakly nondegen-
erate CR algebra to be strictly nondegenerate. We recall from the introduction
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that the CR geometry of strict nondegenerate homogeneous CR manifolds can be
related to the so called “standard” models and investigated by using Levi-Tanaka
algebras (cf. [MN97], [Tan67], [Tan70]). Therefore, by classifying the weakly degen-
erate compact orbits that do not have the strict nondegeneracy property, we single
out a class of homogeneous CR manifolds with a highly non trivial CR structure
that cannot be discussed by using the standard Levi-Tanaka models. This also
explains the need to introduce CR algebras, as a generalization of the Levi-Tanaka
algebras, in [MN05].

First we reformulate weak and strict nondegeneracy in terms of the root system:

Lemma 6.8. A fundamental effective compact parabolic CR algebra (g, q) is
weakly nondegenerate if and only if for every root α ∈ Q̄ \Q there exist a sequence
(βi ∈ Q)1≤i≤n such that

(6.2) αj = α+
∑
i≤j

βi ∈ R ∀j = 1, . . . , n , αn /∈ Q ∪ Q̄ .

Proof. The statement is an easy consequence of [MN05, Theorem 6.2]. �

Likewise we have :

Lemma 6.9. A fundamental effective compact parabolic CR algebra (g, q) is
strictly nondegenerate if and only if for every root α ∈ Q̄ \ Q there exists a root
β ∈ Q such that α+ β ∈ R and α+ β 6∈ Q ∪ Q̄. �

Next we prove that it suffices to check this condition on purely imaginary roots :

Proposition 6.10. A necessary and sufficient condition for a fundamental ef-
fective weakly nondegenerate compact parabolic CR algebra (g, q) to be strictly
nondegenerate is that for every root α ∈ R• ∩ Q̄ \ Q there exists β ∈ Q such that
α+ β ∈ R and α+ β 6∈ Q ∪ Q̄.

Proof. The condition is obviously necessary. To prove sufficiency, consider
a root α ∈ Q̄ \ Q, α 6∈ R•; since α ≺ 0, we have −α ∈ R+ \ R•. This implies
that −ᾱ ∈ R+ ⊂ Q. Then −α ∈ Q̄ and α ∈ Q̄r. By the assumption that (g, q)
is weakly nondegenerate, using Lemma 6.8 we can find a sequence of roots (βi)
satisfying (6.2). Take the sequence (βi)1≤i≤n of minimal length; we claim that for
every permutation τ of the indices, the sequence (βτ(i))1≤i≤n still satisfies (6.2).

Indeed, fix a Chevalley basis {Xα}α∈R ∪ {Hβ}β∈BC . Then, for every transpo-
sition (i, i+ 1):

q + q̄ 63 [Xβn , . . . , Xβi+1 , Xβi , . . . , Xβ1 , Xα] =

= [Xβn , . . . , Xβi , Xβi+1 , . . . , Xβ1 , Xα] + [Xβn , . . . , [Xβi+1 , Xβi ], . . . , Xβ1 , Xα].

The last addendum in the right hand side belongs to q + q̄, by our assumption that
(βi)1≤i≤n has minimal length. Thus:

[Xβn , . . . , Xβi , Xβi+1 , . . . , Xβ1 , Xα] ∈ ĝ \ (q + q̄) .

In particular α + βi ∈ R for every i. At least one of the βi’s, say βi0 , does not
belong to Q̄, so α + βi0 6∈ Q̄. Indeed, since α ∈ Q̄r, if α + βi ∈ Q̄, then also
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βi = (α + βi) + (−α) ∈ Q̄. By a permutation, we can take βi0 = βn. Then we
claim that α + βn /∈ Q ∪ Q̄. Indeed we already choose βn so that α + βn /∈ Q̄. If
α+ βn ∈ Q, we have [Xβ1 , . . . , Xβn−1 , Xβn , Xα] = [Xβ1 , . . . , Xβn−1 , [Xβn , Xα]] ∈ q,
because Xβi ∈ q for every i = 1, . . . , n, and hence αn ∈ Q, contradicting (6.2). �

Theorem 6.11. Let (g, qΦC ) be an effective compact parabolic CR algebra,
with g simple. If (g, qΦC ) is weakly nondegenerate, but is not strictly nondegener-
ate, then ΦC is contained in a connected component of B ∩R•.

The strictly nondegenerate (g, qΦC ) with g simple and ΦC contained in a con-
nected component of R• are those listed below :

ΦC ={αp+1}(B Ib / B II)

ΦC ={α2i−1} , 1 ≤ i ≤ p(C IIa / IIb)

ΦC ={αp+1}(D Ia)

ΦC ={α2}(D II)

ΦC =


{α4}
{α3, α4}
{α4, α5}
{α3, α4, α5}

(E III)

ΦC =



{α3}
{α5}
{α3, α4}
{α3, α5}
{α4, α5}
{α2, α3}
{α2, α5}

 E IV
E VII
E IX



ΦC =
{ {α2}
{α4}

(F II)

Proof. We prove the first statement. The proof of the second will be omit-
ted, as it requires a straightforward case by case analysis, chasing over the different
Satake diagrams.

Suppose that (g, qΦC ) is weakly, but not strictly, nondegenerate. Then there is
some root α ∈ Q̄ΦC \ QΦC , α ≺ 0, such that α + β ∈ QΦC ∪ Q̄ΦC for all β ∈ QΦC

for which α + β ∈ R. By Proposition 6.10 we can take α ∈ R•. Let B′ be the
connected component of suppC(α) in B∩R•. Since α 6∈ QΦC , we have B′∩ΦC 6= ∅.

Since we assumed that (g, qΦC ) is weakly nondegenerate, for each γ ∈ ΦC
the set Φ̌C(γ) is not contained in R•. As suppC(α) ∩ ΦC 6= ∅, this implies that
there is some β ∈ QΦC , with β ≺ 0, such that β /∈ R• and α + β ∈ R. Since
β ∈ QrΦC and −α ∈ QnΦC , we obtain that α+β /∈ QΦC . If B′∩ΦC contains some αi
which does not belong to suppC(α), this αi would belong to suppC(α+ β). Indeed



6.3. STRICT NONDEGENERACY 63

α + β /∈ R•, hence suppC(α+ β) contains all simple imaginary roots γ that are
not in suppC(α + β) and such that ∂eΞ̌(γ) ∩ suppC(α + β) 6= ∅. This shows that
B′ ∩ ΦC = suppC(α) ∩ ΦC .

Let A = (R• ∩ [ΦC \ B′]) ∪ εC(ΦC \ R•). We want to show that A = ∅.
Assume by contradiction that A is not empty. Then there exists a segment S

in B \ΦC joining A to suppC(α), i.e. such that ∂eS ∩A 6= ∅, ∂eS ∩ suppC(α) 6= ∅.
By taking S of minimal lenght, we can also assume that S ∩ (A ∪ suppC(α)) = ∅ .

Let β = −δ(S). Then β ≺ 0, β ∈ QrΦC and β 6∈ R•, so that α+ β ∈ R \ QΦC .
If there is some αi in ∂eS ∩ A ∩R• 6= ∅, then α + β ∈ R, suppC(α+ β) 3 αi,

and α+ β 6∈ Q̄ΦC , contradicting our assumption.
If ∂eS ∩ A ∩ R• = ∅, there is αi in ΦC \ R• with εC(αi) ∈ ∂eS ∩ A. Set

β′ = β − εC(αi). Then β′ ∈ QΦC , and α + β′ ∈ R \
(
QΦC ∪ Q̄ΦC

)
, yielding a

contradiction; this shows that A is empty, completing the proof of our first claim.�





CHAPTER 7

Essential pseudoconcavity for
compact parabolic CR manifolds

Let (M,HM,J) be a CR manifold of finite kind. We say that (M,HM,J) is
essentially pseudoconcave (see [HN96]) if it is possible to define a Hermitian sym-
metric smooth scalar product h on the fibers of HM such that for each ξ ∈ H0M
the Levi form Lξ has zero trace with respect to h. For a homogeneous CR manifold,
this last condition is equivalent to the fact that for each ξ ∈ H0M the Levi form
Lξ is either 0 or has at least one positive and one negative eigenvalue.

The CR functions defined on essentially pseudoconcave CR manifolds enjoy
some nice properties, like local smoothness and the local maximum modulus prin-
ciple; CR sections of CR complex line bundles have the weak unique continuation
property . When M is compact and essentially pseudoconcave, global CR functions
are constant and CR-meromorphic functions form a field of finite transcendence de-
gree.

In this chapter we classify the essentially pseudoconcave compact parabolic CR
manifolds.

We keep the notation of the previous chapter. In particular, (g, qΦC ) is an
effective compact parabolic CR algebra, with associated cross-marked Satake dia-
gram (SSS,ΦC). Moreover, we introduce a Chevalley system for (ĝ, ĥ), i.e. a family
(Zα)α∈R with the properties ([Bou02, Ch. VIII, §2]) :

(i) Zα ∈ ĝα for all α ∈ R;
(ii) [Zα, Z−α] = −Hα, where Hα is the unique element of [ĝα, ĝ−α] such that

α(Hα) = 2;
(iii) the C-linear map that transforms each H ∈ ĥ into −H and Zα into Z−α

for every α ∈ R is an automorphism of the complex Lie algebra ĝ.
In particular, (Zα)α∈R ∪ (Hα)α∈B is a basis of ĝ as a C-linear space. We denote by
(ξα)α∈R ∪ (ωα)α∈B the corresponding dual basis in ĝ∗.

Let M be the complex flag manifold Ĝ/Q and M the compact orbit G/G+ of
G in M. As usual, o ' e ·G+ ' e ·Q is the base point. We note that

T 1,0
o M ' ĝ/q ' 〈Zα | − α ∈ Qn〉C .

Therefore a Hermitian metric in M is expressed at the point o by :

h̃o =
∑

α,β∈Qn
cα,β̄ξ

−α ⊗ ξ̄−β .

where (cα,β̄) is Hermitian symmetric and positive definite. For the compact orbit
we have :

T 1,0
o M ' q̄/(q ∩ q̄) '

〈
Zα | − α ∈ Qn , α ∈ Q̄

〉
C .

65
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Thus a Hermitian metric h in T 1,0M can be represented at o by :

ho =
∑

α,β∈Qn\Q̄n
cα,β̄ξ

−α ⊗ ξ̄−β .

where (cα,β̄) is again Hermitian symmetric and positive definite.
The subspace t̂ =

∑
α∈Qn∩Q̄n ĝ−α is a nilpotent Lie subalgebra of ĝ, which

is the complexification of a real subalgebra t = t̂ ∩ g of g. It can be identified
to the quotient ToM/HoM and hence its dual space t∗ to the stalk H0

oM of the
characteristic bundle of M at o.

From this discussion we obtain the criterion :

Proposition 7.1. A necessary and sufficient condition for M to be essentially
pseudoconcave is that there exists a positive definite Hermitian symmetric matrix
(cα,β̄)α,β∈Qn\Q̄n such that

(7.1)
∑

α,β∈Qn\Q̄n

α+β̄=γ

cα,β̄ [Zα, Z̄β ] = 0 ∀γ ∈ Qn ∩ Q̄n .

Proof. Indeed (7.1) ie equivalent to the formula we obtain by changing α, β, γ
into −α,−β,−γ. �

Denote by Ť1,0 the C-linear subspace of ĝ with basis (Zα)α∈Qn\Q̄n . To each
γ ∈ Qn ∩ Q̄n we associate a complex-valued form of type (1, 1) in Ť1,0 :

(7.2) Lγ : Ť1,0 × Ť1,0 3 (Z,W ) −→ Lγ(Z,W ) = (1/i)κĝ(Z−γ , [Z, W̄ ]) ∈ C ,

where κĝ is the Killing form in ĝ. When γ = γ̄ is real, we take Z−γ in g, to obtain
a Hermitian symmetric Lγ .

We have :

Lemma 7.2. The following are equivalent :
(i) M = M(g, q) is essentially pseudoconcave ;

(ii) There exists a Hermitian symmetric positive definite form h in Ť1,0 such
that all Lγ , for γ ∈ Qn ∩ Q̄n have zero trace with respect to h ;

(iii) For each γ ∈ Qn ∩ Q̄n the Hermitian quadratic forms in Ť1,0 :

(7.3) Ť1,0 3 Z −→ <Lγ(Z, Z̄) ∈ R and Ť1,0 3 Z −→ =Lγ(Z, Z̄) ∈ R

are either 0 or have at least one positive and one negative eigenvalue.

Proof. The equivalence was proved in [HN96]. �

Proposition 7.3. Let (g, q) be an effective compact parabolic fundamental
CR algebra. A necessary and sufficient condition for M = M(g, q) to be essentially
pseudoconcave is that for all real roots γ ∈ Qn∩Q̄n the Hermitian symmetric form
Lγ is either zero or has at least one positive and one negative eigenvalue.
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Proof. The condition is obviously necessary. We prove sufficiency. Let Γ be
a subset of Qn ∩ Q̄n and let H(Γ) the R-linear space consisting of the Hermit-
ian symmetric parts of all linear combinations

∑
γ∈Γ aγLγ with aγ ∈ C. When

γ ∈ Qn∩Q̄n is not real, the Hermitian symmetric part h of aLγ , for a ∈ C, satisfies
h(Zα, Z̄α) = 0 for all α ∈ Qn\Q̄n. More generally, if Γ0 is the set of all γ ∈ Qn∩Q̄n
for which

∑
α∈Qn\Q̄n Lγ(Zα, Z̄α) = 0, then the matrices (h(Zα, Z̄β))α,β∈Qn\Q̄n cor-

responding to h ∈ H(Γ0) have zero trace and thus every h ∈ H(Γ0) that is 6= 0 has
at least one positive and one negative eigenvalue.

Choose Γ as a maximal subset of Qn∩Q̄n that contains Γ0 and has the property
that all non zero h ∈ H(Γ) have at least one positive and one negative eigenvalue.

If Γ = Qn ∩ Q̄n, then M(g, q) is essentially pseudoconcave. Assume by contra-
diction that there is γ ∈ Qn ∩ Q̄n \ Γ.

Then γ is real, Lγ is Hermitian symmetric and H(Γ ∪ {γ}) = H(Γ) + R · Lγ .
Moreover, there is at least one root α0 ∈ Qn \ Q̄n such that γ = α0 + ᾱ0.
Assume that there is another root α1 ∈ Qn \ Q̄n with α1 + ᾱ1 = γ and
Lγ(Zα0 , Z̄α0) ·Lγ(Zα1 , Z̄α1) < 0. If h ∈ H(Γ), then h(Zα0 , Z̄α0) = h(Zα1 , Z̄α1) = 0.
Then the matrix associated in the basis (Zα) to a linear combinations h+ cLγ with
c ∈ R, c 6= 0, has two entries of opposite sign on the main diagonal and there-
fore at least one negative and one positive eigenvalue. This would contradict the
maximality of Γ. Hence we must assume that all terms Lγ(Zα, Z̄α) have the same
sign.

By the assumption that Lγ has at least one positive and one negative eigen-
value, we deduce that there are roots β1, β2 ∈ Qn \ Q̄n such that β2 6= β̄1 and
β1 + β̄2 = β̄1 + β2 = γ, so that Lγ(Zβ1 , Z̄β2) 6= 0. If h(Zβ2 , Z̄β2) = 0 for all
h ∈ H(Γ), then the matrix corresponding to h+ cLγ , for h ∈ H(Γ), c ∈ R, c 6= 0 in
the basis (Zα) contains a principal 2× 2 minor matrix, corresponding to β1, β2, of
the form (

a λ
λ̄ 0

)
with a ∈ R and λ ∈ C, λ 6= 0 .

Thus it would have at least one positive and one negative eigenvalue, contradicting
the choice of Γ.

Therefore, if Γ 6= QnΦC ∩ Q̄
n
ΦC

, we have :
(i) there exists α0 ∈ Qn \ Q̄n such that α0 + ᾱ0 = γ ∈ Qn ∩ Q̄n ;
(ii) there exists α1, α2 ∈ Qn \ Q̄n with α2 6= α1, α2 6= ᾱ1 and α1 + ᾱ2 = γ ;
(iii) for all α, β ∈ Qn \ Q̄n with α 6= β, β 6= ᾱ and α + β̄ = γ, we have

α+ ᾱ ∈ Qn ∩ Q̄n and β + β̄ ∈ Qn ∩ Q̄n.

The roots α0, ᾱ0, α1, ᾱ1, α2, ᾱ2 generate a root system R′ in their span in h∗R,
that is closed under conjugation. Since we have the relations α0 + ᾱ0 = α1 + ᾱ2 =
α2 + ᾱ0, the span of R′ has dimension ≤ 4. Moreover, α0 + ᾱ0, α1 + ᾱ1 and α2 + ᾱ2

must be three distinct roots in R′. Indeed, set α1 + ᾱ1 = γ1, α2 + ᾱ2 = γ2. By
assumption γ1 6= γ 6= γ2. Moreover we obtain α1 − α2 = γ1 − γ = γ − γ2, i.e.
γ1 + γ2 = 2γ, which implies that γ1 6= γ2 when γ1 6= γ 6= γ2.

Thus the dimension of the span of R′ is ≤ 4. An inspection of the Satake
diagrams corresponding to bases of at most 4 simple roots shows that no such root
system contains 3 distinct positive real roots that are sum of a root and its conju-
gate. Denote by Ω the set of positive real roots γ that are of the form γ = α + ᾱ
with α ∈ R. To verify our claim, we only need to consider the diagrams with
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` = 3, 4 and Ω 6= ∅ :

(A IIIa, IIIb)

su(1, 3) : Ω = {α1 + α2 + α3}
su(2, 2) : Ω = {α1 + α2 + α3}
su(1, 4) : Ω = {α1 + α2 + α3 + α4}
su(2, 3) : Ω = {α2 + α3, α1 + α2 + α3 + α4}

(C IIa) sp(1, 2) : Ω = {α1 + 2α2 + α3}
sp(1, 3) : Ω = {α1 + 2α2 + 2α3 + α4}

Thus we obtained a contradiction, proving our statement. �

Theorem 7.4. Let (g, qΦC ) be a simple effective and fundamental compact
parabolic CR algebra. Then M(g, qΦC ) is always essentially pseudoconcave if g
is either of the complex type, or compact, or of real type A II, A IIIb, B, C IIb,
D I, D II, D IIIa, E II, E IV, E VI, E VII, E IX. In the remaining cases M(g, qΦC ) is
essentially pseudoconcave if and only if we have one of the following :

(A IIIa-IV)
{

ΦC ⊂ R•
ΦC ⊂ {αi |i < p} ∪ {αi |i > q}

(C IIa)
{

ΦC ⊂ {α2h−1 | 1 ≤ h ≤ p}
ΦC ⊂ {αi |i > 2p}

(D IIIb) ΦC ∩ {α`−1, α`} = ∅

(E III)
{ {α4} ⊂ ΦC ⊂ R•

ΦC = {α3, α5}

(F II) ΦC ⊂ {α1, α2}

[See the table of Satake diagrams in the Appendix for the types and the refer-
ences to the roots in the statement.]

We first require two Lemmas.

Lemma 7.5. Let g be a semisimple real Lie algebra, with a Cartan decompo-
sition, g = k⊕ p, and h a Cartan subalgebra which is invariant with respect to the
corresponding Cartan involution ϑ and with maximal vector part. Denote by σ the
conjugation of ĝ with respect to the real form g and let τ = σ ◦ ϑ the conjugation
with respect the compact form k ⊕ i p of ĝ. Set R = R(ĝ, ĥ). Then there exists a
Chevalley system {Xα}α∈R with Xα ∈ ĝα such that :

[Xα, X−α] = −Hα ∀α ∈ R
[Hα, Xβ ] = β(Hα)Xβ

[Xα, Xβ ] = Nα,βXα+β

τ(Xα) = σ(Xα) = X̄α = X−α ∀α ∈ R•
where the Hα and the coefficients Nα,β satisfy :

β(Hα) = q − p
Nα,β = ±(q + 1)
Nα,β ·N−α,α+β = −p(q + 1)
if β − qα, . . . , β + pα is the α-string through β.
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Proof of Lemma 7.5. For the proof of this lemma we refer the reader to
[Bou02, Ch.VIII], or [Hel01, Ch.III]. �

Lemma 7.6. With the notation of Lemma 7.5 : let α, β ∈ R, with α ∈ R•, and
α+ β ∈ R, α− β /∈ R, β + β̄ ∈ R. Let

β, . . . , β + pα and β + β̄ − q′α, . . . , β + β̄ + p′α

be the α-strings through β and β + β̄, respectively. Then we have :

(7.4)
[
Xα+β , X̄α+β

]
=
[
[Xα, Xβ ], [Xα, Xβ ]

]
= (p− p′(1 + q′)) [Xβ , X̄β ] .

Proof of Lemma 7.6. We observe that [Xα, Xβ ] = ±Xα+β , because β−α /∈
R. We have :[

Xα+β , X̄α+β

]
=
[
[Xα, Xβ ], [Xα, Xβ ]

]
=
[
[Xα, Xβ ], [X−α, X̄β ]

]
= [[[Xα, Xβ ], X−α], X̄β ] + [X−α, [[Xα, Xβ ], X̄β ]]

= [[[Xα, X−α], Xβ ], X̄β ] + [X−α, [Xα, [Xβ , X̄β ]]]

=
(
−β(Hα) +Nα,β+β̄N−α,β+β̄+α

)
[Xβ , X̄β ] ,

which, by Lemma 7.5, yields (7.4). �

Proof of Theorem 7.4. We exclude in the statement the split forms, be-
cause in these cases (g, q) is not fundamental. When g is compact, (g, q) is totally
complex and thus essentially pseudoconcave, since the condition on the Levi form
is trivially fulfilled.

For g of the complex types or of the real types A II, A IIIb, B, C IIb, D I, D II,
D IIIa, E II, E IV, E VI, E VII, E IX the statement follows from the fact thatQn∩Q̄n
cannot possibly contain a root of the form α+ ᾱ with α ∈ Qn \ Q̄n.

We proceed by a case by case analysis of the simple real Lie algebras containing
real roots γ of the form γ = α+ ᾱ.

A IIIa− IV The positive real roots that are of the form α + ᾱ for some α ∈ R
are :

γh =
∑p+q−h
j=h αj for h = 1, . . . , p.

(i) Assume that ΦC ⊂ R•. All γh’s belong to QnΦC ∩ Q̄
n
ΦC

and are sums
α + ᾱ with α ∈ QnΦC \ Q̄

n
ΦC

. To prove that Lγh has at least one positive and one
negative eigenvalue, we consider the roots β =

∑q−1
j=h αj and δ =

∑p+q−h
j=p+1 . They

both belong to QnΦC \ Q̄
n
ΦC

and β+ β̄ = δ+ δ̄ = γh. We have δ = β̄+η with η ∈ R•
and β̄ − η /∈ R. Since γh ± η /∈ R, by Lemma 7.6 we obtain :

[Xδ, X̄δ] = [[Xβ̄ , Xη], [Xβ̄ , Xη]] = − [Xβ , X̄β ] .

(ii) Assume that ΦC ∩ R• = ∅ and ΦC ∩ {αp, αq} = ∅. Let ΦC =
{αj1 , . . . , αjr , αh1 , . . . , αhs} with 1 ≤ j1 < · · · < jr < p < q < h1 < · · · < hs ≤
` = p + q − 1. We can assume that r ≥ 1 and, if s ≥ 1, that p − jr < h1 − q. Let
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h′1 = p + q − h1 if s ≥ 1, and h′1 = 0 otherwise. The real roots in QnΦC ∩ Q̄
n
ΦC

are
the γk’s with 1 ≤ k ≤ jr. All Lγk ’s with k ≤ h′1 are 0. To show that the Lγk ’s with
h′1 < k ≤ jr have at least one positive and one negative eigenvalues, we consider
α =

∑jr
i=k αi and β =

∑`−jr
i=k αi. They both belong to QnΦC \Q̄

n
ΦC

, are distinct, and
α+ β̄ = γk.

(iii) When ΦC ∩ {αp, αq} 6= ∅, we can assume, modulo a CR isomorphism,
that αp ∈ ΦC . Then γp ∈ QnΦC ∩ Q̄

n
ΦC

and all pairs (α, β) of roots in QnΦC \ Q̄
n
ΦC

with α + β̄ = γp are of the form (βk, βk) with βk =
∑k
i=p αi for some p ≤ k < q.

By Lemma 7.6, we have
[Xβk , X̄βk ] = [Xαp , X̄αp ] ,

and hence the corresponding Lγp is 6= 0 and semi-definite.
(iv) Assume that ΦC ∩ R• 6= ∅ and ΦC 6⊂ R•. We can assume, modulo a

CR isomorphism, that there is αj ∈ ΦC with j ≤ p and that αi /∈ ΦC if either
j < i ≤ p, or q ≤ i ≤ p+ q− j. Let r be the largest integer < q such that αr ∈ ΦC .
We observe that γj ∈ QnΦC ∩ Q̄

n
ΦC

and that all pairs (α, β) of roots in QnΦC \ Q̄
n
ΦC

with α + β̄ = γj are of the form (βk, βk) with βk =
∑k
i=j αi for some r ≤ k < q.

As in the previous case, for all p ≤ k < q :

[Xβk , X̄βk ] = [Xβp , X̄βp ] ,

and hence Lγj is 6= 0 and semi-definite.

C IIa The positive real roots that can be written a sum α+ ᾱ with α ∈ R are :

γh = α2h−1 + α` + 2
`−1∑
i=2h

αi for h = 1, . . . , p.

(i) Assume that ΦC = {α2h1−1, . . . , α2hr−1} with 1 ≤ h1 < · · · < hr ≤ p.
The roots in QnΦC ∩ Q̄

n
ΦC

that are of the form α + ᾱ are the γh with 1 ≤ h ≤ hr.
The root γhr is the only one that can be written as α + ᾱ with α ∈ QnΦC \ Q̄

n
ΦC

.
But this root can also be written as α+ β̄ with α = α2hr−1 + γhr and β = α2hr−1,
and therefore Lγhr has at least one positive and one negative eigenvalue.

(ii) Assume that ΦC = {αk1 , . . . , αkr} with 2p < k1 < · · · < kr ≤ `.
Then all γh belong to QnΦC ∩ Q̄

n
ΦC

. Fix 1 ≤ h ≤ p, and consider the roots
β =

∑2p
i=2h αi + α` + 2

∑`−1
i=2p+1 αi and α = α2h−1. Then β, α + β ∈ QnΦC \ Q̄

n
ΦC

and β + β̄ = (α+ β) + (α+ β) = γh. By Lemma 7.6 we have :

[Xα+β , X̄α+β ] = [[Xα, Xβ ], [X−α, X̄β ]] = −[Xβ , X̄β ] ,

showing that Lγh has at least one positive and one negative eigenvalue.
(iii) Assume that ΦC ⊃ {α2h−1, αk} with 1 ≤ h ≤ p and k > 2p. We can take

h to be the largest integer ≤ p with α2h−1 ∈ ΦC and k to be the smallest integer
> 2p with αk ∈ ΦC . Then γh ∈ QnΦC ∩ Q̄

n
ΦC

. The set of pairs (α, β) of elements of
QnΦC \ Q̄

n
ΦC

with α+ β̄ = γh consists of the pairs (βr, βr), where :

βr =
r−1∑

i=2h−1

αi + α` + 2
`−1∑
i=r

αi
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for r = 2p, . . . , k − 1. We observe that βr = βr+1 + αr, and that γh ± αr /∈ R.
Hence by Lemma 7.6 we have :

[Xβr , X̄βr ] = [[Xαr , Xβr+1 ], [X−αr , X̄βr+1 ]] = [Xβr+1 , X̄βr+1 ] ,

for all r = 2p, . . . , k − 2. Hence Lγh is 6= 0 and semi-definite.

D IIIb The positive real roots that can be written as α+ ᾱ with α ∈ R are :

γh = α2h−1 + α`−1 + α` + 2
`−2∑
i=1

αi, h = 1, . . . , p, for p =
`− 1

2
.

(i) Assume that ΦC ∩ {α`−1, α`} 6= ∅. Then γp ∈ QnΦC ∩ Q̄
n
ΦC

, and the same
discussion of case A IV shows that Lγp is 6= 0 and semi-definite.

(ii) Assume that ΦC = {α2h1−1, . . . , α2hr−1} with 1 ≤ h1 < · · · < hr ≤ p.
Then γ1, . . . , γhr ∈ QnΦC ∩ Q̄

n
ΦC

, but only γhr can be represented as a sum α + ᾱ

with α ∈ QnΦC \Q̄
n
ΦC

. If hr = p, we reduce to the case of A IV. Assume that hr < p.
Then we consider the two distinct roots :

β = α2hr−1 + α2hr and δ = β + γhr+1 .

They both belong to QnΦC \ Q̄
n
ΦC

and β + δ̄ = γhr , showing that Lγhr has at least
one positive and one negative eigenvalue.

E III Set γ1 = α1 +α3 +α4 +α5 +α6, γ2 = α1 + 2α2 + 2α3 + 3α4 + 2α5 +α6.
These are the real positive roots in R that can be written as a sum α+ ᾱ for a root
α ∈ R. Note that γ1, γ2 both belong to QnΦC ∩ Q̄

n
ΦC

for every choice of ΦC . The
discussion of the signature of Lγ1 reduces to the one we did for A IV.

(i) Assume that ΦC ∩{α1, α6} 6= ∅. In this case the discussion for A IV shows
that Lγ1 is 6= 0 and semi-definite.

(ii) Assume that ΦC = {α3} (the case ΦC = {α5} is analogous). Then the
set of pairs (α, β) of roots of QnΦC \ Q̄

n
ΦC

such that α + β̄ = γ2 contains only the
pair (α, α) with α = α1 + α2 + 2α3 + 2α4 + α5. Hence Lγ2 has rank 1 and is 6= 0
and semi-definite.

(iii) Assume that either α4 ∈ ΦC ⊂ R•, or ΦC = {α3, α5}. Then the set
of pairs (α, β) of roots of QnΦC \ Q̄

n
ΦC

such that α + β̄ = γ2 is empty, so that
Lγ2 = 0. The discussion for A IV shows that in this case Lγ1 has one positive and
one negative eigenvalue.

F II The real root γ = α1 + 2α2 + 3α3 + 2α4 is the only positive root which can
be written in the form α + ᾱ for some α ∈ R. It belongs to QnΦC ∩ Q̄

n
ΦC

for every
choice of ΦC .

(i) Assume that α3 ∈ ΦC . Then (α4, α4) is the only pair (α, β) of roots
in QnΦC \ Q̄

n
ΦC

with α + β̄ = γ. Thus Lγ has rank 1 and hencefore is 6= 0 and
semi-definite.

(ii) Assume that ΦC ⊂ {α1, α2}. Set β = α1 + 2α2 + 2α3 + α4 = ᾱ4 − α3

and α = α3. Then β and β + α both belong to QnΦC \ Q̄
n
ΦC

. With the notation of
Lemma 7.6, we have p = 1, p′ = 1, q′ = 1. Thus :

[Xα+β , X̄α+β ] = [[Xα, Xβ ], [X−α, X̄β ]] = −[Xβ , X̄β ] ,

showing that Lγ has at least one positive and one negative eigenvalue. �





Part 3

Applications





CHAPTER 8

The fundamental group
of parabolic CR manifolds

In this chapter we compute the fundamental group of parabolic CR manifolds.

8.1 The isotropy subgroups

Let g be a real semisimple Lie algebra, ĝ its complexification, ϑ a Cartan involution
of g. Let h be a ϑ-invariant Cartan subalgebra of g and R = R(ĝ, ĥ) the root sys-
tem of ĝ with respect to the complexification ĥ of h. Denote by Λ(R) the additive
subgroup of h∗R generated by R and by Π(R) the lattice of weights, consisting of all
η ∈ h∗R for which (η|α∨) = 2(η|α)/‖α‖2 ∈ Z. We have Λ(R) ⊂ Π(R).

Given a lattice (i.e. a free Abelian group) L, a character of L is a homomor-
phism χ : L −→ C∗ of L into the multiplicative group C∗ = C\{0} of non-zero com-
plex numbers. If b1, . . . , b` ∈ L is a basis of L over Z, a character χ ∈ Hom(L,C∗)
is completely determined by its values λi = χ(bi) (for 1 ≤ i ≤ `) on the basis, so
that Hom(L,C∗) ' [C∗]`, where ` = dim h is the rank of ĝ.

We keep the notation of the previous sections, in particular Ĝ is a connected
and simply connected complex Lie group with Lie algebra ĝ and G its analytic
subgroup with Lie algebra g. It is a covering group of any linear group with Lie
algebra g. Let Ĥ be the Cartan subgroup of Ĝ corresponding to ĥ :

(8.1) Ĥ = ZĜ(ĥ) = {z ∈ Ĝ |Adĝ(z)(H) = H , ∀H ∈ ĥ } .
All finite dimensional C-linear representations of the complex semisimple Lie alge-
bra ĝ are differentials of representations of the complex Lie group Ĝ. Each element
h of Ĥ defines a character χh ∈ Hom(Π(R),C∗), and vice versa, a character χ ∈
Hom(Π(R),C∗) defines the element hχ ∈ Ĥ. To explain this correspondence, take
first a faithful representation ρ : Ĝ ↪→ SLC(V ), corresponding to ρ : ĝ ↪→ slC(V ),
for a finite dimensional complex linear space V , and define ρ(hχ)(v) = χ(ω) v for
v ∈ V ω = {v ∈ V | ρ(H)(v) = ω(H) v , ∀H ∈ ĥ} , for ω ∈ Π(R). The Cartan
subgroup Ĥ is analytic and exp: ĥ −→ Ĥ is onto, so that the correspondence with
Hom(Π(R),C∗) can also be described by χexp(H)(ω) = exp(ω(H)) for H ∈ ĥ. With
` = dimC(ĥ)=rank of ĝ we have :

(8.2) Ĥ = ZĜ(ĥ) = {hχ |χ ∈ Hom(Π(R),C∗)} ' Hom(Π(R),C∗) ' [C∗]` .

The Cartan subgroup H of G corresponding to h is the centralizer of h in G :

(8.3) H = ZG(h) = {h ∈ G |Adg(h)(H) = H , ∀H ∈ h } .
For a lattice L ⊂ h∗R, with σ(L) = L, we set

Homσ(L,C∗) = {χ ∈ Hom(L,C∗) |χ(η̄) = χ(η) , ∀η ∈ L}.
We obtain :

75
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Lemma 8.1. Let g be a real semisimple Lie algebra, h a Cartan subalgebra of
g. Then :

(8.4) H = ZG(h) = {hχ |χ ∈ Homσ(Π(R),C∗) } .

Proof. The action of σ on Hom(Π(R),C∗), given by σ(χ)(η) = χ(η̄) coincides,
under the correspondence (8.1), with the action of σ on Ĥ. Then the statement
follows from the fact that H = Ĥ ∩G and H = Ĥσ because of (2.18). �

In view of the preceding Lemma, we now give a more explicit description of
Homσ(Π(R),C∗). Fix a Weyl chamber C ∈ C(R) that is S-adapted to the conju-
gation σ . Set B(C) = {β1, . . . , βa} ∪ {τ1, . . . , τb}, with {β1, . . . , βa} = B(C) \ Rim

and {τ1, . . . , τb} = B(C) ∩ Rim. By Theorem 3.1, the conjugation σ is described
in B(C) by an involutive permutation  : βi −→ (βi) = βi′ of {β1, . . . , βa} and a
matrix of nonnegative integers (ki,q) , 1 ≤ i ≤ a , 1 ≤ q ≤ b , such that :

(8.5)

{
β̄i = βi′ +

∑b
q=1 ki,qτq ,

(βi) = βi′ , ki′,p = ki,p for 1 ≤ i ≤ a , 1 ≤ p ≤ b .
In Π(R) we consider the basis B∗(C) = {ω1, . . . , ωa, θ1, . . . , θb}, adjoint of B(C) ,
defined by :

(8.6)

{
(ωi|β∨j ) = δi,j (ωi|τ∨q ) = 0

(θp|β∨j ) = 0 (θp|τ∨q ) = δp,q
for 1 ≤ i, j ≤ a , 1 ≤ p, q ≤ b .

The conjugation σ is described in B∗(C) by :

(8.7)
{
ω̄i = ωi′ for 1 ≤ i, i′ ≤ a , (βi) = βi′

θ̄p = −θp +
∑a
j=1 k

′
j,pωj for 1 ≤ p ≤ b ,

where k′j,p = kj,p‖τp‖2/‖βj‖2.
The characters χ ∈ Homσ(Π(R),C∗) are those satisfying :

(8.8)


χ(ωi) ∈ C∗ , χ(θp) ∈ C∗ , for 1 ≤ i ≤ a , 1 ≤ p ≤ b ,
χ(ωi) = χ(ωi′) for 1 ≤ i, i′ ≤ a , (βi) = βi′

|χ(θp)|2 =
∏a
j=1 [χ(ωj)]

k′j,p for 1 ≤ p ≤ b .

Each lattice L in h∗R, with Λ(R) ⊂ L ⊂ Π(R), is the set of weights of all fi-
nite dimensional linear representations of an essentially unique connected complex
semisimple Lie group ĜL. For instance, we have ĜΠ(R) = Ĝ (the simply con-
nected complex Lie group with Lie algebra ĝ) and ĜΛ(R) = IntC(ĝ) (the group of
inner automorphisms of the complex semisimple Lie algebra ĝ) (see e.g. [Vin94,
Ch.3, Theorem 2.11]). When moreover σ(L) = L, the analytic Lie subgroup of ĜL
with Lie algebra g is a real form GL of ĜL. Vice versa, every connected linear
semisimple Lie group with Lie algebra g can be obtained in this way. The Cartan
subgroup :

(8.9) HL = ZGL(h)

of GL, relative to h, is a real Lie subgroup of the complex Cartan subgroup :

(8.10) ĤL = ZĜL
(ĥ) = {hχ |χ ∈ Hom(L,C∗)}

of ĜL, relative to ĥ. From Lemma 8.1 we obtain :
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Corollary 8.2. Let L be a lattice in h∗R with Λ(R) ⊂ L ⊂ Π(R) and

σ(L) = L. Denote by χ −→ χ[ the restriction homomorphism Hom(Π(R),C∗) −→
Hom(L,C∗). Then :

(8.11) HL =
{
hχ[

∣∣χ ∈ Homσ(Π(R),C∗)
}
.

Proof. The covering map G −→ GL transforms the Cartan subgroup H of G
into the Cartan subgroup HL of GL. �

From Corollary 8.2 we obtain the exact sequence :

(8.12) 1 −→ Homσ(Π(R)/L,C∗) −→ Homσ(Π(R),C∗) −→ HL −→ 1 .

We can utilize (8.12) to compute the group π0(HL) of the connected components
of the Cartan subgroup HL. We have indeed :

Theorem 8.3. Keep the previous notation. Let C ∈ C(R) be S-adapted to
the conjugation σ. Denote by ω1, . . . , ωa the weights in B∗(C) that vanish on
B(C) ∩ Rim, and by {θ1, . . . , θb} those vanishing on B(C) \ Rim. By reordering,
we assume that {ω1, . . . , ωc} is the set of weights in B∗(C) with ω̄i = ωi. Define
the non negative integers k′i,p, for 1 ≤ i ≤ a, 1 ≤ p ≤ b, by θ̄p = −θp +

∑a
i=1 k

′
i,pωi.

Consider the subgroups of the free Abelian group Zc2 :

(8.13)
A= {(η1, . . . , ηc) ∈ Zc2 |

∑c
i=1 k

′
i,pηi ≡ 0 mod 2 , ∀ 1 ≤ p ≤ b} ,

AL= {(η1, . . . , ηc) ∈ A |
∑c
i=1 kiηi ≡ 0 mod 2 , if

∑c
i=1 kiωi ∈ L} .

Then :

(8.14) π0(HL) ∼= A/AL .

Proof. The exact sequence (8.12) yields the exact sequence for the groups of
the connected components :

π0(Homσ(Π(R)/L,C∗)) −→ π0(Homσ(Π(R),C∗)) −→ π0(HL) −→ 1 .

The statement follows because π0(Homσ(Π(R),C∗)) ∼= A, and, in this isomor-
phism, the image of π0(Homσ(Π(R)/L,C∗)) in π0(Homσ(Π(R),C∗)) is identified
with AL. �

Example 8.1. Consider the B2 system of rootsR = {±e1±e2}∪{±e1,±e2} ⊂
R2, with σ defined by σ(e1) = e2 and σ(e2) = e1. In the Weyl chamber C with
simple roots {e1 − e2, e2}, that is S-adapted to σ, it can be represented by the
diagram :

~ > ©
τ β

We have, for the adjoint basis, θ = e1 and ω = (e1 + e2)/2. We obtain θ̄ = −θ+ 2ω
and ω̄ = ω. Then k′ = 2, m = 1, and A = Z2. The quotient Π(R)/Λ(R) is a
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group of order 2, with the generator [ω] and 2[ω] ≡ 0. Hence π0(H) ' Z2, while
π0(HΛ(R)) ∼= Z2/Z2

∼= 1.

Let GL be any connected real linear Lie group with Lie algebra g, and h a
Cartan subalgebra of g. The Cartan subgroup HL is a normal subgroup of the
normalizer

(8.15) NL = NGL(h) = {g ∈ GL |Ad(g)(h) = h}

of h in GL . The quotient

(8.16) WL = NL/HL

is the analytic Weyl group corresponding to h and L.
We know (see e.g. [War72, Ch.1,§4,p.115]) that actually the analytic Weyl

group only depends, modulo natural isomorphisms, upon the real Lie algebra g and
its Cartan subalgebra h; to stress this fact, we shall write W(g, h) instead of WL .

Let us consider now an effective parabolic CR algebra (g, q).
We keep the notation introduced in previous sections, in particular we fix a

Cartan pair (ϑ, h) adapted to (g, q).
We have the decomposition

(8.17) g+ = q ∩ g = n⊕ g0 = r⊕ s0 = n⊕ z0 ⊕ s0

where :
r = n⊕ z0 is the radical of g+ ,
n is the ideal of the adg-nilpotent elements of the radical of g+,
z0 is a maximal Abelian subalgebra of ad-semisimple elements of r ,
g0 = z0 ⊕ s0 is the ϑ-invariant reductive complement of n in g+,
s0 = [g0, g0] is the semisimple ideal and z0 is the center of g0.
The Cartan subalgebra h of g, contained in g+, decomposes into the direct

sum :

(8.18) h = z0 ⊕ h0

where h0 = h ∩ s0 is a Cartan subalgebra of s0. The subalgebra z0 is characterized
by :

(8.19) z0 = {H ∈ h |α(H) = 0 , ∀α ∈ Qr ∩ Q̄ r } .

Indeed its complexification ẑ0 is the center of the reductive complex Lie algebra
qr ∩ q̄ r.

The isotropy subgroup

(8.20) G+ = NG(q) = {g ∈ G |Ad(g)(q) = q}

is a closed real-algebraic subgroup of G, with Lie algebra g+. Thus we have the
Chevalley decomposition :

(8.21) G+ = G0 o N

where G0 is a closed, real-algebraic, reductive subgroup of G, with Lie algebra
g0, and N is a unipotent closed connected and simply connected subgroup of G,
diffeomorphic to its Lie algebra n.

We also define S0 to be the analytic semisimple Lie subgroup of G with Lie
algebra s0.
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Proposition 8.4. The group G0 is the normalizer in G of g0 and the central-
izer in G of z0 :

(8.22)
G0= NG(g0) = {g ∈ G |Ad(g)(g0) = g0}

= ZG(z0) = {g ∈ G |Ad(g)(H) = H , ∀H ∈ z0 } .

Proof. While proving this Proposition we can assume that h is maximally
noncompact among the Cartan subalgebras of g that are contained in g+. Indeed,
all admissible Cartan subalgebras of (g, q) are conjugate to the direct sum of z0 and
a Cartan subalgebra h0 of s0. Thus our assumption means that we have chosen a
maximally noncompact Cartan subalgebra h0 of s0.

We first prove that

(8.23) G0 = {g ∈ G+ |Ad(g)(g0) = g0} .

If g ∈ G+, then Ad(g)(g0) is a maximal reductive subalgebra of g+. By [Vin94,
Ch.I,§6.5] there is an element n ∈ N such that g0 = Ad(g n−1)(g0). This yields a de-
composition g = g0 n, with g0 ∈ NG+(g0) and n ∈ N. Since z0 ⊂ g0, and [z0, n] = n,
we have N ∩NG+(g0) = {1}. This yields the decomposition G+ = NG+(g0) o N.
Since we also have (8.21) and g0 is the Lie algebra of both G0 and NG+(g0), we
obtain that G0 = NG+(g0) .

Next we show that ZG(z0) = NG(g0). If g0 ∈ NG(g0), then Ad(g0)(z0) = z0.
Moreover, Ad(g0)(h0) is another maximally noncompact Cartan subalgebra of s0.
Therefore there is an inner automorphism of s0, and thus also an element g1 ∈ S0

such that g1 ◦ g0(h) = h (see e.g. [Sug59], [Sug71], [Vin94, Ch.4,§4.7]). Let
g = g1 ◦ g0. Since S0 ⊂ ZG(z0), it suffices to show that g ∈ ZG(z0). We have
Ad(g)(z0) = z0 and Ad(g)(h0) = h0. In particular, g ∈ NG(h). Since Ad(g) com-
mutes with the conjugation σ in ĝ, and Ad(g)(qn) = qn, Ad(g)(qr) = qr, we also
have :

(8.24) Ad(g)(qr ∩ q̄ r) = qr ∩ q̄ r and Ad(g) (qn + [q̄ ∩ qr]) = qn + [q̄ ∩ qr] .

The analytic Weyl group W(g, h) = NG(h)/H can be identified to a subgroup
of the Weyl group W(R) = NĜ(ĥ)/Ĥ. The element sg ∈ W(R) defined by g

satisfies : Ad(g)(ĝα) ⊂ ĝsg(α) for all α ∈ R. Because of (8.24), g normalizes the
complex parabolic subalgebra v = qn + (qr ∩ q̄), with vr = qr ∩ q̄ r. Hence sg is the
composition of symmetries sα with α ∈ Qr ∩ Q̄ r. If α ∈ Qr ∩ Q̄ r and H ∈ z0 we
obtain for Xβ ∈ ĝβ :

[Ad(g)(H),Ad(g)(Xβ)] = Ad(g)([H,Xβ ])

= β(H) Ad(g)(Xβ) = sα(β)(H)Ad(g)(Xβ)

because sα(β)(H) = (β − (β|α∨)α)(H) = β(H), since α(H) = 0 by (8.19). This
shows that [Ad(g)(H), Xβ ] = β(H)Xβ for all β ∈ R and hence that Ad(g)(H) = H .
Moreover ZG(z0) ⊂ NG(g0) because g0 is the centralizer of z0 in g, and hence the
equality follows.

Finally we observe that ZG(z0) ⊂ Q = NĜ(q). Indeed, if g0 ∈ ZG(z0), we
can find g1 ∈ S0 such that g = g1g0 normalizes our Cartan subalgebra h, still
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centralizing z0. Being Q = {α ∈ R |α(A) ≥ 0} for an element A ∈ hR ∩ ẑ0,
clearly Ad(g)(q) = q. Hence also Ad(g0)(q) = q. This shows that ZG(z0) ⊂ G+,
completing the proof of the Theorem. �

Next we prove that our choice of G = GΠ(R) brings that also S0 is the semisim-
ple real group associated to the full weights lattice of ŝ0. Indeed we have :

Proposition 8.5. The complexification Ŝ0 of the linear Lie group S0 is simply
connected.

First we prove the following :

Lemma 8.6. Let E be a linear hyperplane of h∗R and let R′ = E ∩ R. Then
every basis of simple roots {α1, . . . , αm} of R′ is a subset of a basis of simple roots
{α1 , . . . , αm , αm+1 , . . . , α`} of R.

Proof. Let A ∈ hR be such that E = {η ∈ h∗R | η(A) = 0}. Next we take a
regular element B ∈ hR such that {α1, . . . , αm} is the system of simple roots in
R′+ = {α ∈ R′ |α(B) > 0}. For small ε > 0 the element A + εB is regular and
α1, . . . , αm are simple in R+ = {α ∈ R |α(A + εB) > 0}. Indeed, we take ε > 0
such that ε |α(B)| < |α(A)| when α(A) 6= 0. Assume by contradiction that, for
some 1 ≤ i ≤ m, the root αi is not simple in R+ , i.e. that we have αi = β + γ,
with β(A+ εB) > 0, γ(A+ εB) > 0, β(B) ≥ γ(B). Since αi is simple in R′+ , we
have γ(B) < 0 < αi(B) < β(B). Hence γ(A) > 0. Moreover β(A) ≥ 0, because
otherwise β(A+ εB) < 0 by our choice of ε. Thus we obtain :

αi(A) = β(A) + γ(A) ≥ γ(A) > 0 ,

contradicting αi ∈ E. �

Proof of Proposition 8.5. We keep the notation introduced in the previ-
ous discussion. While applying Lemma 8.6 to our situation, we observe that, if
our parabolic Q is {α ∈ R |α(A) ≥ 0} for some A ∈ hR, then the set of roots
α with ĝα ⊂ ŝ0 is R′ = Qr ∩ Q̄ r = {α ∈ R |α(A + εĀ) = 0}, where ε is any
positive real number with ε |ᾱ(A)| < α(A) for α ∈ Qn. This set R′ is naturally
isomorphic to the root system R(ŝ0, ĥ0) of the semisimple complex Lie algebra ŝ0

with respect to its Cartan subalgebra ĥ0 . We identify Π(R′) to the set of elements
ω in 〈R′〉R ⊂ h∗R for which (ω|α∨) ∈ Z for all α ∈ R′. We have a natural projection
$ : Π(R) −→ Π(R′), that is defined by ($(η)|α∨) = (η|α∨) for all α ∈ R′, and
coincides with the orthogonal projection onto 〈R′〉R.

The lattice L = $(Π(R)) satisfies Λ(R′) ⊂ L ⊂ Π(R′) and is the set of weights
of the finite dimensional linear representations of S0.

According to Lemma 8.6 we can fix C ∈ C(R,Q), with B(C) = {α1, . . . , α`},
in such a way that B′ = {α1, . . . , αm}, with m ≤ `, is a basis of R′. Let
B∗(C) = {µ1, . . . , µ`} ⊂ Π(R) and B′∗ = {ν1, . . . , νm} ⊂ Π(R′) ⊂ 〈R′〉R be the
corresponding adjoint basis. Then $(µi) = νi for i = 1, . . . ,m. This shows that
actually L = Π(R′), proving our statement. �

Now we give a more accurate description of the group π0(G+) of the connected
components of G+.
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Theorem 8.7. Let (g, q) be an effective parabolic CR algebra. Keep the no-
tation of (8.17), (8.18), (8.20) and (8.21). Then NS0(h0) is a closed normal Lie
subgroup of NG(h)∩ZG(z0). The natural inclusion NG(h)∩ZG(z0) ↪→ G+ passes
to the quotient to define a one-to-one correspondence of connected components :

(8.25) π0 (NG(h) ∩ ZG(z0)/NS0(h)) ←→ π0 (G+) .

Proof. The inclusion G0 ↪→ G+ defines an isomorphism π0(G0) ∼−→ π0(G+).
We showed in the proof of Proposition 8.4 that every connected component of

G0 contains an element of NG(h) ∩G0 and that NG(h) ∩G0 = NG(h) ∩ ZG(z0).
Since s0 is an ideal of g0 = s0⊕z0, the analytic subgroup S0 is normal in G0 and

we already noticed that is contained in ZG(z0). Moreover, NS0(h) = NG(h) ∩ S0 .
Let T0 be the analytic Lie subgroup of G0 with Lie algebra z0. Then S0 ./ T0

is the connected component of the identity in G0. We have :

T0 ⊂ H ⊂ NG(h) ∩ ZG(z0) .

Hence we obtain isomorphisms :

(8.26)
NG(h) ∩ ZG(z0)

NS0(h) ./ T0

∼=−−−−→ G0

S0 ./ T0

∼=−−−−→ π0(G+) ,

yielding the isomorphism in (8.25). �

We denote by H0 the Cartan subalgebra of S0 corresponding to h0. Since
S0 ⊂ ZG(z0), we have :

(8.27) H0 = {g ∈ S0 |Ad(g)(H) = H , ∀H ∈ h0 } = H ∩ S0 .

By (8.27), we obtain for the analytic Weyl group W(s0, h0) = NS0(h0)/H0 :

(8.28) W(s0, h0) ∼= NS0(h)/ZS0(h) = NS0(h)/ (H ∩ S0) .

Thus we can identify W(s0, h0) with a subgroup of the centralizer ZW(g,h)(z0) of
z0 in W(g, h). Since S0 is normal in G0, it turns out that W(s0, h0) is normal in
ZW(g,h)(z0). We have :

Theorem 8.8. Keep the notation and assumptions of Theorem 8.7. We have
a short exact sequence of groups and homomorphisms :

(8.29) 1 −→ H
H0
−→ NG(h) ∩ ZG(z0)

NS0(h0)
−→

ZW(g,h)(z0)
W(s0, h0)

−→ 1 .

We obtain an exact sequence of finite groups :

(8.30) 1 −→ π0

(
H
H0

)
−→ π0 (G+) −→

ZW(g,h)(z0)
W(s0, h0)

−→ 1 .

When h is maximally compact in g+, then H0 is connected and (8.30) yields the
exact sequence :

(8.31) 1 −→ π0 (H) −→ π0 (G+) −→
ZW(g,h)(z0)
W(s0, h0)

−→ 1 .

When h is maximally noncompact in g+, then ZW(g,h)(z0) ∼= W(s0, h0) and (8.30)
yields the isomorphism :

(8.31) π0

(
H
H0

)
∼= π0 (G+) .
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Proof. Since ZW(g,h)(z0) is a finite group, (8.30) is a consequence of the exact
homotopy sequence of a fiber bundle, of (8.29) and of Theorem 8.7. Thus a proof
of (8.29) also provides a proof of (8.30).

We observe that H is a normal subgroup of NG(h)∩ZG(z0) and that the quo-
tient (NG(h) ∩ ZG(z0)) /H is naturally isomorphic to the centralizer ZW(g,h)(z0) of
z0 in the analytic Weyl group W(g, h). Moreover, NS0(h0) is contained in ZG(z0)
and NS0(h0) ∩ H = H0. Thus (8.29) follows from the general homomorphism
theorems of groups.

If h is maximally compact, then h0 is a maximally compact Lie subalgebra of
s0. Then (see e.g. [Kna02, Proposition 7.90, p.488]) the Cartan subalgebra H0 is
connected and (8.31) follows from (8.30).

If h is maximally noncompact, then, by [Kna02, Proposition 7.90, p.488] the
Cartan subalgebra H intersects every connected component of G+. This implies
that the map π0(H/H0) −→ π(G+) in (8.30) is onto and hence (8.31) holds true
and ZW(g,h)(z0) ∼= W(s0, h0). �

We describe now π0(G+) in terms of characters :

Proposition 8.9. Let h be a maximally noncompact Cartan subalgebra of
g+. Fix a Weyl chamber C ∈ C(R) such that B(C) = {α1, . . . , α`} contains a
basis B0(C) = {α1, . . . , αm} of simple roots of Qr ∩ Q̄ r. Let E = 〈αm+1, . . . , α`〉⊥.
Then :

(8.32) π0(G+) ' π0 ({χ ∈ Homσ(Π(R),C∗) |χ(µ) = 1 , ∀µ ∈ Π(R) ∩ E}) .

Proof. We denote by $0 the orthogonal projection onto 〈αm+1, . . . , α`〉⊥.
Let B∗(C) = {ω1, . . . , ω`} be the adjoint basis of B(C). Then we have $0(η) =∑m
i=1 (η|α∨i )ωi . We can identify R′ = R(ŝ0, ĥ0) with $0(Qr ∩ Q̄ r). The advan-

tage of this identification is that the corresponding weight space Π(R′) becomes a
subspace of Π(R), and moreover :

(8.33) Π(R′) = $0(Π(R)) = Π(R) ∩ 〈αm+1, . . . , α`〉⊥ .

In this way, for each character χ ∈ Homσ(Π(R),C∗), the composition χ ◦ $0 is
still a character of Homσ(Π(R),C∗), whose restriction to Π(R′) is a character in
Homσ(Π(R′),C∗), and we have :

(8.34) H0 = {hχ |χ ∈ Homσ(Π(R′),C∗)} = {hχ◦$ |χ ∈ Homσ(Π(R),C∗)} .

Thus, setting :

(8.35) H1 = {hχ |χ ∈ Homσ(Π(R),C∗) , χ(η) = 1 ∀η ∈ Π(R′)} ,

the map :

(8.36) H 3 hχ −→ h−1
χ◦$ ◦ hχ ∈ H1

yields, by passing to the quotient, the isomorphism H/H0
∼−→ H1, which implies

(8.32). �
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Corollary 8.10. Let (g, q) be an effective parabolic totally real CR algebra.
Let h be a maximally noncompact Cartan subalgebra of g contained in g+ and let
C ∈ C(R,Q) be S-fit for (g, q) and hence S-adapted to the conjugation σ. Then
π0(G+) is isomorphic to Ze2, where e is the number of roots in ΦC ∩Rre.

Proof. By inspecting the Satake diagrams of the simple real Lie algebras, we
obtain that χ(ωi) is a positive real number when ωi is a real weight corresponding
to a complex root αi ∈ B(C). Then the statement follows from Proposition 8.9.

Another independent proof can be given, using [DKV83] and [Wig98]. Because
G is connected, we have an exact sequence :

(8.37) · · · −−−−→ π1(G/G+) −−−−→ π0(G+) −−−−→ 1 .

Take Φ′C = ΦC \ Rre. Then also q′ = qΦ′
C

is the complexification of a real para-
bolic subalgebra g′+ of g. By [Wig98] and (8.37), the stabilizer G′+ of q′ in G is
connected. By Proposition 8.9, this implies that χ(ωi) > 0 on the real ωi ∈ B∗(C)
corresponding to a complex root αi in B(C). Again, the statement follows from
Proposition 8.9. �

For each ω ∈ Π(R) there is, modulo isomorphisms, a unique irreducible finite
dimensional complex linear representation ρω : ĝ −→ glC(Vω), for which ω is an
extremal weight. For each weight η we denote by :

(8.38) V ηω = {v ∈ Vω | ρω(H)(v) = η(H) v , ∀H ∈ ĥ}

the eigenspace of Vω corresponding to the weight η . Let :

(8.39) ĝω = {Z ∈ ĝ | ρω(V ωω ) ⊂ V ωω } .

Since the eigenspace V ωω of ω is one-dimensional, for each Z ∈ ĝω there is a unique
complex number, that we shall denote by ω(Z), such that :

(8.40) ρω(Z)(v) = ω(Z) v , ∀Z ∈ ĝω , ∀v ∈ V ωω .

This agrees with the natural definition of ω(Z) by the duality pairing when Z ∈ ĥ.

Proposition 8.11. Let ω1 , ω2 ∈ Π(R) and ω = ω1 + ω2. Then :

(8.41) ĝω1 ∩ ĝω2 ⊂ ĝω

and :

(8.42) ω(Z) = ω1(Z) + ω2(Z) , ∀Z ∈ ĝω1 ∩ ĝω2 .

Proof. There is an injective homomorphism of ĝ-modules Vω −→ Vω1 ⊗ Vω2

that maps V ωω into V ω1
ω1
⊗ V ω2

ω2
. For Z ∈ ĝ, we have (ρω1 ⊗ ρω2) (v1 ⊗ v2) =

ρω1(Z)(v1) ⊗ v2 + v1 ⊗ ρω2(Z)(v2) for all v1 ∈ Vω1 , v2 ∈ Vω2 . This implies (8.41)
and (8.42) . �

We also have :
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Lemma 8.12. Let ω ∈ Π(R(ĝ, ĥ)) and ĥ′ another Cartan subalgebra of ĝ con-
tained in ĝω. Let Vω be an irreducible ĝ-module with extremal weight ω. Then :

(i) There is a weight ω′ ∈ Π(R(ĝ, ĥ′)) that is an extremal weight for Vω ;

(ii) we can choose ω′ ∈ Π(R(ĝ, ĥ′)) in such a way that V ωω = V ω
′

ω ;
(iii) ĝω = ĝω′ and ω(Z) = ω′(Z) ∀Z ∈ ĝω . �

Since we took a simply connected Ĝ, for each ω ∈ Π(R), the representation
ρω : ĝ −→ glC(Vω) lifts to a representation ρω : Ĝ −→ GLC(Vω). The stabilizer of
the line V ωω in Ĝ contains the Cartan subgroup Ĥ of Ĝ and therefore is the closed
connected subgroup Ĝω of Ĝ with Lie algebra ĝω. The map ω : ĝω −→ C also lifts
to a character ϕω : Ĝω −→ C∗, with ϕω(exp(Z)) = exp(ω(Z)) for all Z ∈ ĝω .

We observe that every parabolic q containing ĥ is equal to some ĝω, for a suit-
able choice of ω ∈ Π(R). This choice is not unique. It can be done in the following
way. First we choose a Weyl chamber C ∈ C(R,Q). Let q = qΦC for ΦC ⊂ B(C).
Let B∗(C) be the adjoint basis in Π(R) and Φ∗(C) = {ω1, . . . , ωk} the set of ele-
ments of B∗(C) that vanish on B(C) \ΦC . Then for any k-tuple of strictly positive
integers (t1, . . . , tk) we have :

(8.43) q = ĝt1ω1+···+tkωk =
⋂

1≤i≤k

ĝωi .

Proposition 8.13. Let Q be the parabolic subgroup of Ĝ of the parabolic
complex Lie subalgebra q. Then, with the notation above :

(8.44) Q =
⋂

1≤i≤k

Ĝωi and HomC(Q,C∗) = {ϕω |ω ∈ Π(R) ∩ 〈Qr〉⊥R }

is the free Abelian group generated by ϕω1 , . . ., ϕωk .

Proof. The inclusion {ϕω |ω ∈ Π(R) ∩ 〈Qr〉⊥R } ⊂ HomC(Q,C∗) is a conse-
quence of the previous discussion.

To prove the opposite inclusion, we fist observe that a character in HomC(Q,C∗)
restricts to a character in HomC(Ĥ,C∗), and hence is of the form ϕω for some ω ∈
Π(R). Moreover, being connected, Q admits a Levi decomposition Q = QssQrad

and ϕω(g) = 1 for g ∈ Qss(= the Levi subgroup of Q). This yields (ω|α∨) = 0 for
α ∈ Qr. �

Lemma 8.14. If ω ∈ Π(R) is a real weight, then ϕω is real valued on Ĝω ∩G.

Proof. From ϕω(exp(Z)) = exp(ω(Z)) for Z ∈ ĝω we obtain that ϕω(g) is
real when g belongs to a neighborhood of the identity in Ĝω ∩G. Since ϕω(g) is
an algebraic function of g, the statement follows because any neighborhood of the
identity is Zariski dense in Ĝω ∩G. �

Let (ϑ, h) be a Cartan pair adapted to the effective parabolic CR algebra (g, q),
choose C ∈ C(R,Q) and set :

Φ∗C = {ω1, . . . , ωk} = B∗(C) ∩
(
Qr ∩ Q̄ r

)⊥
.

Then G+ ⊂
⋂

1≤i≤k Ĝωi , and we can define the map :

(8.45) ϕ : G+ 3 g −→ (ϕω1(g), . . . , ϕωk(g)) ∈ (C∗)k .

We have :
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Theorem 8.15. The map (8.45) yields, by passing to the quotients, a group

isomorphism : π0(G+)
ϕ∗−−→ π0(ϕ(G+)).

Proof. By using Lemma 8.12, we can restrain to proving the Theorem in the
case h is maximally noncompact among the admissible Cartan subalgebras of g
contained in g+. Moreover, by passing to the weakest CR model, we can as well
assume that Qr = Q̄ r. By Proposition 8.9, we obtain a commutative diagram :

(8.46)

π0(H/H0) ∼−−−−→ π0(G+)

o
y yϕ∗

π0(ϕ(H)) ∼−−−−→ π0(ϕ(G+))

showing that also ϕ∗ is an isomorphism. �

In particular, when (g, q) is totally real, i.e. q = q̄, we obtain, by using Corol-
lary 8.10 :

Theorem 8.16. Let (g, q) be a totally real parabolic CR algebra, h a maxi-
mally noncompact Cartan subalgebra of g contained in g+, C ∈ C(R,Q) an S-fit
(and S-adapted) Weyl chamber. Set :

B(C) = {α1, . . . , α`} , {α1, . . . , αµ} = ΦC ∩Rre , B∗(C) = {ω1, . . . , ω`} .

Then ϕωi(g) ∈ R∗ for 1 ≤ i ≤ µ. The map :

(8.47) ϕ[: G+ 3 g −→
(
ϕω1(g)
|ϕω1(g)|

, . . . ,
ϕωµ(g)
|ϕωµ(g)|

)
∈ {−1, 1}µ = Zµ2

defines, by passing to the quotient, an isomorphism :

(8.48) ϕ[∗:π0(G+) 3 [g] −→ ϕ[(g) ∈ Zµ2 .�

Theorem 8.17. We keep the notation and assumptions of Theorem 8.16. For
each α ∈ ΦC ∩ Rre, let Sα be the simple analytic real subgroup of G, with Lie
algebra sα = g∩(ĝα ⊕ ĝ−α ⊕ [ĝα, ĝ−α]). Then there exists a set {tα |α ∈ ΦC ∩Rre}
of generators of π1(G/G+), and the homomorphism δ : π1(G/G+) −→ π0(G+) of
the exact homotopy sequence (8.37) of the principal bundle G −→ G/G+ is given
by :

(8.49) δ:π1(G/G+) 3 tαi −→ (1, . . . , −1︸︷︷︸
i

, . . . , 1) ∈ Zµ2 ' π0(G+) .

Proof. By using results from [DKV83], in [Wig98, §2] it is shown that the
fundamental group of G/G+ is generated by the images of the generators of the
π1(Sα)’s, some elements {tα} for simple real roots α ∈ ΦC ∩ Rre. In fact the



86 8. THE FUNDAMENTAL GROUP OF PARABOLIC CR MANIFOLDS

generalization of the Bruhat decomposition in [DKV83] yields a cell decomposi-
tion of G/G+ where the open 1-cells correspond to roots α ∈ ΦC ∩ Rre. Let
ρα : sl(2,R) −→ sα be the representation with :(

0 0
1 0

)
ρα−→ X−α ,

(
0 −1
0 0

)
ρα−→ Xα ,

(
1 0
0 −1

)
ρα−→ Hα .

We still denote by ρα the corresponding group representation SL(2,R) −→ Sα. The
open 1-cell corresponding to α can be parametrized by :{

g(t) = ρα

[(
tan t 1

−1 0

)] ∣∣∣ − π/2 < t < π/2
}
.

Since g+(t) = ρα

[(
cos t − sin t

0 1/cos t

)]
∈ G+ for all |t| < π/2, the closure in G/G+ of

this 1-cell is the loop tα that is the image in G/G+ of :

[−π/2, π/2] 3 t −→ g0(t) = g(t)g+(t) = ρα

[(
sin t cos t

− cos t sin t

)]
.

We note that g0(π/2) = e, while g0(−π/2) = exp(iπHα). Hence ϕωj (g0(π/2)) = 1,
and :

ϕωj (g0(−π/2)) = exp(iπωj(Hα)) = exp(iπ(ωj |α∨)) = (−1)(ωj |α∨) .

This proves (8.49). �

8.2 The fundamental group

In this chapter we give an explicit combinatorial description of the fundamental
group of parabolic CR manifolds. We keep the notation of the previous chapters.
By using Proposition 4.17 and Theorem 8.16, we obtain :

Theorem 8.18. Let (g, q) be an effective parabolic CR algebra and let
M = M(g, q) be the corresponding homogeneous CR manifold. Then there ex-
ists a totally real parabolic CR algebra (g, q′) such that

G+ = {g ∈ G |Adĝ(g)(q) ⊂ q} ⊂ G′+ = {g ∈ G |Adĝ(g)(q′) ⊂ q′}

and the G-equivariant map

f : M = G/G+ −→M ′ = M(g, q′) = G/G′+

has simply connected complex fibers. With F = G′+/G+, we obtain exact se-
quences :

(8.50) 1 −−−−→ π0(G+) −−−−→ π0(G′+) −−−−→ π0(F ) −−−−→ 1 ,

(8.51) 1 −−−−→ π1(M) −−−−→ π1(M ′) −−−−→ π0(F ) −−−−→ 1 .

The induced map in homotopy f∗ : π1(M) −→ π1(M ′) is injective and f∗(π1(M)) is
a normal subgroup with finite index in π1(M ′).
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Proof. Let q′ be the parabolic qm of Proposition 4.17. We proved that the
typical fiber F = G′+/G+ is simply connected. Thus (8.50) and (8.51) are conse-
quences of Serre’s long exact sequence for the homotopy groups of a fiber bundle.
By Theorem 8.16, π0(G′+) is a finite Abelian group. Hence π0(G+) is normal in
π0(G′+) and π0(F ) ' π0(G′+)/π0(G+) has a natural structure of Abelian group.
Then also the maps in (8.51) are group homomorphisms and therefore f∗(π1(M))
is a normal subgroup of π1(M ′). �

Corollary 8.19. If g is a simple real Lie algebra of the complex type or
of real type A II, A IIIa, A IV, B II, C II, D II, D IIIb, E III, E IV, F II, then all orbits
M = M(g, q) are simply connected.

Proof. The multiplicities of the simple real roots of ĝ are always different from
one, hence M ′ = M(g, q′) is simply connected, forcing M to be simply connected.�

Note that the M(g, q′) for a totally real parabolic CR algebra (g, q′) are the real
flag manifolds, and that there is a precise formula to compute their fundamental
groups (see e.g. [DKV83], [Wig98]). Let h′ be a maximally noncompact Cartan sub-
algebra of g contained in g′+, fix an S-fit (and S-adapted) C ∈ C(R(ĝ, ĥ′),Q′) and let
{α1, . . . , αm} = B(C) ∩ Rre. Then π1(M ′) is described by generators tα1 , . . . , tαm
that satisfy the relations :

(8.52) tαitαj = tαj t
(−1)

(αi|α
∨
j

)

αi for 1 ≤ i, j ≤ m, tαi = e if αi /∈ Φ′C .

By using Theorem 8.17 we can now give a description of π1(M) :

Theorem 8.20. Let (g, q) be an effective parabolic CR algebra and (ϑ, h) an
adapted Cartan pair for (g, q) with h maximally noncompact in g+. Let H be the
corresponding Cartan subgroup of G.

Let (g, q′) be the totally real parabolic CR algebra of Theorem 8.18, (ϑ, h′) an
adapted Cartan pair for (g, q′) with h′ maximally noncompact in g.

Fix a Weyl chamber C ′ ∈ C(R′,Q′), whereR′ = R(ĝ, ĥ′) andQ′ is the parabolic
set of q′ in R′, that is S-fit to (g, q′) and S-adapted. With B(C ′) = {α1, . . . , α`}
and B∗(C ′) = {ω1, . . . , ω`} (defined by (ωi|α∨j ) = δi,j), if {ω1, . . . , ωµ} = B∗(C ′) ∩[
Q′ r

]⊥
, we have {α1, . . . , αµ} = ΦC′(Q′) ∩R′re . Let us consider the maps

ϕ[: G′+ −→ Zµ2 of (8.47) and δ : π1(M ′) −→ Zµ2 of (8.49).

Then we have :

(8.53) π1(M) = δ−1
(
φ[(H)

)
. �

Corollary 8.21. Let (g, q), be an effective parabolic CR algebra, M =
M(g, q) the corresponding parabolic CR manifold. Let M ′ = M(g, q′) and
f : M −→ M ′ be defined as in Theorem 8.18. If there is a Cartan subalgebra
h adapted to both (g, q) and (g, q′) and maximally noncompact in g′+, such that
moreover H/Z(G) is connected, then f∗ : π1(M) −→ π1(M ′) is an isomorphism.
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Proof. For the isotropy subgroup G′+ of M ′ we have, by (8.31), that
π0(G′+) ' π0 (H/ (H ∩ S′0)), where S′0 is an analytic semisimple subgroup of G′+.
Since Z(G) ⊂ G+, the inclusion H ↪→ G′+ defines, passing to the quotients, a
surjective map π0(H/Z(G)) −→ π0

(
G′+/G+

)
. Thus the fiber of f :M −→ M ′ is

connected and, by Theorem 8.18, f∗ : π1(M) −→ π1(M ′) is an isomorphism. �

Corollary 8.22. With the notation of Corollary 8.21, if g is a simple Lie
algebra of real type AIIIb, DIIIa, then the map f∗:π1(M) −→ π1(M ′) is an isomor-
phism.

Proof. In fact in these cases H/Z(G) is connected for every choice of h, and
we can apply Corollary 8.21 to obtain an isomorphism of the fundamental group of
M(g, q) with the fundamental group of a totally real M(g, q′). �

8.3 The case of compact parabolic CR manifolds

We apply the results of the previous sections to the case of compact parabolic CR
manifolds.

We say that an effective compact parabolic CR algebra (g, qΦC ) has property
(F ) if ΦC contains no real roots.

From Theorem 8.17, we obtain a rigidity result for homogeneous CR manifolds
which are locally equivalent to compact parabolic CR manifolds:

Corollary 8.23. Let G be a semisimple real Lie group and M a connected
G-homogeneous CR manifold. If the associated CR algebra (g, q) is compact par-
abolic and has property (F ), then M is simply connected and CR-diffeomorphic to
M(g, q). �

If the associated CR algebra has not property (F ), instead we have:

Proposition 8.24. Let G be a semisimple Lie group and M a G-homogeneous
CR manifold. Assume that the CR algebra (g, qΦC ) associated to M is compact
parabolic. Let (g, qΨC ) be the basis of its fundamental reduction. Then there ex-
ists a (totally real) G-homogeneous CR manifold N , with associated CR algebra
(g, qΨC ), and a G-equivariant submersion ω : M −→ N such that the induced map
ω∗ : π1(M) −→ π1(N) is an isomorphism.

Proof. Let o be a point of M and let G+ the stabilizer of o in G. Let H
be the analytic subgroup of G generated by g ∩ qΨC . Then H contains G◦+. We
claim that H · G+ = G′+ is a Lie subgroup of G. Indeed, for all g ∈ G+, we
have Ad(g)(qΦC ) = qΦC . Since g is real, we also have Ad(g)(q̄ΦC ) = q̄ΦC and
therefore Ad(g)(qΨC ) = qΨC because qΨC is generated by qΦC + q̄ΦC . This im-
plies that ad(g)(H) = H for all g ∈ G+, and hence G′+ is a subgroup of G. It
is a Lie subgroup because its Lie algebra is real parabolic. Then N = G/G′+ is a
G-homogeneous manifold. By the inclusion G+ ⊂ G′+ we obtain a G-equivariant
submersion ω : M −→ N . By construction the fiber is connected. It has a natural
structure of CR manifold, associated to a fundamental CR algebra (g′′, qΦ′

C
), as in

Theorem 6.2, which is parabolic and compact. By Corollary 8.23 the fiber is simply
connected. Hence ω∗ : π1(M) −→ π1(N) is an isomorphism. �

For minimal parabolic CR manifold, Proposition 8.24 specializes to:
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Corollary 8.25. Let M = M(g, q) be a compact parabolic CR manifold
and φ : M −→ M ′ = M(g, q′) its fundamental reduction. Then the induced map
φ∗ : π1(M) −→ π1(M ′) is a group isomorphism.

In particular if M is fundamental then it is simply connected. �





CHAPTER 9

Examples

In this chapter we apply results from previous chapters to several examples.

Example 9.1. Consider the semisimple real Lie algebra g = sl(3,R) of real
3× 3 matrices with zero trace. Let e1, e2, e3 be the canonical basis of R3 ⊂ C3 and
(ε1, ε2, ε3) the basis of C3 given by :

ε1 = e1 + ie2 , ε2 = e1 − ie2 , ε3 = e3 .

Let q be the complex Borel subalgebra of complex matrices Z ∈ sl(3,C) such that
Z(〈ε1〉) ⊂ 〈ε1〉 and Z(〈ε1, ε2〉) ⊂ 〈ε1, ε2〉. Let h ⊂ q be the Cartan subalgebra
of traceless matrices that are diagonal in the basis (ε1, ε2, ε3). The corresponding
Cartan subgroup :

H = {diag(λ, λ̄, |λ|−2) ∈ SL(3,R) |λ 6= 0}
is connected, hence also G+ is connected. There exists a unique Weyl chamber
C ∈ C(R(ĝ, ĥ)) adapted to (g, q), which is both S-fit and V-fit. The corresponding
diagram is :

~ ⊕
α1 α2
× ×

and we see that M = M(g, q) is weakly degenerate. The basis of the weakly nonde-
generate reduction is the totally real parabolic CR manifold M ′ = M(g, q′), where
q′ = {Z ∈ sl(3,C) |Z(〈ε1, ε2〉) ⊂ 〈ε1, ε2〉}. Its diagrams, with respect to the Cartan
subalgebras h and h′, where h′ is the maximally noncompact Cartan subalgebra of
traceless diagonal matrices in the basis (e1, e2, e3) , are :

~ ⊕
α1 α2

×
' © ©

α1 α2
×

By [Wig98] the fundamental group of M ′ is π1(M ′) = Z2. On the other hand, by
Corollary 8.10 the fiber of the weakly nondegenerate reduction has two connected
components. Hence the exact sequence (8.50) implies that M is simply connected.

Example 9.2. Let us compute the fundamental group of M(g, q) in the case
of Example 4.1. Since in this case q is Borel and the Cartan subalgebra h is
maximally compact, we know that the isotropy G+ = {X ∈ g |adĝ(X)(q) = q}
is connected (see [Kna02, Prop.7.90]). Consider the fiber F over the point
(〈e1, e4〉, 〈e1, e2, e4, e5〉). We can verify that F has 4 connected components and
π0(F ) ' Z2 × Z2. The fundamental group of M(g, q3) can be computed using
[Wig98]. We have π1(M(g, q3)) ' Z2 × Z2 and thus, from the exact sequence :

1 −→ π1(M(g, q)) −→ π1(M(g, q3)) ' Z2 × Z2 −→ π0(F ) ' Z2 × Z2 −→ 1

we obtain that M(g, q) is simply connected.

91
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Example 9.3. Consider the complex flag manifold M of SO(5,C), consisting
of the complex projective lines contained in the quadric {z2

2 + 2z0z4 + 2z1z3 = 0} ⊂
CP4. We identify the Lie algebra so(5,C) to the matrix algebra :

so(5,C) ' ĝ =
{
Z ∈ sl(5,C) | tZS5 + S5Z = 0

}
for S5 =

(
1

1
1

1
1

)
.

We consider the real form g ' so(2, 3) of so(5,C) defined by :

so(2, 3) ' g = {Z ∈ ĝ |Z∗K +KZ = 0} for K =


1

1 0 0

0 −1 0

0 0 1

1

 .

Let M be the orbit of the projective line corresponding to the plane `2 = 〈e1, e2〉 of
C5 by the action of the analytic subgroup G with Lie algebra g : M is the submani-
fold of the Grassmannian of the complex 2-planes in C5, consisting of those that are
totally isotropic for the symmetric form S5 and degenerate, with signature (+, 0),
with respect to the Hermitian symmetric form K. Denoting by q the stabilizer of
〈e1, e2〉 in SO(5,C), we have M = M(g, q). Take the Cartan subalgebra h of g
consisting of the diagonal matrices. With e1, e2 also denoting the value of the first
and the second diagonal entry, we note that the conjugation σ is defined in h∗R by
σ(ei) = −(−1)iei. Take the Weyl chambers C,C ′ ∈ C(R,Q) associated to the basis
B(C) = {e1 − e2, e2} and B(C ′) = {e2 − e1, e1}. Then C is S-fit and C ′ V-fit for
(g, q). We can describe M by the cross-marked diagrams :

⊕ > ~
α1 α2

×
	 > ©
α′1 α′2

×

From the first diagram we see that (g, q) is fundamental, since ΦC = {α2} and
ᾱ1 = α1 + 2α2 �C α2; from the second we see that (g, q) is weakly non-degenerate,
because ΦC′ = {α′2} and ᾱ′2 = α′2 �C′ 0. The weakest CR model of (g, q) is
the parabolic CR algebra (g, v) = (g, qΦ]

C
), with Φ]C = {α1, α2}. The weakly non-

degenerate reduction of (g, v) is the totally real parabolic CR algebra (g, qΨC ), with
ΨC = {α1} :

⊕ > ~
α1 α2
× ×

−→ ⊕ > ~
α1 α2
×

By composition we obtain the G-equivariant projection :
M(g, q) ∼−→M(g, v) −→M ′ = M(g, qΨC={α1})

of M onto a totally real parabolic CR manifold M ′. This projection associates to
each `2 ∈M the isotropic line `2∩`⊥2 , where ⊥ is taken with respect to the Hermit-
ian symmetric form K. The fiber over `1 = 〈e1〉 consists of the planes generated
by the columns of the matrices

1 0
0 z0
0 z1
0 z2
0 0

 with


(z0 : z1 : z2) ∈ CP2

2z0z2 + z2
1 = 0

z0z̄0 + z2z̄2 > z1z̄1 .
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Then we see that the fiber is biholomorphic to CP1 \RP1, that is the disjoint union
of two disks in C. Thus the fiber F of the projection M −→M ′ has two connected
components and π0(F ) ' Z2. Note that, by [Wig98], π1(M ′) ' Z. Thus the Serre’s
exact sequence :

1 −−−−→ π1(M) −−−−→ π(M ′) ' Z −−−−→ π0(F ) ' Z2 −−−−→ 1

shows that π1(M) ' 2Z ' Z .

Example 9.4. Let (εi)1≤i≤4 be the canonical basis of C4, and g ' sl(4,R)
consist of the elements of sl(4,C) that have real entries in the basis (εi)1≤i≤4. We
introduce the basis

e1 = ε1 + iε2 , e2 = ε1 − iε2 , e3 = ε3 + iε4 , e4 = ε3 − iε4 .

We take the complex flag manifold M whose points are the pairs (`1, `3) of a
complex line `1 of C4 and a complex 3-plane `3 with `1 ⊂ `3 ⊂ C4, and con-
sider the G-orbit M that contains the point o = 〈e1〉 ⊂ 〈e1, e2, e3〉 : we have
M = M(g, q) where q is the stabilizer in ĝ ' sl(4,C) of o. Consider the Cartan
subalgebra h of the elements of g that are diagonal matrices in the basis (ei)1≤i≤4.
With ei(H) also denoting the value of the i-th entry of H ∈ hR, we note that
B(C) = {αi = ei − ei+1 | 1 ≤ i ≤ 3} is the system of simple roots for an S-fit Weyl
chamber C ∈ C(R,Q), and B(C) = {α′1 = e1−e3 , α

′
2 = e3−e2 , α

′
3 = e2−e4} is the

system of simple roots for a V-fit Weyl chamber. The corresponding cross-marked
diagrams are :

~ ⊕ ~
α1 α2 α3
× ×

⊕ zz
∗

$$	 zz
∗

$$⊕
α′1 α′2 α′3
× ×

Since ᾱ2 = α1 +α2 +α3, from the first we see that (g, q) is fundamental, while the
second shows that (g, q) is weakly nondegenerate. Its weakest CR model (g, v) has
a totally real weakly nondegenerate reduction (g, q′), corresponding to diagrams :

~ ⊕ ~
α1 α2 α3
× × ×

−−−−→ ~ ⊕ ~
α1 α2 α3

×

'−−−−→ © © ©
β1 β2 β3

×
where the last diagram is obtained by utilizing the Cartan subalgebra of real di-
agonal matrices of g with respect to the canonical basis (εi)1≤i≤4. Using [Wig98],
we obtain that π1(M(g, q′)) ' Z2. The isotropy subgroup G+ of M(g, q′) is iso-

morphic to the group of matrices of the form
(
A B
0 C

)
with A,B,C real 2 × 2

matrices with det(A) · det(C) = 1, and hence has two connected components. The
isotropy subgroup G+ of M(g, q) is connected : indeed G+ = N n H for an Eu-
clidean N = exp(n) and a Cartan subgroup H = ZG(h) that is connected because
h is maximally noncompact (cf. [Kna02, Prop.7.90]). Thus the fiber G′+/G+ has
two connected components. Thus, from the exact sequence :

1 −−−−→ π1(M(g, q)) −−−−→ π1(M(g, q′))︸ ︷︷ ︸ −−−−→ π0(G′+/G+)︸ ︷︷ ︸ −−−−→ 1

' Z2 ' Z2

we obtain that M(g, q) is simply connected.
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Example 9.5. Let (εi)1≤i≤6 be the canonical basis of C6. Let G ' SL(6,R),
with Lie algebra g, be the subgroup of SL(6,C) consisting of the matrices with real
entries. Consider the basis

e′1 = ε1 + iε4 , e
′
2 = ε2 , e

′
3 = ε3 + iε6 , e

′
4 = ε1 − iε4 , e

′
5 = ε5 , e

′
6 = ε3 + iε6 .

Let q be the stabilizer of 〈e′1, e′2〉 ⊂ 〈e′1, e′2, e′3, e′4〉 in sl(6,C) and consider the para-
bolic CR algebra (g, q). The matrices in g that are diagonal in the basis e′1, . . . , e

′
6

form a Cartan subalgebra h of g adapted to (g, q). Then hR consists of the matrices
of ĝ = sl(6,C) that are real and diagonal in the basis e′1, . . . , e

′
6. We identify e′i to the

evaluation function of the i-th diagonal term of H ∈ hR. Then the α′i = e′i−e′i+1 are
the simple root of a C ′ ∈ C(R,Q) that is V-fit for (g, q). We have the cross-marked
diagram for (g, q) :

	 zz
∗

$$⊕ 	 zz
∗

$$⊕ 	
α′1 α′2 α′3 α′4 α′5

× ×
Since ΦC′ = {α′2, α′4} and ᾱ′2 = α′2+α′3+α′4+α′5 �C′ 0, ᾱ′4 = α′1+α′2+α′3+α′4 �C′ 0,
the CR algebra (g, q) is weakly nondegenerate. We obtain an S-fit Weyl chamber
for (g, q) by reordering the basis e′1, . . . , e

′
6. Set :

e1 = e′2 , e2 = e′1 , e3 = e′4 , e4 = e′3 , e5 = e′6 , e6 = e′5 .

Then αi = ei − ei+1 (1 ≤ i ≤ 5) is the basis B(C) of an S-fit Weyl chamber
C ∈ C(R,Q) yielding the cross-marked diagram :

⊕ ~ ⊕ ~ ⊕
α1 α2 α3 α4 α5

× ×

Since ΦC = {α2, α4} and ᾱ3 = α2 + α3 + α4 �C α2, α4, the CR algebra (g, q) is
also fundamental. The weakest CR model (g, v) of (g, q) is obtained by taking the
complex Borel subalgebra of ĝ associated to the chamber C. We have v = qΦ]

C

with Φ]C = {α1, α2, α3, α4, α5}. The weakly nondegenerate reduction of (g, q) is the
totally real CR algebra (g, qΨC ) with ΨC = {α1, α3, α5} :

⊕ ~ ⊕ ~ ⊕
α1 α2 α3 α4 α5
× × × × ×

−→ ⊕ ~ ⊕ ~ ⊕
α1 α2 α3 α4 α5
× × ×

By composition we obtain a G-equivariant fibration :
M = M(g, q) −→M ′ = M(g, qΨC ), with (`2 ⊂ `4) −→ (`2 ∩ ¯̀

2 ⊂ `4 ∩ ¯̀
4 ⊂ `4 + ¯̀

4).
The fiber F over 〈e1〉 ⊂ 〈e1, e2, e3〉 ⊂ 〈e1, e2, e3, e4, e5〉 consists of the pairs

(`2 ⊂ `4) where `2 is a complex 2-plane with 〈e1〉 ⊂ `2 ⊂ 〈e1, e2, e3〉 and `4 is
a complex 4-plane with 〈e1, e2, e3〉 ⊂ `4 ⊂ 〈e1, e2, e3, e4, e5〉, with `2 6= ¯̀

2 and
`4 6= ¯̀

4. Thus π0(F ) ' Z2 × Z2. On the other hand, by [Wig98], we have
π1(M ′) ' Z2 × Z2 × Z2. From the exact sequence

1 −−−−→ π1(M) −−−−→ π1(M ′) ' Z3
2 −−−−→ π0(F ) ' Z2

2 −−−−→ 1

we obtain that π1(M) ' Z2.
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Example 9.6. Let ĝ ' so(5,C) be as in Example 9.3. We take now
g ' so(2, 3), defined by :

g = {Z ∈ ĝ |Z∗K +KZ = 0} with K =

(
[ 1

1 ]
1

[ 1
1 ]

)
.

Let q be the stabilizer of the line 〈e1〉 ⊂ C5 and consider the orbit M = M(g, q).
Our M is one of the two connected components of the manifold M+ the nonreal
lines `1, contained in the quadric cone {2z0z4 + 2z1z3 + z2

2 = 0} ⊂ C5, for which(
`1 + ¯̀

1

)
is a totally isotropic complex 2-plane for the Hermitian symmetric form

K. The involution `1 −→ ¯̀
1 interchanges the two connected components of M+.

The diagonal matrices in g define a Cartan subalgebra of g adapted to (g, q). As
usual we denote again by ei the value of the i-th entry in the diagonal of hR. Then
we define a V-fit C ′ and an S-fit C by taking B(C ′) = {α′1 = e1 + e2, α

′
2 = −e2}

and B(C) = {α1 = e1 − e2, α2 = e2}. The associated cross-marked diagrams are :

©
zz

∗
$$

> 	
α′1 α′2
×

and ~ > ⊕
α1 α2
×

From the first, as q = qΦC′ with ΦC′ = {α′1} and ᾱ′1 = α′1 �C′ 0, we see that
(g, q) is weakly nondegenerate; from the second, as q = qΦC with ΦC = {α1} and
ᾱ2 = α1 +α2 �C α1, we see that (g, q) is also fundamental. The weakest CR model
of (g, q) is (g, qΨ]

C
) with Ψ]

C = {α1, α2}. The basis of its weakly nondegenerate re-
duction is the totally real CR algebra (g, qΨC ) with ΨC = {α2}. We can represent
these maps by the diagram :

~ > ⊕
α1 α2
× ×

−→ ~ > ⊕
α1 α2

×

∼−→ © > ©
β1 β2

×

where the last is the cross-marked Satake diagram of (g, qΨC ), i.e. the cross-marked
diagram for an S-fit and S-adapted C and a maximally noncompact h. We have,
by [Wig98, Theorem 1.1], π1(M(g, qΨC )) ' Z2. We observe that the stabilizer in
the connected component of the identity of SO(2, 3) of a totally isotropic 2-plane
`2 ⊂ R5 keeps its orientation and is connected. Thus the the fiber F of the projec-
tion M(g, q) −→M(g, qΨC ) is connected because the isotropy subgroup of M(g, qΨC )
is connected. Therefore π1(M(g, q)) ' π1(M(g, qΨC )) ' Z2.

Example 9.7. Let g be a simple real Lie algebra of type FI (split real form).
We fix a Cartan subalgebra h of g, such that the conjugation σ defined in ĝ by the
real form g restricts in h∗R = R4 = 〈e1, e2, e3, e4〉R to the linear involution that is de-
fined on the canonical basis by : σ(e1) = −e3 , σ(e2) = e4 , σ(e3) = −e1 , σ(e4) =
e2 . The vectors α1 = e2 − e3, α2 = e3 − e4, α3 = e4 and α4 = 1

2 (e1 − e2 − e3 − e4)
are a basis of simple roots of R = R(ĝ, ĥ). We consider the parabolic CR manifold
M(g, q) that corresponds to the cross-marked diagram :

⊕ uu ∗ ))ww ''	 > ⊕ ©
α1 α2 α3 α4
× ×
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This is a representation of (g, q) in a V-fit Weyl chamber C ∈ C(R,Q). Since
ᾱ1 �C 0, ᾱ3 �C 0, by Theorem 3.9 the CR algebra (g, q) is weakly nondegenerate.

Consider the Weyl chamber C1 obtained from C by the symmetry sα2 . We
have B(C1) =

{
e2 − e4, e4 − e3, e3,

1
2 (e1 − e2 − e3 − e4)

}
= {α′1, α′2, α′3, α′4} and the

cross-marked diagram for (g, q) for the chamber C1 ∈ C(R,Q) is :

~ ⊕ > 	 ©
α′1 α′2 α′3 α′4
× ×

This diagram is S-fit. Since ᾱ′2 = 2α′1 + 3α′2 + 4α′3 + 2α′4, by Theorem 3.5 the
parabolic CR algebra (g, q) is also fundamental.

Our next aim is to construct the fibration of Proposition 4.17. First we observe
that the weakest CR model of (g, q) is (g, v1) with v1 = q{α′1,α′2,α′3}. Its weakly
nondegenerate reduction is (g, q2) with q2 = q{α′2}.

To compute its weakest CR model, we need to find an S-fit Weyl chamber C2

for (g, q2). This is provided by the basis of simple roots B(C) = {β1, β2, β3, β4}
with β1 = e2−e4, β2 = e1−e2, β3 = 1

2 (e1−e2−e3−e4), β4 = − 1
2 (e1−e2 +e3−e4),

that is obtained from B(C1) by the rotation s 1
2 (e1−e2+e3−e4) ◦ se3 of W(R). The

corresponding cross-marked diagram for (g, q2) is :

~ 	 > © ⊕
β1 β2 β3 β4

×

Since β̄4 = β1 + 2β2 + 2β3 + β4, the weakest CR model of (g, q2) is (g, v2) with
v2 = q{β2,β4}. The CR algebra (g, v2) has the weakly nondegenerate reduction
(g, q{β4}). The element A = (−1,−1,+1,−1) of hR defines the parabolic set of v2

and Ā = A shows then that (g, v2) is totally real. Thus, by choosing a maximally
noncompact Cartan subalgebra h′ adapted to (g, v2), we can associate to (g, v2) its
cross-marked Satake diagram as a totally real parabolic minimal CR algebra :

© © > © ©
γ1 γ2 γ3 γ4

×

Then the isotropy subgroup G′+ of M(g, v2) has two connected components, and
the fundamental group π1(M(g, v2)) is isomorphic to Z2 and is generated by any
simple path joining the two connected components of G′+. By using Lemma 8.1
and (8.31) of Theorem 8.8, we find that H has four connected components and
ϕ[(H) has two connected components. Hence Theorem 8.20 yields π1(M) ' Z2.



CHAPTER 10

Global CR functions

In this chapter we describe the space O(M) of smooth global CR functions on a
parabolic CR manifold M = M(g, q).

To this aim we introduce two notions of CR separability. We say that M
is (globally) weakly CR separable if global CR functions separate points of M ,
that is if for every pair x, y ∈ M , with x 6= y there exists f ∈ O(M) such that
f(x) 6= f(y). We also say that M is weakly locally CR separable if every point
x ∈M has a neighborhood U such that global CR functions on M separate points
of U . In other words, a CR manifold M is weakly (locally) CR separable if and
only if there exists a (locally) injective CR map into a complex Euclidean space.

Next we introduce the notion of strict local CR separability. Let S = S(M) ⊂
C∞(M,CTM) be the space of complex vector fields X on M such that X(f) = 0
for all f ∈ O(M), and let S = S(M) ⊂ CTM be the vector distribution defined at
x ∈M by:

Sx = {Xx | X ∈ S}.

By the definition of CR functions, T 0,1M ⊂ S. We say that M is strictly locally CR
separable at a point x is Sx = T 0,1

x M , and that M is strictly locally CR separable
if it is strictly locally CR separable at every point. We have:

Lemma 10.1. If M is strictly locally CR separable then M is weakly locally
CR separable.

Proof. Assume that there exists a point p ∈M and two sequences xn and yn
, with xn 6= yn and converging to p, such that for every CR function f ∈ O(M) we
have f(xn) = f(yn) for all n. Let d be the distance function on M defined by some
Riemanniann metric g on M . The functionals ξn, defined on a smooth function f
on M by:

ξn(f) = (f(xn)− f(yn))/d(xn, yn),

converge, up to the choice of a subsequence, to a unit real tangent vector X ∈ TpM .
ClearlyX(f) = 0 for every f ∈ O(M), thusM is not strictly locally CR separable.�

Local strict CR separability is an open condition, because dim Sx is upper
semicontinuous with respect to x, and is actually equivalent to the existence, for
each point x ∈ M , of a global CR map of M into a complex Euclidean space Cn
that is a CR embedding in a neighborhood of x.

We return to the case of parabolic CR manifolds. Let (g, q) be an effective
parabolic CR algebra, M = M(g, q) the associated parabolic CR manifold, and
π : G −→ G/G+ ' M the quotient projection. Since S is invariant under CR
automorphisms of M , we have that S is a G-homogeneous complex vector bundle
on M . We have:

97
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Lemma 10.2. The vector subspace of ĝ:

s = (dπ̂e)−1(So)

is a parabolic complex Lie subalgebra of ĝ, containing q.

Proof. Consider the sheaf T on G of germs of complex vector fields X on G
such that X(π∗f) = 0 for all f ∈ O(M). Then T is invariant for the left action of
G, hence it is generated at every point by the global left invariant complex vector
fields which belong to T near the identity e ∈ G, and T is the sheaf of germs of
smooth sections of a G-homogeneous vector subbundle T of the complexified tan-
gent bundle CTG. Since under the identification CTeG ' ĝ, we have that Te ' s,
it follows that s = (dπ̂e)−1(So). The statement follows because T is involutive,
hence s is a subalgebra. It contains q, thus it is parabolic. �

Since q ⊂ s, we may consider the G-equivariant fibration:

(10.1) ρ : M = M(g, q) −→M ′ = M(g, s).

Every CR function on M ′ defines, via the pullback by ρ, a CR function on M .
Indeed more is true:

Theorem 10.3. Let (g, q) be an effective parabolic CR algebra and M =
M(g, q) the associated parabolic CR manifold. Then there exists a unique G-
equivariant fibration ρ : M −→ M∗ onto a strictly locally CR separable G-
homogeneous CR manifold M∗, such that ρ induces an isomorphism on the space
of CR functions, that is:

O(M) = ρ∗O(M∗).

The G-homogeneous CR manifold M∗ admits a G-equivariant covering map
onto M ′ = M(g, s), where s = (dπe)−1(So) is the Lie subalgebra of ĝ defined in
Lemma 10.2

Proof. From the definition of s it follows that M ′ = M(g, s) is strictly lo-
cally CR separable. Furthermore s is the smallest complex Lie subalgebra of ĝ,
containing q, such that M(g, s) is strictly locally CR separable.

Let G∗+ be the Lie subgroup generated by G+ and by the analytic subgroup
of G with Lie algebra g′+ = g ∩ s. Then M∗ = G/G∗+ is a finite cover of M ′, and
we endow it with the unique CR structure such that the covering map M∗ −→ M ′

is a local CR isomorphism. Denote by ρ : M −→ M∗ the natural G-equivariant
projection.

Then global CR functions on M are invariant for the right G∗+-action, hence
they factor through ρ: if f ∈ O(M) then there exists f∗ ∈ C∞(M∗) such that
f = f∗ ◦ ρ. Moreover, since T 0,1

o M∗ ' s/ĝ∗+, we also have f∗ ∈ O(M∗). �

We call the G-equivariant fibration (10.1), or the corresponding g-equivariant
fibration of CR algebras, the strictly CR separable reduction of M(g, q), or of (g, q).

We can consider only simple parabolic CR manifolds. Indeed we have:

Theorem 10.4. Let g = ⊕igi be the decomposition of the real semisimple Lie
algebra g into the direct product of its simple ideals, and let gi = ĝi, qi = ĝi ∩ q.
Then each qi is parabolic in ĝi, q =

∑
i qi and M(g, q) is weakly (weakly locally,

strictly locally) CR separable if and only if all M(gi, qi)’s are weakly (weakly locally,
strictly locally) CR separable.
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Proof. The parabolic CR manifold M(g, q) is isomorphic to the Cartesian
product ΠiM(gi, qi). �

10.1 Restriction to manifolds of finite type

The following Theorem shows that we can restrict our consideration to parabolic
CR manifolds of finite type.

Theorem 10.5. Let M = M(g, q) be a parabolic CR manifold, denote by
M ′ the fiber and by M ′′ = M(g, q′′) the base of a G-equivariant CR fibration
f : M −→ M ′′ onto a totally real parabolic CR manifold M ′′. Then M is weakly
(weakly locally, strictly locally) CR separable if and only if M ′ is weakly (weakly
locally, strictly locally) CR separable.

To prove the theorem, we first need a lemma:

Lemma 10.6. Let M = M(g, q) be a parabolic CR manifold, M ′ the fiber and
M ′′ = M(g, q′′) the base of a G-equivariant CR fibration f : M −→ M ′′ onto a
totally real parabolic CR manifold M ′′. Then every x ∈ M ′′ has an open neigh-
borhood U ⊂M ′′ such that f−1(U) is CR diffeomorphic by a real analytic map to
U ×M ′.

In particular Theorem 10.5 and Lemma 10.6 apply when φ is the fundamental
reduction [MN05, § 5] of M .

Proof of Lemma 10.6. Let g+ = g∩ q be the isotropy subalgebra of M and
g′′+ = g ∩ q′′ that of M ′′. Since M ′′ is totally real, g′′+ is a parabolic subalgebra of
g, hence there exists a nilpotent subalgebra n complementary to g′′+. Let G+, G′′+,
N be the analytic subgroups of G with Lie algebras g+, g′′+, n, respectively and
π : G −→ M ′′ = G/G′′+ the projection onto the quotient. The restriction of π to
N is a real analytic local diffeomorphism. Choose an open neighborhood W of the
identity in N such that π|W is a diffeomorphism onto an open subset π(W ) = U of
M ′′. Then the map:

ψ : U ×M ′ 3 (z, gG+) −→
(
(π|W )−1(z)l

)
G+ ∈M

is a real analytic CR trivialization in a neighborhood of eG′′+. The result follows
because of the homogeneity of M ′′. �

Proof of Theorem 10.5. Let x 6= y be two distinct points of M . If
φ(x) 6= φ(y) then we can choose any function f on M ′′ such that f(φ(x)) 6= f(φ(y)),
and f ◦ φ is CR, and separates x and y. If φ(x) = φ(y) then by Lemma 10.6 we
can find a CR function f on M that separates x and y if and only if we can find
such an f on φ−1(φ(x)). Thus M is weakly (weakly locally) CR separable if and
only if M ′ is weakly (weakly locally) CR separable.

Fix a point x ∈ M , let M ′ = φ−1(φ(x)) and denote by ι : M ′ −→ M the in-
clusion map. Let X ∈ CTxM be a complex tangent vector at x with dφ̂(X) 6= 0
and f a real analytic function on M ′′ such that dφ̂(X)(f) 6= 0. Then f ◦ φ is a CR
function on M and X(f ◦ φ) 6= 0. This shows that S(M) = ι∗(S(M ′)), hence M is
strictly locally CR separable if and only if M ′ is strictly locally CR separable. �
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10.2 Extension to Levi-flat orbits

The case of totally complex parabolic CR manifolds, was discussed by Wolf in
[Wol69]. There he proved (see [FHW06, Thm. 4.4.3]) the following:

Proposition 10.7. Let (g, q) be a simple totally complex parabolic effective
CR algebra and M = M(g, q) the corresponding totally complex parabolic CR
manifold. Then M is weakly locally CR separable if and only if M is a bounded
symmetric domain. In this case M is also weakly CR separable and strictly locally
CR separable. �

We recall that a CR manifold M is Levi-flat if the analytic tangent distribution
HM is integrable. For parabolic CR manifolds this is equivalent to the condition
that the fibers of their fundamental reduction are totally complex. We have:

Theorem 10.8. Let M = M(g, q) be a G-orbit in the complex flag manifold
Z = G/Q. Then there exists a Levi-flat G-orbit N in Z, with M ⊂ N , such that

every CR function f on M continuously extends to a function f̃ , continuous on
M ∪N and CR on N with ‖f̃‖N ≤ ‖f‖M .

If M is of finite type, then N is totally complex, hence open in Z.

Proof. If M is Levi-flat we take N = M . Otherwise, a theorem of Tumanov
[Tum90] asserts that there exists a complex wedge W , with edge contained in M ,
such that every CR function f on M extends, continuously and uniquely, to a
continuous function f̌ on M ∪W that is holomorphic on W and that satisfies the
estimate ‖f̌‖W ≤ ‖f‖M . Here by a complex wedge W with edge in M we mean a
connected open subset W of a complex submanifold V of positive dimension of Z
such that M ∩ V is CR generic in V and contained in the closure W .

Let x ∈W and define, for all g ∈ G, a new function f̃ by setting:

f̃(g · x) = (f ◦mg)∨(x),

where mg : M −→ M denotes the action of g on M . The function f̃ is well defined
and CR on the whole G-orbit M ′ = G · x through x. By choosing x close enough
to M , we may arrange that M ⊂M ′ and f̃ is continuous on M ∪M ′.

By iterating this construction, we obtain a sequence of G-orbits M (i) of nonde-
creasing dimension, each contained in the closure of the next. This sequence must
necessarily stabilize to a term M (k) = N , that satisfies the first assertion of the
theorem.

If M is of finite type, then also N is of finite type and, being Levi-flat and CR
generic, is open in Z. �

As a corollary, we obtain:

Corollary 10.9. If M = M(g, q) is a strictly locally CR separable parabolic
CR manifold, embedded in the complex flag manifold Z = G/Q, then:

(1) there exists a strictly locally CR separable Levi-flat G-orbit N ⊂ Z with
M ⊂ N ;

(2) M is (globally) weakly CR separable.
If M is of finite type then N is a bounded symmetric domain.
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Proof. We may assume that M is the G-orbit in Z through the point o = eQ.
Let N be the Levi-flat G-orbit defined in Theorem 10.8. Let φ : Z −→ Z ′ =

G/Q′ be the Ĝ-equivariant fibration of complex flag manifolds that induces, by
restriction to N , the strictly separable CR reduction φ|N : N −→ N ′ ⊂ Z ′. Then
every CR function f on M extends continuously to a function f̃ , continuous on
M ∪N and CR on N , constant along the fibers of φ. By continuity also f is con-
stant along the fibers of φ and furthermore f = φ ◦ f ′ for some CR function f ′ on
M ′ = φ(M). This shows that:

So(M) ⊃ (dφ̂)−1T 0,1
o M ′.

Since M is strictly CR separable, we obtain that:

T 0,1
o M = (dφ̂)−1T 0,1

o M ′,

which in turn implies that q = q′. Thus N = N ′, that is N is strictly locally CR
separable.

If M is of finite type, by Proposition 10.7, N is a bounded symmetric domain
and M ⊂ N . This fact also implies that M is weakly CR separable, thus the
Theorem is proved if M is of finite type.

If M is not of finite type, we apply two times Theorem 10.5 to the fiber M ′ of
its fundamental reduction and obtain:

M is strictly locally CR separable =⇒
=⇒M ′ is strictly locally CR separable =⇒
=⇒M ′ is weakly CR separable =⇒
=⇒M is weakly CR separable,

completing the proof. �

10.3 Examples

In this paragraph we discuss some examples. We will not need to utilize Tumanovs
results, but more elementary extension theorems will suffice. In particular we re-
call the following statement. Let S3 = {z ∈ C2 | |z| = 1} be the three-dimensional
sphere, endowed with the usual CR structure, B2 = {z ∈ C2 | |z| < 1} the two-
dimensional complex ball, Σ a real two dimensional linear subspace of C2 (that may
or may not be a complex line) and set: Š3 = S3 \ Σ. Then every CR function on
S3 extends continuously to a function continuous on B

2 \ Σ and holomorphic on
B̌2 = B2 \ Σ.

For totally complex parabolic CR manifolds the only obstruction to CR sep-
arability is the esistence of embedded compact complex submanifold. The general
case is quite different. Indeed we exhibit two examples of parabolic CR manifold
that are not weakly locally CR separable, but do not contain any compact complex
submanifold.

Example 10.1. Let H(u, v) = u∗Av be the Hermitian form on C3 associated
to the matrix A = diag(−1, 1, 1), and Ĝ = SL(3,C) the group of unimodular com-
plex matrices. The subgroup G of matrices in Ĝ that leave H invariant is a real
form of G, isomorphic to SU(1, 2).
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Let Z be the complex flag manifold:

Z = {`1 ⊂ `2 ⊂ C3 | dim `i = i}

and M the parabolic CR manifold:

M = {(`1, `2) ∈ Z | `1 is H-isotropic, `2 is H-hyperbolic}.

Consider the Ĝ-equivariant fibration

φ : Z 3 (`1, `2) −→ `1 ∈W

onto the complex flag manifold:

W = {`1 ⊂ C3 | dim `1 = 1}.

Then φ restricts to a G-equivariant fibration φ : M −→ N onto the parabolic CR
manifold:

N = {`1 ⊂W | `1 is H-isotropic}.

The fiber of φ|M over a point `1 ∈ N is the set {`2 ⊂ C3 | `1 ⊂ `2 6⊂ (`1)⊥}, which
is biholomorphic to C. The CR manifold N is the boundary of the open domain:

D = {`1 ∈W | `1 is H-negative}.

Fix an H-positive line `1+ ⊂ C3 and define:

M`1+
= {(`1, `2) ∈M | `2 = `1 + `1+} ' Š3.

Any CR function f on M`1+
extends continuously to a function f̃ , continuous on

M`1+
∪ U`1+ and holomorphic on U`1+ , where:

U`1+ = {(`1, `2) ∈ Z | `1 is H-negative, `2 = `1 + `1+} ' B̌2.

By letting `1+ vary among all H-positive lines, we obtain that every CR function f
on M extends continuously to a function f̃ continuous on M ∪U and holomorphic
on U , where:

U = {(`1, `2) ∈ Z | `1 is H-negative, `2 is H-hyperbolic}.

Let:

V = φ−1(D) \ U
= {(`1, `2) ∈ Z | `1 is H-negative, H has signature (0,−) on `2}.

Then V has real codimension two in φ−1(D) and is not complex analytic. Hence,
by a theorem of Hartogs ([Har09], see [Nar71, § 4, Thm. 3]), there is a point x ∈ V
with the property that f̃ holomorphically extends to a full neighborhood Ux of x
in Z. It follows that f̃ is constant on φ−1 ◦ φ(y) for all y ∈ Ux, and by unique
continuation f̃ is constant along the fibers of φ, hence M is not weakly locally CR
separable.
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Example 10.2. Let B(u, v) = utAv and H(u, v) = u∗Av be the bilinear and
Hermitian forms on C5 associated to the matrix A = diag(−1,−1, 1, 1, 1), and
Ĝ = SO(3,C) the group of unimodular complex matrices that preserve B. The
connected component of the identity G in the subgroup of the real matrices in Ĝ is
isomorphic to SO0(2, 3), and the elements of G also preserve the Hermitian form
H.

Let Z be the complex flag manifold:

Z = {`1 ⊂ `2 ⊂ C5 | dim `i = i, `i is B-isotropic}

and M the parabolic CR manifold:

M = {(`1, `2) ∈ Z | `1 is H-isotropic, `1 6= ¯̀1, `2 is H-hyperbolic}.

Consider the Ĝ-equivariant fibration

φ : Z 3 (`1, `2) −→ `1 ∈W

onto the complex flag manifold:

W = {`1 ⊂ C3 | dim `1 = 1, `1 is B-isotropic}.

Then φ restricts to a G-equivariant fibration φ : M −→ N onto the parabolic CR
manifold:

N = {`1 ⊂W | `1 is H-isotropic, `1 6= ¯̀1}.
The CR manifold N is an open stratum in the boundary of the open domain:

D = {`1 ∈W | `1 is H-negative}.

Fix a B-isotropic and H-positive line `1+ ⊂ C5 and define:

M`1+
= {(`1, `2) ∈M | `2 = `1 + `1+} ' Š3.

Any CR function f on M`1+
extends continuously to a function f̃ , continuous on

M`1+
∪ U`1+ and holomorphic on U`1+ , where:

U`1+ = {(`1, `2) ∈ Z | `1 is H-negative, `2 = `1 + `1+} ' B̌2.

By letting `1+ vary among all B-isotropic and H-positive lines, we obtain that every
CR function f on M extends continuously to a function f̃ continuous on M ∪ U
and holomorphic on U , where:

U = {(`1, `2) ∈ Z | `1 is H-negative, `2 is H-hyperbolic}.

Let:

V = φ−1(D) \ U
= {(`1, `2) ∈ Z | `1 is H-negative, `2 is H-degenerate}.

Then V has real codimension two in φ−1(D) and is not complex analytic. By us-
ing the same argument of Example 10.1, it follows that any CR function on M is
constant along the fibers of φ, hence M is not weakly locally CR separable.

The next example consists of a parabolic CR manifold that is weakly, but not
strictly, locally CR separable.
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Example 10.3. Let Ĝ = SL(4,C) be the group of unimodular 4× 4 complex
matrices and G ' SU(2, 2) the subgroup of matrices preserving the Hermitian form
associated to the matrix A = diag(−1,−1, 1, 1).

Let Z be the complex flag manifold:

Z = {`1 ⊂ `2 ⊂ C4 | dim `i = i}

and M the parabolic CR manifold:

M = {(`1, `2) ∈ Z | `1 is H-isotropic, H|`2 has signature (0,−)}.

Consider the Ĝ-equivariant fibration

φ : Z 3 (`1, `2) −→ `2 ∈W

onto the complex flag manifold:

W = {`2 ⊂ C4 | dim `2 = 2}.

Then φ restricts to a G-equivariant fibration φ : M −→ N , which is a CR map and
a smooth diffeomorphism, but not a CR fibration, onto the parabolic CR manifold:

N = {`2 ⊂W | H|`1 has signature (0,−)}.

The CR manifold N is an open stratum in the boundary of the open domain:

D = {`2 ∈W | `2 is H-negative}.

Fix an H-negative line `1− ⊂ C4 and define:

M`1−
= {(`1, `2) ∈M | `1 is H-isotropic, `1 ⊥H `1−, `

2 = `1 + `1−} ' S3.

Any CR function f on M`1−
extends continuously to a function f̃ , continuous on

M`1−
∪ U`1− and holomorphic on U`1− , where:

U`1+ = {(`1, `2) ∈ Z | `1 is H-negative, `1 ⊥H `1−, `
2 = `1 + `1−} ' B2.

By letting `1− vary among all H-negative lines, we obtain that every CR function f
on M extends continuously to a function f̃ continuous on M ∪U and holomorphic
on U , where:

U = {(`1, `2) ∈ Z | `2 is H-negative}.

Since each fiber of the restriction of φ to U is biholomorphic to CP1, every CR
function f on M can be extended to a CR function f̃ on φ−1(N), which is constant
along the fibers of φ. This shows that f is also CR on N , hence M is not strictly
locally CR separable. On the other hand N is strictly locally CR separable, hence
by Lemma 10.6 M is weakly locally CR separable.
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10.4 Global CR functions on compact parabolic CR manifolds

Now we apply the results obtained in previous sections to compact parabolic CR
manifolds of finite type. We have:

Theorem 10.10. Let (g, q) be a simple effective compact parabolic CR alge-
bra, and M = M(g, q) the associated compact parabolic CR manifold. Then M is
globally weakly CR separable if and only if M is the Bergman-Shilov boundary of
an irreducible bounded symmetric domain not of tube type.

The compact parabolic CR manifolds that are Bergman-Shilov boundaries of
irreducible bounded symmetric domains not of tube type are described in Exam-
ples 10.4, 10.5, and 10.6.

Proof. From Theorem 10.8 and Corollary 10.9, we obtain that M is contained
in the boundary of a bounded symmetric domain N and every CR function f on
M extends to a function f̃ continuous on M ∪N , holomorphic on N , that satisfies
the estimate ‖f̃‖N ≤ ‖f‖M . This shows that the Bergman-Shilov boundary of N
is contained in M . Since G acts on N by biholomorphisms and is transitive on
M , then M coincides with the Shilov boundary of N . Finally, N is not of tube
type because M is of finite type, while the Bergman-Shilov boundary of a bounded
symmetric domain of tube type is totally real. �

Example 10.4. Fix positive integers p < q and let n = p+ q. We identify the
simple real Lie algebra g ' su(p, q) with the set of (n×n) complex matrices Z with
zero trace that satisfy :

Z∗K + K Z = 0 where K =
(
Ip
−Iq

)
.

Let e1, . . . , en be the canonical basis of Cn and let qαp ⊂ ĝ ' sl(n,C) be the set of
(n× n) matrices in sl(n,C) such that:

Z(〈e1 + ep+1 , . . . , ep + e2p〉) ⊂ 〈e1 + ep+1 , . . . , ep + e2p〉 .

Then (g, qαp) is parabolic minimal.
The corresponding CR manifold M = M(g, qαp) is the Grassmannian of p-

planes `p in Cn which are totally isotropic for K (i.e. v∗Kv = 0 for all v ∈ `p). We
have:

M '
{
`p = {(v, u(v)) ∈ Cn | v ∈ Cp}

∣∣u ∈ U(Cp,Cq)
}
' U(Cp,Cq)

where U(Cp,Cq) = {u ∈Mq×p(C) |u∗u = Ip} is the set of unitary q × p matrices.
Give U(Cp,Cq) the CR structure induced by the embedding inMq×p(C). The

compact subgroup K(1) ' SU(p) × SU(q) of matrices of SU(p, q) of the form(
Ap 0

0 Bq

)
acts transitively by CR automorphisms on U(Cp,Cq), the action being

given by:
(
A 0

0 B

)
· u = BuA−1.

The associated CR algebra is (k(1), q′) where k(1) ' su(p)⊕ su(q) and q′ is the

set of matrices in sl(p)⊕ sl(q) of the form
(
Ap 0 0

0 Ap D

0 0 Cq−p

)
.

The group K(1) acts transitively on M , and the associated CR algebra is
(k(1), k̂(1) ∩ q) = (k(1), q′). Thus the diffeomorphism M ' U(Cp,Cq) is in fact a
CR isomorphism.
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Example 10.5. Fix a positive integer p and let n = 2p + 1. We identify the
simple real Lie algebra g = so∗(2n) with the set of (2n × 2n) complex matrices Z
with zero trace that satisfy : {

ZJ = JZ̄ ,
tZK +KZ = 0 ,

where:
J =

(
0 In
−In 0

)
and K =

(
0 In
In 0

)
.

Let qα1 be the parabolic subalgebra of matrices in g that stabilize the subspace

Vn = 〈e1 + en+2p, . . . , ep + en+p+1, ep+1 − en+p, . . . , e2p − en+1, e2p+1〉.

Then (g, qα1) is parabolic minimal.
The maximal compact subgroup K ' U(n) of G of matrices of the form(

An 0

0 tAn
−1

)
, An ∈ U(n), acts transitively by CR isomorphisms on M(g, qα1). The

associated CR algebra is (k, q′) where k ' u(n) and q′ = k̂ ∩ qα1 . This is the subal-
gebra of matrices in so(2n,C) of the form

(
An 0

0 −tAn

)
where An ∈ gl(n,C) is of the

form
(
Bp Cp vp
Dp −tBp wp
0 0 is

)
with Bp = tBp, Dp = tDp.

We let K act on so(n,C) by : k ·X = AnX
tAn if k =

(
An 0

0 tAn
−1

)
. Let N be the

K-orbit of o =
(

0 −Ip 0

Ip 0 0

0 0 0

)
. The associated CR algebra is (k, q′) and the isotropy is

connected and contains a generator of π1

(
U(n)

)
. Thus M is CR isomorphic to N .

Example 10.6. Let D be the exceptional bounded symmetric domain of type
V. Its Shilov boundary S is a real flag manifold (see [FKK+00, Part III,Ch.IV§2.8])
for the group E III and is compact, hence it is a minimal orbit M(g, q) where g
is of type E III. Furthermore it has CR dimension 8 and CR codimension 8 (see
[KZ00, p. 180]), hence q = qα1 or q = qα6 . Thus M(g, qα1) ' S is an embedded
CR submanifold of C16.

In terms of cross-marked Satake diagrams, we obtain (see the Appendix for the
notation):

Corollary 10.11. Let (g, qΦ) be a simple effective fundamental compact par-
abolic CR algebra and M = M(g, qΦC ) the associated compact parabolic CR man-
ifold. Then there exists ΨC ⊂ ΦC and a G-equivariant fibration ρ : M −→ M ′ =
M(g, qΨC ) such that M ′ is globally weakly CR separable and O(M) = ρ∗

(
O(M ′)

)
.

Furthermore ΨC = ΦC ∩ ΣC , where ΣC is defined according to the type of g :
Type A IIIa : ΣC = {αp, αq};
Type D IIIb : ΣC = {α`−1, α`};

Type E III : ΣC = {α1, α5};
All other types : ΣC = ∅. �



Appendix. Table of Satake Diagrams

Name g Satake diagram

A I sl(`+ 1,R) ◦ ◦ ______ ◦ ◦
α1 α`

A II
sl(p,H)

2p+ 1 = `
• ◦ • ___ • ◦ •
α1 α`

A IIIa
su(p, `+ 1− p)

2 ≤ p ≤ `/2 ◦ ___vv ((◦ tt **• ___ • ◦ ___ ◦
α1 αp α`−p+1 α`

A IIIb
su(p, p)

1 ≤ p = (`+ 1)/2 ◦ ___xx &&◦ ww ''◦ ◦ ___ ◦
α1 αp α`

A IV su(1, `) ◦ vv ((• ___ • ◦
α1 α`

B I
so(p, 2`+ 1− p)

2 ≤ p ≤ ` ◦ ___ ◦ • ___ • // •
α1 αp α`

B II so(1, 2`) ◦ • ______ • // •
α1 α`

C I sp(2`,R) ◦ ◦ ______ ◦ oo ◦
α1 α`

C IIa
sp(p, `− p)

2p < `
• ◦ • ___ ◦ • ___ • oo •
α1 α2p α`

C IIb
sp(p, p)
2p = `

• ◦ • ___ ◦ • oo ◦
α1 α`

D Ia
so(p, 2`− p)
2 ≤ p ≤ `− 2

•
α`−1

◦ ___ ◦ • ___ •
oooooo

NNNNNN
α1 αp α`

•
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Name g Satake diagram

D Ib so(`− 1, `+ 1) ◦ dd

zz

α`−1
◦ ◦ ______ ◦

oooooo
PPPPPP

α1 α`◦

D Ic so(`, `) ◦
α`−1

◦ ◦ ______ ◦
oooooo
PPPPPP

α1 α`◦

D II so(1, 2`− 1) •
α`−1

◦ • ______ •
oooooo
PPPPPP

α1 α`•

D IIIa
so∗(2`)
` = 2p

•
α`−1

• ◦ • ___ ◦
oooooo
PPPPPP

α1 α`◦

D IIIb
so∗(2`)

` = 2p+ 1
◦ dd

zz

α`−1
• ◦ • ___ ◦ •

oooooo
PPPPPP

α1 α`◦

E I α4◦ ◦ ◦ ◦ ◦
α1 α3 α5 α6

◦
α2

E II α4◦xx &&◦ zz $$◦ ◦ ◦
α1 α3 α5 α6

◦
α2

E III α4◦ww ''• • • ◦
α1 α3 α5 α6

◦
α2

E IV α4◦ • • • ◦
α1 α3 α5 α6

•
α2

E V α4◦ ◦ ◦ ◦ ◦ ◦
α1 α3 α5 α6 α7

◦
α2

E VI α4◦ ◦ ◦ • ◦ •
α1 α3 α5 α6 α7

•
α2
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Name g Satake diagram

E VII α4◦ • • • ◦ ◦
α1 α3 α5 α6 α7

•
α2

E VIII α4◦ ◦ ◦ ◦ ◦ ◦ ◦
α1 α3 α5 α6 α7 α8

◦
α2

E IX α4◦ • • • ◦ ◦ ◦
α1 α3 α5 α6 α7 α8

•
α2

F I ◦ ◦ // ◦ ◦
α1 α2 α3 α4

F II • • // • ◦
α1 α2 α3 α4

G ◦ // ◦
α1 α2
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[Che55] Claude Chevalley, Théorie des groupes de Lie. Tome III. Théorèmes
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